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Abstract—The growing number of voice-controlled devices
(VCDs), i.e. Google Home, Amazon Alexa, etc., has resulted in
automation of home appliances, smart gadgets, and next gener-
ation vehicles, etc. However, VCDs and voice-activated services i.e.
chatbots are vulnerable to audio replay attacks. Our vulnerability
analysis of VCDs shows that these replays could be exploited
in multi-hop scenarios to maliciously access the devices/nodes
attached to the Internet of Things. To protect these VCDs and
voice-activated services, there is an urgent need to develop reliable
and computationally efficient solutions to detect the replay attacks.
This paper models replay attacks as a nonlinear process that intro-
duces higher-order harmonic distortions. To detect these harmonic
distortions, we propose the acoustic ternary patterns-gammatone
cepstral coefficient (ATP-GTCC) features that are capable of cap-
turing distortions due to replay attacks. Error correcting output
codes model is used to train a multi-class SVM classifier using
the proposed ATP-GTCC feature space and tested for voice replay
attack detection. Performance of the proposed framework is evalu-
ated on ASVspoof 2019 dataset, and our own created voice spoofing
detection corpus (VSDC) consisting of bona-fide, first-order replay
(replayed once), and second-order replay (replayed twice) audio
recordings. Experimental results signify that the proposed audio
replay detection framework reliably detects both first and second-
order replay attacks and can be used in resource constrained
devices.

Index Terms—Acoustic ternary patterns, audio replay detection,
audio spoofing dataset, gammatone cepstral coefficients, voice-
controlled devices.

I. INTRODUCTION

VOICE assistant, a software component of voice-controlled
devices (VCD) such as Google home, Amazon Echo,

etc., is becoming an essential component of Internet of Things
(IoT). This has resulted in realization of novel applications in
the commercial domain i.e. voice-based control of appliances
in smart homes [24], remote patient checkup in autonomous
vehicles, intelligent multimedia surveillance systems [26], and
voice-based retrieval of sensitive contents from information
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systems [27], etc. Although VCDs have revolutionized the IoT
domain, they have also introduced various new threats. For
instance, spoofing attacks on VCDs may help intruders retrieve
sensitive data from healthcare or financial applications or acquire
remote access to smart homes [1].

Audio spoofing attacks refer to the impersonation of intruders
to the devices through voice replays [3], voice-synthesis [4],
and voice conversion (VC) [5], [6]. Among these attacks, voice
replay poses the biggest threat due to the pervasiveness of
high-quality recording devices and smartphones, and the non-
precondition of any advanced technical knowledge [2]. In voice
replay attacks, the recorded voice of the genuine target speaker
is played back to deceive the VCDs to maliciously control the
devices in IoT (Fig. 1). In our previous work [1] on vulnerability
analysis of VCDs such as Google home and Amazon echo, we
have demonstrated that replay attacks are not just limited to
first-order but can be replayed on remote devices located on
another subnet if these VCDs are connected.

Fig. 1 shows a practical example to illustrate 1st and 2nd order
replay attacks. There are two homes, each having devices in a
separate subnet. Home-1 has a baby monitor that is remotely
accessible via a mobile application, and its heating system can
be managed through Alexa (VCD-1). VCD-1 in home-1 is also
connected to VCD-2 located in home-2 via Alexa’s drop-in fea-
ture. The garage of home-2 is controllable via VCD-3 (Google
Home). Now imagine two spoofing scenarios: a) An intruder
accesses the baby monitor through his phone, for example, by
hacking wireless LAN using tools such as Aircrack [45], and
sends a command “Alexa, turn off the heat” to turn off the heat
of home-1 as shown in Fig. 1(a). b) In the next attempt shown in
Fig. 1(b), the attacker, on the same network, sends the command,
“Alexa, hey Google open the Garage door” to the baby monitor
in home-1 in order to open the garage door of home-2, which
is not part of the compromised WLAN. In this scenario the
voice command will propagate through multiple Alexa enabled
smart speakers that will eventually reach at Google Home.
Eventually due to the inability to detect a replayed voice on
multiple hops, the attacker will be able to open the garage door
of home-2. It is important to mention that if two of the same
devices, e.g. Amazon Alexa, are connected using the drop-in
feature, then this will be considered a signal transmission rather
than a second-order replay attack. However, if the two devices
are different, e.g. Amazon Alexa paired with Google Home,
it is considered a second-order replay attack due to the differ-
ent acoustic properties between first- and second-order replay
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Fig. 1. Representative scenarios of replay attack in IoT using VCDs. (a) First-order replay scenario. (b) Second-order replay scenario.

attacks. We have also demonstrated that when a recorded voice
of a verified speaker of Google Home (VCD-3) is played on the
phone, this 3rd order chained replay (not shown in the figure)
also bypasses the Google Home speaker verification feature. In
other words, current VCDs are unable to differentiate between
original and replay voices of either authenticated or non-verified
users. This calls for development of light-weight anti-spoofing
systems for VCDs deployed in IoT environment.

Existing research in IoT anti-spoofing domain is limited to
IP and transport layers, however, voice based anti-spoofing in
IoT is largely unexplored. In recent years there has been some
research efforts to detect audio-based replay attacks [23] in
conventional automatic speaker verification (ASV) systems to
authenticate users in the financial sector [46]. Without focusing
on lightweight solutions, these methods measure the quantifiable
non-linearity that occurs due to the missing, changed, or newly
added voice attributes i.e. frequencies, amplitude, and phase etc.
by the microphone. Additionally, these methods consider this
presentation attack detection as a binary classification problem
and classify the audio as bonafide or spoof. However, none of
the existing work has focused on replay attack detection where
multiple microphones and smart speakers are chained together
(Fig. 1). Mostly VCDs manufactured by different vendors are
present in home/office setup. There exists a possibility where a
certain VCD is robust against replay attacks, however, during the
chaining process, data is coming from other VCDs (manufac-
tured by different vendor) that are either compromised or prone
to replay attacks due to weak or absence of replay detection
mechanism. Therefore, the audio received will be considered
as a genuine audio, and the countermeasure will eventually fail
for all the chained devices. This paper lays the groundwork for
multi-order replay attacks detection to overcome the associated
threats of VCDs in IoT-based environment. Accordingly, we
considered this problem as a tri-class problem where we classify
the signal as bonafide, first-order, or second-order replay attack.
Additionally, an audio representation mechanism should be less
sensitive to noise for the replay detection task as bonafide
and replay samples are recorded and replayed under different

environmental conditions. In order to achieve these objectives,
we propose a light-weight voice anti-spoofing system that can
reliably detect the first- and second-order replay attacks through
proposed features consisting of acoustic ternary patterns (ATP)
and gammatone cepstral coefficients (GTCC).

The main contributions of this paper are as under:
1) We highlight that multi-order replay spoofing attacks are

possible and VCDs are unable to detect them.
2) We proposed a noise resistant ATP features descriptor

and merge with GTCC for audio signal representation.
Additionally, we present the groundwork for multi-order
replay attack prevention through the proposed ATP-GTCC
light-weight features in VCDs.

3) We developed an open source voice spoofing detec-
tion corpus (VSDC) [32] with bonafide, first-order, and
second-order replay samples to address the multi-order
replay attack detection.

The rest of paper is organized as follows. Section II covers
state-of-the-art in voice replay spoofing detection. Section III
provides an analysis of multi-order voice replay attacks. Sec-
tion IV explains the proposed framework. Section V provides
the details of datasets and experiments designed for performance
evaluation. Finally, section VI concludes our paper.

II. RELATED WORK

This section provides a critical analysis of the existing state-
of-the-art anti-spoofing methods.

A. Gaussian Mixture Model-Based Approaches

Anti-spoofing systems developed for non-constrained devices
(e.g. banking server responsible for audio-based biometric au-
thentication) have explored Gaussian mixture model (GMM)
and its variants using magnitude-oriented [2], [3], [6] and phase-
oriented [4], [11], [21] features.

