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This study revisits the problem of free vapor condensation in the filmwise regime by constructing and
solving a comprehensive transport model that describes heat and mass transport through the gas phase,
interfacial and thermal resistance of the condensate film, and heat conduction through the cooled wall in a
self-consistent manner. We have shown that it is possible to obtain an analytical solution of the model
which describes the net condensation flux in the presence of an arbitrary amount of noncondensables.
This solution demonstrates that the overall thermal resistance reduces to a sum of the thermal resistances
of the wall, the condensate film, the interfacial resistance, and the diffusive resistance of the gas layer only
in the limit of infinite thermal resistance of the gas layer, but generally has a more complicated form.
Finally, we derived an analytical solution for the condensate film thickness profile which generalizes
Nusselt’s classical free condensation solution. Both finite thermal conductivity of the wall and thermocap-
illary stresses were shown to play an important role, substantially altering the thickness profile.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction interface, which forms a concentration boundary layer limiting
Film condensation has been a widely studied topic due to its
relevance in many areas of technology. Fundamental understand-
ing of vapor condensation is crucial in a wide variety of thermal
management technologies that rely on phase change. A particu-
larly important application is to heat exchangers, where vapor con-
densation on solid surfaces is often the limiting factor which
controls the heat transfer rate.

The first theoreticalmodel of vapor condensationwas developed
byNusselt [1]who assumed the thermal resistance is due entirely to
the condensate film. Despite this and several other simplifications,
Nusselt’s theory was found to accurately predict the heat transfer
coefficient for free (laminar) condensation of pure vapor on highly
conducting surfaces. However, as Othmer discovered later, noncon-
densables have a tremendous impact on condensation; the presence
of as little as 0.5% of air in steam reduces the heat transfer coefficient
by half [2]. Othmer’s predictions were later confirmed by a number
of other studies of steam condensation on vertical flat and cylindri-
cal surfaces [3–7]. The decrease in the heat transfer coefficient is due
to the accumulation of noncondensable gas at the vapor-liquid
the transport of vapor to the cold surface [8].
There is extensive literature devoted to this subject, with the

bulk of theoretical studies focusing on condensation in the pres-
ence of forced convection. Forced flows tend to be turbulent, which
makes the quantitative description of transport in the gas phase
challenging. As a result, theoretical models tend to be rather arbi-
trary, with dependence on many important parameters expressed
in terms of correlations based on empirical data rather than solid
fundamental understanding of the problem. In order to make ana-
lytical progress, the present study will instead focus on condensa-
tion in the presence of free convection.

Given that noncondensable gases tend to dissolve in liquids and
are effectively impossible to remove completely, a comprehensive
description of the condensation problem and the associated heat
transfer has to involve at a minimum the following components.
Transport of heat, momentum, and mass should be considered in
the gas layer to account for the adverse effect of noncondensables.
Transport of both heat and momentum should be considered in the
liquid condensate film. Finally, heat transport needs to be consid-
ered in the solid wall to account for finite conductivity. The trans-
port equations in the solid, liquid, and gas layer should be solved
subject to the appropriate boundary conditions at the solid-liquid
and liquid-vapor interface. To our knowledge, only a few studies
[9–11] have considered such a comprehensive and self-consistent
model, but only numerical analysis has been performed.
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Fig. 1. The geometry of the problem. The mixture of vapor and air (white) is
confined inside a cavity of interior dimensions L� H. The cold wall of the cavity
(dark gray) is covered by the liquid condensate film (light blue). Gravity points in
the negative z direction. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Analytical (and even semi-analytical) results are extremely rare
and involve considerable simplification of the problem. One of the
most popular approaches, known as the diffusion layer theory,
introduced by Peterson and coworkers [12,13] leads to a rather
simple, effectively one-dimensional description of transport. The
concentration and temperature boundary layers in the gas phase
are assumed to be logarithmic, which allows the heat flux to be
expressed in terms of the condensation and sensible heat transfer
coefficients. Both coefficients, however, are expressed in terms of
correlations obtained by previous experimental studies [14],
rather than computed from the transport equations. The conden-
sate film is described using a standard lubrication-type model
[15], but the corresponding heat transfer coefficient again involves
correlations. Despite these rather dramatic simplifications, no
explicit solution for the heat transfer coefficient has been
obtained, with the resulting system of equations that has to be
solved using an iterative procedure. Subsequent studies [6,16,17]
used a similar approach.

A considerably more sophisticated and rigorous theoretical
description was proposed by Sparrow and Lin [18]. By seeking sim-
ilarity solutions in the liquid and gas layer, this approach also
makes the problem effectively one-dimensional, making it compa-
rable to the diffusion layer theory in terms of complexity. However,
the solutions are still constructed iteratively, so no explicit depen-
dence on various parameters can be obtained. Moreover, the valid-
ity of this approach crucially relies on the assumption that the
solution to the transport equations possess scaling that allows
them to be expressed in similarity form. As we argue in the present
paper, this assumption becomes invalid when thermocapillary
stresses at the liquid-vapor interface are taken into account. Subse-
quent developments of this approach by Minkowycz and Sparrow
[19], Rose [20], and Wu et al. [21] suffer from the same limitations.

While it is widely accepted that thermocapillary stresses play an
important role in evaporation, e.g., leading to dry-out in heat pipes
[22], oddly enough, the thermocapillary effect is almost universally
ignored, without much justification, in considering filmwise con-
densation. As the present paper demonstrates, thermocapillary
stresses arise inevitably in condensate films in response to variation
in their thickness and can have a profound effect on the thickness
profile and therefore the thermal resistance of the liquid layer. This
is a good illustration of the kinds of limitations the lack of an expli-
cit analytical solution describing film condensation can have: in the
absence of an expression for the interfacial temperature it is diffi-
cult to judge the importance of a physical effect such as
thermocapillarity.

