
Using Terminal Histories to Monitor Student Progress
on Hands-on Exercises

Jelena Mirkovic
sunshine@isi.edu

USC Information Sciences Institute

Aashray Aggarwal
aashraya@usc.edu

University of Southern California

David Weinman
david@weinman.com
Evergreen State College

Paul Lepe
paullepe@usc.edu

University of Southern California

Jens Mache
jmache@lclark.edu

Lewis & Clark College

Richard Weiss
weissr@evergreen.edu
Evergreen State College

ABSTRACT
Hands-on exercises are often used to improve student engagement
and knowledge retention in systems, networking and cybersecurity
classes. Even when students comprehend the concepts, they may lack
the skills to complete an exercise. Teachers need e�ective tools to
identify these problems during an assignment and o�er targeted
and timely help.

This paper explores the use of terminal histories with milestone
detection to enable rapid, automated and on-going assessment of
student work while performing hands-on exercises.We describe our
system, called ACSLE, which monitors terminal input and output
for each student, compares it with desired milestones, and produces
both summaries and detailed statistics of student progress.

We analyze data from undergraduates at two colleges, as they
performed several well-structured cybersecurity assignments on a
network testbed. We show how ACSLE’s output can help teachers
identify students that struggle, understand why they struggle and
o�er timely help. ACSLE can also help teachers identify challenging
tasks and plan class-wide interventions.

CCS CONCEPTS
• Social and professional topics→ Student assessment; • Ap-
plied computing→ Interactive learning environments.

KEYWORDS
testbeds, networks, learning, assessment

ACM Reference Format:
JelenaMirkovic, Aashray Aggarwal, DavidWeinman, Paul Lepe, Jens Mache,
and Richard Weiss. 2020. Using Terminal Histories to Monitor Student
Progress on Hands-on Exercises. In The 51st ACM Technical Symposium on
Computer Science Education (SIGCSE ’20), March 11–14, 2020, Portland, OR,
USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3328778.
3366935

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE ’20, March 11–14, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6793-6/20/03. . . $15.00
https://doi.org/10.1145/3328778.3366935

1 INTRODUCTION
Practical homework and lab assignments, aka “hands-on exercises,”
can help students internalize concepts taught in class [9, 21]. Sys-
tems, networking and cybersecurity classes use hands-on exercises
to teach students speci�c skill sets and tools, as well as critical and
adversarial thinking. Recent years have produced many exercises,
some of which come with their own testbed, such as DeterLab [34],
EDURange [37], NICE-challenge [25], Security Injections [13], Seat-
tle in the classroom [7], and GENI education modules [1]. Other
exercises come as virtual machines that can be run on student
devices, e.g. SEED [14], SecKnitKit [5], etc.

While hands-on exercises aim to help students apply concepts
taught in class, they may require speci�c practical skills and pre-
requisite knowledge that some students may lack. Further, many
exercises are hosted on a speci�c testbeds, and students must be
familiar with the testbed environment to successfully complete the
exercise. These challenges can impede a student’s progress on the
exercise, even when that student understands the concepts taught in
class.

Since hands-on exercises are often assigned as homework, oppor-
tunities for students to ask for help are limited. Thus, teachers have
minimal insight into their class’s progress on an exercise until it is
submitted and graded. By that time it is too late to intervene, and
the submitted material (usually the output of high-level tasks) may
lack details necessary for the teacher to understand causes of poor
performance. Simply put, the hands-on exercises can become an
obstacle for some students, instead of enriching their knowledge.

We have designed and implemented a system, called ACSLE, for
monitoring and evaluating student progress on hands-on exercises
using terminal histories. ACSLE captures all terminal input and
output from the students, as they interact with an exercise, and uses
a set of exercise-speci�c milestones, to quantify student progress.
ACSLE’s summary statistics can help teachers identify struggling
students, and analyze their actions to o�er targeted and timely help
before the assignment is due. ACSLE statistics can also help teachers
identify challenging tasks, where multiple students struggle, and
implement whole-class interventions, such as additional guidelines
or extended o�ce hours. ACSLE also produces detailed analysis of
common error patterns, which may indicate speci�c gaps in student
knowledge.

We survey related work in Section 2. In Section 3 we discuss
hands-on exercises and outline challenges for monitoring student
progress on these exercises. In Section 4 we present the ACSLE
system in detail. We have implemented ACSLE on the DeterLab

https://doi.org/10.1145/3328778.3366935
https://doi.org/10.1145/3328778.3366935
https://doi.org/10.1145/3328778.3366935

testbed [10, 34] and recently on the EDURange testbed [6]. We
have evaluated ACSLE on four hands-on exercises, on the De-
terLab testbed. These exercises were completed in three under-
graduate cybersecurity classes, at two di�erent colleges. We il-
lustrate in Sections 5 and 6 how ACSLE statistics can help us
measure individual and collective student progress on an exer-
cise, identify challenging tasks and identify common obstacles to
learning. We o�er conclusions and future work directions in Sec-
tion 7. All tools described in this paper are publicly available at
https://github.com/STEELISI/ACSLE.

