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Trispectrum reconstruction of non-Gaussian noise
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Using a qubit to probe non-Gaussian noise environments is theoretically studied in the context of classical
random telegraph processes. Protocols for control pulses are developed to effectively scan higher noise
correlations, offering valuable information on the charge environment of the qubit. Specifically, the noise
power spectrum and trispectrum are reconstructed simultaneously for a wide range of qubit-fluctuator coupling
strengths, demonstrating the method’s robustness. These protocols are readily testable in various qubit systems
with well-developed quantum control, including quantum dot spins, superconducting qubits, and nitrogen-
vacancy centers in diamond.

DOI: 10.1103/PhysRevB.100.161302

Introduction. The decoherence experienced by all solid-
state qubits is largely determined by their immediate environ-
ment that typically includes fluctuating charges and spins of
nuclei or local electrons. While unavoidable interactions with
the environment continue to limit the number of qubits that
can be coherently manipulated and entangled, recent studies
attempt to harness qubit susceptibility to local fluctuations
by transforming them into high-resolution sensitive probes of
their environment. Valuable on its own [1], noise spectroscopy
is anticipated to help mitigating decoherence more effectively,
by, e.g., modifying the physical hosting system or adjusting
the qubit control schemes.

In recent years a growing body of works across a wide
range of quantum systems has been devoted to exploring
strategies to characterize environmental noise by measuring
the dynamics of properly initialized and controlled qubits [2].
Operating a qubit under a sequence of dynamical decoupling
(DD) pulses was shown to establish a simple relation between
the measured qubit signals and the noise power spectrum
[3–6]. Dynamically decoupling a qubit inflicted by Gaussian
phase noise effectively generates a frequency-domain filter
determined by the pulse sequence [7]. For periodic sequences
with a fixed pulse interval τ , the filter is sharply peaked at a
frequency f = 1/2τ and its odd harmonics, allowing one to
scan the noise spectrum by subjecting the qubit to sequences
with varying pulse intervals. This method of DD-based noise
spectroscopy (DDNS) has been used to reconstruct environ-
mental noise in various qubit platforms, including trapped
ions [8,9], superconducting circuits [4,10], semiconductor
quantum dots (QDs) [11–13], phosphorous donors in silicon
[14], and nitrogen-vacancy centers in diamond [15–17].

DDNS has been limited by several approximations in the
underlying theory and method implementation, namely, the
qubit is assumed to undergo pure dephasing by coupling
longitudinally to the noise, and the noise is taken to be both
classical and Gaussian. Several recent theoretical studies have
put forth qubit control protocols that allow one, in principle,
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to extend the applicability of DDNS methods to non-Gaussian
[18] and quantum [19,20] noise environments.

Focusing on the assumption of noise Gaussianity, we note
that a Gaussian process is most often the result of a collection
of many uncorrelated (or weakly correlated) processes, e.g.,
when the qubit interacts with a large environment, so that all
higher correlation functions factorize into products of one-
and two-point correlators. This picture breaks down when
high-resolution sensing of small environments strongly cou-
pled to the qubit is pursued, or when environmental dynamics
with strong and nontrivial spatial correlations is present due
to interactions between its constituents [21,22]. Furthermore,
solid-state devices are commonly afflicted with low-energy
excitations, such as slowly switching two-level fluctuators
(TLFs) that are responsible for 1/ f noise [23,24], which is
inherently non-Gaussian, thus in many realistic scenarios a
complete noise characterization must include higher correla-
tions and their respective noise cumulants.

In this work we study reconstruction of polyspectra—the
Fourier transforms of multipoint correlators—of a classical
random telegraph noise (RTN) process, building on an ap-
proach proposed by Norris et al. [18]. Using carefully chosen
sequences of DD pulses, we adapt the method to reconstruct
the RTN power spectrum and trispectrum. The central role
of charge noise in limiting qubit coherence has been long
established in various platforms such as Josephson qubits
[25,26], and QDs [27,28], and was more recently reaffirmed
in both [29] Si/SiGe [13,30,31] and GaAs [32,33] QD spin
qubits. Moreover, RTN sources are the quintessential testbed
for non-Gaussian noise spectroscopy protocols, owing in part
to the ability to control the non-Gaussianity probed by the
qubit by tuning the coupling strength to switching rate ratio, η.
As η increases, pronounced non-Gaussian behavior is formed,
exhibiting, e.g., plateaus in the qubit decay signal [34,35]. We
provide explicit control protocols that are readily accessible
in various solid-state qubit systems, explain the numerical
challenges associated with polyspectra reconstruction, and
offer their resolution.