The lack of an explicit relation between the heat transfer coef-
ficient and the various material parameters and problem geometry
is a significant limitation for our ability to improve thermal man-
agement technologies relying on phase change. Our study fills this
void by formulating and solving a model describing transport in all
three layers (solid/liquid/gas) and provides a clear physical insight
into the problem of filmwise condensation in the entire range of
the concentration of noncondensables. The focus on free filmwise
condensation on a vertical plane allows us to obtain a tractable
description that yields an explicit analytical expression for the heat
transport coefficient which clearly identifies the physical effects
that become the bottleneck in the heat transfer in various limiting
cases. Our description also gives an explicit expression for the
condensate film thickness profile and, in particular, shows that
thermocapillary stresses make it more uniform compared with
the boundary layer-type solutions of Nusselt [1] and Sparrow
and Lin [18] that have become textbook examples.

The paper is organized as follows. Section 2 describes the
mathematical model of the problem. The analysis of the model is
presented in Section 3 and some applications in Section 4. Section 6
contains the summary and conclusions.
2. Mathematical model

The problem under consideration involves a mixture of vapor
and air in a cavity of length L and height H in the presence of a hor-
izontal temperature gradient. The hot vapor, which is assumed to
be saturated on the right side of the cavity, condenses on a cooled
vertical wall of thickness hw on the left side of the cavity, forming a
film of thickness hl, which drains under the action of gravity. The
schematic illustration of the respective geometry is shown in
Fig. 1. For simplicity we will consider a two-dimensional problem,
where all physical observables depend only on the horizontal coor-
dinate x and vertical coordinate z, but not the coordinate y, and the
velocity field is planar, u ¼ x̂uþ ẑw.

2.1. Governing equations

The heat and mass transport in the gas and the liquid conden-
sate film are governed by the mass, momentum, and heat conser-
vation equations

r � ui ¼ 0; ð1Þ
qi @tui þ ui � ruið Þ ¼ �rpi þ lir2ui þ qig; ð2Þ
@tTi þ ui � rTi ¼ air2Ti; ð3Þ
where p and T are the pressure and temperature, respectively. The
mass density q, thermal diffusivity a, and dynamic viscosity of
the two fluids are considered constant. The index i ¼ g; l denotes
the gas and the liquid phase, respectively. Finally, mass transport
in the gas, which is a binary mixture of vapor and air, is governed
by the advection-diffusion equation

@tcv þ ui � rcv ¼ Dr2cv : ð4Þ
where ca and cv are the molar fractions of air and vapor, respec-
tively, and D is the binary diffusion coefficient. To account for the
finite thickness and conductivity of the solid walls, we will also
use the heat equation

@tTw ¼ awr2Tw; ð5Þ
where Tw is the temperature of the wall. Thermal diffusivities ai are
related to thermal conductances ki via ki ¼ aiqiCp;i, where Cp;i is the
heat capacity of the gas/liquid/wall (i ¼ g; l;w).

Since we are interested in the heat transport in steady state, we
will set the temporal partial derivatives to zero in all of the above
equations. In particular, the steady mass transport Eq. (4) in the gas
can be rewritten in the form

r � ji ¼ 0; ð6Þ
where

ji ¼ ngðugci � DrciÞ ð7Þ
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is the number density flux of component i;ng ¼ na þ nv is the net
number density of the gas, and we have ignored the spatial varia-
tion in ng associated with its dependence on the temperature, such
that the molar fraction determines both the partial pressures and
the number densities of the two components:

ci ¼ pi
pg

¼ ni
ng

: ð8Þ
2.2. Boundary conditions

We will assume there is no heat or mass flux through the top
and bottom of the cavity, and on the outer side x ¼ �hw of the
cooled wall the temperature is fixed

Tw ¼ Tc; ð9Þ
e.g., due to the wall being in contact with a coolant at temperature
Tc . We will also assume that on the hot side of the cavity (at x ¼ L)
the gas has a fixed temperature

Tg ¼ Th ð10Þ
and the vapor is saturated. Such boundary conditions would
describe a variety of practically relevant situations, e.g., the hot sat-
urated vapor produced by evaporation of the liquid percolating
through a porous wall of constant temperature Th in the geometry
shown in Fig. 1 or being injected from an external cavity along
the centerline of a channel of width 2L. The inner side x ¼ 0 of
the cooled wall is assumed to be covered by a thin layer of liquid
condensate of thickness hl � hw. The heat flux balance at this inter-
face requires

n � kwrTw ¼ n � klrTl; ð11Þ
where n ¼ x̂ is the surface normal. The heat flux balance at the
liquid-vapor interface x ¼ hl requires

LJ ¼ n � kgrTg � n � klrTl ð12Þ
where n ¼ x̂ again (since hl is small), L is the latent heat of vapor-
ization, and J is the mass flux associated with phase change (here,
condensation). The temperature at the liquid-solid and liquid-
vapor interfaces is continuous

Tw ¼ Tl; x ¼ 0;
Tl ¼ Tg ; x ¼ hl:

ð13Þ
The mass/number conservation for the two components of the
gas mixture at the liquid-vapor interface requires

J
mv

¼ jv � n ¼ ngðn � ugcv � Dn � rcvÞ;
0 ¼ ja � n ¼ ngðn � ugca � Dn � rcaÞ;

ð14Þ

where mv is the mass of one vapor molecule. Adding these we can
find the normal components of the gas velocity

n � ug ¼ J
ngmv

; ð15Þ

and the liquid velocity

n � ul ¼ J
ql

: ð16Þ

According to the kinetic theory of gases [23],

J ¼ butqv
rj

qlRvTi
þ L

Rv

1
Ts

� 1
Ti

� �� �
: ð17Þ

Here Rv is the specific gas constant for the vapor, ut ¼
ffiffiffiffiffiffiffiffiffiffi
RvTi

p
is the

characteristic thermal velocity of the gas molecules, qv ¼ mvcvng is
the vapor concentration at the interface, r is the surface tension,
subscripts i and s denote values of the temperature at the interface
and the saturation value for the vapor, respectively, and we have
defined a shorthand

b ¼
ffiffiffiffiffiffiffi
1
2p

r
k

2� k
; ð18Þ

where k is the accommodation coefficient (which can typically be
set to unity). The first term in (17) can be neglected due to the
low curvature j of the liquid-vapor interface. The pressure depen-
dence of the saturation temperature can be expressed using the
Clausius-Clapeyron equation

ln
pv
p0
v
¼ L

Rv

1
T0

� 1
Ts

� �
; ð19Þ

where p0
v is the saturation pressure at the reference temperature T0,

which we will set equal to Th.
Finally, the stress balance at the liquid-vapor interface gives