2 RELATEDWORK
Although many researchers have studied how students learn, there
have not been many attempts to write tools to record and analyze
sequences of students’ terminal actions. Park and Wiedenbeck [27]
used help forums to examine students’ questions and comments as
an indication of what they did not know or had trouble with. Par-
ticipants’ questions were used as a measure of their understanding
of the HTML5 and CSS languages, as well as feedback on peda-
gogy for the instructors. In our work, we used terminal data that
was explicitly linked to the accomplishment of the assigned tasks.
Our work could be complemented by also recording and analyzing
student questions on forums.

Piech et al. [30] instrumented Eclipse to determine the sequence
of intermediate programs that students wrote for an assignment.
They applied unsupervised learning to cluster program snapshots
and used them as abstract milestones. A hidden Markov model
(HMM) was constructed to recognize these milestones. Another
level of clustering was performed on the paths through the HMM.
The authors took the important step of examining the paths and
labeling them in human-understandable terms. The main di�erence
between that work and ours is that we analyze system interactions
via terminal, and not coding activities. We also focus on hands-on
exercises with well-de�ned smaller tasks, that can be measured via
terminal inputs and outputs.

In [15] Elkherj and Freund developed a web-based system that
can send adaptive hints to struggling students, after they have made
several attempts to solve a problem. The instructor must develop
the hints and decide when to send them, and the system automates
the sending tasks. We hope to build on the insights of this work
in our intervention phase (Section 7), to develop fully automated
hints.

In [18, 35] researchers measure students’ compilation behaviors
and correlate these with students’ learning outcomes in program-
ming courses. In [11] Carter et al. extend the model to include
editing and debugging behaviors, and in [12] they also include stu-
dent participation in the online social learning environment. Our
work is orthogonal to these e�orts. We focus on monitoring termi-
nal inputs and outputs, to provide actionable and timely feedback
to teachers about their students’ progress.

Our work builds on our earlier e�orts to use terminal histories
to manually evaluate student learning [36]. A terminal history only
logs user input, while ACSLE logs timestamp, location, input and
output, and provides automated analysis of this data. Publication
[19] is a two-page report of our early experiences with ACSLE.

3 HANDS-ON EXERCISES
Some computer science classes, such as systems, networking and
cybersecurity, have historically used practical exercises to supple-
ment lectures [1, 5, 6, 14, 23, 31]. These hands-on exercises usually
specify a set of well-de�ned tasks that a student should accom-
plish. Sometimes these tasks include writing a short piece of code.
But more often they include use of existing tools and programs to
understand, con�gure or monitor applications, hosts and network
elements, and to diagnose and rectify problems. These exercises
enrich student understanding of concepts taught in class, and also
help them learn popular systems tools.

While hands-on exercises aim to demonstrate, solidify and deepen
the concepts taught in class, they rely on a student’s ability to mas-
ter tools and environments necessary to complete the exercise. For
example, a student may need to know how to use Linux, ssh and
scp utilities, how to write Bash scripts, how to tell if a process is
running, etc. Some exercises can be hosted locally in a lab, while
others are hosted on public testbeds [1, 6, 7, 34]. In both cases,
a student must learn some speci�cs of the environment hosting
the exercise, such as how to access it, where to store the �les, etc.
Lacking skills in either of these domains can impede a student’s
progress on the exercise and interfere with the student’s learning.

Hands-on exercises are often assigned as homework, so students
may have limited opportunity to ask for help. Some students may
also be reluctant to ask for help, if they believe that they are the
only ones struggling, and that admitting this re�ects poorly on
them. Thus, teachers often have a hard time assessing progress on
an exercise before it is submitted and graded. By that time it is too
late for interventions. Ideally, a teacher should be able to moni-
tor student progress as they work on the exercise. Such monitoring
would help inform a myriad of interventions, such as: (1) encourag-
ing students to start work early, (2) identifying struggling students
and o�ering targeted and timely help, (3) modifying or clarifying
tasks that prove challenging for the entire class, (4) identifying and
addressing common error patterns. While some of these goals can
be achieved with a learning management system (LMS) or auto-
grading system, none have been explored for hands-on exercises
that require terminal-based student interactions.

4 ACSLE
We have developed a system, called ACSLE, whose architecture is
shown in Figure 1. ACSLE automatically monitors and analyzes stu-
dent progress in Linux-based environments, during well-structured
hands-on exercises. We focus on exercises that mostly require
terminal-based interaction. ACSLE consists of the Monitor and
the Analyzer components. The Monitor component collects stu-
dents’ terminal input and output on all machines in the exercise, and
collates it into a single log �le per student. The Analyzer processes
students’ log �les and produces individual and summary reports
showing students’ progress on the exercise tasks, and highlighting
common mistakes.

4.1 Monitoring
Many public hands-on exercises specify tasks that require students
to interact with a remote testbed environment, often accessing
multiple machines simultaneously, using SSH and a terminal. We

focus on monitoring student interaction in this setting, but note
that our solution could be easily modi�ed to monitor interaction in
a local lab or home environment.

