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Abstract

Event-based cameras have been designed for scene mo-

tion perception - their high temporal resolution and spatial

data sparsity converts the scene into a volume of boundary

trajectories and allows to track and analyze the evolution

of the scene in time. Analyzing this data is computationally

expensive, and there is substantial lack of theory on dense-

in-time object motion to guide the development of new al-

gorithms; hence, many works resort to a simple solution of

discretizing the event stream and converting it to classical

pixel maps, which allows for application of conventional

image processing methods.

In this work we present a Graph Convolutional neural

network for the task of scene motion segmentation by a mov-

ing camera. We convert the event stream into a 3D graph

in (x, y, t) space and keep per-event temporal information.

The difficulty of the task stems from the fact that unlike in

metric space, the shape of an object in (x, y, t) space de-

pends on its motion and is not the same across the dataset.

We discuss properties of of the event data with respect to this

3D recognition problem, and show that our Graph Convolu-

tional architecture is superior to PointNet++. We evaluate

our method on the state of the art event-based motion seg-

mentation dataset - EV-IMO and perform comparisons to

a frame-based method proposed by its authors. Our abla-

tion studies show that increasing the event slice width im-

proves the accuracy, and how subsampling and edge con-

figurations affect the network performance.

1. Introduction

Scene motion analysis been studied for many years [16,

21, 1]. Lately, there has been an increased interest in these

problems due to the applications in autonomous naviga-

tion [13]. The basic image representation for motion anal-

ysis is optical flow, representing pixelwise motion between

two moments in time. Optical flow is subject to many am-
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biguities [33, 11]. On the other hand, feature point tracking

allows for long-term estimation of pixel motion trajectories.

That way, by analyzing pixel matches over large time inter-

vals the ambiguity in motion can be resolved. Scene motion

exists in time. Changes in the scene over short time inter-

vals provide some information, but tasks, such as occlusion

detection, segmentation of multiple moving objects, and de-

tecting objects with a motion similar to the camera, require

capturing the changes over longer time intervals to resolve

ambiguities. Classic frame-based vision, however, is not

naturally designed to provide temporal information.

With the growing enthusiasm for technologies such as

VR and gesture recognition, many companies have started

to invest in the development of event-based cameras [19,

28, 7, 32]. These sensors provide dense temporal informa-

tion about changes in the scene; with every pixel acting as

an independent electrical circuit such sensors are not driven

by a common clock - every pixel reacts to motion indepen-

dently, allowing for a more efficient, generic and at the same

time accurate perception of the dynamic aspect of the scene.

An additional benefit of these sensors is better tolerance

to varying light conditions and sparse data encoding which

makes event-based cameras useful for mobile devices.

For an event camera, every visible moving edge in the

scene produces a trail of events, - an event cloud, which

lies on a surface (called event-surface or time-surface [18])

in (x, y, t) space. The time-surface contains all the infor-

mation about structure and motion. Unlike classical 3D

processing (with RGB-D or Lidar sensors), the shape of

the event clouds is constrained by the laws of physics and

epipolar geometry. A certain shape of a cloud, even locally,

might signify that two objects occlude each other, collide

with each other or move closer to the camera.

Examples are shown in Fig. 1. The event clouds for

four object motions are illustrated (the color of points cor-

responds to the event timestamp, in the range of 0 to 1 sec.):

(a) translation parallel to the camera plane does not change

the shape of the cloud across time, only its spatial coor-

dinates;(b) roll, or rotation around the axis parallel to the

camera plane reveals previously occluded parts of the ob-
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(a) (b) (c) (d)

Figure 1. Illustration of event cloud shape properties depending on camera or object motion. Each point is an event, the timestamp is

shown with color: blue - 0 sec, red - 1 sec. (a) - translation parallel to camera plane (along y axis), (b) - roll (rotation around y axis), (c) -

translation along z axis (object moves closer to the camera), (d) - yaw (rotation around z axis)

ject, and the shape of the cloud cross-section changes; (c)

with translation along the camera’s optical axis, as the ob-

ject approaches the camera its contour becomes larger; (d)

rotation around the optical axis produces a discernible twist

pattern. From these clouds, we also can see how natural the

object tracking problem becomes, given the high temporal

density of events. We discuss 3D motion pattern features in

Sec. 3.

