REGULARITY OF &,-INVARIANT MONOMIAL IDEALS

CLAUDIU RAICU

ABSTRACT. For a polynomial ring S in n variables, we consider the natural action of the symmetric group
&, on S by permuting the variables. For an &,-invariant monomial ideal I C S and j > 0, we give an
explicit recipe for computing the modules Extg(S/I, S), and use this to describe the projective dimension and
regularity of I. We classify the &,-invariant monomial ideals I that have a linear free resolution, and also
characterize those which are Cohen-Macaulay. We then consider two settings for analyzing the asymptotic
behavior of regularity: one where we look at powers of a fixed ideal I, and another where we vary the dimension
of the ambient polynomial ring and examine the invariant monomial ideals induced by I. In the first case we
determine the asymptotic regularity for those ideals I that are generated by the &,-orbit of a single monomial
by solving an integer linear optimization problem. In the second case we describe the behavior of regularity
for any I, recovering a recent result of Murai.

1. INTRODUCTION

We let S = kleq, - - , e,] be a polynomial ring in n variables over a field k. We let &,, denote the symmetric
group on n letters, acting on S by permutations of the variables. If x = (1, ,2,) € Z, we write

Tn

L — Tl ...
et = €] €n

for the corresponding monomial in S. We let I, denote the ideal in S’ generated by the &,-orbit of e%:
I, = (0(e*) : 0 € Gy). (1.1)
We say that x is a partition (or that x is dominant) if 21 > --- > x,,, and let P,, denote the set of all partitions

in Z%,. Observe that I, = I, for a unique y € Py, obtained by arranging the entries of z in non-increasing
order. Every &,-invariant monomial ideal I C S is determined by a (finite) subset X C P, via I = Iy,

where
Ix=>Y I, (1.2)
TEX

The goal of this paper is to study homological invariants of the ideals Iy, for which the following definition
will play a fundamental role. Recall that if z € P, then 2’ denotes the conjugate partition, where 2, counts
the number of parts of x with x; > 4. If z,y € P, we write x > y if x; > y; for all 4. If x € P, and ¢ > 0
we write z(c) for the partition whose i-th part is z;(¢) = min(z;, ¢).
Definition 1.1. For a subset X C P,, we define Z(X) to be the set consisting of pairs (z,1), where z € P,
and [ > 0 are such that if we write ¢ = z; then the following hold:

(1) There exists a partition € X' such that 2(c) < z and x| <1+ 1.

(2) For every partition z € X satisfying (1) we have ., ; =1+ 1.

Theorem on Regularity and Projective Dimension. For every subset X C P, with Iy # S we have
reg(Iy) =max{|z| +1+1:(z]) € Z(X)} and pdim(ly) =max{n—1-1:(zl) € Z(X)}, (1.3)

where reg(—) (resp. pdim(—)) denotes Castelnuovo-Mumford regularity (resp. projective dimension).

Date: July 11, 2020.

2010 Mathematics Subject Classification. Primary 13D07, 05E40, 13D45.

Key words and phrases. Monomial ideals, regularity, projective dimension, Ext modules, local cohomology.
1



2 CLAUDIU RAICU

We remark that the formula (1.3) is independent on the characteristic of the field k. In contrast, the Betti
numbers of the ideals Iy may depend on the characteristic of the field, as shown in [Murl9, Section 5].

To simplify notation, we will omit trailing zeros from a partition z, and write for instance (5, 1) instead of
(5,1,0,0) when n = 4. For visualization purposes, often in examples we will draw a Young diagram instead
of writing the entries of the corresponding partition: for instance z = (4,2, 1) will be pictured as

We will also write () for the empty partition, all of whose parts are equal to 0. Notice that the partition z(c)
considered in Definition 1.1 is the one formed by the first ¢ columns of the Young diagram of . With these
conventions, we now illustrate the Theorem on Regularity and Projective Dimension with an example.

1]

— I

Example 1.2. Consider the case when n =3 and X = {(2,1,1),(4,2)} = {

| [}. We have that

2 2 2 42 42 492 492 492 42
Iy = (efeges, e1e5es, e1eae3, €165, e1e5, e5e], €565, esey, €3e5),

and a Macaulay2 [GS] calculation finds that the Betti table of Iy is (recall that the Betti number §;,;4; =
dimy TorZ-S (Ix,8)i+j is placed in row j, column ¢, and that a dash indicates a vanishing Betti number)

In particular, this shows that reg(/x) = 7 and pdim(/y) = 2. Using Definition 1.1 we find the following
table, whose first row describes the elements of Z(X):

= lon| B | (Ho)| o) | o) | G

lz|+1+1| 2 4 4 5 6 7
n—1-11] 1 1 2 2 2 2

It follows that as (z,[) varies in Z(X'), the maximum value of |z|+ 141 is reg(Ix), and the maximum value
of n —1—1is pdim(Ily), as predicted by (1.3).

To put the Theorem on Regularity and Projective Dimension in context, we analyze a few special cases.
We make one more convention: for partitions with repeating parts, we use the abbreviation (b%) for the
sequence (b, b,--- ,b) of length a; for instance (3,3,3,3,1,1) will be written as (34,12).

The ideals I,. When X = {z} is a singleton, one has using Definition 1.1 that

Z(X) ={(2,1) € Pn X Z>q : there exists 0 < ¢ < zy — 1 such that z1 = ¢, z > z(c), | =z, —1}. (1.4)
It follows that for (z,l) € Z(X), the quantities |z| + 1+ 1 and n — — 1 are both maximized when ¢ = z; — 1
and z = (¢™). This shows that

reg(Iy) =n-(z1 — 1)+, and pdim(l) =n —x,, . (1.5)

In the case when z has distinct parts (z1 > x2 > -+ > x,), the ideals I, are known as permutohedron ideals,
and their minimal free resolution is constructed explicitly as a cellular resolution (see [MS05, Section 4.3.3]
or [BS98]). When z has repeated parts, the cellular resolution is no longer minimal, but the Betti numbers
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of I, can still be determined [KK13]. One can then also derive (1.5) from the explicit knowledge of the
(non-)vanishing behavior of the Betti numbers of I,.

Square-free ideals. The square-free &,,-invariant monomial ideals have a simple classification — we have one
foreachp = 1,--- ,n, which is denoted I}, and is generated by all the square-free monomials of degree p. Using
the earlier notation, we have I;, = I(1»y for each p. Using (1.5) we obtain reg(I,) = p and pdim(I,) = n — p,
that is, I, is Cohen-Macaulay with a linear resolution. In addition to the well-understood Betti numbers
of I, we note that the action of &,, on the minimal resolution of I, was described in [Gal20].

Polymatroidal ideals. The products I = I, - I,,, --- are examples of polymatroidal ideals, as defined in
[CHO3], and in particular they have a linear resolution. If we assume that p; > py > -+, we can form a
partition z by declaring that 2} = p; for all i. We can then write I = Iy where X is the set of all partitions
y € P, that have size |z| and are dominated by z (that is, y1 + -+ y; < 1 + -+ - + x; for all 7). We invite
the reader to check, using Definition 1.1, that every (z,1) € Z(X) satisfies |z| + 1+ 1 < |z|, and equality is
attained if we take ¢ = x1 — 1, 2 = z(c) and | = 2, — 1. Using (1.3) this shows that reg(/) = |z, providing
an alternative verification that I has a linear resolution (see also the discussion on symmetric shifted ideals).

Specializing the discussion in the previous paragraph to the case p; = ps = - - -, we see that reg([ﬁ) =p-d
for all d > 1. This is a very special instance of a general phenomenon, discovered in [CHT99, Kod00], which
asserts that for an arbitrary homogeneous ideal I, the regularity of I?¢ is computed by a linear function
a-d+0bfor d > 0. If I is generated in a single degree r then one has a = r, but the constant term b is
in general quite mysterious. For ideals of minors of a generic matrix, this constant was studied in [Rail8].
The corresponding problem for ideals of Pfaffians is resolved in [Per17]. There is an extensive literature
analyzing the case when I is a monomial edge ideal (see [NP13,Ban15,BHT15] and the references therein).
The theorem below computes the constant term b in the case when I = I, for every w € P,,.

Theorem on Regularity of Powers. If we write the conjugate partition to w asw' = (n, hi', ho?,-- -, hzk)
with n > hy > --- > hy, > 0, then we have that reg([&) =d-|w|+0b for d> 0, where

b:(n—hl)-(a1—1)—|—(h1—hg)-(ag—l)—i-'-‘—i—(hk_l—hk)-(ak—l)—i-(hk—l)-(ak—l).

In particular, the powers Ii have a linear resolution for d > 0 if and only if ay = --- = ar = 1, that is, if
and only if w; —wip1 <1 foralli=1,--- ,n—1.

In light of (1.3), finding the exact value of the regularity of an &,-invariant monomial ideal I amounts to
solving a linear integer optimization problem. For I = Ig], this problem is a high-multiplicity partitioning
problem, which is an instance of a resource-allocation problem that is fundamental in Operations Research.
In [Rail9] we have found essentially optimal criteria for the feasibility of this optimization problem when
d > 0, and we apply the results established there to derive a proof of the Theorem on Regularity of Powers.