The Monitor component of ACSLE consists of a program, which
records student input to the terminal, the output that they see,
terminal identi�er, username, current working directory, and the
time of each interaction. We wanted to record student input and
output to evaluate their progress on the exercise. We needed to
record time, so we could evaluate how long the student spent on
each part of the exercise. The current working directory, username
and terminal identi�ers provide context for the interaction, espe-
cially when the machine may be shared by multiple users, or host
multiple simultaneous terminal sessions.

We investigated several tools to record the needed information:
script [3], history [2], snoopy [16] and ttylog [4]. Of these, only
ttylog could log both the input and the output of a terminal.

Our �rst Monitor prototype, which was used to collect data for
this paper, combined ttylog and snoopy. ttylog captures every-
thing that comes from a serial device /dev/tty* using strace,
and thus it successfully logs all terminal input and output. snoopy
intercepts all exec and execve calls on a Linux system, and logs the
time, user, group, current directory, terminal identi�er and executed
command to syslog. During analysis we matched logs for ttylog
and snoopy to arrive at the �nal set of records for each student and
each exercise.

Challenges and Limitations. Our monitoring approach had
some challenges and limitations. Our �rst challenge was how to re-
liably and accurately record terminal input and output. ttylog logs
every keystroke and output character. This presents two general
challenges: (1) reconstructing which command the user actually
executed, (2) dealing with large terminal outputs. We reconstruct
commands by interpreting escape sequences, such as backspace, ar-
row key press, control key combinations, etc. in the ttylog records.
We also truncate long outputs to 500 lines.

Our second challenge was that matching ttylog and snoopy
records did not always result in a complete and unique match. Some
lines appeared only in ttylog but not in snoopy output. This some-
times happens because a command bypasses exec/execve calls,
e.g., shell built-ins such as cd. Sometimes we could not identify the
cause of missing snoopy lines. These limitations resulted in a loss of
timestamp information on 53% of the lines in our dataset, resulting
in ambiguity in the ordering of the records in the merged logs. The
third challenge was tied to our implementation platform. We �rst
implemented ACSLE on the DeterLab testbed [34]. Many students
use the testbed in classes, and they usually allocate a single exper-
iment for each exercise. We saved the logs in a directory related
to the student’s experiment. In some cases, a student collected the
data they needed and terminated the experiment before we could
collect the logs. This resulted in our dataset missing records for up
to 2/3 of the students.

In our current Monitor prototype, we have addressed the above
limitations. We modi�ed ttylog to also record terminal identi�er,
current working directory, username and time of each input, and we
abandoned snoopy. We can now accurately reconstruct timing and
order of all user actions, and reliably log each action. For DeterLab,
we have also relocated logs to another directory on the testbed,
so that they persist after the experiment has been terminated. In

Merger

ttylog

Annotator

Milestone
Analyzer

Student
Analyzer

distributed experiment

ttylog

ttylog

experiment
log

milestones

Monitor

Pattern
Analyzer

Figure 1: ACSLE System Architecture.

milestones : milestone+
node ‘,’ input ‘,’ output <EOL>milestone:
node_name node :
node_name ‘|’ node |
‘*’|
input_cmd input :
input_cmd ‘|’ input|
‘*’|
output_cmd output :
output_cmd ‘|’ input|
‘*’|

input_cmd :
node_name :

client,ip\s+route\s+get|ifconfig,*
client,tcpdump,^((?!denied).)*$
*,^find|^locate,/var/log/136intro-3.jpg

name on the testbed
regular expression to match
with cmd line

output_cmd : regular expression to match
with cmd line

Figure 2: EBNF for milestones, and three examples.

our EduRange implementation we have also ensured that logs are
stored in a permanent location.

4.2 Analyzing Student Actions
The Analyzer component of ACSLE consists of �ve analysis pro-
grams: the Merger, the Annotator, and the Student-, the Milestone-,
and the Pattern-Analyzer. The Merger works on the set of logs gen-
erated by the students completing a given exercise. It pulls all of the
log �les for each student, and collates them based on the timestamp
of each line. This merged log is then passed to the Annotator.

The Annotator takes as input the merged student logs and a set
of milestones for a given exercise. A milestone is a speci�c, smaller
learning task that a student is asked to complete, which results
in a speci�c terminal input, output or both. For example, we can
create milestones for tasks where a student needs to run a speci�c
command, change the state of the system, or produce a speci�c
terminal output. Tasks that require students to write code with a
speci�c functionality are not currently addressed.

To use the Annotator, the instructor encodes milestones – home-
work tasks – in the special format, illustrated in Figure 2. A mile-
stone consists of node, input and output �elds. Each �eld can con-
tain a wildcard, or have one or more values, separated by “|”. The
input and output �elds can be speci�ed using regular expressions,
and should match the log on the speci�ed node. The Figure also
shows three sample milestones.

The Annotator attempts to match each line of a student’s log
�le with each milestone. If all three parts (node, input and output)
match, the line is tagged as success in meeting a given milestone.
Otherwise, if there is at least a partial match on the input, the line
is tagged as a failed attempt to meet the given milestone. In all
other cases the line is tagged as unrelated to a milestone. A line
may successfully match multiple milestones, or it could be a failed
attempt for multiple milestones. In those cases we tag the line with
multiple tags.