The time-surfaces have their origin in the Epipolar plane

image analysis introduced in the late 80’s [6]. As the cam-

era moves along a linear path, images were taken in such

rapid succession that they formed a solid block of data. The

technique utilized knowledge of the camera motion to form

and analyze slices of this solid. These slices directly encode

not only the three-dimensional positions of objects, but also

spatiotemporal events such as the occlusion of one object by

another. For straight-line camera motions, these slices have

a simple linear structure that makes them easy to analyze.

Generalizing this concept, we work with time-surfaces

in (x, y, t) produced by an event camera to perform the

task of foreground-background segmentation of moving ob-

jects. The complexity of this task comes from the enormous

amount of asynchronous data which needs to be processed,

high levels of noise produced by the event camera and, most

importantly, the fact that the variability of object and cam-

era motion changes the shape of the event cloud, making it

more difficult to learn local 3D features. In summary, the

contributions of this paper are:

• The first learning approach on 3D event clouds over

large time intervals.

• We show theoretically and with experiments that larger

temporal slices yield better performance.

• We perform comparisons to current state of the art, us-

ing PointNet++ [30] and EV-IMO [25] as baselines,

and show that our method is faster and yields better

results.

2. Related Work

While most works process event data, by collapsing in-

formation into 2D image maps, a few approaches have

adopted concepts from 3D processing. The best known flow

techniques on event cameras compute normals to local time-

surfaces [5, 10, 26, 27] to estimate normal flow. A block

matching algorithm by Liu [20] uses similar ideas but can

produce full flow for corner regions. The approach in [2]

tracks events caused by contrast edges over multiple pixels

to estimate normal flow, and [8, 3] use local frequency mea-

surements defined on the event count maps. Recent motion

compensation approaches use the temporal information as

third dimension within a slice of events, to derive flow, and

local or global motion models [24, 12].

Event-based feature detection research pursues similar

ideas, but more global in temporal domain. Early works

used the continuity of the event stream to bridge the gap be-

tween classical camera frames [34]. Later, Zhu et al. intro-

duced a probabilistic, event-only approach to corner extrac-

tion [39]. Manderscheid et al. have significantly improved

on existing methods by using deep learning [22]. Lagorce et

al. [17, 18] addressed event cloud analysis in terms of time-

surfaces by designing temporal features and demonstrated

them in recognition tasks, and Chandrapla et al. [9] learned

motion invariant space-time features. These works laid the

foundations of the spatio-temporal feature analysis on event

clouds and are precursors to the global event-cloud analysis.

Learning approaches on event data are quite numerous,

with many authors emphasising the importance of encoding

temporal information as input features for neural networks.
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To name a few, [38] learns optical flow by constructing a

discretized map with event timestamps, similar to the aver-

age time image used in [37]. An improved work by Zhu [40]

uses multiple slices as input, retaining 3D structure of the

cloud better. Barranco et al. [4] used different local spatio-

temporal features to learn borders of objects. One of the

most recent works - EV-IMO [25] presents a motion seg-

mentation pipeline and a dataset which we use in this paper.

The closest to our approach is EventNet [31] – inspired

by Pointnet [29], the first learning approach on 3D point

clouds. This work analyzes events as points in 3D space,

but only on slices up to 32ms wide, making it on par with

image-based approaches in terms of data representation.

Since the work uses a Multi Layer Perceptron, the spatial

structure of events is not explicitly represented. Further-

more, EventNet has simple experimental results; it performs

segmentation on planar shapes only, and shows marginal

improvements of 0.1% in the mIoU (mean Intersection-

Over Union) metric compared to the PointNet baseline. We

build our approach around the Graph Convolutional Net-

work [15, 36] structure, and we demonstrate that our net-

works performs favorably on the much more challenging

EV-IMO dataset.