Formalism. At pure dephasing, the qubit-TLF Hamiltonian
reads H = bz(t )σ̂z/2, where bz(t ) = vξ (t ), v is the coupling
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strength, ξ (t ) = ±1 represents the RTN stochastic variable
switching between the two states with an average rate γ ,
and we assume for simplicity that the average times spent at
each state are equal (i.e., symmetric TLF). Qubit dephasing at
readout time T is manifested in the off-diagonal elements of
its density matrix, ρ̂Q(T ), which is constructed from the evo-
lution operator including any control pulses. Qubit coherence
is then quantified by

W (T ) ≡ 〈+|ρ̂Q(T )|−〉
〈+|ρ̂Q(0)|−〉 = 〈e−iφ(T )〉 ≡ e−χ (T ), (1)

where 〈·〉 denotes averaging over realizations of the classical
RTN. For any noise, a formal solution to the attenuation factor,
χ (T ), can be written in terms of a cumulant expansion [7,36]

χ (T ) = −
∞∑
k=1

(−iv)k

k!
Ck (T ), (2)

where the kth cumulant of the noise, Ck (T ), includes all
connected diagrams of that order and can be written in terms
of the noise moments. We assume qubit evolution under a
sequence of np ideal π pulses about the x or y axes de-
fined by the switching function, fT (t ) = ∑np

j=0(−1)k�(t −
t j )�(t j+1 − t ), where we take t0 = 0 and tnp+1 = T . For a
given switching function, the kth cumulant is found as

Ck (T )=
∫ T

0
fT (t1)dt1 · · ·

∫ T

0
fT (tk )dtkAk (t1, . . . , tk ), (3)

where Ak (t1, . . . , tk ) includes all the j-point correlation func-
tions, 〈ξ (t1) · · · ξ (t j )〉, up to j = k. For stationary noise, the
correlators depend only on time separations, τ j ≡ t j+1 − t1,
j ∈ 1, . . . , k − 1, and the cumulants can be evaluated in
Fourier space:

Ck (T )=
∫
Rk−1

d �ωk−1

(2π )k−1

k−1∏
j=1

f̃T (ω j ) f̃T (−
 �ωk−1)Sk−1(�ωk−1),

(4)
where f̃T (ω) is the Fourier transform of the switching func-
tion, known as the filter function, �ωk ≡ (ω1, . . . , ωk ), 
 �ωk ≡
ω1 + · · · + ωk , and we introduced the polyspectra [18]:

Sk (�ωk ) =
∫
Rk

d�τke−i(�ωk ·�τk )Ak+1(�τk ). (5)

For Gaussian noise all higher noise moments factorize to
products of lower moments and their respective cumulants
vanish. Furthermore, if the Gaussian noise has zero mean,
〈ξ (t )〉 = 0, it is fully characterized by its two-point correlation
function, or equivalently by its Fourier transform—the power
spectral density (PSD), also referred to as the first spectrum
[37]. In contrast, a complete account of a non-Gaussian noise
must include all cumulants and their respective polyspectra.

We now apply this formalism to treat the case of
a single RTN. The noise generated by a symmetric
TLF has zero mean, and since higher order odd
correlators are recursively derivable from this mean
[38], all odd noise moments and cumulants vanish.
As a result, the attenuation factor given by Eq. (2)
includes only decay with no phase contribution. Starting
from the two- and four-point correlators: 〈ξ (t1)ξ (t2)〉 =
e−2γ |t1−t2| and 〈ξ (t1)ξ (t2)ξ (t3)ξ (t4)〉 = e−2γ (t4−t3+t2−t1 ),

t1 � t2 � t3 � t4, with corresponding permutations for
other time orderings [7,38], we have A2(t1, t2) = 〈ξ (t1)ξ (t2)〉,
and

A4(t1, t2, t3, t4) = 〈ξ (t1)ξ (t2)ξ (t3)ξ (t4)〉 − A2(t1, t2)

×A2(t3, t4) − A2(t1, t3)A(t2, t4)

−A2(t1, t4)A2(t2, t3).

The resulting PSD and trispectrum are found, respectively, as

S1(ω) = 4γ

4γ 2 + ω2
, (6)

and [39] (see Sec. I of the Supplemental Material [40])

S3(�ω3) =−16γ 48γ 4+4γ 2 ∑
i� j ωiω j + ω1ω2ω3
 �ω3∏3

i=1

(
4γ 2 + ω2

i

)
[4γ 2 + (
 �ω3)2]

. (7)

For free induction decay (FID) or simple pulse sequences,
such as periodic dynamical decoupling and Carr-Purcell-
Meiboom-Gill (CPMG), the second and fourth cumulants of a
single classical RTN were calculated analytically in time do-
main using Eq. (3) [7,35], matching the results obtained from
Eq. (4) by direct integration of Eqs. (6) and (7). Polyspectra
of any classical noise are highly symmetric and are fully
specified by their values within a frequency space known as
the principal domain [18,41]. Whereas the PSD possesses a
single (even) symmetry that defines its principal domain as all
non-negative frequencies, the trispectrum is invariant under 48
operations, as detailed in Sec. II of the Supplemental material.

DDNS protocols rely on the application of pulse sequences
whose filter functions are characterized by a fundamental
frequency, 2π/T , and its harmonics, effectively acting as
frequency combs [3]. Recently scrutinized [42], the accuracy
of this so-called delta approximation improves significantly
by repetition of the base sequences, effectively extending the
measurement time to MT , where M is the number of repeti-
tions [43]. Extending these protocols to non-Gaussian noise
spectroscopy relies on the ability of pulse sequences to form
multidimensional frequency combs necessary for polyspectra
reconstruction [18]. Approximating the filter functions with
multidimensional Dirac combs allows us to replace the fre-
quency integrals in Eq. (4) with summations, truncated at fre-
quencies where either the filter function or the polyspectrum
(or both) are sufficiently small. The resulting approximate
second and fourth cumulants are

C2(MT ) ≈ M

T

∑
n∈D1

�1(n)