The Analyzer programs produce actionable summaries for the
instructor. The Student-Analyzer produces a summary of each stu-
dent’s progress. It outputs the total time each student interacted

1. On your node, find 5 JPEG files, whose name includes the word “intro” in some form M1-5
2. On your node, find out the “vendor id” of the CPU model M6
3. On your node, find out how large disks are, and how much free space they have M7

(a) intro

1. On your node, find webserver code, compile and run it
2. In webserver.c find buffer overflow M1
3. Create your exploit program starting from /root/submission/exploit.sh
and /root/submission/payload M2-3
4. Exploit the buffer to make the server crash M4
5. Fix the buffer overflow and create a patch using diff -Naur M5

(b) bu�er

1. Create steady stream of web traffic between client and server nodes
2. Turn off SYN cookies at server M1-2
3. Find out interface leading to server from the client node M3
4. Collect tcpdump statistics on the client node on that interface M4
5. Create SYN flood between attacker and server using flooder tool
with spoofing in range 1.1.2.0 and mask 255.255.255.0 M5
6. Turn on SYN cookies and repeat step 4 and 5 M6-8

(c) syn�ood

1. On the client machine use dig command to look up address of www.google.com M1
2. Use arp and ifconfig commands to detect interface addresses on each machine
3. On attacker, use ettercap command to create ARP poisoning M2
4. On attacker, use ettercap and dns_spoof to spoof DNS replies M3-5
5. On auth use zonesigner to sign zone google.com and reconfigure bind to use DNSSEC M6-8
6. On cache add ZSK to the list of trust anchors M9
7. On client run dig +dnssec www.google.com A and verify that you get a signed response M10-11

(d) dns

Figure 3: Milestones for the four exercises

exercise (class) students all lines unique lines
total recorded succeeded failed other succeeded failed other

intro (A, C) 41 38 492 1,433 9,037 251 828 2,371
bu�er (A, B, C) 69 37 1,301 3,787 21,433 179 867 2,785
syn�ood (B, C) 40 19 766 665 2,849 318 231 706
dns (B, C) 40 17 674 1,553 1,814 99 538 488

Table 1: Statistics on the records we analyzed.

with the testbed, their input line count, the number of milestones
met and the number of failed attempts. These statistics can help
teachers monitor the class’ progress and identify students that
need help. The Milestone-Analyzer summarizes how many stu-
dents attempted and met each milestone, which can help identify
challenging milestones and implement interventions. The Pattern-
Analyzer analyzes failed attempts to reach a milestone. It produces
a graphical output showing frequently used commands, command
options and argument values.This output can help teachers identify
frequent student misconceptions.

4.3 Student Privacy
We treat ACSLE input and output data as sensitive information. We
have taken the following steps to protect student privacy: (1) All
our programs identify students by their usernames on the host ma-
chines. In DeterLab these usernames are generic. Only teachers can
link such usernames to student identities, which protects students’
privacy. At the end of semester the linkage between usernames
and student identities is destroyed and thus student data can be
further analyzed by third parties, if needed, without risk to privacy.
(2) Some student input, e.g., �lenames and experiment names, can
inadvertently reveal student identity. We plan to anonymize this
information before we release our datasets for public use. (3) Our
study, reported in Section 5, was reviewed and approved by our
IRB.

5 EVALUATION
ACSLE is currently implemented on the DeterLab [34] and the
EDURange [6] testbeds. We report here on data collected from the
DeterLab testbed.

5.1 Implementation
The Monitor component was implemented in DeterLab by applying
the changes to the OS image used in the public hands-on exercises,
called Ubuntu-EDU. The changes ensured that ttylog starts on
machine startup and runs continuously, and that the logs are fre-
quently saved to the experiment directory. Other components were
Perl scripts that we ran manually on the Monitor output.

5.2 Classroom Use
ACSLE was evaluated on a set of logs collected from three under-
graduate classes, taught by two authors of this paper, over the
course of a year. Two of the classes already had four public Deter-
Lab exercises as the required part of their syllabus. The third class
asked for student volunteers to complete two select exercises. All
students whose data was used in Section 6 were informed of the
study and given the ability to opt out. No one opted out. To ensure
no adverse e�ects from our study on students who were required to
complete hands-on exercises, we analyzed the data after the classes
ended and the grades were submitted.

5.3 Exercises
Four di�erent hands-on exercises were completed by students. The
tasks in each exercise are given in Figures 3(a) – 3(d), with tags
denoting speci�c milestones. We do not show milestone details,
since this would reveal solutions for these public exercises.

The intro exercise [28] teaches the students how to use Linux
and the DeterLab testbed. The tasks include: (1) �nding �ve �les
on the �le system, (2) �nding out the free space on the drive and
(3) �nding out the CPU model. The bu�er exercise [29] teaches

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

little time low interaction

lin
es

time (h)

 A C

(a) intro

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

little time low interaction

lin
es

time (h)

A B C

(b) bu�er

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

little time low interaction

lin
es

time (h)

B C

(c) syn�ood

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

little time low interaction

lin
es

time (h)

B C

(d) dns

Figure 4: Time spent on an exercise vs terminal input lines.