3. Event Clouds and Scene Motion

Event cameras record a continuous stream of brightness

change events. Each event is encoded by its pixel posi-

tion x, y, timestamp, t, accurate to microseconds, and an

additional bit denoting whether brightness increased or de-

creased. We will refer to the events in a fixed-time inter-

val as ’slice’ of events. A single slice can contain millions

of events (practically, 106 events per second in the EV-

IMO [25] dataset collected with the DAVIS 346C sensor,

and 6 ∗ 106 events with a newer Prophesee high resolution

sensor [28]). The events are generated by the motion of

image contours (object boundaries, or texture edges) over

time. We can look at these events as points on trajecto-

ries tj(t) = (x(t), y(t), t) - this makes it natural to regard

events as points in 3D (x, y, t) space. The rest of this sec-

tion is devoted to analyzing some geometric properties of

event clouds. Since pixel motion is constrained by the laws

of physics, the rigidity of bodies and the epipolar geome-

try, event clouds are significantly different from 3D point

clouds in (x, y, z) space.

3.1. Surface Normals, Normal Flow, & Optical Flow

Earlier works [5, 10] have analyzed surface normals of

event clouds in the context of optical flow estimation. With

some abuse of notation, similar as in [5], we describe the

event cloud as a function t(x, y), with t the time and x, y the

spatial coordinates, and consider it a surface (actually an (x,

y) may map to multiple t violating the definition of a func-

tion). Then the partial derivates
∂t(x,y)

∂x
,
∂t(x,y)

∂y
provide the

inverse of the observed velocity components. Thus, from

the normal to this surface n with components (nx, ny, nt),
the instantaneous normal flow at an image pixel can be ob-

tained as vn = ( nt

nx
, nt

ny
).

More importantly though is the notion that the full flow

of a point p = (x, y, t) would lie in the plane with the nor-

mal n and passing through p. Now, we can impose an ad-

ditional assumption, which is often called smoothness con-

straint - that flow in the local region is similar; this is not

true for the boundaries, and we analyze boundary regions

separately below.

More specifically, for a region of a small radius r around

the point p0 = (x, y, t) we will assume that all points pi ∈
Br(p0) have the same (normalized) optical flow vector v =
(vx, vy, vt). This results in a constraint: the optical flow

at p0 lies at the intersection of all local planes given by

normals ni and passing through p0. If the assumption holds

Figure 2. Event cloud in (x,y,t) space; the color gradient corre-

sponds to event timestamps. For a single rigid object, curvatures

on the cloud would define a trajectory of a point of this object,

while for a pair of objects such structure can identify an occlusion.

On the bottom left - a point with two possible optical flow values,

which only occur during occlusions. Bottom right: T -corner; dur-

ing occlusion its shape defines which object is on the foreground

and which is on the background (see Sec. 3.3)
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true, and the flow is the same for all local points, then all

planes ni will intersect on a single line v. The intersection

of two planes given by ni and nj is simply v = ni × nj .

Given a set of planes in Br(p0), we formulate the constraint

on flow as a least squares problem:

v = minv

∑

||v × ni||
2 (1)

Here, we deviate from the common notion of optical flow

as a 2D vector field; given the frame-less nature of the event

stream, v should rather be thought of as the temporal deriva-

tive of the pixel trajectory, while instantaneous flow in the

traditional sense can be written as vxy = ( vx

vt
,
vy

vt
).

3.2. Continuity in Time

The flow is the derivative of the point trajectory v =
d(tj)
dt

= (dx
dt
, dy
dt
, 1). Due to the continuity in time of the

event stream, sometimes it is possible to recover the full

trajectory of a point. A trajectory is unambiguously recov-

erable if all its points are generalized corners - that is, for

all points Eq. 1 needs to have a single minima. Then, using

a sequence of candidate points pi and their corresponding

flow vi, it is possible to extract the full trajectories of these

points. Even, if the data is discontinuous, we may be able

to obtain the trajectory.

3.3. Boundary Regions and Occlusions

Corner detection for event cameras has been studied pre-

viously [22]. However, existing methods don’t allow to dis-

tinguish between object corners, and structures caused by

occlusions (see Fig. 2). Next we discuss how to distinguish

these cases.