∣∣∣∣ f̃T
(
2πn

T

)∣∣∣∣
2

S1

(
2πn

T

)
, (8)

C4(MT ) ≈ M

T 3

∑
�n3∈D3

�3(�n3)
3∏
j=1

f̃T

(
2π �n3( j)

T

)

× f̃T

(
−2π
�n3

T

)
S3

(
2π �n3
T

)
, (9)

where D1 = {0, 1, . . . , nmax} denotes the discretized principal
domain of the PSD, truncated at frequency 2πnmax/T , and
the corresponding multiplicity is �1(n) = 2 − δn,0. Likewise,
�n3 denotes all three-tuple integers up to nmax

3 within the
trispectrum discretized and truncated principal domain, D3,
with corresponding multiplicity, �3 [40].
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The final step needed in order to form a finite set of equa-
tions connecting the polyspectra to measurable qubit signals,
is to truncate the cumulant series in Eq. (2), thereby treating
non-Gaussian terms perturbatively. In the context of RTN
spectroscopy this approximation seems to suggest that we are
limited to weak coupling, η = v/γ 	 1. Nevertheless, the
noise reconstruction procedure described below can be used to
extract valuable information on the charge environment even
when it is strongly coupled to the qubit.

DDNS protocols. The original DDNS protocol pro-
posed by Álvarez and Suter [3] utilized a set of two-
pulse CPMG sequences with variable sequence times: Ti =
T,T/2, . . . ,T/nmax, scanning the spectrum with a resolution
of ωmin = 2π/T up to spectral bound of ωmax = 2πnmax/T .
Non-Gaussian DDNS requires a large number of distinct
sequences to support the reconstruction of multidimensional
grids of frequency points. Following Norris et al., we con-
struct a pool of base sequences comprising mixed-order con-
catenated DD (MCDD) segments with orders between 0 and
5. FID segments are included to avoid full refocusing of static
noise, which is important for polyspectra reconstruction as the
number of points with zero frequency becomes substantial.
All base sequences have a fixed time T = 256δ = 16/γ ,
where δ is the time resolution providing a theoretical upper
bound of π/δ for the frequency cutoff, and time is scaled
with inverse RTN switching rate, γ [44]. Other requirements
imposed on the MCDD sequences included in the pool are
detailed in Sec. III of the Supplemental Material. Setting har-
monics bounds at nmax = 32 and nmax

3 = 8, the reconstructed
PSD and trispectrum are truncated at frequencies π/4δ and
π/16δ, respectively. Retaining only the second and fourth
cumulants, the set of linear equations, formed by inserting
Eqs. (8) and (9) into Eq. (2), can be cast as

�χ = A

(�S1
�S3

)
. (10)

Our harmonics bounds correspond to nPSD = 33 and nTRI =
285 frequency points in the PSD and trispectrum, respectively,
thus nseq = 318 sequences and corresponding signal measure-
ments are needed. The reconstruction matrix, A, connects
these measured signals with the PSD and trispectrum. We
stress that restricting the reconstruction to frequencies within
the principal domains is not only advantageous in reducing
the number of equations to be solved—it is, in fact, essential
in order to avoid singularities in A.

Reconstruction results. Several factors limit our ability
to reconstruct non-Gaussian noise by introducing errors into
Eq. (10): (i) truncation of the cumulant expansion, (ii) inaccu-
racy of the delta approximation in the spectroscopic formulas,
Eqs. (8) and (9), (iii) frequency cutoffs in the truncated
principal domains, and (iv) numerical errors in the matrix
inversion due to large condition numbers. Whereas the first
error predominantly depends on the noise non-Gaussianity,
dictated by the RTN parameters, the other three errors can be
substantially reduced by appropriate selection of control se-
quences. Crucially, however, sequences that minimize errors
due to discretization and frequency truncation tend to provide
similar spectral filtering, resulting in numerical instabilities.
Moreover, at weak coupling, where contributions from the

neglected higher cumulants are insignificant, trispectrum re-
construction is nevertheless challenging as it requires very
stringent error thresholds on the second cumulant, since its
related matrix elements are much larger than those associated
with the fourth cumulant.

We have developed a layered algorithm for optimized
selection of sets of control sequences that balances between
these conflicting requirements, enabling us to obtain faithful
reconstructions of the PSD and trispectrum of RTNs over a
wide parameter range. Our sequence selection relies primarily
on maximizing the accuracy of the cumulants evaluation,
given predefined finite sets of frequency points in D1 and D3.
Minimizing both absolute (for each sequence) and relative
(within the entire sequence set) errors, as well as ensuring
low condition numbers for the reconstruction matrix, A, are
all crucial for successful reconstruction, as detailed in Sec.
III of the Supplemental Material. The resulting set of con-
trol sequences are recorded in A, and their corresponding
qubit attenuation factors, χ (T ), are calculated exactly for a
given RTN, using a transfer matrix method [35,45]. Figure 1
demonstrates PSD and trispectrum reconstructions for RTN
with several coupling strengths. Polyspectra of order n are
plotted with a prefactor of vn+1, to represent their weighted
contribution in the reconstruction matrix.