 0

 1

 2

 3

 4

 5

 6

 7

 1 10 100 1000

m
ile

st
on

es
 m

et

attempts

A C

(a) intro

 0

 1

 2

 3

 4

 5

 1 10 100 1000

m
ile

st
on

es
 m

et

attempts

A B C

(b) bu�er

 0

 1

 2

 3

 4

 5

 6

 7

 1 10 100 1000

m
ile

st
on

es
 m

et

attempts

B C

(c) syn�ood

 0

 2

 4

 6

 8

 10

 1 10 100 1000

m
ile

st
on

es
 m

et

attempts

B C

(d) dns

Figure 5: Unique milestones met vs number of attempts.

the students about bu�er over�ows [26]. The tasks include locating
the bu�er over�ow in vulnerable code, writing an exploit for it and
writing and applying a patch. The syn�ood exercise [22] teaches
the students about TCP SYN �ood attacks [24], and about one
popular defense – SYN cookies [33]. The tasks include: (1) turning
o� SYN cookies, (2) performing the attack and monitoring its e�ect,
(3) turning on SYN cookies and repeating step (2). The dns exercise
[32] teaches the students about ARP spoo�ng [8] and DNS man-in-
the-middle (MITM) attack [20]. The tasks include: (1) performing
ARP spoo�ngwith DNSMITM attack, (2) applying DNSSEC defense
[17], and (3) verifying that DNSSEC works correctly.

6 FINDINGS
Table 1 shows the number of total students in classes A, B or C that
completed an exercise, and the number of students whose records
we were able to collect. We also show the number of total and
unique input lines analyzed for each exercise.

Figure 4 shows the time spent on an exercise by each student
on the x-axis vs number of lines a student typed on the y-axis. All
graphs use log scales and same scale ranges. We observe that: (1)
Students engage with an exercise sporadically, over a long time
period. This sporadic engagement may hurt student learning, as
it requires them to recall their last interaction, and resume it. (2)
Exercises vary greatly in di�culty. The �rst two take much more
time and more lines, than the last two (compare the number of data
points in the shaded area of each �gure). (3) While most students
engage with the exercise, a handful do not put enough e�ort (lower
left quadrant). Similarly, a few low-engagement students worked
over a longer time period but still produced too few lines (lower
right quadrant). Teachers could use our statistics to identify low-
e�ort and low-engagement students and o�er timely help.

Figure 5 shows the unique milestones met (one or more times)
vs total attempts to meet a milestone, for each of the four exercises.

In all cases more attempts lead to more milestones met, but the
relationship is far from linear. Class A did as well as class C on
the “intro” exercise, but both A and C lagged behind B for the
“bu�er” exercise. The likely reason for this is: (1) for class A this
exercise was optional, (2) for class C we had only 6 records for the
“bu�er” exercise. Dashed lines in each �gure indicate half of the
total milestones. Students whose performance is below the dashed
line are struggling and would bene�t from additional help.

Figure 6 shows the ratio of milestone completion over the total
number of attempts, and can help the teacher identify challenging
tasks for the entire class. In all exercises, tasks that required students
to discover the right options and arguments for a command led
to the most challenging milestones. These were milestones 1–5 in
“intro”, milestones 5 and 8 in “syn�ood”, and milestones 2, 4, 5, 10
and 11 in “dns.”1

Figures 7(a)–8(c) illustrate the output of Pattern-Analyzer for
the “intro”, “syn�ood” and “dns” exercise. Figures 7(a)–7(c) show
frequently used commands in failed attempts on our four exercises,
and their relative frequencies (on the scale 0-1). We observed a few
commonmistakes: (1) 16% of failed attempts in “intro” exercise used
the locate command, which cannot �nd all the �les, (2) in multi-
node exercises –“syn�ood” and “dns” – some students executed
commands on the wrong node – these are circled red in the Figure.

Figures 8(a)–8(c) show the frequently used options and argu-
ments in failed attempts for the “intro”, “bu�er” and “dns” exercise,
for each command. Numbers on the edges show the frequency of
di�erent combinations. We have circled patterns that may warrant
interventions. One common error in the “intro” exercise is the use
of find -name command, which cannot perform case-insensitive
search. In only 22% of cases, students speci�ed the correct starting
point for the find – the root directory. In the “bu�er” exercise,
1Class A seemingly outperformed classes B and C on milestone 1 of the “bu�er”
exercise, but this is because our sample for class A was small, which skewed our
statistics.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7

su
cc

es
s

ra
te

milestone

A
C

(a) intro

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

su
cc

es
s

ra
te

milestone

A
B
C

(b) bu�er

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8

su
cc

es
s

ra
te

milestone

B
C

(c) syn�ood

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 10 11

su
cc

es
s

ra
te

milestone

B
C

(d) dns

Figure 6: Ratio of milestone completion over total number of attempts.