A consequence of Eq. 1 is that every point with nonzero

curvature will have an unambiguous optical flow vector as-

sociated with it. If a point region Br(p0) includes events

from boundaries of two separate objects (which can happen

during occlusions) Eq. 1 will have multiple distinct min-

ima. An example is shown in Fig. 2: on the top - a typical

occlusion of the background (shown as large, flat cluster of

points) by a smaller foreground object (shown as a ’tube’

cutting through the background motion plane).

To distinguish between a corner corresponding to a point

trajectory (shown in red in Fig. 2) and a corner caused by

the occlusion (shown in green), it is sufficient to analyze the

local distribution of optical flow vectors. On the bottom left

- the red point has multiple possible flow vectors, and its tra-

jectory
d(tj)
dt

= ∞. These special points can be found, and

corresponding corner regions labeled as occlusion bound-

aries.

It is also possible to extract at the occlusion, informa-

tion about which of the two object is in the foreground,

and which is in the background. Since due to occlusion the

texture on theoccluded object is not visible, the foreground

edge surface will be hollow inside and the background sur-

face will be intersected by the foreground one. On the oc-

clusion boundary this will always result in a T -shaped cor-

ner, shown in Fig. 2, bottom right.

4. The Architecture

4.1. Motion Segmentation in 3D

State-of-the-art 3D point cloud segmentation networks

such as PointNet++ [30], EdgeConv [35], and 3DCNN [14]

have been designed to extract static 3D feature descriptors

in a uniform 3D metric space. The event cloud differs in

that it has a temporal axis; the motion of the object itself

controls the shape of the cloud and hence static (x, y, t)
features cannot be learnt as descriptors. The metric space

of depth data also allows for efficient downsampling and

mesh simplifications, and modern depth sensors have sig-

nificantly less noise than event cameras. Currently, only

a handful of methods is capable of handling millions of

points produced by event cameras. In this work, we use

PointNet++ as a baseline and we develop a network us-

ing a Graph Convolutional Network, to perform the task of

background-foreground motion segmentation.

4.2. Network Design

Our network architecture is shown in Figure 3 - it con-

sists of five consecutive Graph Convolutional (GConv) lay-

ers and three fully connected hidden layers, which share the

same weights across all points and perform global feature

aggregation. The input to the network is an unstructured

graph which consists of events in (x, y, t) space as nodes,

the per-point surface normals (nx, ny, nt), and the graph

edges, which are computed as described in Sec. 4.3.

In each GConv layer, every point feature is aggregated

from its neighbours, making points with similar vertices

clustered together. When training multiple GConv layers,

this is equivalent to a multi-scale clustering of the point fea-

tures, which also preserves local geometric structures [23].

Each GConv layer has 64 input channels, and maps the fea-

tures to 64 output channels at different scales across the en-

tire graph [23]. Then, the 5 sets of 64 multi-scale features

extracted by the five GConv layers are concatenated and fed

to a Multi Layer Perceptron (MLP) classifier. The MLP

starts with 256 initial channels and reduces the channels by

a rate of 4 into 16 channels in the last hidden layer. Then,

the outputs of the MLP are connected to a fully connected

layer to produce a single point-wise score.

We supervise our training as a regression problem in-

stead of a classification problem to decrease the possibil-

ity of overfitting to object contours. The raw response val-

ues are compared with the point-wise ground truth labels

∈ [0, 1] by Binary Cross Entropy with Logits Loss.
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Figure 3. An illustration of the architecture. 5 Graph Convolutional layers aggregate multiscale features around each point; the features

are concatenated and fed into a fully connected layer to predict the point class.

4.3. Edge Computation

A central component of Graph Convolutional neural net-

works is the edge computation. If using the raw data, the

high density of points in the event cloud would give rise

to a very large number of edges, making large edge radii

prohibitively expensive to compute and use. To get around

this, while preserving connections with neighbouring points

along possible motion trajectories, we filter the edges in a

sphere radius r so that they are parallel to event-surface.