1) Magnitude-Oriented Features: In [2] constant
Q-transform cepstral coefficients (CQCC) were used to train
a two-class GMM to classify the audio samples as bonafide
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or spoof. In [5], a features-set comprised of Mel-Frequency
Cepstral Coefficients (MFCC), Perceptual linear predictive and
CQCC was used to train the ensemble classifiers consisting
of different variants of GMM. Intuitively, the extensive use
of multiple features makes this solution less practical for
VCDs. Few works [3], [6] have highlighted the significance
of high-frequency bands selectivity to address the replay
spoof detection. In this regard, transmission line cochlea
(TLC)-amplitude modulation and frequency modulation
features were used in [3] to train the GMM. However,
amplitude modulation (AM) feature representation has
significant computational cost, as it takes more than twice
the amplitude frequency to modulate the signal. Similarly,
in [6] inverted-MFCC (IMFCC), linear predictive cepstral
coefficients (LPCC), and LPCCres features were used to capture
the high-frequency features along-with the standard baseline
features of CQCC, MFCC, and Cepstrum. GMM was used to
classify the original and spoof samples. These approaches [3],
[6] perform better than the baseline CQCC-GMM model [2].
However, these methods are unsuitable to locally deploy on
resource constrained VCDs due to higher features computational
complexity.

Apart from high-frequency bands analysis, some research
studies [7], [9], [10] have highlighted that recording and play-
back device characteristics, reverberation and channel informa-
tion should be examined for replay attacks detection. In [7],
linear prediction residual signals were analyzed to examine the
recording and playback device characteristics. More specifically,
residual-MFCC (RMFCC) and residual inverse-MFCC (RIM-
FCC) features were used to train the GMM for replay spoofing
detection. In [9], authors examined the channel information and
reverberation from the non-voice segments of the audio. MFCC,
CQCC, and Mel-Filterbank-Slope (MFS) features were used to
train the GMM for replay attack detection. Similarly, in [10]
low frequency frame-wise normalization scheme was proposed
to capture the artifacts from the playback speech and later used
to detect the replay attacks.

2) Phase-Oriented Features: Works such as [4], [11], [21]
have used phase-oriented spectral features for replay spoofing
detection. In [4], a 36-D feature vector consisting of MFCC, Mel-
Frequency Principal Coefficients (MFPC), cos-phase principal
coefficients (Cos-phase PC) and Mel-wavelet packet transform
(MWPT) was used to train the SVM to classify between the
genuine and spoof samples. In [11], teager energy operator
(TEO) phase-based features were used to capture the traits of
bonafide and spoof samples. It was demonstrated that the TEO
alone was unable to provide better classification performance,
however accuracy was improved when TEO features were used
in combination with magnitude-oriented features. Similarly,
magnitude-based features were used in combination of phase-
based features to train the GMM for replay spoof detection [21].

B. Deep Learning-Based Approaches

Recently, deep learning approaches have also been investi-
gated for voice anti-spoofing systems. In [12], data augmentation
was performed to illustrate that it improves the performance

of ASVspoof baseline model [2]. Original spectrogram was
employed to deep residual network for features extraction. This
work has following limitations; firstly, manual data augmen-
tation is required, which is a laborious activity, and secondly,
using only the STFT based spectrogram makes it unable to
achieve better results. In [13], MFCC and CQCC were used to
train the GMM, ResNet and DNNs for replay attack detection.
After analyzing different combinations, it was concluded that
the combination of CQCC-GMM, MFCC-ResNet, and CQCC-
ResNet achieves the lowest equal error rate (EER). Although
this approach is effective however, the fusion of two deep
learning models along-with GMM makes it less feasible for
VCDs. In [14], a high-pass filter was employed followed by
computing the discrete cosine transform (DCT) to obtain the
high-frequency cepstral coefficients (HFCC). HFCC was used
in combination with CQCC to generate the embeddings through
a deep neural network (DNN). These embeddings represent the
extracted features that were used to train the SVM to classify
the audio samples as bonafide or spoof. Similarly, DNN was
also trained using the long-term average spectrum (LTAS) and
MFCC features for replay spoofing detection [22].

Instead of extracting certain features (i.e. MFCC, CQCC, etc.)
which are then fed to deep learning models for classification,
few works [18], [19] have also used machine-learned features.
In [18], authors used both the extracted and machine-learned
features to train the GMM-Universal Background Model (UBM)
for replay attacks detection. More specifically, 11 cepstral
features-sets were used to train an auto-encoder to obtain a
dense projection of these features. Finally, both the extracted
features-set and their learned representations were fed to GMM-
UBM for classification. This method [18] achieves better results
at the expense of increased features computation cost. The
problem of machine-learned features representation through the
autoencoder is the ability to learn maximum information rather
than the relevant information. Hence, the autoencoder can cause
information loss of relevant content.

Few methods have also adopted light-weight deep learning
frameworks for replay spoofing detection. In [15], light-weight
CNN [16] based on maximum feature-map (MFM) activation
was used to detect the replay attacks. MFM was able to reduce
the dimension by selecting the most relevant features to per-
form the classification. This method [15] was extended in [17]
to investigate the efficiency of angular margin-based softmax
activation function to train the light CNN for cloning and replay
spoofing detection. LCNN architecture was also employed in
[23] for replay attacks detection.

III. ANALYSIS OF MULTI-ORDER VOICE REPLAYS

The microphone, an integral component in the process-
ing chain of the replay attack, is a complex electromechan-
ical device. The interactions among its mechanical, electro-
mechanical, and electrical elements transform sound energy into
electrical signals. Any nonlinearity in these elements results in a
distorted output. The structures of commonly used microphones,
e.g., carbon, electric, etc. are known to behave in a nonlinear
manner [47]. In general, stiffness of the mechanical suspension
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Fig. 2. First-order replay attack scenario.

Fig. 3. Process chain comparison between bonafide and replay attack.

and acoustical damping are the dominant causes of nonlinear
distortion in most microphones. Microphone distortions can
be classified into harmonic, intermodulation, and difference-
frequency distortions [48]. Harmonic distortion is the effect
of nonlinearity on a pure tone excitation, causing harmonic
components in the output. Intermodulation distortion is the effect
of nonlinearity produced at the output from an excitation that is
sum of a stronger high frequency and a weaker low frequency
component. Difference-frequency distortion is the effect of a
nonlinearity produced at the output from an excitation of si-
nusoids of the same amplitude. For good quality microphones,
measuring microphone induced distortions at normal sound lev-
els is a difficult task. Intermodulation distortion measurements
are considerably more complex than measurements of harmonic
distortion. This is one of the factors behind using harmonic
distortion as a benchmark for microphone quality characteri-
zation. Specifically, second and third harmonics are typically
used to qualify microphone quality. The second harmonic is
the most dominant distortion component among all harmonic
distortion components [49]. It is therefore reasonable to model
a microphone as a second-order nonlinear device [50]. The
playback speaker also behaves in a nonlinear manner, which
can also be modeled as a 2nd-order device.

The 1st-order voice replay attack shown in Fig. 2 (bottom)
can be modeled as processing chain of microphone-speaker-
microphone (MSM) which is equivalent to a cascade of three
2nd-order nonlinear systems. This is because the microphone as
well as speaker are nonlinear devices and it is typically modeled
using 2nd-order nonlinear system. The microphone response can
be modelled through the following nonlinear function:

x [n] = αx [n] + β(y [n])2 (1)

Where α is the linear gain and β is the nonlinear coefficient
of the microphone. Shown in Fig. 3 is a comparison between a
bonafide (3a) and a spoofed recording (3b).

Figs. 2 & 3 show a 1st-order replay attack is equivalent
to MSM, which is modeled as 6th-order nonlinear process.
The processing chain representing a 1st-order replay attack is
therefore expected to introduce higher-order nonlinearity (be-
yond 7th-order) due to cascade of MSM processing chain. The
higher-order nonlinearity introduces higher-order correlations
in the frequency domain. In other words, nonlinear systems
introduce higher-order correlations which contribute distortions
in the form of new frequencies. Thus, the higher-order voice
replay attacks are expected to introduce stronger higher-order
distortions in the resulting signals. It is important to highlight
that microphone/speaker nonlinear modeling assumed here is
not optimal. Therefore, the 7th-order polynomial model is not
optimal. On the order hand, the direct speech signal (bonafide
audio) lacks microphone-speaker processing chain therefore is
expected to exhibit relatively low- or higher-order harmonic
distortions. The higher-order harmonic distortions therefore can
be used to differentiate between a direct and spoofed audio.
Spectral features such as higher-order spectral analysis (HOSA),
MFCC, GTCC, etc., can also be used to capture the traces of
replay attack induced distortions.