all

intro

0.99

find

0.7

locate

0.16

misspelled

0.07

man

0.02

sudo

0.01

(a) intro

all

attacker

0.66

server

0.25

client

0.08

flooder

0.85

/share/education/TCPSYNFlood_USC_ISI/install-flooder

0.06

misspelled

0.04

tcpdump

0.01

tcpdump

0.51

sysctl

0.29

flooder

0.06

ifconfig

0.05

flooder

0.5

sysctl

0.37

(b) syn�ood

all

attacker

0.31

client

0.28

cache

0.21

auth

0.18

ettercap

0.6

tcpdump

0.07

cd

0.07

nano

0.05

misspelled

0.05

vim

0.04

dig

0.47

ping

0.2

misspelled

0.13

wget

0.06

nslookup

0.06

dig

0.36

nano

0.17

vim

0.13

ping

0.07

misspelled

0.06

tcpdump

0.04

dig

0.33

nano

0.18

misspelled

0.1

zonesigner

0.08

tcpdump

0.05

(c) dns

Figure 7: Frequently used commands and their locations in failed attempts

find

man

0.82

locate

0.06

locate

-name

"*intro*"

0.15

\"*intro*\"

0.12

find

0.3

/

0.22

-iname

0.1

.

0.08

"*intro*.jpg"

0.12

"*intro*.jpeg"

0.12

intro

0.08

intro.jp*g

0.07

’*intro’

0.05

-i

"*.jpeg*"

0.08

\"*.jpeg*\"

0.07

*.jpg

0.05

\"*intro*\"

0.05

0.19

updatedb

0.06 (a) intro

webserver.c

cp

0.25

/usr/src/fhttpd

0.21

payload

0.15

/root/submission/payload

0.1

webserver.orig.c

0.05

exploit2.sh

0.05

server/webserver

0.05

nano

webserver.c

cat

0.22

payload1

0.17

exploit1.sh

0.13

exploit.sh

0.12

payload

0.12

exploit2.sh

0.05

sh

8080

./webserver

0.51

8081

0.23

8085

0.06

rm

a

0.18

url.txt

0.05

vi

exploit1.sh

0.43

exploit2.sh

0.35

exploit1.shd1

0.13

exploit1.sht1.sh

0.07

h

0.07

vim

payload1

0.1

webserver.c.orig

0.05

exploit1.sh

0.05

wget

url.txt

0.32

payload1

0.31

more

process.txt

0.07

Makefile

0.06

index.html

0.06

bash

payload1‘

0.58

localhost:8080/payload1

0.32

localhost:8080/‘cat

0.32

localhost:8081/‘cat

0.18

localhost:8082/‘cat

0.09

nc

exploit1.sh

0.26

exploit2.sh

0.16

payload1

0.15

webserver.c

0.13

exploit3.txt

0.13

mv

exploit.sh

0.93

8080

0.1

localhost

1

8080

0.96

payload1

0.36

payload7

0.18

payload

0.13

payload6

0.12

payload5

0.1

payload10

0.05

exploit2.sh

0.1

exploit1.sh

0.1

payload1

0.09

~/

0.07

~

0.07

webserver.c

0.06

exploit3.txt

0.06

part1

0.06

(b) bu�er

-T

ettercap

0.25

-M

0.23

-q

0.13

-w

0.07

/10.1.2.3//

0.05

/10.1.2.2//

0.05

ARP

0.79

arp

0.15

dump

0.99

www.google.com

dig

ping

0.99

www.google.com

tcpdump

nslookup

1

www.google.com

zonesigner

wget

1

www.google.com

0.81

A

0.73

+dnssec

0.16

google.com

0.06

cd

-i

eth1

0.47

eth4

0.19

eth3

0.16

eth0

0.09

eth5

0.05

0.34

-nn

0.18

-e

0.11

nano

-keydirectory

/etc/bind/keys

0.88

/etc/bind/keys\

0.07

0.13

-algorithm

0.13

-dsdir

0.11

google.com

0.06

-genkeys

0.05

RSASHA256

1

/etc/bind/keys

1

vim

/etc/bind/

0.2

ettercap

0.12

/groups/USC430/team_74_2

0.12

/etc/ettercap/

0.06

/usr/share/ettercap

0.06

/usr/share/ettercap/

0.06

benc-managed-keys

0.1

named.conf

0.09

named.conf.loca

0.07

Kgoogle.com.+008+51480.key

0.06

Kgoogle.com.+008+21757.key

0.06

benc-managed-keys

0.21

named.conf

0.16

benc-managed-key

0.12

/usr/share/ettercap/etter.filter

0.09

/etc/ettercap/etter.dns

0.08

/usr/share/ettercap/etter.filter.kill

0.06

(c) dns

Figure 8: Frequent combinations of options and arguments in failed attempts (select patterns)

32% of invocations of wget command did not specify the correct
URL, which was contained in the payload �le. In the “dns” exercise,
students fail to use -i option to specify on which network interface
to perform ARP spoo�ng. They also, in some cases, misunderstood
how to specify the original and the spoofed address (circled red),
which should be speci�ed as a single argument.

7 CONCLUSIONS AND FUTUREWORK
Hands-on exercises help students gain practical skills related to
their learning goals, but they can also present obstacles to learning
if students lack some background skills or if they are unfamiliar
with the exercise environment. We have presented our approach to
measure student progress on hands-on exercises using the ACSLE
system. We have illustrated how our analysis tools can produce
outputs to help teachers identify which students struggle andwhere,
and inform interventions.