Given a point p0 and its normal n0, we keep only the edges

orthogonal to n0, with a certain filtering threshold α, as de-

scribed in Eq. 2-(a) (and illustrated in Fig. 4-(b))

(a) : {pi|∀pi ∈ Br(p0) & (pi − p0) · n0 < α}

(b) : {pi|∀pi ∈ Br(p0) & pti > pt0} (2)

Since most of an event’s temporal motion information is

contained within a plane parallel to time-surface, this fil-

tering strategy is a good trade-off between the richness of

surface features and the computational performance. Yet,

our experiments have shown that most surface patches are

rather isolated in the absence of strong texture or extremely

fast motion, and in practice the filtering is not required.

As a second constraint (Eq. 2-(b)), we impose the points

to lie in the upper (along temporal axis) hemisphere of a

point - this halves the number of edges with little to no de-

crease in network performance. Using both constraints, we

obtain sparse edges which will maximally align with possi-

ble local optical flow values (see Sec. 3). In our experiments

we use r = 10 pixels (the scaling along the temporal axis is

described in Sec. 5.1.1), and we perform an ablation study

on the radius size (Fig. 7(b)).

4.4. Temporal Augmentation

Following the intuitions discussed in Sec. 3, we use a

temporal augmentation to artificially introduce variations

in object speed (and hence - cloud shape) and improve the

generalization to varying motion. Given a point in an in-

put cloud p = (x, y, t) with a normal n = (nx, ny, nt) the

augmented point p′ and its normal n′ are computed as:

p′ = (x, y, α ∗ t) n′ = (α ∗ nx, α ∗ ny, nt), (3)

where α is a random scaling parameter (in our work, 0.8−
1.2) and n′ is normalized to unit length.

The motivation for this method is that the essential

cue characterizing separate objects does not depend on

speed, but rather on spatio-temporal anomalies - such as T -

corners, points with multiple flow values or the continuity

of the event cloud. The temporal augmentation forces the

neural network to learn such features (which remain unaf-

fected by augmentation), and reduces overfitting to the local

shape of the cloud. Our ablation studies (in Sec. 5.3) show

that the model generalizes better using this augmentation.

5. Experiments

5.1. Dataset

EV-IMO is the only publicly available event-based seg-

mentation dataset. It includes pixelwise masks at 200Hz

and roughly 30 minutes of recording, although the dataset

was collected in a single room and only includes three ob-

jects. Therefore segmentation might be prone to overfit-

ting. Since our pipeline is not trained on depth, overfitting

to room structure is unlikely. The 3D shape of the objects

varies a lot, depending on object motion, but overfitting on

contours is still possible. We perform an ablation study in

the supplementary material, where we train a NN using only

sequences with 2 of the objects and evaluate on sequences

with the third object.

(a) (b) (c)

Figure 4. Illustration of edge configurations: (a) a typical configu-

ration used in 3D processing: all points are used to create edges;

(b) and (c) our configuration: using only points in the upper hemi-

sphere (b); (c) using edges parallel to the time-surface (c).
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Figure 5. Qualitative results - the event cloud was projected on a plane, color represents the normalized timestamp. The subsampling rate

increases from top to bottom; small time slices are shown on the left, and large on the right. Experiments with 0.5 second slices could be

achieved only with a downsampling factor of u = 5, but the dramatic decrease in feature quality yields poor results compared to the 0.3
second slice with no subsampling. Note how the results improve for larger slice width, especially in the presence of texture.

5.1.1 Data Preprocessing

We preprocess the raw data of EV-IMO. We upscale the

temporal axis of the event cloud by a factor of 200 to keep

the density of events more uniform across the x,y,t axes.

The normals are precomputed using PCA, with r = 5 (af-

ter temporal upscaling). We also apply a radius outlier filter

with r = 3 and k = 30 - which removes all points having

less than 30 points in a radius of 3 pixels; this results in ap-

proximately 10% to 15% points removed. To further reduce

the number of points, we use random subsampling with a

factor u, which keeps 1 random point out of u (in practice,

we use u = 1 for no subsampling or u = 2, to remove

half the points). We precompute edges within a radius of 10
pixels for all points, and (optionally) keep up to 30 edges

connected to nearest points.

