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Abstract

Event-based cameras have been designed for scene mo-
tion perception - their high temporal resolution and spatial
data sparsity converts the scene into a volume of boundary
trajectories and allows to track and analyze the evolution
of the scene in time. Analyzing this data is computationally
expensive, and there is substantial lack of theory on dense-
in-time object motion to guide the development of new al-
gorithms; hence, many works resort to a simple solution of
discretizing the event stream and converting it to classical
pixel maps, which allows for application of conventional
image processing methods.

In this work we present a Graph Convolutional neural
network for the task of scene motion segmentation by a mov-
ing camera. We convert the event stream into a 3D graph
in (z,y,t) space and keep per-event temporal information.
The difficulty of the task stems from the fact that unlike in
metric space, the shape of an object in (x,y,t) space de-
pends on its motion and is not the same across the dataset.
We discuss properties of of the event data with respect to this
3D recognition problem, and show that our Graph Convolu-
tional architecture is superior to PointNet++. We evaluate
our method on the state of the art event-based motion seg-
mentation dataset - EV-IMO and perform comparisons to
a frame-based method proposed by its authors. Our abla-
tion studies show that increasing the event slice width im-
proves the accuracy, and how subsampling and edge con-
figurations affect the network performance.

1. Introduction

Scene motion analysis been studied for many years [ 16,
, 1]. Lately, there has been an increased interest in these
problems due to the applications in autonomous naviga-
tion [13]. The basic image representation for motion anal-
ysis is optical flow, representing pixelwise motion between
two moments in time. Optical flow is subject to many am-
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biguities [33, | 1]. On the other hand, feature point tracking
allows for long-term estimation of pixel motion trajectories.
That way, by analyzing pixel matches over large time inter-
vals the ambiguity in motion can be resolved. Scene motion
exists in time. Changes in the scene over short time inter-
vals provide some information, but tasks, such as occlusion
detection, segmentation of multiple moving objects, and de-
tecting objects with a motion similar to the camera, require
capturing the changes over longer time intervals to resolve
ambiguities. Classic frame-based vision, however, is not
naturally designed to provide temporal information.

With the growing enthusiasm for technologies such as
VR and gesture recognition, many companies have started
to invest in the development of event-based cameras [19,

, 7, 32]. These sensors provide dense temporal informa-
tion about changes in the scene; with every pixel acting as
an independent electrical circuit such sensors are not driven
by a common clock - every pixel reacts to motion indepen-
dently, allowing for a more efficient, generic and at the same
time accurate perception of the dynamic aspect of the scene.
An additional benefit of these sensors is better tolerance
to varying light conditions and sparse data encoding which
makes event-based cameras useful for mobile devices.

For an event camera, every visible moving edge in the
scene produces a trail of events, - an event cloud, which
lies on a surface (called event-surface or time-surface [18])
in (x,y,t) space. The time-surface contains all the infor-
mation about structure and motion. Unlike classical 3D
processing (with RGB-D or Lidar sensors), the shape of
the event clouds is constrained by the laws of physics and
epipolar geometry. A certain shape of a cloud, even locally,
might signify that two objects occlude each other, collide
with each other or move closer to the camera.

Examples are shown in Fig. 1. The event clouds for
four object motions are illustrated (the color of points cor-
responds to the event timestamp, in the range of 0 to 1 sec.):
(a) translation parallel to the camera plane does not change
the shape of the cloud across time, only its spatial coor-
dinates;(b) roll, or rotation around the axis parallel to the
camera plane reveals previously occluded parts of the ob-
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(@) (b)
Figure 1. Illustration of event cloud shape properties depending on camera or object motion. Each point is an event, the timestamp is
shown with color: blue - 0 sec, red - 1 sec. (a) - translation parallel to camera plane (along y axis), (b) - roll (rotation around y axis), (c) -
translation along z axis (object moves closer to the camera), (d) - yaw (rotation around z axis)

ject, and the shape of the cloud cross-section changes; (c)
with translation along the camera’s optical axis, as the ob-
ject approaches the camera its contour becomes larger; (d)
rotation around the optical axis produces a discernible twist
pattern. From these clouds, we also can see how natural the
object tracking problem becomes, given the high temporal
density of events. We discuss 3D motion pattern features in
Sec. 3.