ðRl � RgÞ � n ¼ nðjr� J2=qgÞ � crsTi ð20Þ

where Ri ¼ li½rui þ ðruÞTi � � pi is the stress tensor,

rs ¼ 1-n � nð Þris the surface gradient, the term J2=qg describes
vapor recoil, c ¼ �@r=@T > 0 is the temperature coefficient of sur-
face tension, and the first term on the right-hand-side can be
ignored due to low curvature of the interface. In addition, the tan-
gential velocity components are continuous at x ¼ hl

ð1� n � nÞðul � ugÞ ¼ 0 ð21Þ
and satisfy the no-slip boundary conditions at the wall (x ¼ 0)

ul ¼ 0: ð22Þ
Given that hl is negligibly small compared with L, in the boundary
conditions describing the liquid-vapor interface the quantities
describing the gas phase can be evaluated at x ¼ 0 instead of x ¼ hl.

3. Analysis

We will start our analysis by considering transport of heat,
mass, and momentum in the gas layer, which tends to control
the condensation rate and the associated heat transfer coefficient
when the fraction of noncondensables exceeds a few percent. We
will then consider the conjugate heat transfer problem which
involves the gas layer, the condensate film, and the cold wall,
where spatial nonuniformity of the condensate film is neglected.
Next, we will use the results for the condensation rate to derive
a solution for the condensate film thickness that takes into account
the gravitational draining as well as the thermocapillary stresses
arising due to the nonuniformity of the film. Finally, we will vali-
date the assumptions made in the analysis and illustrate how the
results are affected by the concentration of noncondensables using
a couple of specific examples.

3.1. Gas layer

It is natural to expect that convective flow in the gas layer could
strongly modify the transport of heat and mass towards the cold
wall, which would require the flow field to be computed. However,
this is not necessarily the case, at least for free convection in cav-
ities with moderate to high aspect ratio C ¼ L=H. As numerical
simulations reported in Ref. [24] illustrate, mass transport in the
gas phase is often essentially one-dimensional even in the pres-
ence of convective flow. This can be understood via a simple calcu-
lation focusing on the central region of the cell, which controls the
mass transport in the gas phase. Let us introduce the nondimen-
sional coordinates v ¼ x=H and f ¼ z=H, such that the interior of
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the cavity corresponds to 0 < f < 1 and 0 < v < C. Since the flow
field is constrained to the v� f plane and is incompressible, it
can be written in terms of the stream function wðv; fÞ,
ug ¼ x̂ug þ ẑwg ¼ x̂@fw� ẑ@vw: ð23Þ
In the limit of large C, the flow is essentially horizontal in the cen-
tral region of the cavity with ug ¼ Oð�ugÞ and wg ¼ OðC�1�ugÞ, where
�ug is a characteristic flow velocity in the gas layer. We can therefore
simplify (4) to read

Hug@fcv ¼ Dð@2
vcv þ @2

f cvÞ; ð24Þ
with the vertical component uz of the velocity yielding a higher
order (in C�1) correction. Furthermore, let ug ¼ um þ ur , where
um ¼ const < 0 is the mean component of the flow (the net flow is
towards the cold wall) and ur describes the recirculation component
with zero meanZ 1

0
urdf ¼ 0: ð25Þ

Correspondingly, we can write w ¼ umfþ ~wðfÞ þ OðC�1Þ, where
ur ¼ @f

~w, andZ 1

0

~w0df ¼ ~wð1Þ � ~wð0Þ ¼ 0: ð26Þ

In Ref. [24] the following solution to (24) subject to no-flux
boundary conditions at the top/bottom of the gas layer was derived
in the special case ur ¼ 0:

cv ¼ C0 þ C1e�Pemv; ð27Þ
where Pem ¼ jumjH=D is the Péclet number, which corresponds to
the mean flow and the constants C0 and C1 are determined by the
boundary conditions at v ¼ 0 and v ¼ C. In the general case (i.e.,
ur – 0) the corresponding solution to (24) is

cv ¼ C0 þ C1e�Pemv½1þ f ðfÞ�; ð28Þ
where

f 00ðfÞ ¼ umurðfÞH2

D2 ½1þ f ðfÞ�: ð29Þ

The right-hand-side of (29), and hence f ðfÞ itself, is of order
� ¼ PemPer , where Per ¼ maxzjurðzÞjH=D is the Péclet number
describing the strength of the recirculation flow ur . Specifically,

f ðfÞ ¼ umH
2

D2

Z
~wðfÞdfþ Oð�2Þ: ð30Þ

Now, finally, the reason for separating ux into the two components
um and ur becomes clear: the no-flux boundary condition for cv
requires f 0ð0Þ ¼ f 0ð1Þ ¼ 0 which is only consistent with (30) when
(26) is satisfied.

It can be shown rigorously that � / DT2, so �� 1 for sufficiently
small DT and any �ca. Since � is small, the z-dependence of the con-
centration field is weak, such that (28) reduces to (27) and we can
effectively treat cv as a function of x alone. The accuracy of the ana-
lytical solution (27) even for moderate DT is also supported by
numerical results [24]. Furthermore, since ag and D are of similar
magnitude for gases, the governing Eqs. (3) and (4) are formally
equivalent, and so are the boundary conditions for cv and Tg , the
same arguments apply to the temperature field Tg , such that