In our preliminary work [1], [51], we proposed HOSA-based
framework to capture the harmonic distortions due to replay
attacks. We have also demonstrated in [1] that replay attacks
introduce higher-order distortions, and second-order spectral
analysis, e.g., bicoherence can be used to capture traces of har-
monic distortions due to replay attacks. Higher computational
cost of HOSA makes these features unsuitable for VCDs. To get
around this issue, computationally efficient features consisting
of 13-dimensional GTCC and 20-dimensional ATP are used
to capture the distortions in replayed audios. As an example,
Fig. 4 shows plots of frame-level GTCC features for direct
(left), 1st-order (center), and, 2nd -order (right) audio recordings.
These plots demonstrate that replay attacks introduce distortions
(highlighted with doted yellow ellipses) in the resulting replayed
recordings; and selected GTCC features are able to capture these
distortions. It can also be observed from Fig. 4 that harmonic
distortions are more pronounced for the 2nd-order replay audio
recording than the 1st-order replay recording. This confirms
our claim that higher- order voice replay attacks are expected
to introduce stronger higher-order distortions in the resulting
signals. The stronger distortions for 2nd-order replay attacks
are expected to contribute to better detection performance than
1st-order replay attacks.

IV. PROPOSED FRAMEWORK

This section provides the description of the proposed replay
anti-spoofing framework. The input audio signal is processed
to extract the 20-D ATP and 13-D GTCC features that are then
fused to create a 33-D ATP-GTCC features-set. For classifica-
tion, we applied the error correcting output codes (ECOC) model
to design a multi-class support vector machine (SVM) classifier.
We used the proposed features to train the SVM and classify
the audio sample as bonafide, first-order replay or second-order
replay. The process flow of the proposed framework is provided
in Fig. 5 and the details are as follows.
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Fig. 4. GTCC features for bonafide, 1st-order replay, and 2nd-order replay.

Fig. 5. Architecture of the proposed framework.

A. Features Extraction

Effective acoustic features extraction is required to analyze
the complex nature of audio signals. The details of proposed
ATP and GTCC features extraction is explained below.

1) Acoustic Ternary Patterns (ATP): Inspired by the appli-
cation of 2D-local ternary patterns in image processing [28],
[29], we applied this concept for 1-D audio signals to effectively
represent the acoustic signal and detect the replay attacks [52],
[53].

For a given input audio signal Y [n] having N samples, we
partition the input audio signal into F(i) non-overlapping frames

with length l, where i = {1, 2, …, m} represents the total
number of frames in Y[n] and l = 9 in our case. As the ATP
features are inspired by image processing research [29] that
considers the closest 8 neighbors surrounding a given pixel in
a 3 × 3 window. We employ a similar concept by considering
8 neighbors of a central sample of the audio signal. Thus, one
central sample and 8 neighbors become a frame. In each frame
F(i), c represents the central sample in a frame with zjneighbors,
where j represents the neighbor index against the sample c
(Fig. 6(a)). To compute the local ATP response, we calculate
the difference between the magnitude of central sample c and
neighboring audio samples zj by applying the parameter th
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Fig. 6. ATP features computation method.

around the sample c. We initialize the th as zero and optimize
it by performing a linear search to find the convergence point
between 0 and 1. In our case, th = 0.00015 provide us the most
precise results. We quantize the sample values in F(i) to zero
that lie in the range of width±th around the c, whereas values
above and below c ± th are quantized to 1 and −1 respectively
(Fig. 6(b)). Thus, we obtain a three-valued function as:

P
(
zj , c, th

)
=

⎧⎪⎨
⎪⎩

−1, zj − (c− th) ≤ 0

0, (c+ th) < zj < (c− th)

+1, zj − (c+ th) ≥ 0

⎫⎪⎬
⎪⎭ (2)

Where P (zi, c, th) denotes the acoustic signal using a three-
valued ternary pattern locally. Next, we split the patterns into
two classes i.e. upper pattern Pup (.) and lower pattern Plw (.).
All values quantized to+1 are retained in Pup (.), while replacing
all other values with zeros as follows:

Pup
(
zj , c, th

)
=

{
1, if P

(
zj , c, th

)
= +1

0, Otherwise

}
(3)

Similarly, we retained all values quantized to -1 in Plw (.) and
replaced all the other values with zeros as follows:

P lw
(
zj , c, th

)
=

{
1, if P

(
zj , c, th

)
= −1

0, Otherwise

}
(4)

Similar to the concept of uniform patterns in image processing
[29], we employed this concept for audio signals as these patterns
can effectively capture the maximum traits of the audio signal.
Uniform patterns possess significant details of the signal as
compared to non-uniform patterns that include redundant and
less important content of the input signal. It is also important
to mention that there exist more uniform patterns in compari-
son to non-uniform patterns. We computed the upper uniform

LTPup
u (.) and lower uniformLTP lw

u (.) patterns from the Pup (.)
and Plw (.) as shown in Fig. 6(c), and represented these patterns
in decimal values as follows:

LTPup
u

(
zj , c, th

)
=

∑j=7

j=0
Pup
u

(
zj , c, th

)× 2j (5)

LTP lw
u

(
zj , c, th

)
=

∑j=7

j=0
P lw
u

(
zj , c, th

)× 2j (6)

In the next step, we compute the histogram of LTPup
u and

LTP lw
u , where we assigned one histogram bin for each uniform

pattern and include all non-uniform patterns in a bin while reduc-
ing minimum information (Fig. 6(d)). Histograms are calculated
as:

Hup (LTPup, b) =
∑K

k=1
δ (LTPup

k , b) (7)

H lw
(
LTP lw, b

)
=

∑K

k=1
δ
(
LTP lw

k , b
)

(8)

Here b represents the histogram bins corresponding to the
uniform ATP codes, δ(.) is the Kronecker delta function. After
conducting extensive experiments during the ATP code genera-
tion process, we observed that the first 10 uniform patterns both
from the upper and lower patterns were sufficient to capture all
distortions available in the samples. Therefore, we used the 10-D
ATP code each for the upper and lower uniform patterns and
combined the histograms to create a 20-D ATP feature descriptor
as:

ATP = [Hup|| H lw] (9)

Where || denotes the concatenation operator, and [] is used
to represent that two histograms will concatenate to provide the
ATP feature vector.

2) Gammatone Cepstral Coefficients (GTCC): Gammatone
Cepstral Coefficient (GTCC) features [54] are gaining impor-
tance due to the improved characteristics of filter responses
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Fig. 7. GTCC features computation method.

that better resembles the human auditory system. To capture
the distortions in frequency scale, we can use any spectral
features i.e. MFCC, GTCC, etc. The computational cost of
GTCC is equivalent to MFCC, however GTCC are more robust
to noise [25] and provides superior classification performance
over MFCC. Therefore, we selected the GTCC features to better
capture the distortions with extremely efficient ATP features
for representation of the audio signal. Additionally, they are
never employed for audio replay attacks detection, therefore,
we employed GTCC to evaluate their effectiveness in terms of
reliable audio replay attacks detection.

GTCC features are a biologically inspired modification of the
MFCC that uses gammatone filters with equivalent rectangular
bandwidth (ERB) bands. As reported in [30], the magnitude
response of 4th-order gammatone filter (GT) is similar to a reox
function [44] that can be used to represent the human auditory
response. GT filter provides more frequency components in the
low-frequency range with narrow bandwidth and less frequency
components in the high-frequency range with wider bandwidth
that reveals the spectral information effectively. Moreover, de-
signing an efficient feature descriptor is better accomplished
through GTCC, as the nth-order GT filter can be represented
through a set of n 1st-order GT filters arranged in cascade form.

To extract the GTCC features, we applied the fast Fourier
transform (FFT) on each audio frame to analyze the spectrum.
A gammatone filter bank comprising of various GT filters is
employed to the FFT of the audio signal and energy of each
sub-band En is computed. In the next step, logarithm (Log) of
each En is computed followed by applying the discrete cosine
transform (DCT) on this signal to obtain the GTCC features.
The GTCC features are computed as follows:

GTCCk

=

√
2

Z

∑Z

z=1
log (En) cos

[
πz

Z

(
k − 1

2

)]
1 ≤ k ≤ K.