Symmetric (strongly) shifted ideals. In [BAAG™20], the authors study a class of &,-invariant monomial
ideals, called symmetric shifted, along with the subclass of symmetric strongly shifted ideals (see Section 4 for
the terminology). They show that these ideals have a linear free resolution, describe their Betti numbers,
and leave open the question of classifying the &,-invariant monomial ideals that have a linear resolution.
We answer their question below, and also identify an interesting class of symmetric strongly shifted ideals.

Theorem on Linear Resolutions. An &, -invariant monomial ideal I has a linear free resolution if and
only if I is symmetric shifted. If Ii has a linear resolution for d > 0 then I& s symmetric strongly shifted
ford > 0.

Sp-invariant ideals for varying n. A problem that has attracted much interest in recent years (in the
context of representation stability, FI-modules, Noetherianity up to symmetry) is concerned with the study
of chains of (not necessarily monomial) ideals (I,,),>1 with I,, C k[eq, - , e,] being &, -invariant, and

Sm(In) C I, for m > n. (1.6)
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It is conjectured (in a slightly more general setting) in [LNNR18a, LNNR18b] that reg(/,,) and pdim(Z,,) are
eventually described by linear functions on n.

It is known that for chains of &,,-invariant ideals as above, the inclusions (1.6) are equalities for m > n > 0
[Coh67,AH07,HS12], so they depend on a finite amount of information. When the ideals I,, are monomial,
this information is simply a finite set of partitions, as follows. Since n varies, it is convenient now to regard
Pn as a subset of P,y1 by appending a zero to any n-tuple x € P, to get a tuple in P,y1. We write
P =U,, Pn for the set of all partitions, and given any subset X C P, we write

X, = {z € X : x has at most n parts},

and we view X, as a subset of P, in the natural way. Every chain (I,),>1 of G,-invariant monomial ideals
has the property that there exists a finite subset X C P with I,, = Iy, for n > 0. We have the following.

Theorem on Invariant Chains of Ideals. Let X denote a finite non-empty set of pairwise incomparable
partitions, and define

m =max{i:x; #0 for somex € X}, w=min{z1:2€ X}, and W =max{zi:2€X}. (1.7)

If welet Y ={z —z(w—1): 2z € X}, then we have the following.

(1) There ezists a constant C' such that reg(ly,) = C for n > m.
(2) We have reg(Ix,) = (w—1) -n+C for n > max(m,(m —1)- (W —w+2) — C).

The theorem above is also proved in [Murl9], by studying Tor instead of Ext modules. A slight improvement
in our work comes from the effective bound in part (2). As explained in Example 6.2, this bound is optimal.

All the theorems discussed so far are shadows of a more refined result that describes in a very precise
fashion the graded components of the modules Ext%(S/1,S), for arbitrary &,-invariant monomial ideals I.
This is the main result of the paper, and it follows closely the corresponding statement in the case of
determinantal ideals [Rail8, Theorem 3.2]. In particular, we not only describe the individual Ext modules,
but also the natural maps induced by inclusions I 2 J, so one can for instance derive formulas for all the
modules Ext{(I/J,S). We will formulate our results here in a way that parallels those of [Rail8].

We note that a monomial ideal I C S is the same as one that is preserved by the natural action of the
n-dimensional torus T,, = (k*)™ on S by rescaling the coordinates. If we consider the semi-direct product

G=T,x G, (1.8)

where &,, acts on T,, by permuting the factors (G is also known as the wreath product k* 1 &,,), then an
G, -invariant monomial ideal in S is precisely the same as a G-invariant ideal in S.

Main Theorem. To any G-invariant ideal I C S we can associate a finite set M(I) of G-equivariant
S-modules with the property that for each j > 0

Ext}(S/1,8)~ @ Ext}(M,S), (1.9)
MeM(I)

where the above isomorphism is T, -equivariant and degree preserving (but in general it may not preserve the
S-module structure, or it may not respect the S, -action in positive characteristic). In particular, we get

reg(S/I) = M]ré%l)%]) reg(M).

The sets M(I) and the modules Extg(M, S) for M € M(I) can be computed explicitly. Furthermore, the
association I — M(I) has the property that whenever I O J are G-invariant ideals, the (co)kernels and
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images of the induced maps Extg(S/I, S) — Extg(S/J, S) can be computed as follows.

ker (Extg(S/I,S)—>Ext{;(5/J,5)): B Exti(M,9),
MeM(I)\M(J)

Im (Extg(S/J, S) —> Extl(S/.J, S)) ~ @  Exti(M9),
MeM(I)NM(J)

coker (Extg(S/I,S)—>Extg(5/J,5)): D  ExtL(M9).
MeM(IN\M(I)

Finally, if we write I : I2° for the saturation of I with respect to I, then M(I : I;°) € M(I). More precisely
M(I: 1) ={M € M(I) : Ann(M) € I,,}.

The precise statement of the Main Theorem is given in Theorem 3.1. For the purpose of this Introduction
it suffices to say that if I = Iy then the corresponding set M(I) of G-equivariant S-modules is in bijection
with the combinatorially defined set Z(X’) from Definition 1.1. The modules M € M(I) arise as composition
factors in a filtration of S/I, and the isomorphism (1.9) can be interpreted as the degeneration of a spectral
sequence for Ext associated with this filtration. Under the correspondence between a module M € M([I) and
a pair (z,0) € Z(X), we have that M is Cohen-Macaulay of dimension [, and Ann(M) = I;y; (that is, M
is scheme-theoretically supported on the union of all the I-dimensional coordinate planes). One remarkable
consequence of the Main Theorem, pointed out by Satoshi Murai, is that all &,-invariant monomial ideals
are sequentially Cohen—-Macaulay (see [Sta96, Definition II1.2.9], and Section 3.3). The final theorem below
characterizes the &,-invariant monomial ideals that are Cohen—Macaulay.

A famous question of Eisenbud-Mustata—Stillman [EMS00, Question 6.2] asks under what circumstances
are the natural maps Ext%(S/I,S) — H7(S) injective. As explained in [EMS00, Example 6.3], a necessary
condition is that the ideal I is unmixed. For &,-invariant monomial ideals, we show that this condition
is also sufficient, and that it is further equivalent to asking that the quotient S/I is Cohen—Macaulay. We
further characterize combinatorially those ideals for which these equivalent properties hold, as follows.

Theorem on Injectivity of Maps from Ext to Local Cohomology. Let X be a set of pairwise incom-
parable partitions, and consider the corresponding ideal I = Iy C S. The following are equivalent:

2)
3) Ewvery partition x € X satisfies x1 = - -+ = xp, where p = dim(S/I) + 1.
4) For each (z,1) € Z(X) one has | = dim(S/I).

5) S/I is Cohen—Macaulay.

As remarked in the proof of [Murl9, Corollary 3.8], dim(S/I) = p — 1 where p is the minimal number of
parts of a partition in X, that is, p = min{z} : z € X'}.

Organization. In Section 2 we establish basic facts about &,-invariant monomial ideals, discuss combina-
torial aspects of Definition 1.1, and study the G-equivariant S-modules that occur in the Main Theorem. In
Section 3 we verify the Main Theorem, and deduce from there the Theorem on Regularity and Projective
Dimension, as well as the Theorem on Injectivity of Maps from Ext to Local Cohomology. Section 4 is con-
cerned with characterizing ideals with a linear free resolution, while Section 5 discusses the explicit formula
for the linear function computing regularity of powers of an ideal generated by the &,-orbit of a monomial.
We end with Section 6 where we establish the Theorem on Invariant Chains of Ideals.
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2. PRELIMINARIES

The goal of this section is to introduce the main objects that are needed for the precise statement and
the proof of the Main Theorem. In Section 2.1 we discuss basic properties of &,-invariant monomial ideals,
and discuss a number of important combinatorial implications of Definition 1.1. In Section 2.2 we introduce
the G-equivariant S-modules that make up the sets M(I) in the Main Theorem, and for each such module
M and for j > 0 we compute Extg(M ,5), and deduce from this calculation the projective dimension and
Castelnuovo-Mumford regularity of M.

2.1. G-invariant ideals in S. We let S = k[e1,--- ,e,] and let G be as in (1.8). We write (V) for the
k-linear span of a collection V' of polynomials in S. For a partition z € P,, we let
Sy = (o(e®) : 0 € &)k
which is an irreducible G-representation. The ring S has a multiplicity-free decomposition
S=p s:
Qelpn

into irreducible G-representations (over a finite field, this statement requires to interpret G as a group
scheme; to avoid this, one may assume throughout that k is an infinite field, since the numerical invariants
we consider do not change when we extend the base field). Recall the definition of the ideals I, in (1.1),
generated by the component S, in the decomposition above. We have

L=s, (2.1)
y>z

If we write sup(z,y) for the partition defined via

sup(z, y)i = max(x;, ;) (2.2)
then it follows from (2.1) that
Iy N Iy = Z Isup(g,g)' (2.3)
zEX,yeY

For every G,,-invariant monomial ideal I there exists a canonical choice of a subset X(I) C P,, such that
I = Ix(). The set X'(I) consists of the minimal partitions z € P, (with respect to the order >), such that
ez € I. Up to the action of &,,, the elements of X'(I) give the minimal set of monomial generators of I.