The ground truth provided in EV-IMO is image-based,

sampled at 200Hz. For every event, we approximate its

class by locating the nearest class mask according to mask

and event timestamps and downprojecting the event coordi-
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nate onto the image. This produces good results in practice,

even for fast motion; we show a sample of the event cloud

with class annotations in the supplementary material.

5.2. Implementation Details

Our network architecture consists of five consecutive

Graph Convolutional(GC) layers and three fully connected

hidden layers. As input features we use spatio-temporal

event locations (x, y, t), time-surface normals (nx, ny, nt),
and a per-event binary polarity value (p ∈

[

0, 1
]

) which

signifies whether the brightness has increased or decreased

at pixel (x, y), at time t.

In our current implementation the network (Sec. 4.2)

has 117k trainable parameters. We train the network with

a batch size of 3 using three Nvidia GTX 1080Ti GPUs.

Larger batch sizes are difficult to achieve in practice be-

cause of the large amount of data. We use the Adam opti-

mizer with a learning rate of 7e − 4 and cosine annealing

scheduling strategy. We train our models for 200 epochs on

a portion of the EV − IMO [25] dataset. The model takes

6-minutes to train for each epoch with a slice width of 0.3
seconds and no subsampling.

As baseline we use the state-of-the-art PointNet++ [30]

on event clouds. We take the segmentation implementation

of PointNet++ presented in [30], which in turn was inspired

by [14] and [29]. The implementation consists of two hier-

archical sampling and grouping modules, followed by one

k-nearest-neighbours interpolation and three forward pass-

ing modules. K-nearest-neighbours are searched with a ra-

tio and a radius of 0.2/0.2 in the first sampling layer and

0.25/0.4 in the second sampling layer. The responses from

the last forward passing modules are passed to three con-

catenated layers of a fully connected network to produce as

out a label for each point.

5.3. Ablation Studies

5.3.1 Effects of the Slice Width

We conduct experiments to investigate the effects of slice

width and cloud sub-sampling on the performance of the

network. Fig. 6 shows results on the boxes validation set for

the first 12k iterations of training. The experiments on the

full resolution clouds (shown in solid lines) perform notably

better, as to be expected, but the training speed is 30% lower

(for results on training speed see Table 2).

We observe that the largest effect was for larger slice

widths - the u2, w0.1 and u1, w0.1 perform similarly, while

u1, w0.3 is 10% better than u2, w0.3. Our intuition is that

this due to the lack of temporal features in smaller slices -

a similar effect is observed when varying the edge radius

(Fig. 7(b)). The edge radius, together with the network

depth, essentially controls the maximum size of global fea-

tures.

5.3.2 Temporal Augmentation

Temporal augmentation is designed to reduce overfitting

of the network to the local 3D feature descriptors by ran-

domly scaling the event cloud along time axis. The EV-IMO

dataset has high variation in object velocities, including

across training and validation sets; the velocity of the ob-

ject defines the shape of the cloud (as explained in Sec. 3.1),

which can cause significant drop in scores when transfer-

ring to unseen sequences in validation set. We show the

comparison for learning with and without augmentation in

Fig. 7-(a) by training on the boxes dataset and evaluation on

fast dataset.

5.4. Results

Both GConv and PointNet + + were trained on all

EV-IMO train sequences containing different objects, which

Figure 6. Inference performance, in mIoU , for the first 12k iter-

ations of training for slice widths w = 0.02, 0.1, 0.3 sec. Dashed

line corresponds to a subsampling factor u = 2. The solid line

corresponds to experiments with no subsampling (u = 1).

(a) (b)

Figure 7. mIoU scores for the box validation for varying edge

radius (without temporal augmentation). (a) Plots are shown for

α = 0.0 (no augmentation) and α = 0.2 for the first 12k itera-

tions of training. (b) Reducing the maximum edge radius from 10
to 7 and 5, results in a significant performance drop.
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boxes floor wall table fast

0.3 0.1 0.02 0.3 0.1 0.02 0.3 0.1 0.02 0.3 0.1 0.02 0.3 0.1 0.02

GConv 84±9 81±8 60±18 80±9 79±7 55±19 85±8 83±4 51±16 87±7 80±7 57±14 77±10 74±17 39±19