(10)

Where En, Z, and K represents the signal energy for nth spec-
tral band, number of gammatone filters and number of GTCC
respectively. Log and DCT are computed to model the subjective
perception of loudness and reduce the auto-correlation in the
log-compressed filter outputs for better energy compression. The
process of GTCC computation that returns the 13-dimensional
GTCC coefficients is shown in Fig. 7. We employed the window
length of 30 ms and overlapping factor of 20 ms to extract the
GTCC features.

For cepstral features, 0th-order coefficient contains the av-
erage power of the input audio signal, whereas, the 1st-order
coefficient denotes the distribution of spectrum energy between
low- and high-frequencies. Although higher-order coefficients

represent increasing levels of spectral details based on the sam-
pling rate and estimation method, however, it is important to
mention that 13 to 20 cepstral coefficients are usually considered
optimal for audio signal analysis. Since we aim to propose a
light-weight anti-spoofing framework, therefore we extracted
13 GTCC features and fused with ATP features for audio signal
representation. The implementation of ATP and GTCC features
computation are available at [8].

B. Classification

We employ the error correcting output codes (ECOC) model
[43] to design a multi-class classifier through combining three
binary classifiers to detect the bonafide, first-order, and second-
order replay samples. ECOC comprises of encoding and decod-
ing stages. In the encoding stage, ECOC creates a codeword for
each class based on different binary problems. Whereas in the
decoding stage, ECOC classifies the given test input based on
the value of the output code.

There are three classes in our case, so during the encoding
stage, three different groups of classes are created and three
dichotomizers (binary learners) are trained. Next, we obtain
the code-word of length three for each class. Each bit of the
code-word indicates the response of the given dichotomizer.
More specifically, we adopt the ternary ECOC model that use
three codes {−1,0,1}in the encoding process. The ternary ECOC
model ignores one class and compares the other two during one
vs one scheme as shown in Fig. 5. So, our ternary coding matrix
CM is {−1,0,1}. Here 0 is used to ignore one class when the
other two classes are used in the particular binary classifier.
At the decoding stage, we obtain a code against each audio
for three binary classifiers that is then compared against the
base-codewords of each class. We employ the hamming distance
to measure the distance between the codewords of given test
input and the three classes. The given test sample is assigned to
the class having the closest code-word.

Our ECOC model uses three SVM learners to classify the
bonafide, first-order replay, and second-order replay samples.
The training samples consist of V number of features for
bonafide, first-order-, and second-order-replay samples created
as: {xi, ci}, i = 1, ….,V, where ci{−1, 0, 1} represents the
bonafide, first-order- and second-order-replay classes. Each
SVM classifier is trained using the proposed features for two
classes at a time. We solve the following binary classification
problem to train the two classes q and r.

min
wq,r,bq,r,q,r

1
2 (w

q,r)T (wq,r) + P
∑

t ξ
q,r
t (wq,r)T⎧⎪⎨

⎪⎩
(wq,r)T ∅ (Ut) + bq,r ≥ 1− ξq,rt , ct = q

(wq,r)T ∅ (Ut) + bq,r ≤ ξq,rt − 1, ct = r

ξq,rt ≥ 0

⎫⎪⎬
⎪⎭
(11)
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TABLE I
DETAILS OF VOICE SPOOFING DETECTION CORPUS

Where Ut represents the training data which is mapped to
a higher dimensional space by the function ∅, and P is the
penalty parameter. We want to maximize the margins between
the samples of bonafide and spoof classes through minimizing
the 1

2 (w
q,r)T (wq,r). The penalty term

∑
t ξ

q,r
t (wq,r)T is em-

ployed to reduce the number of training errors as our data is not
linearly separable. We aim to search for a balance between the
regularization term 1

2 (w
q,r)T (wq,r) and the training errors.

We apply the voting scheme through analyzing the
(wq,r)T ∅(Ut) + bq,r. More explicitly, if sign ((wq,r)T ∅(Ut) +
bq,r) indicates thatUt belongs to the qth class, then we increment
the voting counter for qth class and vice versa. Finally, we adopt
the majority voting scheme to predict the class of Ut where Ut

belongs to the class getting the majority of votes.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Dataset

Performance of our framework is evaluated on the proposed
VSDC [32] and ASVspoof 2019 [23] corpus. The existing
spoofing datasets like ASVspoof [23] and ReMASC [20] only
contains first-order replay samples against the bonafide audio
samples, therefore, the VSDC is specifically designed to evalu-
ate the performance of the proposed framework in multi-order
replay attacks scenario (first- and second-order). We ensured that
the proposed VSDC is diverse in terms of microphones, playback
devices, environment, speaker genre, and number of speakers.
For audio recording, we used multiple professional and cell-
phones microphones. Additionally, we captured and replayed
the samples in different environments to ensure that our recorded
and replayed samples encompass noise and interferences. To
generate the first- and second-order replay samples we used
variety of different playback devices to counter the effect of
any playback device characteristics. Ten male and nine female
speakers were involved to record the original audio samples in
different environments. The details of our dataset are provided
in Table I.

The ASVspoof 2019 dataset for replay spoofing consists
of training, development and evaluation sets. The training set
contains 54 000 samples, the development set contains 33 534

TABLE II
RESULTS OF THE PROPOSED METHOD ON DIFFERENT KERNELS

samples and the evaluation set contains 1 53 522 bonafide
and replay samples. Unlike our dataset, the ASVspoof dataset
includes samples of different lengths, even some of the bonafide
and corresponding spoof samples vary in duration.

B. Performance Evaluation of Proposed Framework

Performance of the proposed framework is evaluated using
the EER, precision, recall, f1-score, and accuracy. For experi-
mentation, we used the proposed features to train the SVM using
ECOC model to classify among the bonafide, first-order-, and
second-order-replay samples. For VSDC, we used 70% of the
samples for training and rest 30% for testing purposes, whereas,
for ASVspoof dataset we used the training set to train the model
and evaluation set for testing. We employed the ten-fold cross
validation scheme to train the model with different SVM kernels
i.e. linear, quadratic, cubic, and radial basis function (RBF).
We selected the penalty parameter or box constraint to 1 and
kernel scale or gamma to 1.4 as we obtained best results on
these parameter settings.

1) Results of the Proposed ATP-GTCC Features: We per-
formed the experiments through proposed features-set and dif-
ferent SVM kernels on both datasets, and results are reported
in Table II. We achieved an EER of 18%, 1.16%, 0.66% and
0.6% using the linear, quadratic, cubic and RBF kernels respec-
tively on VSDC. Whereas for the ASVspoof 2019 dataset, we
achieved an EER of 2%, 1.5%, 1.1% and 1% using the linear,
quadratic, cubic and RBF kernels respectively. From the results
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TABLE III
DETAILS OF FEATURE VECTORS

presented in Table II we can observe that the SVM using the
RBF kernel provides best results as compared to other kernels.
More specifically, we obtained an EER of 0.6%, precision, recall,
and f1-score of 99.3%, and accuracy of 99.4% on VSDC. And,
obtained an EER of 1%, precision, recall, and f1-score of 99%,
and accuracy of 99.1% on the ASVspoof dataset.

We observed from the results (Table II) that the polynomial
and RBF SVM kernels provide superior classification perfor-
mance due to the non-linearities present in first- and second-
order replay samples. Whereas, SVM tuned with the linear
kernel achieves the highest EER. We also observed that the
third order polynomial (cubic) kernel achieves a lower EER
as compared to second order polynomial (quadratic) for multi-
order replay spoofing. This observation shows the effectiveness
of higher-order polynomial function to better distinguish the
distortions available in higher-order replays. More specifically,
SVM using the RBF kernel achieves the lowest EER of 0.6%
and 1% on our proposed ATP-GTCC features-set on VSDC and
ASVspoof datasets. Our findings on different SVM kernels con-
clude that RBF outperforms all other kernels for replay spoofing
classification. From these observations, we argue that SVM
using the RBF kernel can better discriminate the characteristics
present in the bonafide and spoof samples.

2) Performance Comparison of Proposed Features With Dif-
ferent Features-Combinations: To justify the effectiveness of
the proposed features in detecting the distortions present in the
spoof samples, we generated different ATP and spectral feature-
combinations (Table III) and evaluated their performance on
both datasets through SVM using the RBF kernel. The results
obtained are reported in Table IV.