Remark 2.1. The classification of G-invariant ideals in S, together with (2.3), shows that the lattice of
G-invariant ideals in S is ismorphic to that of GL,,(C) x GL,(C)-equivariant ideals in Sym(C™ & C"),
which was studied in [DCEP80]. Under this correspondence, the square-free ideals I, C S correspond to the
determinantal ideals of p X p minors of the generic m X n matrix. Moreover, all the filtrations constructed
in [Rail8] from chains of invariant ideals have corresponding analogues in the current setting. We will show
that, just as in the case of matrices, these filtrations exhibit nice homological properties.

Fori =0,---,n—1 and 2z € P,, we consider the collection of partitions obtained from z by adding at
least one box to its Young diagram in row (I + 1) or higher (see [RW14, Section 2B] or [Rail8, Section 2.1]
for analogous definitions in the case of determinantal rings)

succ(z,l) ={z € P, : 2 > z and z; > z; for some i > [}, and let (2.4)
Jg,l = Ié/lﬁucc(g,l)' (2.5)

Example 2.2. If z = ) then I, = S and Luce(z0) = Li+1, 80 Jz 0 = S/114+1 is the coordinate ring of the union
of all the coordinate planes of dimension I.
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To every (z,1) with z; = --- = 2,41, we associate the collection of rectangular partitions
Vo= {((z1 + l)lH)} U{((z + 1)1) ti>l+1and 21 > 2z} . (2.6)

Remark 2.3. As explained in [Rail8, Remark 3.4], it follows from Definition 1.1 that the condition z; =
- = 2141 is automatically satisfied when (z,[) € Z(X’). Moreover, this condition is equivalent to the fact
that the Young diagram of z has columns of size at least [ + 1, that is, z;- >1+1forall j <z

Unless otherwise specified, we will only consider pairs (z,1) with z; = - -+ = z;11. We have the following.
Lemma 2.4. If (z,1) € Z(Y) then Iy C Iy, ,.

Proof. Following Definition 1.1, we set ¢ = z; and note that for every y € ) we either have that z 2 y(c), or
z>y(c) and y.,; > I+ 1. The latter case implies that y > ((z1 +1)"*1), so I, C Iy,, by (2.6) and (2.1). In
the former case, we must have min(y;, c) > z; for some i. Taking the smallest such i, we have that z;_1 > z;,
and by Remark 2.3 we get that 7 > [ + 1. It follows that y > ((z; +1)*), so I, C Iy_, as before. O

To obtain a characterization of the condition (z,1) € Z()), we consider the subset y;,l C V., defined by
Vi =A{(zi + DY :i>1+1and 21 > 2} (2.7)
Lemma 2.5. We have that (z,1) € Z(Y) if and only if Iy C Iy, , and Iy € Iy .

Proof. Using Lemma 2.4, we may assume that [y C Iy ,. Under this hypothesis, we need to check that
(2,0) € Z(Y) if and only if Iy ¢ Iy‘/z’l. We let ¢ = z; as usual.

Assume first that (z,1) € Z()), so that there exists y € J with z > y(c). Suppose by contradiction that
Iy C Iy;l. It follows from (2.7) that y > ((zz + 1)’) for some i > | + 1 with Zi_1 > z;, which implies that
y; > z; and ¢ > z;_1 > z;. This shows that min(y;,c) > z;, contradicting the assumption z > y(c).

Assume now (z,1) ¢ Z(Y), and suppose by contradiction that Iy ¢ Iy;l. There exists then y € ) such
that for every i > [+ 1 with z;_1 > z; we have y 2 ((zZ + 1)i), which implies that y; < z; for i > [+ 1. Using

our standing assumption z; = -+ = z11, it follows that z > Q(c). Moreover, since Ig ClyC Iyy, we must
have y > ((21 + 1)), that is y/,; > [+ 1. Since y; < z; < ¢ for i > [+ 1, we have in fact that ¢/, = [+1,
so y satisfies condition (1) in Definition 1.1. Since (z,1) € Z(Y), condition (2) must fail, that is, there exists

2 € Y with z(c) < z and l‘é_,'_l <. This contradicts Iy C Iy, ,, since it implies that I, Z Iy_,. O
We also record the following direct consequence of [Rail8, Corollary 2.3] and Remark 2.1.
Lemma 2.6. There exists a G-equivariant inclusion of S-modules J,; C S/Iy if and only if Iy, 21y 2
Lsuce(z,0)- Moreover, such an inclusion is uniquely defined up to a scalar, and gives rise to an exact sequence
S S

00— J,; — — — 0. 2.8
£7l Iyg,l I§+ Iyi,l ( )

Proposition 2.7. If there exists a G-equivariant inclusion J,; C S/Iy and (z,1) € Z(Y) then

Zu{z}) = 2\ {(= D}
Before going into the details of the proof, it may be worthwhile to analyze one example.

Example 2.8. Let n =3 and Y = {(2,1,1), (4,2)}, which was denoted X in Example 1.2, and recall that

209 {0 (). (F0). (50 (). (o)}
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Consider the pair (z,1) = (@, O). We have that V,; = {{ LT 1} and Isyec(z) = I(2,1,1), so the conditions in
Lemma 2.6 are satisfied, showing that J,; C S/Iy. One can check using Definition 1.1 that

zvuizh = {00, (H1). (HFo). H o). (HH0) } =20\ (v,

confirming Proposition 2.7 in this special case. The reader can check that a similar conclusion holds when

(z,0) = ( ,0>, in which case V,; = {D:I:D,@} and Igyeez) = La3) + 1(3,3,1)-

Suppose now that (z,l) = ( ,O), so that V,; = {[jj:],@} and Loyee(z) = I(32) + L221)- The
inclusion Iy, , 2 Iy still holds, but Iy 2 Iy (2 fails, so J,; € S/Iy by Lemma 2.6. One can check that

zou ) ={0.. [{F1).(Fo)}

which is strictly smaller than Z(Y) \ {(z,1)}.

Proof of Proposition 2.7. We set X = Y U {z} and note that (z,1) ¢ Z(X): indeed, if we take z = z € X
and let ¢ = z; then z > z(c) and ;,; = 0 <[+ 1, so condition (2) in Definition 1.1 fails for (z,1).

We next prove the inclusion Z(X') C Z(Y). We suppose by contradiction that this isn’t the case, consider

(y,u) € Z(X)\ Z(Y), and let d = y;. Since Y C A, it follows that (y,u) satisfies condition (2) in the
definition of Z(Y). It must therefore fail condition (1), so there is no x € Y with y > z(d) and x| <u+1.
Since X \ ¥ = {z} and (y,u) € Z(&X), it follows that y > z(d) and 2}, = u+ 1. Since z;, , is non-zero, we
conclude by Remark 2.3 that z;, ; > I+1 and d+1 < ¢, or equivalently, u > [ and d < ¢. Since (z,1) € Z(}),
we can find z € ¥ with z > z(c) and x,; = [ + 1. Since d < ¢, this implies z};,; < 2},; = u + 1, and
y > z(d) > z(d), so (y,u) satisfies condition (1) in the definition of Z()), which we saw was impossible.
" To conclude our proof, we have to check that every (y,u) € Z(¥)\ {(z,1)} belongs to Z(X). Since Y C X
and (y,u) € Z(Y), it follows that (y,u) satisfies condition (1) in the definition of Z(X). We let d = y; as
before. If we assume by contradiction that (y,u) € Z(X), then it must fail condition (2). Since X'\ Y = {z},
the only way this can happen is if y > 2(d) and 2}, < u.

Suppose first that d < c. Since (z,1) € Z()), we can find z € Y with z > z(c), so y > 2(d) > z(d),
and z};,; < z;,; < wu. Since z € X, this means that (y,u) fails condition (2) in the definition of Z(X), a
contradiction.

Suppose now that d > ¢, so that y > z(d) = z. Since 21 = ¢, we also have y(c) > z. If y(c) # z then there
exists ¢ € succ(z, 1) such that y(c) > t. The assumption J,; C S/Iy combined with Lemma 2.6 implies that
Lsyee(z,1) € Ty, so there exists z € ) with £ > 2. Since d > ¢ > t1 > w1, we get 2 = z(d) and thus ‘7321+1 =0
moreover, since y > t > z, it follows that y > z(d), so (y,u) fails condition (2) in the definition of Z(}),
a contradiction. We can therefore assume that y(c) = z. If ¢ = d then y = z and therefore (y,u) = (2,1)
by [Rail8, Remark 3.5], so we may assume that ¢ < d. If 3, <, choose any z € Y with y > z(d) and
note that z = y(¢) > z(c) and ., <y, ; <1, that is (z,1) fails property (2) in the definition of Z()), a
contradiction. We may therefore assume that y, ; > I+ 1, so y € succ(z,1). Since Tuee(z) € Iy, we can
then find z € Y with y > x > 2(d) which then satisfies a:’d+1 < y&H =0 <u+1,so (y,u) fails property (2)
in the definition of Z()), again a contradiction. O

The following results will be used in Section 3.