The time-surfaces have their origin in the Epipolar plane
image analysis introduced in the late 80’s [6]. As the cam-
era moves along a linear path, images were taken in such
rapid succession that they formed a solid block of data. The
technique utilized knowledge of the camera motion to form
and analyze slices of this solid. These slices directly encode
not only the three-dimensional positions of objects, but also
spatiotemporal events such as the occlusion of one object by
another. For straight-line camera motions, these slices have
a simple linear structure that makes them easy to analyze.

Generalizing this concept, we work with time-surfaces
in (x,y,t) produced by an event camera to perform the
task of foreground-background segmentation of moving ob-
jects. The complexity of this task comes from the enormous
amount of asynchronous data which needs to be processed,
high levels of noise produced by the event camera and, most
importantly, the fact that the variability of object and cam-
era motion changes the shape of the event cloud, making it
more difficult to learn local 3D features. In summary, the
contributions of this paper are:

e The first learning approach on 3D event clouds over
large time intervals.

e We show theoretically and with experiments that larger
temporal slices yield better performance.

e We perform comparisons to current state of the art, us-

(d)

ing PointNet++ [30] and EV-IMO [25] as baselines,
and show that our method is faster and yields better
results.

2. Related Work

While most works process event data, by collapsing in-
formation into 2D image maps, a few approaches have
adopted concepts from 3D processing. The best known flow
techniques on event cameras compute normals to local time-
surfaces [5, 10, 26, 27] to estimate normal flow. A block
matching algorithm by Liu [20] uses similar ideas but can
produce full flow for corner regions. The approach in [2]
tracks events caused by contrast edges over multiple pixels
to estimate normal flow, and [8, 3] use local frequency mea-
surements defined on the event count maps. Recent motion
compensation approaches use the temporal information as
third dimension within a slice of events, to derive flow, and
local or global motion models [24, 12].

Event-based feature detection research pursues similar
ideas, but more global in temporal domain. Early works
used the continuity of the event stream to bridge the gap be-
tween classical camera frames [34]. Later, Zhu et al. intro-
duced a probabilistic, event-only approach to corner extrac-
tion [39]. Manderscheid et al. have significantly improved
on existing methods by using deep learning [22]. Lagorce et
al. [17, 18] addressed event cloud analysis in terms of time-
surfaces by designing temporal features and demonstrated
them in recognition tasks, and Chandrapla et al. [9] learned
motion invariant space-time features. These works laid the
foundations of the spatio-temporal feature analysis on event
clouds and are precursors to the global event-cloud analysis.

Learning approaches on event data are quite numerous,
with many authors emphasising the importance of encoding
temporal information as input features for neural networks.
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To name a few, [38] learns optical flow by constructing a
discretized map with event timestamps, similar to the aver-
age time image used in [37]. An improved work by Zhu [40]
uses multiple slices as input, retaining 3D structure of the
cloud better. Barranco et al. [4] used different local spatio-
temporal features to learn borders of objects. One of the
most recent works - EV-IMO [25] presents a motion seg-
mentation pipeline and a dataset which we use in this paper.

The closest to our approach is EventNet [31] — inspired
by Pointnet [29], the first learning approach on 3D point
clouds. This work analyzes events as points in 3D space,
but only on slices up to 32ms wide, making it on par with
image-based approaches in terms of data representation.
Since the work uses a Multi Layer Perceptron, the spatial
structure of events is not explicitly represented. Further-
more, EventNet has simple experimental results; it performs
segmentation on planar shapes only, and shows marginal
improvements of 0.1% in the mIoU (mean Intersection-
Over Union) metric compared to the PointNet baseline. We
build our approach around the Graph Convolutional Net-
work [15, 36] structure, and we demonstrate that our net-
works performs favorably on the much more challenging
EV-IMO dataset.