As coupling strength increases, non-Gaussianity becomes
more pronounced and errors due to the cumulant series trun-
cation dominate. We disentangle this (physical) error from
the other (numerical) errors by applying a correction term to
the attenuation factors used in Eq. (10) that accounts for the
truncated cumulants. The resulting corrected reconstructions
are depicted by blue squares in Fig. 1 and their excellent
agreement with the theoretical spectra shows that all other
errors have been successfully minimized through our se-
quence selection procedure. We stress that while the cumulant
correction term requires a priori knowledge of the RTN pa-
rameters and is thus not directly applicable for experimentally
measured qubit signals afflicted by an unknown noise source,
our preliminary work suggests that with a reasonable overhead
one can employ a feedback loop to simultaneously optimize
noise reconstruction and identify the unknown RTN parame-
ters. Since the set of control sequences optimized for weak-
coupling reconstruction satisfies the more stringent second
cumulant error requirements, we expect and observe that the
same protocol provides adequate reconstruction at stronger
couplings, as long as cumulant error correction is applied for
v � 0.5. This is demonstrated in Fig. 2, where, unlike the
results shown in Fig. 1, we use a single set optimized for v =
0.1, for trispectra reconstruction at larger coupling strengths
(see Sec. III of the Supplemental Material for additional
details).

We studied the robustness of our noise reconstruction
against measurement errors and the number of base sequence
repetitions,M [46]. In Fig. 3 we plot the reconstruction quality
Q, defined as

Q ≡ 1

nTRI

∑
�n3∈D3

∣∣∣∣∣
S3

( 2π �n3
T

) − Srec3

( 2π �n3
T

)
S3

( 2π �n3
T

)
∣∣∣∣∣, (11)

against the measurement noise amplitude, α, relative to the
qubit signal, for several M values and two coupling strengths
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FIG. 1. RTN reconstruction of PSD [panels (a), (c), (e), (g),
and (i)] and trispectrum cut, ω2 = ω3 = 0 [panels (b), (d), (f),
(h), and (j)]. Starting at the top row, coupling strengths are v =
0.1, 0.5, 0.8, 1, and 3. Solid lines correspond to the theoretical
spectra, Eqs. (6) and (7); red circles depict reconstructions with
sets of MCDD sequences, optimized for each v; and blue squares
show corrected results based on a priori knowledge of the RTN
parameters (see main text). At v = 3 [panels (i) and (j)], uncorrected
polyspectra reconstruction with only the first two cumulants is no
longer practical. Black pluses in the PSD panels depict Gaussian
reconstruction with the Álvarez-Suter protocol, which is inadequate
at strong coupling [see panel (i)]. Frequencies are measured in units
of RTN switching rate, γ .

(see Sec. IV of the Supplemental Material for more details
on our measurement error simulations and protocol robust-
ness). Here, we have employed sequence sets optimized for
each given M and v. At weak coupling, the dominant factor
limiting reconstruction quality is cumulant errors due to the
delta approximation. With increased M, this approximation
becomes more accurate, resulting in consistent improvement
inQ. Interestingly, at larger coupling strengths, after applying
the cumulant correction term, the reconstruction quality is
limited by condition number instabilities, which tend to be
stronger at larger M, where the filter function peaks are
narrower. As shown in Fig. 3(b), increasing M in this case is

FIG. 2. Theoretical and reconstructed RTN trispectra cuts at
ω3 = 0 for two coupling strengths. Spline interpolation was used to
smoothen the reconstructed values in plots (b) and (d). The same se-
quence set, optimized for v = 0.1 was used for both reconstructions.

not always beneficial, even in the idealized scenario of perfect
π pulses shown here. Using a pulse sequence set optimized
for given v and M to reconstruct polyspectra of RTN under
different conditions always results in larger cumulant errors
and consequently poorer reconstruction.

Conclusions.We developed control sequence protocols for
trispectrum reconstruction of RTN sources. These protocols
are shown to be robust over a wide range of RTN parameters,
and can be used to identify and characterize RTN sources
in a variety of qubit platforms. In subsequent studies we
plan to develop control protocols that will map multiple
RTN sources and treat quantum TLFs in the strong-coupling
regime [47,48]. Non-Gaussian noise spectroscopy can also
shed light on the role of TLF interactions in generating 1/ f
noise [22,49,50]. Our work can be viewed as complementary
to a very recent experimental demonstration of non-Gaussian
noise spectroscopy that utilized a flux superconducting qubit
[10]. (See also Ref. [51] for an earlier account of bispectrum

FIG. 3. Trispectrum reconstruction quality, Q, vs relative mea-
surement noise amplitude, α, with several base sequence repetitions
for RTN coupling strengths of (a) v = 0.1; (b) v = 1. Sequence sets
are optimized for each M and v value. In panel (b) reconstructions
are corrected to account for truncated polyspectra higher than S3.
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measurement in a single-electron transistor.) Whereas the
non-Gaussian signatures there were observed in the phase
evolution of the qubit’s coherence, captured to leading order
by the bispectrum, the non-Gaussianity of our RTN process
is encoded to leading order in the trispectrum, as part of the
signal decay. The multilayered sequence selection algorithm

that we developed to resolve numerical instabilities inherent
in the original proposal [18] also differs from the maximum
likelihood approach taken in [10].
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I. RTN TRISPECTRUM