Tg ¼ B0 þ B1e�Petv þ Oð�Þ; ð31Þ
where Pet ¼ jumjH=ag is the thermal Péclet number and B0;B1 are
some constants. Since both cv and Tg can be considered effectively
z-independent and the condensate film is essentially flat, we can
find solutions for ug ; Tl, and Tw that are also effectively z-
independent. The Navier-Stokes Eq. (2) and the incompressibility
condition (1) admit the solution

ug ¼ umx̂þ OðC�1Þ; ð32Þ
pg ¼ p0

g � qggzþ Oðlgur=H
2Þ � p0

g ; ð33Þ
where

p0
g ¼ p0

v
cv jx¼L

: ð34Þ

The hydrostatic pressure term qggz is negligible due to the low

mass density of the gas and the viscous term Oðlgur=H
2Þ is negligi-

ble due to the low velocity of the gas. Plugging (32) together with
(27) into (14) yields (to leading order in �)

ca ¼ Ceumx=D ¼ Ce�rx=L;

cv ¼ 1� Ceumx=D ¼ 1� Ce�rx=L;
ð35Þ

where we have defined a nondimensional parameter

r ¼ �umL
D

¼ PemC > 0;

which quantifies the mass flux in the gas phase and

um ¼ J
mvng

ð37Þ

according to (15). The coefficient C can be related to the average air
concentration by integrating (35) over the cavity:

C ¼ �car
1� e�r

: ð38Þ

Note that both the diffusion constant

D ¼ p0

pg
D0 ð39Þ

and the total number density

ng ¼
pg

mvu2
t

ð40Þ

depend on �ca through pg (cf. Eq. (34)). Here we set Ti equal to Th in
evaluating the thermal velocity ut and D0 and p0 refer to the values
of the diffusion coefficient and pressure at standard atmospheric
conditions. However, since the product ngD is independent of pg ,
the dimensional mass flux

J ¼ �mvngD
L

r ¼ �J0r ð41Þ

can only depend on �ca through r, where

J0 ¼ D0p0

Lu2
t

ð42Þ

is a constant (with units of mass flux).
Correspondingly, Eqs. (3) and (5) governing heat transport in

the condensate film and the wall reduce to

@2
xTl ¼ @2

xTw ¼ 0 ð43Þ
with solutions

Tw ¼ Tc þ Bwðxþ hwÞ;
Tl ¼ Ti þ Blðx� hlÞ;

ð44Þ

with some constants Bw and Bl. Using the boundary conditions (9)–
(13) we obtain

Tg ¼ Th � B eumx=ag � eumL=ag
� � ¼ Th � B e�grx=L � e�gr

� �
; ð45Þ
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where g ¼ D=ag is the inverse of the Lewis number (which is inde-
pendent of pg and hence �ca) and

B ¼ DT �LJ0ðZl þ ZwÞr
grZ�1

g ðZl þ ZwÞ þ 1� e�gr
: ð46Þ

Here DT ¼ Th � Tc and Zw ¼ hw=kw; Zl ¼ �hl=kl, and Zg ¼ L=kg are the
familiar expressions for thermal resistivity of the cold wall, liquid
condensate film, and the gas layer, respectively. The thickness hl

of the condensate film (to be discussed later) is nonuniform, hence
Zl is defined in terms of mean thickness �hl for now.

3.2. Mass flux

Let us compute the mass flux next. According to (33)–(35) and
(45), at the liquid-vapor interface

Ti ¼ Tg jx¼0 ¼ Th � Bð1� e�grÞ;
qv ¼ mvngcv jx¼0 ¼ 1��car�e�r

1�e�r mvng ;

pg ¼ p0v
cv jx¼L

¼ 1�e�r

1�ð1þr�caÞe�r p0
v :

ð47Þ

Since pv ¼ cvpg , the saturation temperature Ts can be computed
from (19) by evaluating the vapor concentration at the interface,
yielding

1
Ts

¼ 1
Th

� Rv
L

ln
cv jx¼0

cv jx¼L

� �
¼ 1

Th
� Rv

L
ln

�car þ e�r � 1
�care�r þ e�r � 1

� �
: ð48Þ

Finally, the nondimensional flux r can be computed by substituting
(41) and (48) into (17), which yields

r ¼ � bLutL
RvD

1� �car � e�r

1� e�r

� 1
Th

� 1
Th � Bð1� e�grÞ �

Rv
L

ln
1� �car � e�r

1� �care�r � e�r

� �� �
; ð49Þ

where B and D depend on r and/or �ca according to (46) and (39).
An exact solution to the transcendental Eq. (49) cannot be

obtained analytically. However, a reasonably accurate approximate
solution can be obtained in explicit form by linearizing this equa-
tion about r ¼ 0 and DT ¼ 0:

r ¼ DT
D0p0LZ2

u2
t L

þ D0p0ThkgutZ3

bLL2p0
v

þ �caThkgu2
t Z3

ð1� �caÞLL

" #�1

; ð50Þ

where

Z2 ¼ Zw þ Zl ð51Þ
is the thermal resistance of the wall and the condensate film and

Z3 ¼ Zw þ Zl þ Zg ð52Þ
is the thermal resistance of the wall, the condensate, and the gas
layer. We can rewrite (50) in nondimensional form

r ¼ u2
t LDT

D0p0LZ
; ð53Þ

or, using (41), in dimensional form

J ¼ � DT
LZ

; ð54Þ

where the net thermal resistance

Z ¼ Z2 þ Z3

Zg
ðZi þ ZdÞ ð55Þ

includes the contributions describing the interfacial resistance
Zi ¼ Tcu3
t

bL2p0
v

ð56Þ

and the diffusive resistance of the gas layer

Zd ¼
�ca

1� �ca

LTcu4
t

D0p0L
2 : ð57Þ

The last expression corresponds to the effective condensation ther-
mal conductivity

kc ¼ 1� �ca
�ca

D0p0L
2

Tcu4
t

¼ L
Zd

ð58Þ

derived by Peterson et al. [12].
It is worth emphasizing that, under the most general conditions,

the net thermal resistance is not given by a simple sum of the resis-
tances of the wall condensate film, interfacial resistance, and diffu-
sive resistance, but also depends on the thermal resistance of the
gas layer in a nontrivial way. However, under typical conditions,
due to both the large thickness of the gas layer and its poor thermal
conductivity, Zg will be many orders of magnitude larger than
Zl þ Zw for any �ca, so that (55) can be simplified:

Z � Zw þ Zl þ Zi þ Zd: ð59Þ
The corresponding net heat flux is the sum of the latent and sensible
heat contributions

Q ¼ �LJ þ kg@xTg jx¼0; ð60Þ
so that the corresponding heat transfer coefficient is given by

H ¼ Q
DT

¼ 1
Z3

þ Zg

Z3

1
Z
: ð61Þ

It can be further simplified when Z3 � Zg � Z, in which case

H � 1
Z
: ð62Þ

This result can also be derived from (54) and gives the expression
for the heat transfer coefficient in a simple analytical form which
(i) includes dependence on the problem geometry and material
parameters and (ii) is easy to interpret. Specifically, we find that
H is simplify the inverse of the net thermal resistance, which is a
sum of four contributions: the resistance of the cooled wall and
the liquid condensate film, interfacial resistance, and the diffusive
resistance of the gas layer.