From Table IV we can clearly observe that our proposed
ATP-GTCC features-set outperforms other features by achieving
the lowest EER. More specifically, we achieved an EER of 2.5%
and 1.5% on ATP-spectral, 2.33% and 6.75% on MFCC-GTCC-
spectral, 1.33% and 0.75% on ATP-MFCC and 0.6% and 1% on
our proposed ATP-GTCC features for VSDC and ASVspoof
datasets respectively. Similarly, we achieved the highest preci-
sion, recall, f1-score, and accuracy for our proposed ATP-GTCC
features-set as compared to other features as shown in Table IV.

From the experiments, we observed that the fusion of ATP
with spectral features improves the classification performance
and achieves a lower EER. Based on the results, we conclude
that the proposed ATP-GTCC features-set can reliably be used to
classify among the bonafide, first-order replay and second-order
replay samples. Additionally, our proposed features are compu-
tationally efficient, making them a reliable features descriptor for

TABLE IV
COMPARATIVE ANALYSIS OF PROPOSED AND OTHER SPECTRAL FEATURES

VCDs. Our proposed ATP-GTCC features-set lays the ground-
work for detecting replay attacks in resource constraint VCDs
connected in IoT environment.

C. Performance Comparison of First- and
Second-Order Replay Attacks

We hypothesize that the second-order replays contain more
distortions compared to the first-order replays. To evaluate our
claim, we measured the performance of the proposed method
for first- and second-order replay attacks detection separately on
our VSDC. For the purpose of this experiment, we partitioned
our dataset into two collections; one collection containing 4000
bonafide and 4000 first-order replay samples, and the other con-
taining 4000 bonafide and 4000 second-order replay samples.

First, we evaluated the performance of the proposed method
on the bonafide and first-order replay samples of our dataset.
We used 70% of the samples from each of the two classes,
extracted the ATP-GTCC features, and trained the SVM using
the RBF kernel. We used the remaining 30% samples of both
classes for testing to classify the bonafide and first-order replay
samples, and obtained an EER of 0.7%, accuracy of 99.3%, and
precision, recall, and F1-score of 99.2%. Next, we evaluated the
performance of our method on the bonafide and second-order
replay samples. We used 70% of the samples from each of the
two classes (bonafide and second-order replays), extracted the
ATP-GTCC features and trained the SVM using RBF kernel.
Again, we used the remaining 30% samples of both classes for
testing to classify the bonafide and second-order replay samples,
and achieved an EER of 0.5%, accuracy of 99.5%, and precision,
recall, and F1-score of 99.4%. The results of this experiment
prove our hypothesis that the first-order replay attacks are more
challenging to detect than the second-order replay attacks.

D. Performance Comparison using Different Classifiers

This experiment is designed to compare the performance of
the proposed method against other machine learning classifiers

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2020 at 19:35:51 UTC from IEEE Xplore.  Restrictions apply. 



MALIK et al.: LIGHT-WEIGHT REPLAY DETECTION FRAMEWORK FOR VOICE CONTROLLED IOT DEVICES 991

TABLE V
DETECTION RESULTS OF DECISION TREES

to indicate the significance of the proposed method for accurate
classification of bonafide and spoof samples. For this purpose,
we trained various classifiers (decision trees [33], k-nearest
neighbor (KNN) [34], naïve bayes [35], ensemble classifiers
[36], and BiLSTM deep learning framework [37]) on the ex-
tracted features. We performed different experiments using dif-
ferent feature-sets to train these classifiers as done for SVM.
Again, for VSDC, we used 70% of the samples for training
and the remaining 30% for testing purposes, whereas for the
ASVspoof dataset, we used the training set to train the model
and evaluation set for testing.

1) Classification Using Decision Trees: For experimental
purposes, we created the decision trees at different levels: coarse-
level, using only few decision nodes (maximum number of
splits is 4); medium-level, with more decision nodes (maximum
number of splits is 20); and fine-level using a large number
of decision nodes (maximum number of splits is 100). It is
to be noted that fine trees have more depth in the structure
and coarse has the least. We trained the decision trees on both
datasets for all of these levels. We repeated the experiments for
different features-sets as adopted for SVM. The detailed results
of these experiments performed on different features are reported
in Table V.

For GTCC-MFCC-spectral features-set, we achieved the low-
est EER of 11% and 15.25% on the VSDC and ASVspoof
2019 datasets respectively for decision trees trained on fine
level. Similarly, for ATP-spectral features-set, we repeated all
the experiments and achieved a minimum EER of 18.66% on
VSDC and 18.55% on the ASVspoof 2019 dataset. For ATP-
MFCC combination, we achieved the lowest EER of 16.8% and
17.3% on the VSDC and ASVspoof 2019 datasets. Finally, for
our proposed ATP-GTCC features, we also attained the best
results on the decision trees trained at fine-level depth. More

specifically, we obtained an EER of 16.3% and 15% on VSDC
and ASVspoof datasets respectively.

Results show that decision trees at coarse-level train faster
as compared to medium- and fine-level trees since coarse-level
trees have the fewest nodes. However coarse-level decision
trees are less accurate in terms of classification as compared
to medium- and fine-level trees. It is important to mention that
fine-level trees have the most depth of all trees and performs
best for all features-sets and on both datasets. We conclude that
fine-level decision trees are most effective and coarse-level trees
are most efficient among all the three levels used for training.

2) Classification using Naïve Bayes: We performed an ex-
periment to train different features-sets on Naïve Bayes with
gaussian and kernel distributions separately and results are
shown in Table VI.

For GTCC-MFCC-spectral features, we achieved an EER
of 30.66% on VSDC, and 17% on the ASVspoof dataset. For
ATP-spectral features, we obtained an EER of 31% and 26.5%
on VSDC and ASVspoof datasets. Similarly, for ATP-MFCC
features we achieved an EER of 31.3% and 20.75% on VSDC
and ASVspoof datasets. Finally, for our proposed ATP-GTCC
features-set we achieved the lowest EER of 27% on our dataset
and 19.75% on the ASVspoof 2019 dataset.

Table VI shows that Naïve Bayes performs better with the ker-
nel distribution as compared to gaussian distribution. However,
this superior performance comes at the expense of increased
computational cost and memory. This is because modeling
each feature with the kernel distribution requires calculating a
separate kernel density estimate for each class according to the
training data of that class.

3) Classification Using K-Nearest Neighbor (KNN): We also
tested the classification performance of KNN on both datasets.
Our experiments demonstrate that KNN achieves very low EER
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TABLE VI
DETECTION RESULTS OF NAÏVE BAYES

TABLE VII
DETECTION RESULTS OF KNN

as shown in Table VII. However, KNN is computationally ex-
pensive and requires more memory as it stores all the training
data. In addition, KNN is sensitive to irrelevant features and
scale of data.

For our experiments using the KNN, we tuned three param-
eters: the number of neighbors (kn), the distance metric to
compute the nearest neighbors (NN), and distance weights. More
specifically, we set the distance metric to Euclidean and distance
weight to equal for the first three experiments and used different
values of neighbors; first with kn = 1 (fine KNN), then kn = 10
(medium KNN), and finally kn = 100 (coarse KNN). In the next
two experiments, we fixed the number of neighbors (kn = 10)
and distance weight to equal while changing the distance metric
to cosine and cubic. Finally, in the last experiment of KNN, we
modified the distance weight from equal to squared inverse, fixed
kn = 10 and the distance metric to Euclidean (Table VII). We
assigned different weights to the neighbors based on distance,
because KNN assumes that closer samples are possibly similar,
so it makes sense to distinguish among the nearest neighbors

during classification of new samples. Therefore, we assigned
higher weights to the closer neighbors to ensure their maximum
contribution towards deciding the class of the new instance.
More specifically, each NN is assigned a weight based on the
squared inverse mechanism, in which closer neighbors have
higher weights and vice versa.

For GTCC-MFCC-spectral features-set, weighted and cosine
KNN performs best among all variations of KNN on VSDC. It is
to be noted that both weighted and cosine KNN use 10 nearest
neighbors. More specifically, both weighted and cosine KNN
achieves an EER of 2.66% on VSDC.