The calculation of the RTN trispectrum in Eq. (7) of the main text involves piecewise evaluation of time integrals over the
three time separations, τj = tj+1 − t1, in the four-point noise correlators. For t1 ≤ t2 ≤ t3 ≤ t4 the four-point correlator reads:
〈ξ(t1)ξ(t2)ξ(t3)ξ(t4)〉 = e−2γ(τ3−τ2+τ1) and other time orderings result in corresponding interchanges in the exponential. One
can then group piecewise integrals corresponding to the six possible τj-orderings. A further simplification of the integrands
yields:

S3(~ω3) = −8

∫ ∞
0

{∫ ∞
τ3

∫ ∞
τ3

e−2γ(τ1+τ2)F3dτ1dτ2 +

∫ τ3

0

∫ ∞
τ2

e−2γ(τ1+τ3)F2dτ1dτ2+∫ ∞
τ3

∫ τ3

0

e−2γ(τ2+τ3)F1dτ1dτ2 +

∫ τ3

0

∫ τ2

0

e−2γ(τ2+τ3)F1dτ1dτ2

}
dτ3, (1)

where we defined

Fi ≡ cosω1τ1 cos (ω2τ2 + ω3τ3) cosh 2γτi − sinω1τ1 sin (ω2τ2 + ω3τ3) sinh 2γτi + cosω1τ1 cos (ω2τ2 − ω3τ3) e−2γτi . (2)

Performing the integrals in Eq. (1) results in the RTN trispectrum formula given by Eq. (7) in the main text.

II. TRISPECTRUM PRINCIPAL DOMAIN

As manifested by Eq. (7) in the main text, the trispectrum is invariant under the following operations: (i) 6 permutations,
(ii) 2 complex conjugations, S3(ω1, ω2, ω3) = S3(−ω1,−ω2,−ω3), and (iii) stationarity, ωi → −Σ~ω3, ∀i. These symmetries
define 48 regions in the three-dimensional frequency space with identical S3(~ω3) values. The principal domain is found as:
PD = {0 6 ω1, 0 6 ω2 6 ω1, −ω2 6 ω3 6 ω2}. Discretizing the space with integer multiples of the fundamental frequency,
2π/T , and retaining nmax

3 harmonics, we find the number of points in the truncated principal domain, D3, to be

nTRI =
1

6
(nmax

3 + 1) (nmax
3 + 2) (2nmax

3 + 3) . (3)

Table I lists the trispectrum principal domain region boundaries, and their respective multiplicities, Ω3(~n3), as well as the
number of frequency points in each region (adding up to nTRI). Notice that 1

2 (1 + nmax
3 )(2 + nmax

3 ) points of the total of nTRI

points include a zero frequency, thereby requiring at least one control sequence with zero filtering order for reconstruction. For
nmax
3 = 8, used in our reconstructions, nTRI = 285, of which 45 points include at least one zero frequency.

TABLE I. Properties of the discretized and truncated principal domain of the trispectrum

Region Boundary Ω3 Number of points
Inside 48 1

6
nmax
3 (nmax

3 − 1) (2nmax
3 − 1)

Faces ω2 = ω1 6= 0 24 (nmax
3 )2

ω3 = ω2 6= 0 24 1
2
nmax
3 (nmax

3 − 1)

ω3 = −ω2 6= 0 24 1
2
nmax
3 (nmax

3 − 1)

Edges ω2 = ω3 = 0, ω1 6= 0 12 nmax
3

ω1 = ω2 = ω3 6= 0 8 nmax
3

ω1 = ω2 = −ω3 6= 0 6 nmax
3

Vertices ω1 = ω2 = ω3 = 0 1 1

∗ gramon@scu.edu
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III. CONTROL SEQUENCE SELECTION FOR FAITHFUL NON-GAUSSIAN NOISE RECONSTRUCTION

The main challenge in implementing the perturbative approach of Norris et al. [1] is that even with only the first several
cumulants retained and modest grids of frequency points employed, the multidimensional polyspectra require a large number of
spectrally distinct control sequences. This creates an inherent tradeoff between the need to accurately capture the cumulants using
a finite set of points and the tendency of sequences that meet these error thresholds to possess similar filtering properties, thereby
resulting in ill-conditioned reconstruction matrices. A careful sequence selection is thus crucial for any practical implementation.

We have developed an algorithm for generation and selection of pulse sequences that enables a faithful reconstruction of the
PSD and trispectrum of a single RTN over a wide range of parameters. We first generate a large number of distinct sequences
satisfying a set of criteria detailed bellow and calculate their exact and approximate noise cumulants for a nominal RTN source
(subsequent adjustments of these cumulants for different TLF parameters pose minimal computational overhead). Next we
choose a subset of these sequences, by employing a two-step optimization of the reconstruction matrix. This layered process
enables us to quickly retrieve information needed for an optimized and efficient sequence selection. In the following we provide
details of the criteria employed in the selection process.