3.3. Condensate film

Up until now we have assumed that the condensate film thick-
ness hl is small and the variation in the thermal resistance Zl is neg-
ligible. We need to check whether this is indeed the case. The flow
inside this thin film can be described using lubrication approxima-
tion, where ul ¼ wlðxÞẑ. In this approximation, the pressure in the
liquid can be computed using (20)

pl ¼ p0
g � qggz� rj; ð63Þ

where the curvature of the interface is j ¼ @2
z hl and we have

ignored the small vapor recoil pressure term. The vertical compo-
nent of the Navier-Stokes Eq. (2) therefore reduces to

ll@
2
xwl ¼ qlg þ @zpl � qlg � r@3

z hl; ð64Þ
since ql � qv . The solution satisfying the boundary conditions (20)
and (22) is

wl ¼ qlg � r@3
z hl

2ll
ðx2 � 2hlxÞ � cs

ll
x; ð65Þ
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where s ¼ @zTi is the interfacial temperature gradient. Under our
assumptions, the heat and mass flux are both independent of z, so
that

Q � DT
Z

¼ kl
Ti � Twl

hl
; ð66Þ

where Twl is the temperature of the wall-liquid interface that is also
independent of z. Hence,

s ¼ @Ti

@hl
@zhl ¼ DT

Zkl
@zhl: ð67Þ

The corresponding volumetric flux is

q ¼
Z hl

0
wldx ¼ rh3

l @
3
z hl

3ll
� qlgh

3
l

3ll
� cDT
2llZkl

h2
l @zhl: ð68Þ

Mass conservation in the liquid together with the mass flux balance
(16) requires that

@zq ¼ J
ql

� � DT
qlLZ

; ð69Þ

where q ¼ 0 at the top of the cell z ¼ H (no flux through the top
wall). Integrating this and substituting into (68) yields

�rh3
l @

3
z hl

3ll
þ cDT
2llZkl

h2
l @zhl þ qlgh

3
l

3ll
¼ DT
qlLZ

ðH � zÞ: ð70Þ

The terms on the left-hand-side of this equation describe, respec-
tively, the Young-Laplace pressure associated with the curvature
of the interface, the thermocapillary stresses, and the gravitational
draining, while the term on the right-hand-side describes the con-
densation mass flux.

The first term in (70) can be neglected if there are no high-
curvature regions, such that the resulting differential equation
can be rewritten as

df 0 þ f ¼ 1� f; ð71Þ
where f ¼ ðh=h0Þ3, prime denotes the derivative with respect to the
nondimensional vertical coordinate f,

d ¼ cDT
2ZklHqlg

ð72Þ

is a (small) nondimensional parameter which determines the
strength of thermocapillary stresses relative to gravity, and

h0 ¼ 3llHDT
q2

l gLZ

� �1=3
ð73Þ

is a characteristic thickness scale which describes the flux balance
between condensation and draining due to gravity. Eq. (71) can
be solved analytically, yielding

hl ¼ h0 1� fþ d 1� Ae�f=d
h i	 
1=3

; ð74Þ

where A is some constant. In fact, we should set A ¼ 0 to ensure that
the solution is well-behaved at z ¼ 0 for d ! 0, which yields the fol-
lowing result for the mean thickness

�hl ¼ 1
H

Z H

0
hldz ¼ 3

4
h0 ð1þ dÞ4=3 � d4=3
h i

: ð75Þ

In deriving the solution (74), we assumed that Z is constant.
This will not be the case when the overall thermal resistance is
dominated by that of the condensate layer. In the (near) absence
of air and for a highly conducting cooled wall, Z � Zl ¼ hl=kl, so nei-
ther h0 nor d is constant. In this limit, we can rewrite (70) as

cqlL

2llklH
2 h

2
l @fhl þ q2

l gLh4
l

4llklHDT
¼ 1� f; ð76Þ
where we have again dropped the curvature term. An analytical
solution for (76) cannot be obtained in the entire interval
0 6 f 6 1, but it is easy to construct a very piecewise approxima-
tion. For f < 1� e, where

e ¼ Lc4DT3

64llq2
l klH

5g3

" #1=5
; ð77Þ

the dominant balance is between the gravitational force and the
condensation mass flux, and we recover the classical Nusselt solu-
tion (78)

hl ¼ 4llklHDTð1� fÞ
q2

l gL

� �1=4
: ð78Þ

For f > 1� e, the dominant balance is between the gravitational
force and the thermocapillary stresses. so that

hl ¼ 2cDT
qlgHðf� f0Þ

; ð79Þ

where f0 < 1� e is a constant that can be determined using a
matched asymptotic expansion in e, so long as e� 1 (as we will
see below, in practice e indeed tends to be quite small). In this limit,
we can neglect the effect of the deviation of the film thickness pro-
file from the Nusselt solution near f ¼ 1 (z ¼ H) on the overall heat
and mass flux associated with condensation, yielding the mean heat
flux

Q ¼
Z 1

0

LDTkl
hl

df ¼ 64q2
l gklL

5

81llH

" #1=4
DT3=4: ð80Þ

Note that in our model the thickness of the condensate film
does not vanish at the top of the cold wall (as illustrated by both
(74) and (79)). This should not be very surprising, since the con-
densate film is in contact with the top wall of the cavity. The cur-
vature of the free surface also remains finite at f ¼ 1, instead of
blowing up as it does for the Nusselt solution. This is due to ther-
mocapillarity, which suppresses draining, making the condensate
slightly thicker and more spatially uniform. The solution(s) we
have obtained can be made to accommodate additional boundary
conditions at f ¼ 1 such as the fixed contact angle with the top wall
or the vanishing of the film thickness (e.g., for a perfectly nonwet-
ting wall or in the absence of a top wall), but this requires that the
curvature term be included in the lubrication approximation. Since
the condensate film is typically very thin, the effect of the film cur-
vature is limited to a region of size OðhlÞ near from z ¼ H. The devi-
ation of the solution in this region from the form derived here will
therefore have a negligible influence on the condensation rate as
hl � H.