3. Event Clouds and Scene Motion

Event cameras record a continuous stream of brightness
change events. Each event is encoded by its pixel posi-
tion x,y, timestamp, ¢, accurate to microseconds, and an
additional bit denoting whether brightness increased or de-
creased. We will refer to the events in a fixed-time inter-
val as ’slice’ of events. A single slice can contain millions
of events (practically, 10° events per second in the EV-
IMO [25] dataset collected with the DAVIS 346C sensor,
and 6 * 10° events with a newer Prophesee high resolution
sensor [28]). The events are generated by the motion of
image contours (object boundaries, or texture edges) over
time. We can look at these events as points on trajecto-
ries tj(t) = (z(t),y(t),t) - this makes it natural to regard
events as points in 3D (z,y,t) space. The rest of this sec-
tion is devoted to analyzing some geometric properties of
event clouds. Since pixel motion is constrained by the laws
of physics, the rigidity of bodies and the epipolar geome-
try, event clouds are significantly different from 3D point
clouds in (z,y, z) space.

3.1. Surface Normals, Normal Flow, & Optical Flow

Earlier works [5, 10] have analyzed surface normals of
event clouds in the context of optical flow estimation. With
some abuse of notation, similar as in [5], we describe the
event cloud as a function ¢(x, y), with ¢ the time and x, y the
spatial coordinates, and consider it a surface (actually an (z,
y) may map to multiple ¢ violating the definition of a func-

tion). Then the partial derivates %, %@’y) provide the

inverse of the observed velocity components. Thus, from
the normal to this surface n with components (724, 1y, 7¢),
the instantaneous normal flow at an image pixel can be ob-
tained as v, = (1%, Z—;)

More importantly though is the notion that the full flow
of a point p = (x,y,t) would lie in the plane with the nor-
mal n and passing through p. Now, we can impose an ad-
ditional assumption, which is often called smoothness con-
straint - that flow in the local region is similar; this is not
true for the boundaries, and we analyze boundary regions
separately below.

More specifically, for a region of a small radius r around
the point py = (x,y,t) we will assume that all points p; €
B, (po) have the same (normalized) optical flow vector v =
(vg, vy, ;). This results in a constraint: the optical flow
at po lies at the intersection of all local planes given by
normals n; and passing through pg. If the assumption holds

Corner region due to
occlusion

tj(t) - corner region corresponding
to point motion

Figure 2. Event cloud in (x,y,t) space; the color gradient corre-
sponds to event timestamps. For a single rigid object, curvatures
on the cloud would define a trajectory of a point of this object,
while for a pair of objects such structure can identify an occlusion.
On the bottom left - a point with two possible optical flow values,
which only occur during occlusions. Bottom right: T'-corner; dur-
ing occlusion its shape defines which object is on the foreground
and which is on the background (see Sec. 3.3)
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true, and the flow is the same for all local points, then all
planes n; will intersect on a single line v. The intersection
of two planes given by n; and n; is simply v = n; x n;.
Given a set of planes in B,.(pg), we formulate the constraint
on flow as a least squares problem:

v:minvZHvxniHQ (1)

Here, we deviate from the common notion of optical flow
as a 2D vector field; given the frame-less nature of the event
stream, v should rather be thought of as the temporal deriva-
tive of the pixel trajectory, while instantaneous flow in the
traditional sense can be written as v,,, = (2, 2%).

3.2. Continuity in Time

The flow is the derivative of the point trajectory v =
% = (%, %, 1). Due to the continuity in time of the
event stream, sometimes it is possible to recover the full
trajectory of a point. A trajectory is unambiguously recov-
erable if all its points are generalized corners - that is, for
all points Eq. 1 needs to have a single minima. Then, using
a sequence of candidate points p; and their corresponding
flow v;, it is possible to extract the full trajectories of these
points. Even, if the data is discontinuous, we may be able
to obtain the trajectory.

3.3. Boundary Regions and Occlusions

Corner detection for event cameras has been studied pre-
viously [22]. However, existing methods don’t allow to dis-
tinguish between object corners, and structures caused by
occlusions (see Fig. 2). Next we discuss how to distinguish
these cases.