Lemma 2.9. Suppose that Y C Py, is a subset with the property that for all x € Y and all j > 0, either
2 =0 orx; > 1+ 1. For every (y,u) € Z(¥) we have u > I.
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Proof. Suppose that (y,u) € Z(Y) and let d = y;. It follows from condition (2) in Definition 1.1 that there
exists an element x € Y with 2j;,; = u + 1. Taking j = d + 1, we have that 2; # 0, sou+ 1 =2} > + 1.
This proves that v > [, as desired. O

Corollary 2.10. If (y,u) € Z(Y,;U{z}) then v >1 (and in particular u #1—1).

Proof. We apply Lemma 2.9 with Y = ), ;U{z}: to check the hypothesis, we choose z € J, ;U{z}. If z = 2
then we have by Remark 2.3 that z; > [+ 1 whenever 2, # 0. If z = ((21 + 1)*+1) then ', = 1+ 1 whenever

oy #0. If z = ((2 +1)") then 2y =i > 1 + 1 whenever z/; # 0. O
Recall the definition of the saturation of an ideal I with respect to J,
[:J®°={feS:f-JCIford> 0} (2.9)
When I = Iy and J = I, the saturation can be described concretely as follows. For X C P, we define
XP ={z(c):z € X,c€Lsp,z,>pif¢c>0, and 2, < p} (2.10)

In terms of Young diagrams, we can think of AP as being obtained from X by removing from each z € X
the columns of size < p. Using [Rail8, Lemma 2.3] and its proof, we obtain

In analogy with [Rail8, Corollary 2.4], we also have that
Ann(Jz;) = lig, (2.12)

that is, the scheme-theoretic support of J,; is the union of the coordinate planes of dimension [ in k™ (see
also Example 2.2, and Proposition 2.11 below).

2.2. Ext modules for the subquotients J,;. The goal of this section is to prove that J,; is Cohen—

Macaulay, to compute its regularity and projective dimension, and to describe the modules Extfg(J&l, S).
We will obtain this from a natural decomposition of J,; into a direct sum of cyclic modules, which we
describe next. If r > 1, we write [r] for the set {1,--- ,r}. Given A C [n] we consider the cyclic module

S
<€i ) ¢ A)’
where we abuse notation and write e; for the equivalence class of e; € S in the quotient S). We define the
ideals If,\ C S as the image of the square-free ideals I, C S via the quotient map, for p =1,--- ,|A]. We
write S for the subgroup of &,, consisting of permutations o that fix every element i € [n] \ A, and note
that &, is isomorphic to the group of permutations of the set A.

We will be working with finitely generated Z"-graded S-modules M, and for u € Z" we will write M,, for
the u-graded (or u-isotypic) component of M, which is a finite dimensional vector space: we call its dimension
dim(M,) the multiplicity of w in M. If v € Z", we let M (—v) denote the shifted Z"-graded S-module with
M(—v)y = M_y4y. In order to be able to refer to elements of shifted modules, it will often be convenient to
write S(—v) = S- E,, where E, is a generator of the free module S(—uv), and thus it has degree deg(E,) = v.
Using the identification M (—v) = M ®g S(—v), we will write more generally M (—v) = M - E,, so that if
m € M has degree u, then m - E,, € M(—v) has degree u + v.

We write O(z) for the orbit of the &,-action on Z" of some element z. We set z,+1 = —oo and consider

Sy =kle; 1i € A] ~

0 <l <p<mn, and a partition z € P, with 21 = --- = 2, > 2,41.
We let ¢ = 21, and for each u € O(z) we define the set
Ay ={jen]:uj=c}
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Proposition 2.11. With the notation above, we have an isomorphism of G-equivariant S-modules
i~ @ xF Bw
ueO(z) Ii
Proof. Since J,; is a quotient of I, it follows that we have a natural G-equivariant surjection
T @ S-Ey, — Jy,
u€O(z)
sending F, to the residue class of the monomial e%. We have that ker(m) contains e; - - - e;4; - E, as well as
e - b, forall i =p+1,--- n, since the monomials e - --e;41 - € and e; - €* are in Ly, ). Using the fact
that e* is preserved by permutations o € &), we find that e (I;;1 + (ep+1,- -+, en)) is contained in ker(r).
Using the &,-action we conclude that 7 induces a surjection
Shu
D =

ueo(z) L1

By — Joy. (2.13)

To prove that this is an isomorphism, it suffices by &,,-equivariance to check that for every dominant z, the
z-isotypic components in the source and target have the same multiplicity. Using (2.4)—(2.5), the z-isoptypic
component of .J,; is non-zero precisely when

=z fori>1+1, and x; >cfori=1,--- 1, (2.14)
in which case it has multiplicity one. Suppose now that the z-isotypic component of the source of (2.13) is
non-zero, so that we can write z = u + v for some u € O(z) and v such that the v-isotypic component of

Sa, /1, lj}ﬁ is non-zero. Since u; = c if and only if ¢ € A,, and v; = 0 for ¢ € A,, we conclude that
x;=u;+v; >cforie Ay, and x; =u; +v; =u; < cfori & A,.

Since z is dominant, we conclude that A, = [p] and that u,v must be dominant as well. This implies further

that u = 2, and that v is a dominant weight of S/([j41 + (ep+1,--- ,en)). We conclude that at most [ of
the entries of v are non-zero, so that v; = 0 for ¢ > [ 4+ 1. Therefore, x = u + v satisfies (2.14) and has
multiplicity one in the representation on the left of (2.13), proving that (2.13) is an isomorphism. ]

We introduce one more piece of notation: for a finitely generated Z"-graded S-module M, we define its
character [M] to be the Laurent power series

[M] =" dim(M,) - € € Z((e1, -+ ,€n)).
uez”

Note the abuse of notation where we use the same symbols ¢; as for the variables in .S, but this shouldn’t
cause any confusion, but rather make the notation more intuitive! Note also that we have

[S]= Y % and [M(-v)]=[M E,]=[M] e
yEZgO

Using Proposition 2.11, we can now describe the Ext modules of the subquotients J, ;. We start with the
special case when z = (), which corresponds to J,; = S/I;41 (see Example 2.2). For a tuple ¢t € 7%, we write
supp(t) = {i € [n] : t; # 0} for the support of ¢, and let p, = |supp(¢)| denote its cardinality.

Lemma 2.12. We have that Ext’(S/I;;1,S) =0 for j #n —1 and
_ n—1-— _(1n
B (50, 5)] = 30 (" 1P e

[ —pt
ezl L
pe<l
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Proof. The vanishing of Ext’(S/I;11,S) for j # n — I follows from the fact that S/I; ;1 is Cohen-Macaulay
of dimension [. If we write wg for the canonical module of S then wg ~ S - E(yn), so we have to show that

Extg—’(S/IlH,ws)] => <” -1 _pt> et

[ —pt
tezy, t
pr<l

It follows from [Yan00, Theorem 2.6] or [Mus00, Theorem 3.3] that Extg_l (S/I141,ws) is a square-free S-
module, that is, the multiplicity of any t-isotypic component is non-zero only for ¢t € Z%, and it depends
only on supp(t). We may then assume that ¢ has entries 0 and 1, with p; of them equal to 1. Using the fact
that the Alexander dual of I;yq is I,,_;, it follows from [Yan00, Theorem 3.4] that

dim (Extg_l(S/[lJrl,wS)t) = dim <T0rf_p£(fn,l, S)(l”)fg) s
and the right hand side is equal to ("l_jp_tp L): this follows for instance from [Gal20, Theorem 4.11] and the

fact that the number of standard Young tableaux of hook-shape (n —1,1!7Pt) with entries in [n] \ supp(t) is

equal by the Hook Length Formula [Ful97, Section 4.3] to (njfljtp L. O

Corollary 2.13. If z1 = --- = 241 then the module J,; is Cohen—Macaulay of projective dimension n — 1
and reqularity |z| + 1. Moreover, we have that

— 1= ¥ .
Bxty (L1, 8)] = €D <p ! p> P
u€Oy Pv
yezg%

pu<l

Proof. Using Proposition 2.11, J, ; is a direct sum of Cohen-Macaualy modules of dimension [, so it is itself
Cohen—Macaualy and moreover the projective dimension is dim(S)—1 = n—1{. The formula for the character
of Extg*l(J&l, S) follows from Proposition 2.11 and Lemma 2.12 (applied to Sy, ) by observing that A, is a
set of cardinality p, so Sy, is a polynomial ring of dimension p, and

1 [ SAs 1 [ Ohy 1 [ Shu

Extg™! ( A P wS) = Bxty ' ( Au7w5> By =Exty | x5 wsh, | Bow
I+1 I+1 S\

To compute the regularity, we use the fact that for a graded module M we have

reg(M) = max{—r — j : Ext},(M, S), # 0}. (2.15)

Applying this to M = J,; we see that the only cohomological degree j where the Ext-module is non-zero is
when j = n — [, and the minimal degree r for which Extg_l(Jél, S)r # 0 is attained when v = (0") and is
equal to

=y —|ul —n=0-|z[ —n,

showing that the regularity of J; is reg(J;;) = |z| +n — (n — 1) = |2| + [, as desired. O

3. Ext MODULES FOR &,,-INVARIANT MONOMIAL IDEALS

We let S = kl[eq,- - ,e,] and let G be as in (1.8). The goal of this section is to prove the Main Theorem
from the Introduction, describing the modules Ext}(S/1I,S) for I a G-invariant ideal in S, as well as the
natural maps between these modules. Our arguments follow closely the strategy employed in the study of
invariant ideals in the ring of polynomial functions on the space of matrices from [Rail8]. As a consequence
of the Main Theorem, we deduce the Theorem on Regularity and Projective Dimension in Section 3.1, and
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the Theorem on Injectivity of Maps from Ext to Local Cohomology in Section 3.2. In Section 3.3 we show
that every G-invariant ideal I has the property that S/I is sequentially Cohen—Macaulay.