4. Applications

To illustrate these results, we will discuss how they depend on
the choice of the coolant fluid, the wall material, and the amount of
noncondensable gases present in the cavity, which are among the
most accessible design parameters. Following a series of previous
numerical [25,26,24], analytical [27], and experimental [28] stud-
ies, we will assume that a shallow layer of liquid coolant is con-
fined inside a sealed rectangular cavity (cf. Fig. 2). An external
temperature gradient is applied by maintaining the exterior sur-
face of the cold wall at temperature Tc and the exterior of the
hot wall at temperature Th ¼ Tc þ DT . As in a typical heat pipe,
the liquid coolant evaporates at (or near) the hot wall, the vapor
flows towards, and condenses, on the cold wall. To simplify things,
we will avoid the discussion of evaporation and the temperature
drop across the hot wall and simply assume that the hot wall is



Fig. 2. Test cell containing the liquid and air/vapor mixture. A layer of liquid (light
blue) is at the bottom of the cell and a thin film of condensate covers the entire cold
wall. Thermal gradient in the x direction is imposed by maintaining the end walls at
temperatures Tc and Th > Tc . (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.) Fig. 4. Thickness profile hlðfÞ of the silicone oil condensate film for �ca ¼ 0:001.
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isothermal and the vapor is in thermal equilibrium with the liquid
at x ¼ L. We will assume that the geometry (L ¼ 48:5 mm, H ¼ 10
mm, hw ¼ 1:25 mm), reference temperature (Tc ¼ 293 K), and the
applied temperature differential (DT ¼ 10 K) are fixed at the values
considered in the studies referenced above.
Fig. 5. Dependence of the mass flux J and heat transfer coefficient H on the air
concentration �ca for condensation of silicone oil on fused quartz. Exact numerical
solution is shown as a solid curve, the approximate analytical solution as triangles,
and the numerical result from Ref. [24] as circles.
4.1. Silicone oil condensation on fused quartz

Wewill start by considering a volatile (0.65 cSt) silicone oil con-
fined inside a test cell made of fused quartz (the values of all mate-
rial parameters can be found in Ref. [24]). All of our calculations
were restricted to a range of �ca varying from a minimum of 0.001
(i.e., 0.1% air), which in all likelihood is well below the value that
can be achieved in practice, to the maximum 1� p0

v=p0, which cor-
responds to the atmospheric pressure p0, when the gas predomi-
nantly contains air (�ca ¼ 0:96).

In order to obtain solutions, exact or approximate, of the model,
we first substitute (59), (72), and (73) into (75) and solve the
resulting equation for the mean thickness of the condensate film
�hl for a fixed �ca. The results for different �ca are plotted in Fig. 3,
which shows that �hl varies from the maximum of around 35 lm
when there is essentially no air inside the cell to around 2.6 lm
at ambient conditions, when the gas is predominantly air with only
4% vapor. The thickness profile hlðfÞ for the lowest value of the air
concentration �ca ¼ 0:001 is shown in Fig. 4. The thickness of the
film varies between 15 lm at the top of the cold wall (f ¼ 1) to
46 lm at the bottom (f ¼ 0).

Once the thickness of the condensate film has been determined,
its thermal resistance can be found, which allows computation of
the mass and heat flux associated with the condensation process.
The condensation mass flux J (or rather its absolute value, since
J < 0) and the corresponding heat transfer coefficient H are shown
in Fig. 5. The approximate analytical solution is found to be
Fig. 3. Dependence of the average thickness �hl of the condensate film on the air
concentration �ca for condensation of silicone oil on fused quartz.
virtually indistinguishable from the exact numerical solution in
the entire range of composition of the gas phase, which attests to
the excellent accuracy of the approximation. The figure also com-
pares these results with the numerical ones obtained in a previous
study [24] which assumed that the walls of the container are
partially wetting, so that condensation occurs exclusively at the
surface of the liquid layer which covers the bottom of the cell
(cf. Fig. 2). Not surprisingly, the condensation mass flux (and there-
fore the heat transfer coefficient) is notably higher when the vapor
condenses on the cold wall instead. The difference can be as large
as an order of magnitude at low values of �ca under otherwise
identical conditions and reflects both the larger area over which
the condensation occurs and the smaller thermal resistance of
the thin film of condensate covering the cold wall.

In conclusion of this section, let us compare the magnitudes of
the different contributions to the overall thermal resistance Z of
Fig. 6. Thermal resistance of the condensate film (Zl , solid line), the wall (Zw , short-
dash line), the interfacial resistance (Zi , dash-dot line), and the diffusive resistance
of the gas layer (Zd , long-dash line) for silicone oil condensation on fused quartz as a
function of air concentration.
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the system. The four contributions (Zd; Zi; Zl, and Zw) are plotted as
a function of the average concentration of air �ca in Fig. 6. Not sur-
prisingly, at high �ca when mass transport is strongly suppressed by
diffusion through air, thermal resistance is dominated by the diffu-
sive contribution. In fact Zd remains the largest contribution even
when the gas contains as little as 1% of air. At even smaller air con-
centrations, the thermal resistance of the wall becomes the domi-
nant contribution, which is also not surprising given that the walls
are relatively thick and fused quartz is a relatively poor conductor.
The thermal resistance of the condensate film and the interfacial
resistance are negligible in this particular scenario, but may
become important when the wall material has high thermal con-
ductivity, as illustrated in the next chapter.
Fig. 8. Thickness profile hlðfÞ of the water condensate film for �ca ¼ 0:001.