For the ASVspoof 2019 dataset, fine KNN achieves the lowest
EER of 8.75%. For ATP-spectral features set, fine KNN per-
forms best on VSDC with an EER of 3.33%, whereas weighted
KNN performs best on the ASVspoof dataset, obtaining an EER
of 10.75%. Similarly, for ATP-MFCC features set we achieved
an EER of 1.58% on VSDC and 7.75% on the ASVspoof dataset
using fine KNN. Finally, for our ATP-GTCC features set we also
achieved the best results with fine KNN on both datasets. More
precisely, we achieved an EER of 0.75%, precision of 99.3%,
recall of 99.2%, f1-score of 99.25%, and accuracy of 99.3%
on VSDC, and an EER of 7%, precision, recall, accuracy, and
f1-score of 93% on the ASVspoof dataset.

From the results (Table VII), we conclude that KNN with
minimum value of kn provides the best results for all sets con-
taining ATP features. Whereas, conventional spectral features
perform best when kn is set to around 10. In addition, KNN
using the Euclidean distance performs best in all features-sets
for both datasets. We also observed that assigning different
weights to neighbors based on distance in KNN results in better
performance for conventional spectral features sets.

4) Classification Using Ensemble Classifiers: Ensemble
methods are created through integrating multiple classifiers
to build a predictive model with the aim of achieving better
accuracy.

Some ensemble classifiers combination cause data overfitting,
however, ensemble methods like bagging and boosting decrease
the variance and bias, respectively. Though ensemble classifiers
can achieve better accuracy, this is at the expense of increased
computational cost. In light of the above facts, we evaluated the
performance of different ensemble classifiers on the selected
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TABLE VIII
DETECTION RESULTS OF ENSEMBLE BAGGED TREES

TABLE IX
DETECTION RESULTS OF BILSTM DEEP LEARNING

features sets. More specifically, we employed five different en-
semble methods: boosted trees [38], bagged trees [39], subspace
discriminant [40], subspace KNN [41], and RUSBoosted trees
[42].

As in earlier experiments, we evaluated the performance of
ensemble methods on different features-sets. Ensemble bagged
trees performed best for all features-sets as compared to other
ensemble methods. The results of ensemble bagged trees on
all features-sets and both datasets are provided in Table VIII.
We achieved the lowest EER of 4.16% and 10.5% on GTCC-
MFCC-spectral features-set, 3% and 9.5% on ATP-spectral, 2%
and 7.75% on ATP-MFCC, and 1.83% and 7.5% on proposed
ATP-GTCC features-set for VSDC and ASVspoof datasets re-
spectively. From the results, we conclude that our ATP-GTCC
features-set provides better classification performance as com-
pared to other features on ensemble bagged trees classifier.

5) Classification Using Deep Learning: The significance of
recurrent neural networks (RNN) in analysis of sequential and
time series data motivated us to apply the BiLSTM deep learning
model (a type of RNN) for audio replay attack detection. For
this experiment, we evaluated the performance of BiLSTM
framework on different features-sets, and results are reported
in Table IX.

TABLE X
DETECTION PERFORMANCE OF DIFFERENT

CLASSIFIERS WITH PROPOSED FEATURES

We used different numbers of hidden layers and tuned dif-
ferent parameters during network training. More specifically,
we tuned the following parameters: number of hidden units,
state activation function, gate activation function, batch size,
and maximum epochs. We performed the experiments using
100, 200, and 300 number of hidden units, and obtained best
results for each features-set on 200 hidden units. For the state
activation function, we tuned the system on tanh and soft-sign
and found that tanh outperforms the soft-sign state activation
function in almost all experiments. Similarly, for the gate acti-
vation function, we used sigmoid and hard-sigmoid and obtained
best results on sigmoid function. For network training, we tuned
the maximum number of epochs in different ranges and received
best results on 200 epochs for each experiment. Mini-batch size
was also set to different values of 16, 24, 32, 64, and 128 for each
features-set. For all cases we found best results on mini-batch
size set to 64. The results obtained on each features-set using the
BiLSTM framework are shown in Table IX. Again, our proposed
ATP-GTCC features-set provides best performance as compared
to other features-sets. It is also important to mention that the
BiLSTM framework achieves much higher EER (Table IX) as
compared to SVM. Therefore, we conclude from this experiment
that BiLSTM model is less effective for audio replay spoofing
detection.

6) Analysis of Features Performance Comparison: Perfor-
mance comparison of different classifiers, using the proposed
features-set, shows that SVM performs best and Naïve Bayes is
the worst in terms of EER. More specifically, SVM achieves the
lowest EER of 0.6%, whereas Naïve Bayes achieves the highest
EER of 27% on our proposed ATP-GTCC features (Table X).
Therefore, we argue that SVM can reliably be used to classify
the bonafide and replay spoof samples.

E. Performance Comparison With Existing Methods

This experiment is designed to compare the performance
of the proposed method against state-of-the-art replay attack
detection methods. For this purpose, a comparative analysis of
the proposed method is performed with these techniques [3, 5,
6, 10, 12–15, 18–19, 22]. The EER values of the proposed and
comparative methods are provided in Fig. 8.
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Fig. 8. Performance comparison with existing state-of-the-arts.

Gunendradasan et al. [3] evaluated the performance of their
method on ASVspoof corpus. TLC-AM features achieved an
EER of 8.51% and 8.68% and TLC-FM features obtained an
EER of 10.11% and 11.3% on V1 and V2 corpus respectively.
However, the fusion of TLC-AM and TLC-FM features improve
the detection performance and obtained the EER of 7.32% on
V1 corpus and 7.59% on V2 corpus. Ji et al. [5] achieved an
average EER of 10.2% with a limitation of data overfitting due
to the small size of the ASVspoof development set. Witkowski
et al. [6] achieved an average EER of 6.6% and 22.93% on
ASVspoof development and evaluation datasets respectively.
Yang et al. [10] achieved an ERR of 10.63% and 10.31% on
CQNSC and CQNCC features on ASVspoof V2 corpus. Cai
et al. [12] achieved an EER of 16.39% on the evaluation set
and 3.52% on the development set of ASVspoof. Chen et al.
[13] achieved an EER of 2.58% on development and 13.3% on
evaluation dataset of ASVspoof. Nagarsheth et al. [14] achieved
an EER of 7.6% and 11.5% on the development and evaluation
datasets of ASVspoof. Lavrentyeva et al. [15] obtained an EER
of 3.95% on development and 6.73% on evaluation dataset of
ASVspoof. Balamurali et al. [18] achieved an EER of 10.8%,
whereas, Bakar et al. [22] obtained an EER of 18.78% and 4.55%
on development set, and 24.81% and 18.1% on the evaluation
set of ASVspoof. Finally, the proposed method outperforms the
existing state-of-the-art replay spoofing detection methods and
achieved an EER of 0.6% and 1% on VSDC and ASVspoof
datasets 2019 respectively.

F. Performance Evaluation on Mixed Dataset

The purpose of this experiment is to evaluate the performance
of the proposed method under more diverse conditions where
the dataset samples are heterogeneous in nature i.e. speakers,
environments, microphones and playback devices, sampling
rate, etc. For this purpose, we have created the training and
testing sets comprising of bonafide and spoof samples from
both the ASVspoof and VSDC datasets. For this experiment,
we have taken 8000 bonafide and first-order replay samples

from the ASVspoof dataset, and same from the VSDC (16 000
audio samples in total). Afterwards, we used 70% (11 200 audio
samples) of the data for training and the remaining 30% (4 800
audio samples) for testing purposes using the RBF kernel based
SVM classifier. We obtained an EER of 9.9% and accuracy of
90% that clearly shows the effectiveness of the proposed method
in terms of replay attack detection even when the audio samples
were highly diverse.

G. Comparative Analysis of Features Computation Cost

The proposed framework selects efficient features to counter
the replay spoofing attacks for VCDs in IoT environment. In
this sub-section we provided a comparative analysis of the
computational complexity of proposed features against different
features-sets.

The computational cost of proposed ATP-GTCC features-
set is O(n) + O(nlog(n)). The computational cost of ATP-
MFCC features is similar to our proposed features, however our
proposed ATP-GTCC features provides superior classification
performance over ATP-MFCC on both VSDC and ASVspoof
datasets. Additionally, ATP-Spectral (Table III) has a compu-
tational cost of O(n) + O(nlog(n)), whereas GTCC-MFCC-
Spectral combination is the most complex having computational
cost of O(nlog(n)) + O(nlog(n)) + O(nlog(n)).

From the above-mentioned statistics, we can clearly observe
that the proposed ATP-GTCC features has the lowest complexity
as compared to other features. Hence, ATP-GTCC features can
reliably be used in resource constrained environments.