A. Sequence Pool Generation

All the generated base sequences have a fixed time, T = 256δ, where δ is the minimum time resolution. We scale times with
inverse RTN switching rate, γ, taken to be 1, such that δ = 1/(16γ). Mixed-order CDD (MCDD) sequences are generated,
where each segment is characterized by time Ti, such that

∑
i Ti = T , CDD order, li, and its respective number of pulses nip

given by

nip =
1

3

[
2li+1 − 2 + (li mod 2)

]
. (4)

As discussed in the main text, FID segments (ni = 0) are allowed and needed for reconstruction of zero-frequency points. All
MCDD sequences obey the following criteria:

i. Ti/δ mod 2li = 0, ensuring pulse times are at integer multiples of δ.

ii. Minimum interpulse separation is set at τ = 4δ. This condition limits the maximum CDD order to 6, but the only sequence
in compliance (single segment with T1 = T and n1p = 42) induces a large truncation error, thus our effective limit is at CDD
order of 5.

iii. The total number of pulses is even to avoid nonzero contributions from odd multiples of π/T that will double the number
of frequency points necessary for faithful reconstruction.

iv. sequences are repeated M = 30 times, unless otherwise noted. The effects of base sequence repetition on the reconstruction
quality and robustness against measurement errors are presented in the main text in Fig. 3 and following discussion, and in
section IV below.

We include non-symmetric sequences in the pool to increase the number of distinct sequences, i.e., non-balanced sequences
are permitted. We have also generated pools of mixed-CPMG sequences and found them to provide similar reconstruction
results, as compared with MCDD sequences. Large (over a million) pools of distinct sequences satisfying the above conditions
are generated, and their resulting delta approximated second and fourth noise cumulants for a nominal RTN source with γ = 1
are calculated, using Eqs. (8) and (9) in the main text, and taking nmax = 32, and nmax

3 = 8. Exact calculation of the cumulants
for the repeated sequences is carried out in time domain, using recursive formulae detailed in Sec. V bellow. All sequence
information (segment lengths, CDD orders, pulse times, and exact and approximate C2 and C4 calculations) is recorded for
quick retrieval, allowing us to select an optimized set of sequences for a given reconstruction task.

B. Sequence Selection for the Reconstruction Matrix

PSD and trispectrum reconstructions at nPSD = 33 and nTRI = 285 frequency points in the truncated principal domains
require nseq = 318 control sequences. The elements of the reconstruction matrix in Eq. (10) in the main text read

Aik =


Mv2

2T Ω1(nk)
∣∣∣f̃ iT ( 2πT nk)∣∣∣2 , 1 6 k 6 nPSD

−Mv4

24T 3 Ω3

(
~nk3
) 3∏
j=1

f̃ iT
(
2π
T ~n

k
3(j)

)
f̃ iT
(
− 2π
T Σ~nk3

)
, nPSD+1 6 k 6 nseq

(5)
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where i denotes the sequence index and k enumerates the frequency points in either D1 or D3.
Truncating cumulants higher thanC4 seems to suggest that it should be easier to reconstruct noise from weakly coupled RTNs.

While the PSD is largely unaffected by the minute non-Gaussian contributions, and is therefore easily recovered, trispectrum
reconstruction in this regime is challenging. Since the second cumulant elements of the reconstruction matrix are much larger
than the fourth cumulant elements, small errors in the former introduce large deviations from the correct trispectrum. For
η = v/γ = 0.1, one needs to place a C2 error threshold that is two orders of magnitude lower than that for C4. As a result, only
a small subset of the sequences in the pool can be used for adequate trispectrum reconstruction.

Our sequence selection algorithm proceeds in two steps. First we retain a subset of pool sequences that pass both absolute and
relative cumulants error thresholds, defined as follows. Setting

∆Ci2 =
∣∣Ci2,app − Ci2,ex∣∣

∆Ci4 =
∣∣Ci4,app − Ci4,ex∣∣ , (6)

as the cumulant errors of the truncated δ-approximation for sequence i, we define the second cumulant absolute error as
∆Ci2/C

i
2,ex, and similarly the fourth cumulant absolute error, and require these errors to fall below threshold values E2 and

E4, respectively. Sequences that pass the relative cumulant error test satisfy

∆Ci2

min
(
|Cj2,ex|, v

2

12 |C
j
4,ex|

) ⋂ v2

12∆Ci4

min
(
|Cj2,ex|, v

2

12 |C
j
4,ex|

) < Eset, ∀i, (7)

where j runs over all sequences in the subset. The three error thresholds, E2, E4, and Eset, are gauged to generate a subset of size
∼ 2nseq (600-700 sequences for the examples shown in this paper), which in our experience is sufficient to ensure a reasonably
well-conditioned final set of nseq sequences, generated in the second step (see bellow). As a concrete example, for the weak
coupling case, v = 0.1, our optimized set for M = 30 is formed with error thresholds of E2 = 5 × 10−6, E4 = 5 × 10−3,
and Eset = 0.0054. At stronger couplings the stringent threshold for E2 is relaxed considerably, thus, while one can potentially
optimize sequence sets for a given coupling strength when this information is a-priori known, sequence sets optimized for weak
coupling serve, in practice, as good basis for noise reconstruction up to intermediate coupling strengths. A more sophisticated
algorithm can adjust the three error thresholds adaptively through feedback given by the reconstruction quality. At yet higher
coupling strengths, η & 0.8, errors due to the cumulant series truncation dominate. One way to extend the applicability of the
DDNS protocol to the strong coupling regime is to include a parameterized correction term, optimized through the measured
qubit signals afflicted by the (unknown) RTN source. These corrected reconstructions are depicted by blue squares in all relevant
figures in the main text and in the supplemental material. While a full analysis of error-correcting noise reconstruction protocols
solely based on qubit signal measurements is underway, our preliminary work suggests that these protocols are feasible with
reasonable measurement overhead.