Using Definition 1.1 for the set Z(X’), the Main Theorem can be formulated more precisely as follows.
We will keep track of the equivariant structure as much as possible, but the reader is advised that for all the
applications it is only important that the isomorphisms (3.1-3.4) preserve the graded vector space structure.

Theorem 3.1. Let X C P, and let Iy C S denote the associated G-invariant ideal. For each 7 > 0 there
exists a degree preserving isomorphism of T,,-modules

Extl(S/Ix,S)~ @ ExtL(J.,S). (3.1)
(z)EZ(X)

Moreover, if X, C Py are such that Iy C Iy, then the natural surjection S/Ix — S/Iy induces maps
Ext?(S/Iy,S) — Ext4(S/Ix,S) for all j > 0, whose (co)kernels and images satisfy the following isomor-
phisms of T,,-modules:

ker (Extg(S/Jy, S) —» Ext}(S/Ix, S)) ~ D Exti(L.9) (3.2)
(2D)EZVNZ(X)

Im (Extg(S/Jy, S) —» Ext’,(S/ I, S)) ~ P Exti(..58), (3.3)
(2)EZMNZ(X)

coker (Extg(S/Iy, S) —» Ext’(S/ I, S)) ~ @D Exth(Ln9) (3.4)

(2DEZ(XNZ(Y)
Finally, recall that the saturation of Ix with respect to I, is given by Ixw» (see (2.10)-(2.11)). We have

Z(XP)=A{(z,l) € Z(X):1>p} C Z(X). (3.5)
In particular, if we apply (3.2) to the inclusion Iy C Iyw» we obtain for each j > 0 injective maps
Ext}(S/Ix», S) — Ext}(S/Ix, S).
The equality (3.5) is the same as that in [Rail8, (3.6)] and is proved there. To prove Theorem 3.1 we
construct for each pair (z,[) and each subset X C P, a collection of T,,-submodules
€1,(X) C Ext}(S/Ix.5) (3.6)

with the following properties.

(1) For every inclusion of ideals Iy C Iy, if we denote by 7 : S/Ixy — S/Iy the corresponding quotient
map, then for j > 0 the induced map

mx t Exth(S/Iy, S) — Ext%(S/Ix, S) (3.7)
has the property that for all j > 0 and all pairs (z,l) such that Iy C Iy C Iy_,
EL)(X) = 73, x(€2,(V)). (38)
(2) For each j > 0, we have an isomorphism of 7,,-modules
: Ext h Z(x
5gl(X) ~ XtS(JAle) when (170 € ( )a (39)
= 0 otherwise.

(3) For each X C P,, and j > 0, the inclusions (3.6) give rise to a direct sum decomposition

Ext}(S/Ix,S)= @ &%) (3.10)

(zh)eZ(X)
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Once these properties are established, (3.1) follows by combining (3.10) with (3.9), while (3.2)—(3.4) follow
from (3.8) and Lemma 2.4. To construct the T),-submodules in (3.6) we start with the following.

Lemma 3.2. For every pair (z,1) where z € P, is a partition satisfying z1 = --- = z.41, the short exact
sequence (2.8) induces G-equivariant (and hence T, -equivariant) surjective S-module maps
7 Extl(S/Iy_ . 8) = Ext}(J.,S) for j > 0. (3.11)

To prove this result, we use the following analogue of [Rail8, Corollary 3.7], which follows from Remark 2.1.

Proposition 3.3. There exists a filtration of S/Ix by G-equivariant S-submodules, whose successive quo-
tients are J,; with (z,1) € Z(X). In particular (see [Rail8, Lemma 2.9]), there exists a degree preserving
inclusion of graded vector spaces

Ext}(S/Ix,S) — @ Ext)(J,4,S) for each j > 0.
(z)EZ(X)

Proof of Lemma 8.2. In light of Corollary 2.13, we only need to consider j = n — [, since Extg(,]&l, S)=0
for j # n — . To check (3.11) in this case, it suffices to prove that the connecting homomorphism

Exte ! (J.0, 8) — Bxtd NS/ (I + Iy,,), 5) (3.12)
is identically zero. Using Proposition 3.3 with X = ), ; U {z}, it suffices to check that
P Exti(Jyw,S) =0
(yu)eZ(Vz1Uiz})
Using Corollary 2.13, this follows from Corollary 2.10, since no (y,u) € Z(),; U{z}) satisfies u =1 —1. O

Using Lemma 3.2 and the fact that 7,, is linearly reductive, we can choose a splitting of qg ; in the category
of Ty,-modules. That is, we can find a T,,-submodule

€1, C Ext}(S/Iy,,, ) (3.13)

with the property that ¢21 maps 5;,1 isomorphically onto Extg(JLl,S) (in characteristic zero, G is also
linearly reductive, and since qﬁj s G-equivariant, we may choose &’ L. to be a G-submodule). We note that
by Corollary 2.13, Ejl = 0if j # n — . For every ideal Iy C Iy, ,, we define

E,(X) =7 (&),

so that in particular 5 1(Ve) = &) We also let Ej (X)) =0if Iy £ Iy_,. The equality (3.8) follows from
the functoriality of maps of Ext modules

To prove (3.9), we may assume that Iy C Iy_,: indeed, if that’s not the case then Ej 1(X) = 0 by definition,
and it follows from Lemma 2.4 that (z,1) ¢ Z(X). We show that if (2,1) ¢ Z(X) then 5] (X) = 0, which
again is interesting only for j = n — . Using Lemma 2.5, it follows that Iy C Iyr , SO by (3.8) it suffices

to prove that £} e 1) = 0. For this, it is then enough to check that Extyg™ s/ Iy, ,S) = 0, which follows
from Proposmon 3.3 and Corollary 2.13 if we can show that there is no (y,u) € Z(y; ) with w = [. Using
(2.7), every x € y;, has the property that x; > [ 4+ 1 whenever x; # 0, so Lemma 2.9 applies to give the
desired conclusion. ‘ ‘

To end the proof of Theorem 3.1, we show simultaneously that Eg’l(é’() ~ Ext%(J,, S) when (z,1) € Z(X)
and that (3.10) holds, by induction on the size of Z(X). The smallest non-zero term in the filtration from
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Proposition 3.3 gives a G-equivariant inclusion J,; C S/Ix, with (2,1) € Z(X). It follows from Lemma 2.6
that Ix C Iy, ,, so we get natural maps J,; — S /Iy — S/ Iy, , giving rise to a commutative diagram

Ext}(S/Iy,,) — Ext}(S/Ix) — Ext}(J.,)

I

52,1 52,1(?() S(Jg,l)

By the definition of EJ (X) the map « is surjective, and by the definition of SJ the composition S o « is
an isomorphism. This shows that « is also injective, so it is an isomorphism, and it shows that § is also an
isomorphism. Letting Y = X U {z}, we get an exact sequence

0—J, — S/Iy — S/Iy — 0. (3.14)
Since f is surjective, we get that the maps Eth(S/I/\/, S) — Extg(J§7l, S) are also surjective for 7 > 0. It
follows that the long exact sequence for Ext(—, S) induced by (3.14) splits into short exact sequences
0 — BExt%(S/Iy,S) 2% SN 1(S/1x,S) — Extl(J,,,8) — 0.

Since S~ gives a Tj,-module splitting of the surjection in the sequence above, we obtain a direct sum
decomposition of T,-modules

Ext’(S/ v, S) = 75, (Extg(S/Iy, 5)) ® L, (X). (3.15)

Using Proposition 2.7 we have that Z()) = Z(&X) \ {(z,1)}, so by induction we conclude that as Tp,-modules
we have &y u(Y) =~ Ext§(Jyu, S) when (y,u) € Z(Y), and that we have a direct sum decomposition

Exty(S/Iy,$) = @ &.0).
(yw)EZ()

Applying ngﬁx and using (3.8), we can rewrite (3.15) as

Exty(S/Ix,S) = | D &uX) | e ()= B &),

(yw)eZ(Y) (y,u)€Z(X)

showing (3.10) and concluding our proof.