Fig. 9. Dependence of the mass flux J and heat transfer coefficient H on the air
concentration �ca for condensation of water on copper. Exact numerical solution is
shown as a solid curve and the approximate analytical solution as triangles.
4.2. Water condensation on copper

A more practical application of our study is towards character-
izing heat transfer in heat pipes and heat spreaders, which com-
monly use water as the coolant inside sealed copper containers.
Hence, we will next consider water confined inside a test cell made
of copper, but with the geometry (length, height of the cavity, wall
thickness) that is the same as that considered in the previous sec-
tion to enable direct comparison.

The average thickness �hl of the condensate film is plotted as a
function of �ca in Fig. 7. It varies from the maximum of around 44
lm at �ca ¼ 0:001 to around 2 lm at ambient conditions, when
the gas mixture contains just over 2% of water vapor. This is very
similar to the results we have obtained for silicone oil, since, for
the water/copper combination, the higher latent heat is offset
by the lower overall thermal resistance in the denominator of
(73). The thickness profile hlðfÞ for the lowest value of the air
concentration �ca ¼ 0:001 is shown in Fig. 8. The thickness of the
condensate film varies between 27 lm at the top of the cold wall
(f ¼ 1) to 54 lm at the bottom (f ¼ 0), also similar to the result
of the previous section.

The corresponding condensation mass flux J and heat transfer
coefficient H are shown in Fig. 9. Again we find the approximate
analytical solution to be in good agreement with the exact numer-
ical solution in the entire range of composition of the gas phase.
The agreement can be improved further by keeping higher-order
terms in the expansion of (50). The condensation mass flux is com-
parable to that for the silicone oil/fused quartz case (as in the case
of condensate film thickness, this is because for the water/copper
combination the higher latent heat is offset by the lower overall
thermal resistance in the denominator of (69)). In contrast, the
heat transfer coefficient is substantially higher for the water/cop-
per combination: for �ca ¼ 0:001 we find H � 104 W/(m2K) com-
pared with H � 750 W/(m2K) for the silicone oil/fused quartz
Fig. 7. Dependence of the average thickness �hl of the condensate film on the air
concentration �ca for condensation of water on copper.
combination, illustrating the clear advantage of water (due to its
high latent heat) and copper (due to its high thermal conductivity).

The magnitudes of the different contributions to the overall
thermal resistance Z are compared in Fig. 10. We find that thermal
resistance is dominated by the diffusive contribution over almost
the entire range of �ca. Thermal resistance of the condensate film
becomes the dominant contribution only at extremely low �ca when
the gas contains merely 0.3% of air, which in all likelihood is impos-
sible to achieve in practice, since air tends to dissolve reasonably
well in water. As expected, thermal resistance of the wall is negli-
gible because copper is a very good thermal conductor. Similarly,
the interfacial resistance (56) is negligibly small due to the high
latent heat of water.

As the two examples considered here illustrate, the thermal
resistance of the condensate film becomes the dominant factor
Fig. 10. Thermal resistance of the condensate film (Zl , solid line), the wall (Zw ,
short-dash line), the interfacial resistance (Zi, dash-dot line), and the diffusive
resistance of the gas layer (Zd , long-dash line) for water condensation on copper as a
function of air concentration.



Fig. 11. Normalized heat flux Q 0 as a function of air concentration �ca . The
predictions of our model are shown as a solid curve and the experimental results
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limiting heat and mass flux only under rather extreme conditions
(when noncondensables have been effectively completely
removed) that may never be realized in practice. It is only in this
case that the one-dimensional approximation for the heat and
mass transport in the gas phase may become invalid. However,
even in this limit our model should produce reasonably accurate
predictions for the net heat and mass flux. Note that the conden-
sate film thickness profile in this limit (cf. Figs. 4 and 8) remains
relatively uniform, unlike the unphysical Nusselt’s solution which
predicts that the condensate film thickness vanishes at the top of
the cold wall, resulting in a divergence of the heat and mass flux
there. Our results predict no divergence, with the film thickness
hl and therefore its local thermal resistance hl=kl varying relatively
little about the mean. As a result, heat and mass flux in the gas
layer, especially at high aspect ratio C can be still be considered
effectively one-dimensional.

Finally, let us comment on the effect of geometry on the con-
densate film thickness. As Eqs. (73) and (75) illustrate, �hl / H1=3

for all �ca. The dependence on the thickness L of the gas layer is
due primarily to the diffusive resistance (57), which becomes dom-
inant at typical conditions when the gas contains more than about

0.3% air, when �hl / ðH=LÞ1=3 ¼ C�1=3. This scaling illustrates how
weak the predicted dependence of �hl (and hence Zl) on the geom-
etry is.

5. Comparison with experimental data

Direct quantitative comparison of the predictions of our model
with experiment is significantly complicated by a number of fac-
tors. Consider, for instance, the composition of the gas, which is
the most important factor controlling condensation rate at typical
conditions achievable in practice, i.e., when the fraction of noncon-
densables is not vanishingly small and Z � Zd. In our model it is
described using the spatial average �ca over the entire volume of
the gas phase. However, this average is only meaningful for a fixed
geometry, e.g., distance L between the hot wall (‘‘evaporator”) and
the cold wall (‘‘condenser”). As solution (35) illustrates, the air con-
centration profile is exponential, with a concentration boundary
layer of thickness

da ¼ L
r
¼ D0p0LZ

u2
tDT

; ð81Þ

forming next to the cold wall and ca � 1 for x � da. At sufficiently
high condensation rates, da becomes smaller than L and is given by

da � Tc

DT
u2
t

L

Z L

0
ca dx ð82Þ

and hence

Zd � u2
tDTda
D0p0L

ð83Þ

becomes independent of the geometry and determined by the total
amount of air in the gas phase rather than its average concentration

reported in most experimental studies. Note that �ca / L�1, so that Zd

can remain finite while �ca ! 0, e.g., as L=da ! 1.
We are not aware of any experimental studies that provide a

sufficiently detailed description of the experimental apparatus
and reliable measurements of the composition in the gas phase
required for comparison of the absolute values of the mass/heat
flux or the heat transfer coefficient at different concentrations of
noncondensable gases. Hence, like many previous theoretical stud-
ies, we will compare normalized heat fluxes