The final step in the sequence selection process is to find a subset of nseq sequences that minimizes the condition number
of the reconstruction matrix, A, defined in Eq. (10) in the main text. As mentioned above, sequences that pass the stringent
error threshold screening at weak coupling tend to have similar filtering, resulting in large condition numbers. The problem of
extracting a well conditioned subset from a larger rectangular matrix has been studied extensively, given its many applications
spanning from rank revealing factorization to functional and harmonic analysis. While finding a subset with the absolute minimal
condition number is believed to be NP-hard, many efficient algorithms that guarantee bounds on the singular values of a given
subset have been developed for various cases [2–4]. For the problem at hand, we have adapted an efficient algorithm for
maximal orthogonalization by Knuth [5] that provides orders-of-magnitude reduction in the condition number ofA, as compared
with random subset selection. While ill-conditioned reconstruction matrices must be avoided to ensure numerical stability, our
algorithm is designed with efficiency in mind to guarantee that we are working with sequence sets for which reconstruction errors
due to large condition numbers are always negligible, as compared with errors due to cumulant series truncation and cumulant
approximation.

Our sequence selection process is demonstrated in Fig. 1, where we present PSD and trispectrum reconstructions for coupling
strengths of v = 0.1 and v = 0.8. The top panel row depicts reconstruction results with ’randomly’ selected sequences out of a
large pool of MCDD base-sequences (we still verify that all selected sequences are distinct). Trispectrum reconstructions (panels
(b) and (j)) is very poor, particularly in the weak-coupling case, since second cumulant errors can be orders of magnitude larger
than the fourth cumulant actual values. The second row of panels shows reconstructions with sequences randomly selected from
a subset passing absolute cumulant error thresholds, whereas the third row shows results with sequences passing both absolute
and relative cumulant error thresholds. The bottom row shows our final results, as presented in the main text, using a sequence
set that minimizes the reconstruction matrix condition number. We note that the residual error due to large condition numbers
is substantially larger in the weak-coupling case, where sequences that meet the needed error thresholds tend to have similar
filtering properties (compare deviations between red circles in panels (f) and (h) to those between panels (n) and (p), and note
that in the latter case, deviation of the reconstructed trispectrum from the theoretical curve is predominantly due to cumulant
series truncation, as evidenced by the corrected results depicted by blue squares in panel (p)).
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FIG. 1. (Color online) Sequence selection evolution for RTN reconstruction with coupling strengths v = 0.1 (panels a-h) and v = 0.8 (panels
i-p). Panels (a), (b), (i), and (j) show results generated from ’randomly’ selected distinct sequences of a pool of size ∼ 400, 000. In panels
(c) (d), (k), and (l) sequences are selected from a subset of 23, 386 sequences passing the absolute cumulant error thresholds E2 = 5× 10−6,
E4 = 5 × 10−3. Panels (e), (f), (m), and (n) depict reconstructions using sequences that pass the above absolute error thresholds and the
relative error test, Eq. (7), with Eset = 0.0054 (633 sequences). Finally, panels (g), (h), (o), and (p) show reconstructions using a sequence set
optimized to minimize the condition number of the reconstruction matrix, A. These sets are used to generate the results presented in the main
text. In all panels solid lines depict the theoretical PSD and trispectrum cut along ω2 = ω3 = 0, normalized with v2 and v4, respectively,
and measured in units of the RTN average switching rate, γ. Red circles depict reconstruction results and blues squares (in the final step only)
show corrected reconstruction results. Base sequences are repeated 30 times.

In Fig. 2 we compare trispectra reconstructions using a single sequence set, optimized for weak coupling, v = 0.1 (red circles)
to those generated with sequence sets optimized for each coupling strength (black crosses). These results demonstrate our ability
to successfully reconstruct trispectra of RTNs with arbitrary coupling strengths using a generic sequence protocol, paving the way
to experimental characterization of a-priori unknown RTN sources. Using the reconstruction quality definition given by Eq. (11)
in the main text, we find that Q deteriorates by an order of magnitude, from values in the range of 1.8 × 10−3 − 2.8 × 10−3

with protocols optimized per each coupling strength to Q = 0.02 with a single sequence protocol optimized for weak coupling.
Reconstruction quality remains nevertheless satisfactory.
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 FIG. 2. (Color online) Trispectrum reconstruction of RTN with coupling strength of: (a) v = 0.5, (b) v = 1, and (c) v = 3. Solid lines
depict the theoretical trispectrum cut along ω2 = ω3 = 0. Red circles depict reconstructions with a single sequence set, selected at weak-
coupling (v = 0.1), whereas black crosses correspond to reconstruction with sequence sets optimized to each coupling strength scenario. Base
sequences are repeated M = 30 times. Results in all plots include cumulant series truncation correction.

IV. RECONSTRUCTION ROBUSTNESS

We tested the effectiveness of our reconstruction protocols in the presence of measurement errors, simulated by replacing the
theoretical (exact) values for the qubit signal decay, W (T ), with a ’measured’ value, (1 + αζj)W (T ), where α is the noise
amplitude and ζj is a number randomly drawn from a uniform distribution on the interval (−1, 1), corresponding to the jth
measurement. The ’measured’ attenuation factor reads

χmeas
j (T ) = χ(T )− ln (1 + αζj) , (8)

and we perform RTN reconstruction simulations by averaging over 20,000 realizations of the measurement noise.
Fig. 3 shows PSD and trispectra reconstruction results for three coupling strengths with several measurement noise amplitudes.