In our future work we will continue to evaluate ACSLE in the
classroom by o�ering it to all of the teachers who use DeterLab
and EDURange, and soliciting their and their students’ feedback.
These evaluations will focus on usefulness of ACSLE to teachers
and students, and its e�ectiveness in identifying problems that
warrant interventions.

In the longer term, we plan to explore how to automatically
detect some struggle patterns, and to implement automated hints
for students as they work on the exercise, via on-screen messages.
We also plan on designing hints and deciding when to display them
so that students are motivated to invest a fair e�ort into the exercise.
We want students to be challenged, but we do not want them to
be overwhelmed. We look forward to exploring this trade-o� in
our future work. We will also explore how to port ACSLE to other
learning environments, such as other testbeds and university labs.

8 ACKNOWLEDGMENTS
This material is based upon work supported by the National Sci-
ence Foundation (grants 1723717, 1723714, 1516100, 1723705 and
1516730).

REFERENCES
[1] GENI Exploring Networks of the Future. https://www.geni.net/.
[2] Man page for history command. http://man7.org/linux/man-pages/man3/history.

3.html.
[3] Man page for script command. http://man7.org/linux/man-pages/man1/script.1.

html.
[4] Man page for ttylog. http://manpages.ubuntu.com/manpages/xenial/man8/ttylog.

8.html.
[5] Tennesee Tech University, Security Knitting Kit. http://blogs.cae.tntech.edu/

secknitkit/.
[6] EDURange Testbed. http://edurange.org, (accessed Aug 30, 2019).
[7] Seattle Testbed. https://seattle.poly.edu/html/, (accessed Aug 30, 2019).
[8] B. Ballmann. Understanding Network Hacks: Attack and Defense with Python.

Springer Publishing Company, Incorporated, 1st edition, 2016.
[9] L. ben Othmane, V. Bhuse, and L. T. Lilien. Incorporating lab experience into

computer security courses. In 2013 World Congress on Computer and Information
Technology (WCCIT), pages 1–4. IEEE, 2013.

[10] T. Benzel. The Science of Cyber-Security Experimentation: the DETER Project.
In Proceedings of the Annual Computer Security Applications Conference (ACSAC) ,
2011.

[11] A. S. Carter, C. D. Hundhausen, and O. Adesope. The Normalized Programming
State Model: Predicting Student Performance in Computing Courses Based on
Programming Behavior. In Proceedings of the Eleventh Annual International Con-
ference on International Computing Education Research, ICER ’15, pages 141–150,
New York, NY, USA, 2015. ACM.

[12] A. S. Carter, C. D. Hundhausen, and O. Adesope. Blending Measures of Pro-
gramming and Social Behavior into Predictive Models of Student Achievement
in Early Computing Courses. ACM Trans. Comput. Educ., 17(3):12:1–12:20, Aug.
2017.

[13] Cyber4All. Cybersecurity Modules: Security Injections. http://cis1.towson.edu/
~cssecinj/.

[14] W. Du and R. Wang. SEED: A suite of instructional laboratories for computer
security education. Journal on Educational Resources in Computing (JERIC), 8(1):3,
2008.

[15] M. Elkherj and Y. Freund. A System for Sending the Right Hint at the Right Time.
In Proceedings of the First ACM Conference on Learning @ Scale Conference, L@S
’14, pages 219–220, New York, NY, USA, 2014. ACM.

[16] M. A. Eriksen and M. Baker. Snoopy Logger. https://github.com/a2o/snoopy.
[17] ICANN.org. DNSSEC – What Is It and Why Is It Important? https://www.icann.

org/resources/pages/dnssec-what-is-it-why-important-2019-03-05-en.
[18] M. C. Jadud. Methods and Tools for Exploring Novice Compilation Behaviour.

In Proceedings of the Second International Workshop on Computing Education
Research, ICER ’06, pages 73–84, New York, NY, USA, 2006. ACM.

[19] P. Lepe, A. Aggarwal, J. Mirkovic, J. Mache, R. Weiss, and D. Weinmann. Measur-
ing Student Learning On Network Testbeds. In Midscale Education and Research
Infrastructure and Tools Workshop, 2019.

[20] M. McLa�erty, W. Levesque, and A. Salmon. Applied Network Security. Packt
Publishing, 1st edition, 2017.

[21] M. Mendicino, L. Razzaq, and N. T. He�ernan. A comparison of traditional
homework to computer-supported homework. Journal of Research on Technology
in Education, 41(3):331–359, 2009.

[22] J. Mirkovic. TCP SYN Flood. https://www.isi.deterlab.net/�le.php?�le=/share/
shared/TCPSYNFloodexercise.

[23] J. Mirkovic and T. Benzel. Teaching Cybersecurity with DeterLab. EEE Security
and Privacy Magazine, 10(1):73–76, January/February 2012.

[24] J. Mirkovic, S. Dietrich, D. Dittrich, and P. Reiher. Internet Denial of Service: Attack
and Defense Mechanisms (Radia Perlman Computer Networking and Security).
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2004.