3.1. The proof of the Theorem on Regularity and Projective Dimension. If Iy # S then we have
reg(lxy) = 1+reg(S/Ix), and pdim(Ilx) = —1+ pdim(S/Ix).
Using (2.15) we obtain from (3.1) and Corollary 2.13 that

Iy) =1 J)=1 l
reg(lx) +(£7”néélz>§x)reg( 1) +( l)néazxx)(IZIJr )-

Similarly, since pdim(M) = max{j : Ex‘cg(M7 S) # 0}, we get

dim(Iy) = —1 dim(J,;) = —1 — ),
pdim(lv) = =1+ mox , pdim(Jz) = —1+ mex =0

concluding the proof of (1.3).



REGULARITY OF &,-INVARIANT MONOMIAL IDEALS 15

3.2. The proof of the Theorem on Injectivity of Maps from Ext to Local Cohomology. We prove
the chain of implications (1) = (2) = (3) = (4) = (5) = (1). We assume that X’ consists of incomparable
partitions and let p = min{z} : = € X}. We have that v/ = I, is the ideal defining the union of all
(p — 1)-dimensional coordinate planes and dim(S/I) = p — 1. In particular, if (z,{) € Z(X’) then [ <p — 1.
(1) = (2): This is explained in a more general setting in [EMS00, Example 6.3].

(2) = (3): Since I is unmixed, we get that I =1 : [;°) = Iy.-1), so by (2.10) it follows that no z € X" has
non-zero columns of size < (p — 1), or equivalently, every x € X satisfies 1 = -+ = .

(3) = (4): If (2,1) € Z(X) then ! > p—1 by Lemma 2.9. We have already noted that | <p—1,s0l=p—1.
(4) = (5): It follows from (3.1) and Corollary 2.13 that Extg(S/I, S) = 0 for j # codim(I), so S/I is
Cohen—Macaulay.

(5) = (1): Consider the ideal J = I(y») where W is as in (1.7), and note that I 2 J. Since VI=VJ =1,

we have H}(S) = Hﬂ(S) By [Mus00, Theorem 1.1], the natural maps Extfg(S/J, S) — Hi(S) are injective,
so it is enough to show that the maps Ext?(S/1,S) — Ext%(S/J,S) are injective. By (3.2), this reduces
to showing that Z(X) C Z(Y), where Y = {(WP)}. Using (1.4) we get that (z,p — 1) € Z()) for every

partition z € P, with 21 = --- = 2z, < W — 1, so it suffices to show that any element of Z (X) has this
form. Consider any (z,l) € Z(X). Since Extg*l(ngl,S) # 0 and since S/I is Cohen-Macaulay, it follows
from (3.1) that [ = p — 1. By Remark 2.3 we have that z; = --- = z,. If we let ¢ = z; then we have by

Definition 1.1(2) that there exists € X with 2/, =p # 0, so ¢+ 1 <z < W, proving that (z,1) € Z(Y).

3.3. The sequentially Cohen—Macaulay property. In this section we show, following the suggestion of
Satoshi Murai, that for every G-invariant ideal J, the quotient S/.J is sequentially Cohen—Macaulay. Letting
p = dim(S/J) — 1, this amounts to the existence of a filtration (see [Sta96, Definition III.2.9])

J=JChC---CJ=5

with the property that J;1+1/J; is either zero, or it is a Cohen—Macaulay module of dimension i. We claim
that if J = Iy then we can take J; = J : [?° = Iy for i = 0,--- ,p. Indeed, we have by (3.5) that

Z(x% D Zzxh) DD Z(AP),
so the induced maps Extg(S/JiH, S) — Extg(S/Ji, S) are injective. It follows from (3.4) that

L I
(z,)) EZ(XH)\Z(X:(+D)

Using again (3.5), we have that each (z,[) in the equation above satisfies [ = i, so by Corollary 2.13 we obtain
ExtJS(Jiﬂ/JZ-, S) =0 for j # n — i, proving that J;11/J; is Cohen—-Macaulay of dimension i (or J; = J;41).

4. IDEALS WITH A LINEAR RESOLUTION

In [BAAG™20], the authors introduce a class of &,-invariant monomial ideals called symmetric shifted,
and they prove that these ideals have a linear minimal free resolution when they are generated in a single
degree. They also leave open the problem of determining which (other) &,-invariant monomial ideals have
a linear resolution. The goal of this section is to prove that no other such ideals exist, establishing the first
part of the Theorem on Linear Resolutions described in the Introduction (the second part will be treated in
Section 5.3). We end the section explaining how our results also imply that symmetric shifted ideals that
are generated in a single degree have a minimal resolution (which was proved in [BAAG™20, Section 3]). We
recall the following [BAAG™20, Definition 1.1] (the minor differences in our definition below are due to a
slight change in the conventions regarding partitions).

Definition 4.1. A &,-symmetric ideal I C S is symmetric shifted if for every monomial e% € I with x € P,
and every 1 < k < n such that z; > z, we have that e - (e;/e1) € I.
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Remark 4.2. We make a few observations regarding Definition 4.1 that will help streamline some of the
subsequent arguments.

(1) By [BAAG™20, Lemma 2.2], it suffices to consider in Definition 4.1 only minimal generators e of I.

(2) If x1 — xp, = 1 then e* and e¥ = e - (ex/e1) are in the same &,,-orbit (since y; = z, yx = 21, and
y; = x; for © # 1, k), so the conclusion e € I follows from &,,-invariance. Therefore, from now on
we will only consider the case 1 — xp > 2 when checking Definition 4.1.

(3) If xy = -+ = xp > x4 (that is, if h is the height of the last column of the Young diagram of z), and
ifxg_1 >xg=x4401 ==y, then e®- (e;/e1) and e = e - (e4/ep,) are in the same &,-orbit. We
may therefore assume that g = k (that is, zx_1 > z), and the condition €% (e;/e1) € I is equivalent
to e € I. The advantage is that y is still a partition!

Remark 4.3. In Section 5.3 we will use the notion of a symmetric strongly shifted ideal to be one such that for
every monomial eZ € I with z € P,,, and every 1 <t < k < n such that z; > xj, we have that eZ-(e;/e;) € 1.

Theorem 4.4. If I C S is an G, -invariant monomial ideal with a linear resolution then I is a symmetric

shifted ideal.

Proof. If I has a linear resolution, then all its generators have the same degree, which we denote by r. Let
X = X(I), so that I = Iy and every x € X has |z| = r. It follows from (1.3) that

|z| + 1+ 1 <r for every (z,1) € Z(X). (4.1)

We assume by contradiction that I is not symmetric shifted, so there exists z € P,, with eZ € I a minimal
generator (see Remark 4.2(1)), and 1 < k < n such that e - (e;/e1) ¢ I. We choose such an z for which x;
is maximal, and define y as in Remark 4.2(3); note that in particular we are assuming that zx_1 > zr. To
get a contradiction, we will show that e¥ € I.

By Remark 4.2(2), we may assume that x1 — zx > 2. We define a pair (z,1) by letting ¢ = z; — 1,
l =, —1and z = y(c), and observe that e = e* - (ex/e;41) since | + 1 = x| is the height of the last
column of z. Note also that 3, ; = [ and therefore

2| Fl+ 1=y + Yoy + 1=yl +1=lz[+1=7+1,

so by (4.1) we get that (2,1) ¢ Z(X). By construction, z > x(c) and x|, ; = [ 41, so (z,1) satisfies condition
(1) in Definition 1.1. It follows that (z,!) must fail condition (2), that is, there exists a partition t € X (so
that [t| = r) with z > t(c) and t,,; <. We choose ¢ to be minimal with respect to the lexicographic order.
If t1 < ¢+ 1 then we claim that ¢ = y, so that e? € I as desired. Indeed, the condition ¢; < ¢+ 1 implies
that t; <c+1=y; for i =1,--- 1, while ¢, ; <1 implies t;41 < ¢, so that
ti=1(c)i <z =y(c)i =y, fori=101+1,--- ,n.
This implies that [t| < |y| = r, but since |t| = r, equality must hold everywhere, and thus ¢ = y.

We may therefore assume that ¢; > ¢+ 1 = 21, and we let h such that t; = --- = t;, > t,,,. Note that
since té 11 <, we have h < [. We claim that there exists an index s > h such that either:

e s<landt; —ts>2,0r

e s > [+ 1 and ys > ts (which implies t; —ts > (c+1) —ys > (c+1) —c=1,80 t; —ts > 2).
If this wasn’t the case, then we would get

ti=t1 >c+1=y;fori=1,---h,
ti>t1—1>c+1=y;fori=h+1,---,l, and
tzzyl fOfZ:l+1, y 1y

so that r = |t| > |y| = r, a contradiction. If we take s to be minimal and define u by e% = et - (es/ep,) then
u € P,,. Moreover, since e is in the same &,,-orbit as et (es/eq), it follows from the maximal choice of z and
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the fact that ¢t; > x; that e € I, so u € X'(I). Moreover, u satisfies z > u(c) and u[,; <[, contradicting
the minimality of ¢ and concluding our proof. U

We end this section by showing that symmetric shifted ideals generated in a single degree have a linear
resolution. Let I be such an ideal and assume that it is generated in degree r. Let X = X'(I), so that |z| = r
for all x € X. Suppose by contradiction that I does not have a linear resolution, so that reg(l) > r + 1. It
follows that we can find (z,1) € Z(X) with

lz| +1+1>r+1.