As expected, trispectrum reconstruction at weak coupling, depicted in panel (d) is particularly challenging and requires very low
levels of measurement noise. As coupling strength is increased, reconstruction deviations due to measurement noise are more
equally distributed between the PSD and trispectrum, and higher levels of measurement noise become tolerable.
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FIG. 3. (Color online) PSD (panels (a)-(c)) and trispectrum (panels (d)-(f)) reconstruction for three coupling strengths and three measurement
noise levels. All results are obtained with the same sequence protocol, optimized for v = 0.1 and M = 30 and include cumulant series
truncation correction. As coupling strength increases, faithful reconstruction is maintained for larger measurement errors.
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Lastly, we studied the effects of base sequence repetition, M , on the quality of trispectrum reconstruction. Fig. 4 shows
trispectrum reconstruction quality,Q, defined in Eq. (11) in the main text vs. number of repetitions for several coupling strengths
with a single set optimized for v = 0.1 and M = 30 (blue crosses) and with sets optimized for each v and M value (red circles).
We note that increased repetition does not guarantee better reconstruction, as one might expect, in particular when using a single
non-optimized sequence set. The reason that a protocol optimized for a given M will under-perform at higher M is because
there exists an interplay between the filter function peak area (determined by M ) and errors induced by truncated frequencies—
the latter often being compensated by the wider filter function peaks that result in implementing fewer repetitions. As discussed
above, trispectrum reconstruction at weak coupling is challenging and requires the control protocol to be tailored to the task.
This is manifested in Figure 4(a) where any slight deviation from the predefined value of M = 30 results in orders of magnitude
deterioration in Q. At stronger coupling strengths, where non-Gaussian behavior is more pronounced, and is thus more easily
detected, adequate reconstruction can be maintained over wider range of M values.
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 FIG. 4. (Color online) Trispectrum reconstruction quality vs. number of base sequence repetitions for several coupling strengths. Blue crosses
correspond to results with a generic control protocol, optimized for v = 0.1 and M = 30, whereas red circles depict results obtained with
sequence sets optimized for each v and M value. Vertical dashed lines mark the range of M values for which Q falls below 10% (no such
range exists for v = 0.1).

V. SECOND AND FOURTH CUMULANTS FOR RTN UNDER MIXED-CDD PULSE SEQUENCES

For any sequence of np control pulses at times {τk}, with τ0 = 0, τnp+1 = T , we can perform the time integrals piecewise,
resulting in recursive sum forms that are suitable for an efficient numerical evaluation. The second and fourth cumulants are
found from the noise moments, Mk(T )

C2(T ) = M2(T ) =

∫ T

0

dt1e
−2γt1fT (t1)

∫ t1

0

dt2e
2γt2fT (t2) =

1

2γ2

[
B(np) + (−1)npe−2γ(T−τnp )A(np) + 2γT

]
, (9)

and

C4(T ) = M4(T )− 3[M2(T )]2, (10)

with

M4(T ) =

∫ T

0

dt1e
−2γt1fT (t1)

∫ t1

0

dt2e
2γt2fT (t2)

∫ t2

0

dt3e
−2γt3fT (t3)

∫ t3

0

dt4e
2γt4fT (t4)

=
4!

(2γ)4

{
np∑
n1=0

[
(−1)n1+1C(n1)

(
e−2γ(τn1+1−τn1

) − 1
)

+ (B(n1)− 1) 2γ(τn1+1 − τn1
)

− (−1)n1A(n1)
(
e−2γ(τn1+1−τn1

)(1 + 2γτn1+1)− (1 + 2γτn1
)
)]

+ 2(γT )2
}
. (11)
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In Eqs. (9) and (11) we defined

A(n) = 2
n∑

n1=0

(−1)n1e−2γ(τn−τn1
) − e−2γτn ,

B(n) =
n−1∑
n1=0

(−1)n1

(
e−2γ(τn1+1−τn1

) − 1
)
A(n1)− (−1)nA(n),

C(n) =
n−1∑
n1=0

{
e−2γτn

[
(−1)n1 (B(n1)− 1)

(
e2γτn1+1 − e−2γτn1

)
+ (−1)n12γ

(
τn1+1e

2γτn1+1 − τn1
e2γτn1

)]
+2γA(n1)e−2γτn1 (τn1+1 − τn1)

}
− (−1)nB(n)− 2γA(n)τn − (−1)n(2γτn − 1). (12)

Implementation of sequence repetition follows straightforwardly by concatenating the base sequence M times, effectively ex-
tending the sequence time toMT . We have also derived a formula for the RTN second cumulant of a repeated sequence in terms
of that of the base sequence. For the employed sequences with even number of pulses we find

C2(MT ) = MC2(T ) +
[
C2(T ) + Cγ→−γ2 (T )

] e−2γT (M−1) −M + (M − 1)e2γT

(1− e2γT )2
. (13)

While all the reconstruction results presented in the main text are generated with mixed-CDD (MCDD) sequences, we have also
considered two- and three-segment CPMG base-sequences. For these mixed-CPMG sequences, closed-form formulae of both
the second and fourth cumulants can be obtained for repeated base-sequences, using the results of ref. [6] as a starting point.
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