VI. CONCLUSION

The proposed anti-spoofing framework is the first attempt
to address the issue of detecting the first- and second-order
replay attacks. The voice replay attack is modeled as a nonlinear
process that introduces harmonic distortions. Stronger harmonic
distortions are used to quantify replay attacks which is used for
developing an anti-spoofing framework. We proposed a light-
weight ATP-GTCC features-set to better capture the non-linear
characteristics, due to distortions, of first- and second-order
replay samples. The proposed light-weight solution is best fit
for resource constraint VCDs connected in IoT environment.
The EER of 0.6% on VSDC and 1% on the ASVspoof datasets
signifies the effectiveness of the proposed framework in terms
of replay attack detection.

We plan to extend the proposed framework to develop a hybrid
anti-spoofing system that can effectively be used to combat both
replay and cloning attacks. Additionally, we are also planning
to extend our VSDC to include the cloning samples as well,
since the existing audio cloning datasets like ASVspoof lack
high-quality cloning audios.

REFERENCE

[1] K. M. Malik, H. Malik, and R. Baumann, “Towards vulnerability analysis
of voice-driven interfaces and countermeasures for replay attacks,” in Proc.
IEEE Conf. Multimedia Inf. Process. Retrieval, 2019, pp. 523–528.

[2] M. Todisco, D. Héctor, and E. Nicholas, “Constant Q cepstral coefficients:
A spoofing countermeasure for automatic speaker verification,” Comput.
Speech Lang., vol. 45, pp. 516–535, 2017.

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2020 at 19:35:51 UTC from IEEE Xplore.  Restrictions apply. 



MALIK et al.: LIGHT-WEIGHT REPLAY DETECTION FRAMEWORK FOR VOICE CONTROLLED IOT DEVICES 995

[3] T. Gunendradasan, S. Irtza, E. Ambikairajah, and J. Epps, “Transmission
line cochlear model based AM-FM features for replay attack detec-
tion,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2019,
pp. 6136–6140.

[4] S. Novoselov, A. Kozlov, G. Lavrentyeva, K. Simonchik, and V.
Shchemelinin, “STC anti-spoofing systems for the ASVspoof 2015 chal-
lenge,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2016,
pp. 5475–5479.

[5] Z. Ji et al., “Ensemble learning for countermeasure of audio replay spoof-
ing attack in ASVspoof2017,” in Proc. Inter Speech, 2017, pp. 87–91.

[6] M. Witkowski, S. Kacprzak, P. Zelasko, K. Kowalczyk, and J. Galka,
“Audio replay attack detection using high-frequency features,” in Proc.
Inter Speech, 2017, pp. 27–31.

[7] J. Mishra, M. Singh, and D. Pati, “Processing linear prediction residual
signal to counter replay attacks,” in Proc. Int. Conf. Signal Process.
Commun., 2018, pp. 95–99.

[8] M. S. Saranya, R. Padmanabhan, and H. A. Murthy, “Replay attack
detection in speaker verification using non-voiced segments and decision
level feature switching,” in Proc. Int. Conf. Signal Process. Commun.,
2018, pp. 332–336.

[9] J. Yang and R. K. Das, “Low frequency frame-wise normalization over
constant-Q transform for playback speech detection,” Digit. Signal Pro-
cess., vol. 89, pp. 30–39, 2019.

[10] A. P. Tapkir and H. A. Patil, “Significance of teager energy operator phase
for replay spoof detection,” in Proc. Asia-Pacific Signal Inf. Process. Assoc.
Annu. Summit Conf., 2018, pp. 1951–1956.

[11] W. Cai, D. Cai, W. Liu, G. Li, and M. Li, “Countermeasures for automatic
speaker verification replay spoofing attack: On data augmentation, feature
representation, classification and fusion,” in Proc. Inter Speech, 2017,
pp. 17–21.

[12] Z. Chen, Z. Xie, W. Zhang, and X. Xu. “ResNet and model fusion for
automatic spoofing detection,” in Proc. Inter Speech, 2017, pp. 102–106.

[13] P. Nagarsheth, E. Khoury, K. Patil, and M. Garland, “Replay attack
detection using DNN for channel discrimination,” in Proc. Inter Speech,
2017, pp. 97–101.

[14] G. Lavrentyeva, S. Novoselov, E. Malykh, A. Kozlov, O. Kudashev,
and V. Shchemelinin, “Audio replay attack detection with deep learning
frameworks,” in Proc. Inter Speech, 2017, pp. 82–86.

[15] X. Wu, R. He, Z. Sun, and T. Tan, “A light CNN for deep face representation
with noisy labels,” IEEE Trans. Inf. Forensics Secur., vol. 13, no. 11,
pp. 2884–2896, Nov. 2018.

[16] G. Lavrentyeva, S. Novoselov, A. Tseren, M. Volkova, A. Gorlanov, and
A. Kozlov, “STC antispoofing systems for the ASVspoof 2019 challenge,”
2019, arXiv:190405576.

[17] B. T. Balamurali, K. W. E. Lin, S. Lui, J. Chen, and D. Herremans, “To-
wards robust audio spoofing detection: a detailed comparison of traditional
and learned features,” 2019, arXiv:1905 12439.

[18] A. K. Sarkar, Z. Tan, H. Tang, and J. Glass, “Time-contrastive learning
based deep bottleneck features for text-dependent speaker verification,” in
Proc. IEEE/ACM Trans. Audio, Speech, Lang. Process., 2019.

[19] Y. Gong, J. Yang, J. Huber, M. MacKnight, and C. Poellabauer, “Re-
MASC: Realistic replay attack corpus for voice controlled systems,” 2019,
arXiv:1904.03365.

[20] B. Bakar and C. Hanilçi, “Replay spoofing attack detection using deep
neural networks,” in Proc. 26th Signal Process. Commun. Appl. Conf.,
2018, pp. 1–4.

[21] ASVspoof Challenge. [Online]. Available: “https://www.asvspoof.org,”
Accessed on Jul. 25, 2019.

[22] V. Tiwari, M. F. Hashmi, A. Keskar, and N. C. Shivaprakash, “Virtual home
assistant for voice-based controlling and scheduling with short speech
speaker identification,” Multimedia Tools Appl., pp. 1–26, 2018.

[23] D. Cooper, “Speech detection using gammatone features and one-class
support vector machine,” M.S. Thesis, Dept. Elec. Eng. & Comp. Sci.,
Univ. of Central Florida, Orlando, FL, USA, 2013.

[24] A. V. Memos, E. K. Psannis, I. Yutaka, B. Kim, and B. B. Gupta, “An
efficient algorithm for media-based surveillance system (EAMSuS) in IoT
smart city framework,” Future Gener. Comput. Syst., vol. 83, pp. 619–628,
2018

[25] S. Badaskar, “Voice-based media searching,” U.S. Patent 9,547,647, issued
Jan. 17, 2017.

[26] X. Tan and W. Triggs, “Enhanced local texture feature sets for face recog-
nition under difficult lighting conditions,” IEEE Trans. Image Process.,
vol. 19, no. 6, pp. 1635–1650, Jun. 2010.

[27] T. Ojala, M. Pietikäinen, and D. Harwood, “A comparative study of texture
measures with classification based on featured distributions,” Pattern
Recognit., vol. 29, no. 1, pp. 51–59, 1996.

[28] R. Patterson, “Spiral vos final report, Part A: The auditory filterbank,”
Cambridge Electronic Design, Contract Rep., 1988.

[29] B. R. Glasberg and B. C. J. Moore. “Derivation of auditory filter shapes
from notched-noise data,” Hearing Res., vol. 47, no. 1-2, pp. 103–138,
1990.

[30] Voice Spoofing Detection Corpus [Online]. Available: http://www.secs.
oakland.edu/∼mahmood/datasets/audiospoof.html

[31] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Clas-
sification and Regression Trees. Boca Raton, FL: Chapman & Hall,
1984.

[32] S. Zhang, X. Li, M. Zong, X. Zhu, and R. Wang, “Efficient KNN classifi-
cation with different numbers of nearest neighbors,” IEEE Trans. Neural
Netw. Learning Syst., vol. 29, no. 5, pp. 1774–1785, May 2018.

[33] Z. Fu, G. Lu, K. M. Ting, and D. Zhang,“Learning naive bayes classifiers
for music classification and retrieval,” in Proc. 20th Int. Conf. Pattern
Recognit., 2010, pp. 4589–4592.