A consequence of Eq. 1 is that every point with nonzero
curvature will have an unambiguous optical flow vector as-
sociated with it. If a point region B,.(pg) includes events
from boundaries of two separate objects (which can happen
during occlusions) Eq. 1 will have multiple distinct min-
ima. An example is shown in Fig. 2: on the top - a typical
occlusion of the background (shown as large, flat cluster of
points) by a smaller foreground object (shown as a ’tube’
cutting through the background motion plane).

To distinguish between a corner corresponding to a point
trajectory (shown in red in Fig. 2) and a corner caused by
the occlusion (shown in green), it is sufficient to analyze the
local distribution of optical flow vectors. On the bottom left
- the red point has multiple possible flow vectors, and its tra-
jectory % = o0. These special points can be found, and
corresponding corner regions labeled as occlusion bound-
aries.

It is also possible to extract at the occlusion, informa-
tion about which of the two object is in the foreground,
and which is in the background. Since due to occlusion the
texture on theoccluded object is not visible, the foreground

edge surface will be hollow inside and the background sur-
face will be intersected by the foreground one. On the oc-
clusion boundary this will always result in a T-shaped cor-
ner, shown in Fig. 2, bottom right.

4. The Architecture
4.1. Motion Segmentation in 3D

State-of-the-art 3D point cloud segmentation networks
such as PointNet++ [30], EdgeConv [35], and 3DCNN [14]
have been designed to extract static 3D feature descriptors
in a uniform 3D metric space. The event cloud differs in
that it has a temporal axis; the motion of the object itself
controls the shape of the cloud and hence static (z,y,t)
features cannot be learnt as descriptors. The metric space
of depth data also allows for efficient downsampling and
mesh simplifications, and modern depth sensors have sig-
nificantly less noise than event cameras. Currently, only
a handful of methods is capable of handling millions of
points produced by event cameras. In this work, we use
PointNet++ as a baseline and we develop a network us-
ing a Graph Convolutional Network, to perform the task of
background-foreground motion segmentation.

4.2. Network Design

Our network architecture is shown in Figure 3 - it con-
sists of five consecutive Graph Convolutional (GConv) lay-
ers and three fully connected hidden layers, which share the
same weights across all points and perform global feature
aggregation. The input to the network is an unstructured
graph which consists of events in (x,y,t) space as nodes,
the per-point surface normals (ng, n,,n;), and the graph
edges, which are computed as described in Sec. 4.3.

In each GConv layer, every point feature is aggregated
from its neighbours, making points with similar vertices
clustered together. When training multiple GConv layers,
this is equivalent to a multi-scale clustering of the point fea-
tures, which also preserves local geometric structures [23].
Each GConv layer has 64 input channels, and maps the fea-
tures to 64 output channels at different scales across the en-
tire graph [23]. Then, the 5 sets of 64 multi-scale features
extracted by the five GConv layers are concatenated and fed
to a Multi Layer Perceptron (MLP) classifier. The MLP
starts with 256 initial channels and reduces the channels by
a rate of 4 into 16 channels in the last hidden layer. Then,
the outputs of the MLP are connected to a fully connected
layer to produce a single point-wise score.

We supervise our training as a regression problem in-
stead of a classification problem to decrease the possibil-
ity of overfitting to object contours. The raw response val-
ues are compared with the point-wise ground truth labels
€ [0,1] by Binary Cross Entropy with Logits Loss.
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Figure 3. An illustration of the architecture. 5 Graph Convolutional layers aggregate multiscale features around each point; the features
are concatenated and fed into a fully connected layer to predict the point class.

4.3. Edge Computation

A central component of Graph Convolutional neural net-
works is the edge computation. If using the raw data, the
high density of points in the event cloud would give rise
to a very large number of edges, making large edge radii
prohibitively expensive to compute and use. To get around
this, while preserving connections with neighbouring points
along possible motion trajectories, we filter the edges in a
sphere radius r so that they are parallel to event-surface.
Given a point pg and its normal ng, we keep only the edges
orthogonal to ng, with a certain filtering threshold «, as de-
scribed in Eq. 2-(a) (and illustrated in Fig. 4-(b))

(a) : {pi|V¥pi € Br(po) & (pi —po) -no < a}
(b) : {pilVpi € Br(po) & p} > ph} 2)

Since most of an event’s temporal motion information is
contained within a plane parallel to time-surface, this fil-
tering strategy is a good trade-off between the richness of
surface features and the computational performance. Yet,
our experiments have shown that most surface patches are
rather isolated in the absence of strong texture or extremely
fast motion, and in practice the filtering is not required.