[25] V. Nestler. NICE challenge project. https://www.nice-challenge.com/, 2019.
[26] A. One. Smashing the Stack for Fun and Pro�t. http://www-inst.eecs.berkeley.

edu/~cs161/fa08/papers/stack_smashing.pdf.
[27] T. H. Park and S. Wiedenbeck. Learning Web Development: Challenges at an

Earlier Stage of Computing Education. In Proceedings of the Seventh International
Workshop on Computing Education Research, ICER ’11, pages 125–132, New York,
NY, USA, 2011. ACM.

[28] P. A. H. Peterson. Linux and DeterLab Intro. https://www.isi.deterlab.net/�le.
php?�le=/share/shared/LinuxandDeterLabintro/.

[29] P. A. H. Peterson and P. Reiher. Bu�er Over�ows. https://www.isi.deterlab.net/
�le.php?�le=/share/shared/Bu�erOver�ows-UCLA.

[30] C. Piech, M. Sahami, D. Koller, S. Cooper, and P. Blikstein. Modeling How
Students Learn to Program. In Proceedings of the 43rd ACM Technical Symposium
on Computer Science Education, SIGCSE ’12, pages 153–160, New York, NY, USA,
2012. ACM.

[31] SeattleTestbed. Seattle in the Classroom. https://seattle.cs.washington.edu/html/
education.html.

[32] B. Sheridan and D. Massey. DNS and Man-in-the-Middle Attacks. https://www.
isi.deterlab.net/�le.php?�le=/share/shared/DNSmaninthemiddleattack.

[33] C. Smith and A. Matrawy. Comparison of operating system implementations of
SYN �ood defenses (cookies). In 2008 24th Biennial Symposium on Communica-
tions, pages 243–246. IEEE, 2008.

[34] USC/ISI and U. Berkeley. DeterLab testbed. http://isi.deterlab.net.
[35] C. Watson, F. W. B. Li, and J. L. Godwin. Predicting Performance in an Intro-

ductory Programming Course by Logging and Analyzing Student Programming
Behavior. In Proceedings of the 2013 IEEE 13th International Conference on Ad-
vanced Learning Technologies, ICALT ’13, pages 319–323, Washington, DC, USA,
2013. IEEE Computer Society.

[36] R. Weiss, M. E. Locasto, and J. Mache. A Re�ective Approach to Assessing Student
Performance in Cybersecurity Exercises. In Proceedings of the 47th ACM Technical
Symposium on Computing Science Education, SIGCSE ’16, pages 597–602, New
York, NY, USA, 2016. ACM.

[37] R. S. Weiss, S. Boesen, J. F. Sullivan, M. E. Locasto, J. Mache, and E. Nilsen.
Teaching Cybersecurity Analysis Skills in the Cloud. In Proceedings of the 46th
ACM Technical Symposium on Computer Science Education, SIGCSE ’15, pages
332–337, New York, NY, USA, 2015. ACM.

https://www.geni.net/
http://man7.org/linux/man-pages/man3/history.3.html
http://man7.org/linux/man-pages/man3/history.3.html
http://man7.org/linux/man-pages/man1/script.1.html
http://man7.org/linux/man-pages/man1/script.1.html
http://manpages.ubuntu.com/manpages/xenial/man8/ttylog.8.html
http://manpages.ubuntu.com/manpages/xenial/man8/ttylog.8.html
http://blogs.cae.tntech.edu/secknitkit/
http://blogs.cae.tntech.edu/secknitkit/
http://edurange.org
https://seattle.poly.edu/html/
http://cis1.towson.edu/~cssecinj/
http://cis1.towson.edu/~cssecinj/
https://github.com/a2o/snoopy
https://www.icann.org/resources/pages/dnssec-what-is-it-why-important-2019-03-05-en
https://www.icann.org/resources/pages/dnssec-what-is-it-why-important-2019-03-05-en
https://www.isi.deterlab.net/file.php?file=/share/shared/TCPSYNFloodexercise
https://www.isi.deterlab.net/file.php?file=/share/shared/TCPSYNFloodexercise
https://www.nice-challenge.com/
http://www-inst.eecs.berkeley.edu/~cs161/fa08/papers/stack_smashing.pdf
http://www-inst.eecs.berkeley.edu/~cs161/fa08/papers/stack_smashing.pdf
https://www.isi.deterlab.net/file.php?file=/share/shared/LinuxandDeterLabintro/
https://www.isi.deterlab.net/file.php?file=/share/shared/LinuxandDeterLabintro/
https://www.isi.deterlab.net/file.php?file=/share/shared/BufferOverflows-UCLA
https://www.isi.deterlab.net/file.php?file=/share/shared/BufferOverflows-UCLA
https://seattle.cs.washington.edu/html/education.html
https://seattle.cs.washington.edu/html/education.html
https://www.isi.deterlab.net/file.php?file=/share/shared/DNSmaninthemiddleattack
https://www.isi.deterlab.net/file.php?file=/share/shared/DNSmaninthemiddleattack
http://isi.deterlab.net

	Abstract
	1 Introduction
	2 Related Work
	3 Hands-on Exercises
	4 ACSLE
	4.1 Monitoring
	4.2 Analyzing Student Actions
	4.3 Student Privacy

	5 Evaluation
	5.1 Implementation
	5.2 Classroom Use
	5.3 Exercises

	6 Findings
	7 Conclusions and Future Work
	8 Acknowledgments
	References