[34] T. M. Dietterich, “Ensemble methods in machine learning,” in Proc. Int.
Workshop Multiple Classifier Syst., 2000, pp. 1–15.

[35] A. Graves and J. Schmidhuber, “Framewise phoneme classification with
bidirectional LSTM and other neural network architectures,” Neural Netw.,
vol. 18, no. 5-6, pp. 602–610, 2005.

[36] O. Hubacek, G. Sourek, and F. Zelezny, “Learning to predict soccer results
from relational data with gradient boosted trees,” Mach. Learn., vol. 108,
no. 1, pp. 29–47, 2019.

[37] J. Sun, J. Lang, H. Fujita, and H. Li, “Imbalanced enterprise credit
evaluation with DTE-SBD: Decision tree ensemble based on SMOTE and
bagging with differentiated sampling rates,” Inf. Sci., vol. 425, pp. 76–91,
2018.

[38] R. Hang, Q. Liu, H. Song, and Y. Sun, “Matrix-based discriminant sub-
space ensemble for hyperspectral image spatial–spectral feature fusion,”
IEEE Trans. Geosci. Remote Sens., vol. 54, no. 2, pp. 783–794, Feb. 2015.

[39] Y. Zhang, G. Cao, B. Wang, and X. Li. “A novel ensemble
method for k-nearest neighbor,” Pattern Recognit., vol. 85, pp. 13–25,
2019.

[40] J. Moeyersons, C. Varon, D. Testelmans, B. Buyse, and S. V. Huffel,
“ECG artefact detection using ensemble decision trees,” in Proc. Comput.
Cardiology (CinC), 2017, pp. 1–4.

[41] S. Escalera, O. Pujol, and P. Radeva, “Separability of ternary codes for
sparse designs of error-correcting output codes,” Pattern Recognit. Lett.,
vol. 30, no. 3, pp. 285–297, 2009.

[42] W. Abdullah, “Auditory based feature vectors for speech recognition
systems,” Adv. Commun. Softw. Technol., pp. 231–236, 2002.

[43] Aircrack-Ng, [Online]. Available: https://www.aircrack-ng.org, Accessed
on Aug. 8, 2019.

[44] J. Kollewe, “HSBC rolls out voice and touch ID security for bank
customers | Business,” The Guardian. Accessed on Aug. 8, 2019.

[45] R. Brockbank and C. Wass, “Non-linear distortion in transmission sys-
tems,” J. Inst. Electr. Eng.- Part III: Radio Commun. Eng., vol. 92, no. 17,
pp. 45–56, Mar. 1945.

[46] V. D. Svetislav, “Distortion in microphones,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. ’76, Apr. 12–14, 1976.

[47] M. T. Abuelma. “Harmonic and intermodulation distortion in carbon
microphones,” Appl. Acoust., vol. 31, no. 4, pp. 233–243, 1990.

[48] H. Malik and J. Miller, “Microphone identification using higher-order
statistics,” in Proc. 46th AES Conf. Audio Forensics, Jun. 14–16, 2012.

[49] H. Malik, “Securing speaker verification system against replay at-
tack,” in Proc. 46th AES Conf. Audio Forensics, Jun. 14–16,
2012.

[50] S. M. Adnan, A. Irtaza, S. Aziz, M. O. Ullah, A. Javed, and M. T. Mahmood,
“Fall detection through acoustic local ternary patterns,” Appl. Acoust.,
vol. 140, pp. 296–300, 2018.

[51] A. Irtaza, S.M. Adnan, S. Aziz, A. Javed, M.O. Ullah, and M.T. Mahmood,
“A framework for fall detection of elderly people by analyzing environ-
mental sounds through acoustic local ternary patterns,” in Proc. IEEE Int.
Conf. Syst. Man Cybern., Oct. 2017, pp. 1558–1563.

[52] X. Valero and F. Alias, “Gammatone cepstral coefficients: Biologically
inspired features for non-speech audio classification,” in IEEE Trans.
Multimedia, vol. 14, no. 6, pp. 1684–1689, Dec. 2012.

[53] [Online]. Available: https://github.com/alijaved21/Voice-Replay-Anti-
spoofing

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2020 at 19:35:51 UTC from IEEE Xplore.  Restrictions apply. 

https://www.asvspoof.org
http://www.secs.oakland.edu/&sim;mahmood/datasets/audiospoof.html
https://www.aircrack-ng.org
https://github.com/alijaved21/Voice-Replay-Anti-spoofing


996 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 14, NO. 5, AUGUST 2020

Khalid Mahmood Malik (Senior Member, IEEE)
received the Ph.D. degree from the Tokyo Institute
of Technology Tokyo, Japan, in 2010. He is currently
working as Assistant Professor with the School of
Engineering and Computer Science, Oakland Uni-
versity, Rochester, MI, USA. Prior to that he has
worked as Visiting Researcher with Sanyo Electric,
Japan, and then Project Manager R&D with DTS
Inc. Japan, from 2010 to 2014. His current research
interests include multimedia forensics, development
of intelligent decision support systems using analysis

of medical imaging and clinical text, secure multicast protocols for intelligent
transportation systems, and automated ontology and knowledge graph genera-
tion. His research is supported by the National Science Foundation (NSF), Brain
Aneurysm Foundation, and Oakland University. He is founding member of the
Center of Cybersecurity, Oakland University, MI, USA.

Ali Javed (Member, IEEE) received the B.Sc. (honors
and third position) degree in software engineering
from UET Taxila, Pakistan in 2007. He received his
MS and Ph.D. degrees in computer engineering from
UET Taxila, Pakistan in 2010 and 2016. He received
Chancellor’s Gold Medal in MS Computer Engineer-
ing degree. He is serving as an Assistant Professor
in Software Engineering Department at UET Taxila,
Pakistan. He has served as a Postdoctoral Scholar
in SMILES lab at Oakland University, MI, USA in
2019 and as a visiting PhD scholar in ISSF Lab

at University of Michigan, MI, USA in 2015. His areas of research interest
are image processing, computer vision, multimedia forensics, video content
analysis, medical image processing, and multimedia signal processing. He has
published more than 50 papers in leading journals and conferences. Dr. Javed is
a recipient of various research grants from HEC Pakistan, National ICT R&D
Fund, NESCOM, and UET Taxila Pakistan. He has also served as an HOD in
Software Engineering Department at UET Taxila in 2014. He was selected as
an Ambassador of Asian Council of Science Editors from Pakistan in 2016. He
is also a Member of Pakistan Engineering Council since 2007.

Hafiz Malik (Senior Member, IEEE) received the
B.Sc. degree in electronics and computer engineer-
ing. He is Associate Professor in the Electrical and
Computer Engineering (ECE) Department at Univer-
sity of Michigan – Dearborn. His current research in
the areas of automotive cybersecurity, IoT security,
sensor security, multimedia forensics, steganogra-
phy/steganalysis, information hiding, pattern recog-
nition, and information fusion is funded by the Na-
tional Science Foundation, National Academies, Ford
Motor Company, and other agencies. He has pub-

lished more than 100 papers in leading journals, conferences, and workshops.
He is a founding member of the Cybersecurity Center for Research, Education,
and Outreach at UM-Dearborn and member leadership circle for the Dearborn
Artificial Intelligence Research Center at UM-Dearborn. He is also a Member
of the Scientific and Industrial Advisory Board (SIAB) of the National Center
of Cyber Security Pakistan. He is a Member of MCity Working Group on
Cybersecurity, since 2015.

Aun Irtaza has completed his Ph.D. in 2016 from
FAST-nu, Islamabad Pakistan. During his Ph.D.
he remained working as a Research Scientist in
the Gwangju Institute of Science and Technology
(GIST), South Korea. He became an Associate Pro-
fessor in 2017 and Department of Computer Science
Chair in 2018 in the University of Engineering and
Technology (UET) Taxila, Pakistan. He is currently
working as visiting Associate Professor in the Uni-
versity of Michigan-Dearborn. His current research
areas include computer vision, multimedia forensics,

audio-signal processing, medical image processing, and Big data analytics. He
has more than 40 publications in IEEE, Springer, and Elsevier Journals.

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 01,2020 at 19:35:51 UTC from IEEE Xplore.  Restrictions apply. 