As a second constraint (Eq. 2-(b)), we impose the points
to lie in the upper (along temporal axis) hemisphere of a
point - this halves the number of edges with little to no de-
crease in network performance. Using both constraints, we
obtain sparse edges which will maximally align with possi-
ble local optical flow values (see Sec. 3). In our experiments
we use r = 10 pixels (the scaling along the temporal axis is
described in Sec. 5.1.1), and we perform an ablation study
on the radius size (Fig. 7(b)).

4.4. Temporal Augmentation

Following the intuitions discussed in Sec. 3, we use a
temporal augmentation to artificially introduce variations
in object speed (and hence - cloud shape) and improve the
generalization to varying motion. Given a point in an in-
put cloud p = (x,y,t) with a normal n = (n,, n,,n;) the
augmented point p’ and its normal n’ are computed as:

3)

p = (z,y,axt) n =(a*xng a*xngn),

where « is a random scaling parameter (in our work, 0.8 —
1.2) and n’ is normalized to unit length.

The motivation for this method is that the essential
cue characterizing separate objects does not depend on
speed, but rather on spatio-temporal anomalies - such as T-
corners, points with multiple flow values or the continuity
of the event cloud. The temporal augmentation forces the
neural network to learn such features (which remain unaf-
fected by augmentation), and reduces overfitting to the local
shape of the cloud. Our ablation studies (in Sec. 5.3) show
that the model generalizes better using this augmentation.

5. Experiments
5.1. Dataset

EV-IMO is the only publicly available event-based seg-
mentation dataset. It includes pixelwise masks at 200Hz
and roughly 30 minutes of recording, although the dataset
was collected in a single room and only includes three ob-
jects. Therefore segmentation might be prone to overfit-
ting. Since our pipeline is not trained on depth, overfitting
to room structure is unlikely. The 3D shape of the objects
varies a lot, depending on object motion, but overfitting on
contours is still possible. We perform an ablation study in
the supplementary material, where we train a NN using only
sequences with 2 of the objects and evaluate on sequences
with the third object.

(a)

(b)
Figure 4. lllustration of edge configurations: (a) a typical configu-
ration used in 3D processing: all points are used to create edges;
(b) and (c) our configuration: using only points in the upper hemi-
sphere (b); (c) using edges parallel to the time-surface (c).
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Figure 5. Qualitative results - the event cloud was projected on a plane, color represents the normalized timestamp. The subsampling rate
increases from top to bottom; small time slices are shown on the left, and large on the right. Experiments with 0.5 second slices could be
achieved only with a downsampling factor of w = 5, but the dramatic decrease in feature quality yields poor results compared to the 0.3
second slice with no subsampling. Note how the results improve for larger slice width, especially in the presence of texture.

5.1.1 Data Preprocessing

We preprocess the raw data of EV-IMO. We upscale the
temporal axis of the event cloud by a factor of 200 to keep
the density of events more uniform across the x,y,t axes.
The normals are precomputed using PCA, with » = 5 (af-
ter temporal upscaling). We also apply a radius outlier filter
with » = 3 and k£ = 30 - which removes all points having
less than 30 points in a radius of 3 pixels; this results in ap-
proximately 10% to 15% points removed. To further reduce

the number of points, we use random subsampling with a
factor u, which keeps 1 random point out of « (in practice,
we use © = 1 for no subsampling or u = 2, to remove
half the points). We precompute edges within a radius of 10
pixels for all points, and (optionally) keep up to 30 edges
connected to nearest points.

The ground truth provided in EV-IMO is image-based,
sampled at 200H z. For every event, we approximate its
class by locating the nearest class mask according to mask
and event timestamps and downprojecting the event coordi-
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nate onto the image. This produces good results in practice,
even for fast motion; we show a sample of the event cloud
with class annotations in the supplementary material.