We let ¢ = z; as usual. By Definition 1.1, there exists z € X’ with z > z(c) and x| ; <141, and we consider
such an z which is lexicographically minimal. Note that by part (2) of Definition 1.1 we have /., ; =1+ 1.
We claim that z > z(c): suppose otherwise that z = z(c), so that 2z} = a for i = 1,--- , ¢; we have

r+1<|z|+l4+1=(2)+ - +a)+x.y <|z]=r,

which is a contradiction. It follows that we can find g > [ + 1 such that z;, > x4, and we choose a minimal
such g, noting that this implies 41 > x4 (since z;41 > c¢+1 > z, for all g). We let h, ¥ as in Remark 4.2(3),
and note that y € X(I) since I is symmetric shifted. We also have that z > y(c) and 3, ; <1+ 1, and y is
smaller than z lexicographically, contradicting the minimality of z.

5. REGULARITY OF POWERS
The goal of this section is to prove the Theorem on Regularity of Powers. Recall that for w € P,, we write
w' = (n", ARG, hF), withn > hy > -+ > hy, >0,
set hg = n, and define

k
b(w) = (Z(ht—l —ht) - (ar = 1)) + (b = 1) - (ar = 1). (5.1)

t=1
We will prove the following.
Theorem 5.1. With the notation above, we have that

reg(Ii) =d-|w|+ b(w) ford>0. (5.2)

Moreover, Ii has a linear resolution for d > 0 if and only if w; —w;+1 <1 foralli=1,--- ,n—1, in which
case Ii is symmetric strongly shifted.

Example 5.2. Take n =4 and w = (2,1,0,0). We have that k =2, hy =2, ha =1, a0 =0, a1 = ay = 1,
and in particular b(w) = 0. The Betti tables for I,,, Ii and I; are given respectively by:

[0 1 2 3

0 1 2 3
3[12 18 4 | 0 1 2 3
af = - 4 - GO 2T 2 and e 0 125
o TI- - - 4

One can check that in this case we have Ii = Iy, where

X =1{(6,3),(5,4),(6,2,1),(5,3,1), (42, 1), (5,2%), (4,3, 2), (3%),
(6,1%),(5,2,1%), (4,3,1%), (4,22,1), (3%,2,1),(3,2%)}.
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A more compact description of X is as the set of all partitions of size 9 in P, that are smaller in the
dominance order than (6,3). As explained in [BAAG'20, Remark 1.3], this implies that Ii is symmetric
strongly shifted. By contrast, we have that Ii = Iy where

Y ={(42),(3%),(3,2,1),(2°), (3,1, (2%, 1)}
which contains all the partitions of size 6 in P, dominated by (4,2), except for (4,12)!
We let

d
Xiz z € Py, : there exists 0; € &,,5 =1,--- ,d, such that z = Zaj(g) ,

j=1
and note that Ii = Iyq for all d > 1. In light of (1.3), we have to check that

max{|§| +1l+1:(z1) € Z(z’\,ﬁ)} =d- |w| + b(w) for d > 0.

Our strategy will be to translate the containment (z,1) € Z(XY) into feasibility conditions on a high-
multiplicity partitioning problem in Section 5.1. We then use the results of [Rail9] to characterize such
feasibility conditions and obtain a quick proof of (5.2) in Section 5.2. We prove the last assertion of Theo-
rem 5.1 in Section 5.3.

5.1. The relationship with partitioning problems. Following [Rail9], we think of w as a tuple of ball-
weights, and for d > 0 we consider a collection of d - n balls, with d of weight w; for each i =1,--- ,n. We
encode them as elements of a multi-set

B: {wh"' y W1y o Wiy 3 Wiy oo, Wyt o 7wn}7
where each w; is repeated d times. For a tuple C' = (C4,---,C)y) of capacities we consider the problem
BP(d, C;w) of partitioning B as
B=BU---UB;U---UBy, (5.3)
where each B; has exactly d elements, and
w(B;) = Z w<C;, fori=1,---,n. (5.4)
wEB;

Thinking of each B; as a bin with capacity Cj, this is the same as assigning the balls to bins in such a way
that each B; is assigned d balls without exceeding its capacity. We always assume that C (just as w) is
non-increasing (Cy > --- > C,,). A partition B, is said to be r-feasible if

w(B;)) <Cijfori=r+1,--- ,n,

and it is feasible if it satisfies (5.4), that is, if it is 0-feasible. If there exists an r-feasible partition B, then
we say that the problem BB(d,C;w) itself is r-feasible (or feasible when r = 0). The goal of this section
is to characterize the containment (z,1) € Z(XZ) in terms of feasibility conditions on BB (d, z;w). More
precisely, we prove the following. N

Proposition 5.3. Suppose that z € P, and 0 <1 < n is such that z1 = --- = z;41. We have that
(z,0) € Z(Xi) < BP(d, z;w) is (I + 1)-feasible but not l-feasible.

Proof. We first note that the condition that  can be represented as

d
T = Z oj(w) for permutations o; € &, j=1,--- ,d,
j=1
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is equivalent to the condition that there exists a partition B, with each B; containing exactly d elements,
and w(B;) = x; for i = 1,--- ,n. To see this, note that given permutations o; € &,,, we can form B, by
placing for each j =1,--- ,d and i = 1,--- ,n, a ball of weight w; into the bin B, ;. Conversely, it follows
from Hall’s Marriage Theorem [Hal35] that given B,, we can find a permutation o4 € &,, with the property
that B,,(;) contains a ball of weight w; for all i = 1,--- ,n. Removing one such ball for each i and applying
induction on d allows us to construct g4_1,: - ,01 € &, with the desired property.

We next let ¢ = 21 and observe that the conditions that z > z(c¢) and iL‘/c 41 < 1+ 1 are equivalent to the
inequalities z; < z for all ¢ > [ + 1. Furthermore, we have x;1; < ¢ = 741 precisely when z/, <L It

follows from the discussion in the previous paragraph that condition (1) in Definition 1.1 is equivalent to
the fact that B (d, z; w) is (I + 1)-feasible, while condition (2) is satisfied if and only if BB(d, z;w) is not
[-feasible. 0

We record one more fact to be used in the proof of the Theorem on Regularity of Powers. Given a tuple
u € Z™ and an integer 1 < r < n we write u=" for the truncation (U, u,41,--- ,Up).

Lemma 5.4. If0 <[ <n and BP(d, z;w) is (I + 1)-feasible but not l-feasible, then zj41 < d - wi41.

Proof. Using [Rail9, Lemma 7.1] with j = 0 we obtain that BP(d, z="+1; w=*1) is 1-feasible but not feasible.
Let BiU- - -LUB,,—; denote a 1-feasible partition of the multi-set B = {wi11, -+ , w41, , Wy, - , Wy}, where
each wj is repeated d times for i =+ 1,--- ,n. We have that w(B;) < zy; fori =2,--- ;n—1[, and since B,
is not feasible by hypothesis, we have that w(B;4+1) > z.+1. Since every ball in the multi-set B has weight at
most wy41, and since B4 contains exactly d balls, it follows that w(B;+1) < d- w41, from which the desired
conclusion follows. O

5.2. The linear function computing regularity of powers. In [Rail9, Theorem 1.11] we show that for
d > n we can find z € P,, with |z| = d - |w| + b(w) — 1 such that BP(d, z; w) is 1-feasible but not 0-feasible.
Using Proposition 5.3 it follows that (z,0) € Z(Xg), so by (1.3) we conclude that

reg(Ii) > |z|+1=d- |w|+ b(w) for d > n.
Suppose by contradiction that reg(I%) > d - [w| + b(w) for some d > 0. It follows from (1.3) that there
exists (z,1) € Z(XZ) such that
2] + 12 d-|wl| + b(w). (5.5)

By Proposition 5.3 we have that BP(d, z; w) is (I + 1)-feasible but not [-feasible. If [ = 0 then we know
by [Rail9, Theorem 1.10] that if |z| > d - |w| + b(w) and BP(d, z; w) is 1-feasible, then BP(d, z; w) is also
O-feasible. This is a contradiction, allowing us to assume that [ > 0. Applying [Rail9, Lemma 7.1] with
j = 0 we have that BP(d, 22+, w2*1) is 1-feasible but not 0-feasible, so by [Rail9, Theorem 1.10] applied
to BP(d, 22! w>*1) we conclude that (using the definition (5.1) for the truncation w=!*1)

Zl+1+"'+zn<d‘(wl+1+"'+wn)+b(w2l+1)_

We write ¢ = z1 and recall that by Remark 2.3 we have z1 = - = z;y1 = c. Adding 21+ - -+ 21+l =1-c+1
to both sides of the inequality above and using (5.5) we obtain

d-|w|+ bw) < |§|+l<d-(wl+1+---+wn)+b(w2l+1)+l‘c+l,

which after simplifications yields
d-(wi+-Fw) <l-c+ A, (5.6)

where A = b(w='*1) +1 — b(w) is some constant, depending only on w and I, but not on d. It follows from
Lemma 5.4 that ¢ < d - wy41, so (5.6) implies that

d-(w1+-'~+wl—l'wl+1)<A.
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Since wy, - ,w; > w41 and d > 0, this is only possible when wy = - - = w41, which forces I < hy. This
implies that b(w) — b(w="*1) =1 (ay — 1) > 0, and therefore A < [. Combining this with the inequality
c<d-wp1 — 1, it follows from (5.6) that

d-(wi+--4w)<l-(dwp—1)+A=d-l-wp+(A=1) <d-l w1,

contradicting the fact that w; = -+ = w; = w41 and concluding our proof of (5.2).