Q 0 ¼ Q
Q 	 ; ð84Þ
as a function of the (average) concentration of air, where Q 	 is a
fixed reference heat flux chosen appropriately for each experiment
(and the model). To minimize the error inherent in any reference
measurement, we will compute Q 	 using a suitable average over
the entire range of concentrations explored in a particular experi-
ment. In the model, according to (57) we can choose Q 	 such that

Q 0 ¼ 1� �ca
�ca

: ð85Þ

For experimental data, we chose Q 	 such that it minimizes the least
squares deviation

E ¼
X
i

1� �cia
�cia

� Qi

Q 	

 !2

; ð86Þ

where Qi is the heat flux measured at the average concentration �cia.
Fig. 11 compares the predictions of our model with experimental
data of Kataoka et al. [29] (for initial air pressure of 0.1 MPa) and
Uchida et al. [30] in the limit where Zd is dominant. As the figure
illustrates, the model predictions agree reasonably well with the
measurements obtained in the experimental studies.

To get a sense of how the predictions of our model compare
with experiment in absolute terms, consider the case of pure vapor,
where the uncertainty in the composition of the gas phase is suffi-
ciently small for an apples-to-apples comparison. The experimen-
tal measurements of the heat flux at different DT by Al-Diwany
and Rose [3] and the predictions of our model are shown in
Fig. 12. The value of Th was reported in that study for the heat flux
measurements in the presence of noncondensable gases (Argon
and Helium), but not for pure vapor. We estimated Th ¼ 65 C,
which is similar to the values measured in the presence of noncon-
densables. Since some material parameters (most notably the vis-
cosity ll) vary significantly with temperature, we evaluated all of
them at Tc ¼ Th � DT.

We find the agreement to be quite good in the entire range of
DT , with the discrepancy between theory and experiment being
no larger than the uncertainty in the experimental measurements.
Perhaps even more unexpected is the fact that the predictions
based on the spatially averaged thermal resistance Zl ¼ �hl=ll corre-
sponding to the solution (74) are almost identical to those based on
the Nusselt solution (78), where Zl ¼ hl=kl varies with height. This
both validates the assumptions made in deriving our analytical
solutions and suggests that our predictions for the condensation
rate and heat flux remain accurate when thermal resistance is
dominated by the condensate film.
as symbols.



Fig. 12. Comparison of the heat flux Q predicted by our model with the
experimental data of Al-Diwany and Rose [3].

Fig. 13. Nondimensional crossover length scale at which the Nusselt solution (78)
breaks down for the geometry considered by Al-Diwany and Rose [3].
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In conclusion, Fig. 13 presents the results for the crossover
length scale (77) from the top of the film at which the Nusselt solu-
tion breaks down. We find that, at the top few percent of the cooled
wall, the film thickness is controlled by the balance between ther-
mocapillary stresses and gravitational draining that pull the con-
densate in the opposite directions. As suggested previously,
e � 1 for all DT , so the thickness profile in the crossover region
f ¼ OðeÞ and the constant f0 in (79) can in principle be found using
a perturbation expansion in e. On the other hand, if one is only
interested in the net or average heat or mass flux, the Nusselt solu-
tion provides a reasonably good approximation due to the small
size of this region.

6. Conclusions

In this paper we have introduced and solved a comprehensive
physical model of filmwise vapor condensation under the assump-
tion of free convection. Unlike common engineering models that
take a piecemeal approach and treat only a few aspects of the prob-
lem, our approach describes all aspects of the problem, including
heat and mass transport through the gas phase, interfacial and
thermal resistance of the condensate film, and heat conduction
through the cooled wall in a self-consistent manner. We have
shown that heat and mass transport in the gas layer can be consid-
ered one-dimensional under rather general conditions, even when
there is convective flow present. Most importantly, we have
obtained an approximate analytical solution which shows good
agreement with the exact numerical solution of the model in the
presence of an arbitrary amount of noncondensable gases such as
air.

The analytical solution for the condensation mass flux (and the
corresponding heat flux) allows an easy interpretation, with expli-
cit dependence on all of the parameters of the problem. For exam-
ple, the net thermal resistance is found to be given by a sum of the
thermal resistances of the wall, the condensate film, the interfacial
resistance, and the diffusive resistance of the gas layer – all given
by the familiar standard expressions – in the limit of infinite ther-
mal resistance of the gas layer. This simplicity is, however, mis-
leading. The simple additive expression breaks down when the
thermal resistance of the gas layer becomes comparable to the
combined thermal resistance of the wall and the condensate film.
In the latter case, the more complicated expression (55) has to
be used instead. It is worth noting that neither the form of this
more general expression, nor the conditions under which the sim-
pler expression breaks down are obvious.

Furthermore, the condensate film thickness profile was derived
from first principles using lubrication approximation. Self-
consistency of the solution for mass transport across the gas and
liquid layer and heat transport through the gas, liquid, and solid
layer allowed us to obtain a solution that is different from that pre-
dicted by Nusselt’s classical free condensation theory [1]. In partic-
ular, we have shown that the unavoidable thermocapillary stresses
cannot be neglected and play an important role, notably changing
the thickness profile, making it flatter. The effect of thermocapil-
lary stresses is especially important near the top of the cold wall,
where the thickness of the condensate film remains finite (and as
large as 50% of the maximal thickness at the bottom of the cold
wall in the geometry considered here). As a result, no unphysical
singularities (e.g., in the heat/mass flux) arise in the present
description.

One of the assumptions made in this study (the outside temper-
ature of the cooled wall being constant) can be easily relaxed as
long as the wall thickness is much less than its height H. For
instance, if the heat is removed by the liquid coolant flowing from
top to bottom, a vertical temperature gradient will appear on the
outside of the wall, which will augment the temperature gradient
on the inside due to the variation in the thickness of the conden-
sate film. This will enhance the thermocapillary stresses and can
make the film even more uniform.
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