5.2. Implementation Details

Our network architecture consists of five consecutive
Graph Convolutional(GC) layers and three fully connected
hidden layers. As input features we use spatio-temporal
event locations (z, y, t), time-surface normals (124, 1y, 7¢),
and a per-event binary polarity value (p € [0, 1]) which
signifies whether the brightness has increased or decreased
at pixel (z, y), at time ¢.

In our current implementation the network (Sec. 4.2)
has 117k trainable parameters. We train the network with
a batch size of 3 using three Nvidia GTX 1080Ti GPUs.
Larger batch sizes are difficult to achieve in practice be-
cause of the large amount of data. We use the Adam opti-
mizer with a learning rate of 7e — 4 and cosine annealing
scheduling strategy. We train our models for 200 epochs on
a portion of the EV — IM O [25] dataset. The model takes
6-minutes to train for each epoch with a slice width of 0.3
seconds and no subsampling.

As baseline we use the state-of-the-art PointNet++ [30]
on event clouds. We take the segmentation implementation
of PointNet++ presented in [30], which in turn was inspired
by [14] and [29]. The implementation consists of two hier-
archical sampling and grouping modules, followed by one
k-nearest-neighbours interpolation and three forward pass-
ing modules. K-nearest-neighbours are searched with a ra-
tio and a radius of 0.2/0.2 in the first sampling layer and
0.25/0.4 in the second sampling layer. The responses from
the last forward passing modules are passed to three con-
catenated layers of a fully connected network to produce as
out a label for each point.

5.3. Ablation Studies
5.3.1 Effects of the Slice Width

We conduct experiments to investigate the effects of slice
width and cloud sub-sampling on the performance of the
network. Fig. 6 shows results on the boxes validation set for
the first 12k iterations of training. The experiments on the
full resolution clouds (shown in solid lines) perform notably
better, as to be expected, but the training speed is 30% lower
(for results on training speed see Table 2).

We observe that the largest effect was for larger slice
widths - the ©2, w0.1 and ©1, w0.1 perform similarly, while
ul, w0.3 is 10% better than u2,w0.3. Our intuition is that
this due to the lack of temporal features in smaller slices -
a similar effect is observed when varying the edge radius
(Fig. 7(b)). The edge radius, together with the network
depth, essentially controls the maximum size of global fea-
tures.

5.3.2 Temporal Augmentation

Temporal augmentation is designed to reduce overfitting
of the network to the local 3D feature descriptors by ran-
domly scaling the event cloud along time axis. The EV-IMO
dataset has high variation in object velocities, including
across training and validation sets; the velocity of the ob-
ject defines the shape of the cloud (as explained in Sec. 3.1),
which can cause significant drop in scores when transfer-
ring to unseen sequences in validation set. We show the
comparison for learning with and without augmentation in
Fig. 7-(a) by training on the boxes dataset and evaluation on
fast dataset.

5.4. Results

Both GConv and PointNet + + were trained on all
EV-IMO train sequences containing different objects, which

miou

L

0.0 7= T T T

0 2000 4000 6000 8000 10000
lterations.

Figure 6. Inference performance, in mIoU, for the first 12k iter-
ations of training for slice widths w = 0.02,0.1, 0.3 sec. Dashed
line corresponds to a subsampling factor v = 2. The solid line
corresponds to experiments with no subsampling (v = 1).

— u2,w0.1,2=00
07 2, 0.1, 3=0.2

] 2000 4000

@ ®

Figure 7. mlIoU scores for the box validation for varying edge
radius (without temporal augmentation). (a) Plots are shown for
a = 0.0 (no augmentation) and o« = 0.2 for the first 12k itera-
tions of training. (b) Reducing the maximum edge radius from 10

to 7 and 5, results in a significant performance drop.
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boxes floor wall table fast
0.3 0.1 0.02 0.3 0.1 0.02 0.3 0.1 0.02 0.3 0.1 0.02 0.3 0.1 0.02
GConv 84+9 81+8 60+18 80+£9  79+7 55+£19 85+£8  83+4 S51+16 87+7 80+7 5714 77£10 74£17 39+£19
GConuvys 85+5 70+11 54+10 81+12 69+8 52414 83+4  71+£9  61£17 85£11 77+£19 59+19 74+19 69+24 37411
PointNet + + [30] 69£17 71£22 80+15 66+19 68£18 7610 7117 75£19 74+£20 59422 62428 68+£23 21+12 24+10 20+6
EV —IMO [25] 70+£5 59+9 78+5 79+6 67+3