5.3. Powers with a linear resolution. Since I¢ is generated in degree d - |w|, it follows that it has a
linear free resolution if and only if reg(1%) = d - |w|. For d > 0, this is equivalent by (5.2) with the fact
that b(w) = 0. Since hy—1 — hy > 0 for every t = 1,---  k, this is further equivalent to the fact that
a1 = --- = ag = 1, which is finally equivalent to the requirement that w; —w;41 < 1foralli=1,--- ,n— 1.

To finish the proof of Theorem 5.1 we assume that w; — w;41 < 1 for all ¢ = 1,--- ,n — 1 and show
that for d > 0, the set Xg consists of all the partitions of size d - |w| that are dominated by d - w. By

[BAAG'20, Remark 1.3], this is enough to conclude that Ii is symmetric strongly shifted. Choose any
partition C' € P, with |C| = d - |w|, which is dominated by d - w. This means that
Ci+-+C,>d-(wi+--- 4wy, foralli=1,--- n. (5.7)

Notice that our assumption on w guarantees that b(w=*) = 0 for all i = 1,--- ,n, so by [Rail9, Theorem 1.7]
we conclude that the partitioning problem BB(d, C; w) is feasible. Let Be be a solution, and note that since

d-lw=Ci+-+Cp <w(Bi)+ - +wBp) =wB) =d- |wl,
we must have equality throughout, which is possible only when w(B;) = C; for all i = 1,--- ;n. Using the
dictionary between elements of Xi and bin-weights established in the proof of Proposition 5.3, we conclude
that C € Xi . Conversely, we have seen that any C € Xi leads to a feasible problem BB(d, C;w). Since the
bins B;, - - - , B,, must contain collectively a total of d- (n —1i+ 1) balls, whose total weight can be no smaller

than the sum of the smallest d - (n — i+ 1) elements of the multi-set B, namely d - (w; + - - - + wy,), it follows
that (5.7) must hold, that is, C is dominated by d - w.

6. VARYING THE NUMBER OF VARIABLES

Recall that for a subset X C P we write
X, = {z € X : z has at most n parts} C P,.
The goal of this section is to study reg(ly,) as functions of n when n > 0, recovering recent results of Murai

[Mur19]. More precisely, we show the following (the Theorem on Invariant Chains of Ideals).

Theorem 6.1. Let X denote a finite non-empty set of pairwise incomparable partitions, and define
m =max{i:x; #0 for somez € X}, w=min{z;:z€ X}, and W =max{x;:z€ X}.
If welet Y ={x —z(w—1):2 € X}, then we have the following.
(1) There ezists a constant C' such that reg(ly,) = C for n > m.
(2) We have reg(Ix,) = (w—1) -n+C for n > max(m,(m—1)- (W —w+2) - C).
Example 6.2. Both conclusions in Theorem 6.1 are sharp.

e For (1), consider X = {(1™)}, so that Iy, = S for n < m has regularity 0, and Iy, is the ideal
generated by all square-free monomials of degree m when n > m, whose regularity is C' = m.

e For (2), let W > 2 and consider X = {(2,1™1), (W™ 1)}, so that I, is the maximal ideal of S,
whose regularity is C' = 1. Note also that w = 2. It can be checked that

reg(Iy,) =W -(m—1)>n+1lform<n<(m-1)-W -1,
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and that (z,1) = (W —1)™"!,m — 2) € Z(X,) provides the maximal value for |z| + 1+ 1 in (1.3).
One can also check that reg(Ix,) =n+1forn > (m—1)- W — 1, with (z,1) = ((1"),0) € Z(X,)
maximizing |z| + [+ 1 in (1.3). For a specific example, take m = W = 3: using Macaulay2, one has
that for n = 4, the Betti table of Iy, is

0 1 2 3
4112 20 10 —
50— - — 1
6/]6 12 6 -

so the regularity is 6 > n + 1. If we take instead n = 5 then the Betti table is

|01 2 3 4
4130 70 55 10 —
5|— — — 5 -
6|10 30 30 10

—_

so the regularity is 6 =n + 1.

We begin by noting that z — z(w — 1) is the partition obtained from z by removing the first (w — 1)
columns in its Young diagram. More precisely, we have for every partition v € P and r > 0 that

v=u—u(r) < v, =uj,, forall i > 1. (6.1)

Lemma 6.3. Suppose that JY C P, is a set of partitions containing (17) for some p < m. For every
(2,1) € Z(Y) we have that z, = 0, that is, z has at most (p — 1) parts.

Proof. Suppose by contradiction that there exists (z,1) € Z()) such that z, # 0, and let ¢ = 2;. Since z is
not the empty partition, it follows that ¢ > 1, so if we let y = (17) then y = y(c) and y,.,; = 0. Moreover,
since z, # 0 we have that z > y = y(c), and since gy, ; <[+ 1, condition (2) in Definition 1.1 is violated.
This gives the desired contradiction, concluding the proof. O

Corollary 6.4. If Y C P is a set of partitions containing (1P) then Z(Y,) is independent on n for n > p.
In particular, reg(ly,) is constant for n > p.

Proof. We may assume without loss of generality that ) consists of pairwise incomparable partitions, and
that p is minimal with the property that (17) € ). Any partition y with more than p parts has the property
that y > (17), so y ¢ Y. This implies that J, = V), and therefore Z()),) C Z(),) for all n > p. To prove
equality we need to show that for every (z,1) € Z(,) we have z € P,, which follows from Lemma 6.3. The
fact that reg([y, ) is constant for n > p follows now from (1.3). O

Lemma 6.5. Suppose that n > m and let z € P, with zp, > w—1. Let u = z — z(w — 1), ¢ = z1 and
d=uy =c—(w—1). Consider x € X, and let y =z — z(w — 1) € V. We have that x,, =y, and

z>z(c) = u>y(d).
Proof. Note that by (6.1) we have y); | = 2}, ., | = T 1, proving the first assertion. Moreover, we have
z>x(c) &= 2, >, fori <c. (6.2)

Since z,, > w — 1 we get that zl’- > m for ¢ < w — 1. Since z has at most m parts, x; < m for all 7, and in
particular z < 2/ for ¢ < w — 1. We obtain

6.2 . 6.1 : .
ng(c)gzgzgzm'iforwgzgcgu;,wﬂzyz{,wﬂforw§z§c<:>u3-2y9for]§d,

which in turn is equivalent to u > y(d) by the analogue of (6.2), concluding the proof. O
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Proof of Theorem 6.1. To verify conclusion (1), we consider z € X with xy =w andlet y = z—z(w—1) € V.
Since y; = 1 it follows that y = (17) for some p, and since z has at most m parts, we get p < m. It follows
from Corollary 6.4 that reg(?yn) is constant for n > p, and in particular for n > m, as desired.

To prove conclusion (2), we verify that

n-(w—1)+C <reg(ly,) <max(n-(w—1)+Cn-(w—2)+(m—1)- (W —-w+2)) forn>m. (6.3)

Whenn > (m—1)- (W —-w+2)—C weget that n- (w—1)+C>n-(w—2)+(m—1) - (W —w+2), which
together with (6.3) implies reg(lx,) =n - (w —1) + C, as desired.
To prove the first inequality in (6.3) we let (u,l) € Z()),) such that C' = reg(Iy,) = |u| + 1+ 1 and define

z= ((w - 1)") + u.

We let d = uj, ¢ = 21 = d+ (w—1). Since n > m, we have z,, > w — 1, and since every Yy € Vp has the
form y = z — z(w — 1) for some z € &, it follows from Lemma 6.5 that

(z,0) € 2(X) <= (u,1) € Z(In), (6.4)
and in particular
reg(ly,) > |zl +l+1=n-(w—1)+|u/+l+1=n-(w—-1)+C.

For the second inequality in (6.3) we choose (z,1) € Z(&X,,) withreg(Ix,) = |z|+I+1, and let u = z—z(w—1).
If z,,, > w — 1 then it follows as before from Lemma 6.5 that (6.4) holds, so

reg(ly,)=|z|+1+1<n-(w—1)+u/+I+1<n-(w—-1)+C.

If 2z, <w—2then 2, <m —1fori>w-—1. Sincex’c+1:l+1wegetthata:1Zc—i—lsocSW—l, and
moreover we have [ +1 < m — 1. This yields

w—2 Ww-—-1
reg(Iy,) = |z| +1+1= <Zzg>+<z 4)+(z+1)gn-(w—2)+(m—1).(W—w+1)+(m—1),

i=1 i=w—1
proving the second inequality in (6.3) and concluding the proof. O
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