GConvu2 85±5 70±11 54±10 81±12 69±8 52±14 83±4 71±9 61±17 85±11 77±19 59±19 74±19 69±24 37±11

PointNet++ [30] 69±17 71±22 80±15 66±19 68±18 76±10 71±17 75±19 74±20 59±22 62±28 68±23 21±12 24±10 20±6

EV − IMO [25] 70±5 59±9 78±5 79±6 67±3

Table 1. Segmentation results on EV-IMO event-based dataset. Metric is mIoU(%) on points; the 3D methods were evaluated on 3

different time-slice widths: 0.3, 0.1 and 0.02 seconds. The best results are shown in bold for every separate validation set type.

are called boxes, floor, wall and table. They were evalu-

ated separately on boxes, floor, wall, table and the fast val-

idation set with a 0.02 sec. temporal step between slices,

α = 0.2 for temporal augmentation (disabled for valida-

tion), subsampling rates of u = 1 and u = 2 and slice

widths w = 0.02, 0.1 and 0.3 sec. The quantitative results

are presented in Table 5.2.

For the EV-IMO method, which outputs dense masks, we

set the slice width to 0.025sec. We project the inferenced

masks on the event cloud (similar to how we handle ground

truth, Sec. 5.1.1) and compute IoU scores on the labeled

event clouds.

5.4.1 Qualitative Results

Fig. 5 shows qualitative results (for visualization events are

projected the along time axis). The color encodes the times-

tamp (blue is 0, red is slice width). The top section of the

figure compares results with no subsampling for a 0.02 slice

and a 0.3 slice. Note how the increase in the size of the

slice improves the segmentation quality even in textured re-

gions. The subsampling factor u = 2, which removes half

the points from the event cloud, also produces high quality

results, but is more prone to false positives. For the bottom

section of the figure, 80% of the points were removed. The

quality of input suffers significantly, with many spatial and

temporal features lost, and the network performs poorly in

high-textured regions.

GConv PointNet++

params 117.5k 1.4M

#
p
ts

u 1 2 2 5

20ms 0.016 0.012 0.219 0.134 23073

0.1s 0.109 0.048 4.260 0.663 170503

0.3s 0.275 0.140 22.93 6.792 417315
Table 2. Forward time (seconds) for different uniform downsam-

pling and temporal slice widths.

5.4.2 Performance Considerations

We present the execution times for our GConv and for

PointNet++ for different time slice widths and event cloud

subsampling factors in Table 2, measured on a single

NVIDIA GTX1080Ti. In all experiments, PointNet++ is

notably slower than GConv. However, starting from the

0.1 second slice, GConv is not real time anymore without

subsampling. This problem can be addressed practically by

constructing a lookup table [31] and avoid recomputing fea-

tures when sequential time slices overlap.

6. Limitations and Future Work

Our approach operates on large slices in time - this al-

lows the neural network to observe a history of scene mo-

tion, and potentially make better decisions based on the

global temporal features - all without relying on LSTM-like

approaches (which essentially memorize scene content). On

the other hand, modern event-based cameras are capable of

generating up to 107 events per second, and with increased

resolution, the amount of local edge connections between

graph nodes can grow exponentially. In this work, we were

able to achieve slice widths of up to 0.3 seconds (and 0.5
seconds with severe downsampling) due to the large amount

of memory consumed by 3D points. A dedicated GPU-

optimized module could alleviate many of the shortcomings

we have witnessed. We also observe that edges are useful

mostly for extracting local features, and hence a dual neu-

ral network - one to extract local features on thin tempo-

ral slices and another to extract temporal features on large

slices will be among our future efforts.
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8. Conclusion

We have described spatial and temporal features of event

clouds, which provide cues for motion tracking and seg-

mentation. Our novel segmentation pipeline inherently cap-

tures these features and is able to perform well with rapid,

6 dof motion of the camera and objects on the scene. The

graph-based approach allows for the first time to use wide

slices as a single input, with inference speeds of up to 0.02
seconds. We believe that our contribution is a step forward

towards understanding the geometric properties of event

clouds and making a more complete use of the information

provided by event cameras.
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