Table 1. Segmentation results on EV-IMO event-based dataset. Metric is mIoU (%) on points; the 3D methods were evaluated on 3
different time-slice widths: 0.3, 0.1 and 0.02 seconds. The best results are shown in bold for every separate validation set type.

are called boxes, floor, wall and table. They were evalu-
ated separately on boxes, floor, wall, table and the fast val-
idation set with a 0.02 sec. temporal step between slices,
a = 0.2 for temporal augmentation (disabled for valida-
tion), subsampling rates of v = 1 and © = 2 and slice
widths w = 0.02, 0.1 and 0.3 sec. The quantitative results
are presented in Table 5.2.

For the EV-IMO method, which outputs dense masks, we
set the slice width to 0.025sec. We project the inferenced
masks on the event cloud (similar to how we handle ground
truth, Sec. 5.1.1) and compute [oU scores on the labeled
event clouds.

5.4.1 Qualitative Results

Fig. 5 shows qualitative results (for visualization events are
projected the along time axis). The color encodes the times-
tamp (blue is 0, red is slice width). The top section of the
figure compares results with no subsampling for a 0.02 slice
and a 0.3 slice. Note how the increase in the size of the
slice improves the segmentation quality even in textured re-
gions. The subsampling factor v = 2, which removes half
the points from the event cloud, also produces high quality
results, but is more prone to false positives. For the bottom
section of the figure, 80% of the points were removed. The
quality of input suffers significantly, with many spatial and
temporal features lost, and the network performs poorly in
high-textured regions.

GConv PointNet + +
params 117.5k 1.4M é
u 1 2 2 5 RS
20ms 0.016 0.012 0.219 0.134 23073
0.1s 0.109 0.048 4260 0.663 170503
0.3s 0.275 0.140 2293 6.792 417315

Table 2. Forward time (seconds) for different uniform downsam-
pling and temporal slice widths.

5.4.2 Performance Considerations

We present the execution times for our GConv and for
PointNet++ for different time slice widths and event cloud
subsampling factors in Table 2, measured on a single
NVIDIA GTX1080Ti. In all experiments, PointNet++ is
notably slower than GConv. However, starting from the

0.1 second slice, GConv is not real time anymore without
subsampling. This problem can be addressed practically by
constructing a lookup table [3 1] and avoid recomputing fea-
tures when sequential time slices overlap.

6. Limitations and Future Work

Our approach operates on large slices in time - this al-
lows the neural network to observe a history of scene mo-
tion, and potentially make better decisions based on the
global temporal features - all without relying on LSTM-like
approaches (which essentially memorize scene content). On
the other hand, modern event-based cameras are capable of
generating up to 107 events per second, and with increased
resolution, the amount of local edge connections between
graph nodes can grow exponentially. In this work, we were
able to achieve slice widths of up to 0.3 seconds (and 0.5
seconds with severe downsampling) due to the large amount
of memory consumed by 3D points. A dedicated GPU-
optimized module could alleviate many of the shortcomings
we have witnessed. We also observe that edges are useful
mostly for extracting local features, and hence a dual neu-
ral network - one to extract local features on thin tempo-
ral slices and another to extract temporal features on large
slices will be among our future efforts.
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8. Conclusion

We have described spatial and temporal features of event
clouds, which provide cues for motion tracking and seg-
mentation. Our novel segmentation pipeline inherently cap-
tures these features and is able to perform well with rapid,
6 dof motion of the camera and objects on the scene. The
graph-based approach allows for the first time to use wide
slices as a single input, with inference speeds of up to 0.02
seconds. We believe that our contribution is a step forward
towards understanding the geometric properties of event
clouds and making a more complete use of the information
provided by event cameras.
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