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ABSTRACT

The evolution of modern voice-controlled devices (VCDs) has revolutionized the Internet of
Things (IoT) and resulted in the increased realization of smart homes, personalization, and
home automation through voice commands. These VCDs can be exploited in IoT driven envi-
ronments to generate various spoofing attacks, including the chaining of replay attacks (i.e.
multi-order replay attacks). Existing datasets like ASVspoof 2017, ASVspoof 2019, and
ReMASC contain only first-order replay recordings (i.e. replayed once); therefore, they can-
not offer evaluation of anti-spoofing algorithms capable of detecting multi-order replay
attacks. Additionally, large-scale datasets like ASVspoof 2017 and ASVspoof 2019 do not cap-
ture the characteristics of microphone arrays, which are an essential characteristic of modern
VCDs. Therefore, there exists a need for a diverse replay spoofing detection corpus that con-
sists of multi-order replay recordings against bona fide voice samples. This paper presents a
novel voice spoofing detection corpus (VSDC) to evaluate the performance of multi-order
replay anti-spoofing methods. The proposed VSDC consists of first-order (i.e. replayed once)
and second-order replay (i.e. replayed twice) samples against the bona fide audio recordings.
We ensured to create a diverse replay spoofing detection corpus in terms of environments,
recording and playback devices, speakers, configurations, replay scenarios, etc. More specifi-
cally, we used 35 microphones, 25 different recording configurations, and 60 different play-
back configurations for first- and second-order replays to generate a total of 14,050 samples
belonging to 19 speakers. Additionally, the proposed VSDC can also be used to evaluate the
performance of speaker verification systems in terms of independent speaker verification. To
the best of our knowledge, this is the first publicly available replay spoofing detection corpus
comprised of first and second-order replay samples. Experimental results signify the effec-
tiveness of the proposed VSDC in terms of evaluating the performance of anti-spoofing
methods under multi-order replay attacks and diverse conditions.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The growing trend of personalization, the realization of smart homes, and the desire for easy control of home devices are driv-
ing factors for the tremendous evolution of Internet of Things (I0T) devices. Voice assistants, the user interface of voice-controlled
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devices (VCDs) such as Google Home, Amazon Alexa, and Apple Siri are becoming an essential component of IoT. VCDs are
designed around audio and video multimedia capabilities, they make popular a new sub-field of IoT, called the Internet of Multi-
media Things (IoMT) (Alvi et al., 2015). IoMT devices, a subset of 10T devices, are equipped with microphones, cameras, and
speakers. Likewise, many connected toys (children, 2020) with voice interfaces are becoming part of the Internet of Toys (IoToys)
(Chaudron et al., 2019) and hence IoT. VCDs are susceptible to various audio spoofing attacks such as replay attacks, voice cloning
attacks, and laser-based audio injection attacks (Sugawara et al., 2019) etc., while IoMT devices face various multimedia spoofing
challenges including deepfakes (Agarwal et al., 2019).

Voice assistants have enabled enormous connectivity among VCDs, opening new vistas of research (Malik et al., 2019). Nota-
bly, the addition of microphone arrays and speakers allow these devices to engage in two-way communication, allowing them to
play audio and accept voice commands from other IoT devices. The most recognizable feature of VCDs has been the capability to
connect all household IoT devices together with voice commands. Voice assistants are now being directly integrated into thermo-
stats, refrigerators, light switches, entertainment systems, and cars. It is essential to mention that many IoT devices in smart
homes are controlled remotely through VCDs. In addition to controlling IoT devices in the home, integrated voice assistants are
also being used in a variety of Internet based applications related to VCDs such as entertainment, communication, shopping,
healthcare, business, banking services, etc. With so many devices in a home being able to provide a voice assistant, the system
resembles the dream of science fiction television, where an omnipresent computer is continuously ready to provide quick and
easy verbal access. VCDs themselves could be used to replay audio to each other forming the basis of multi-hop scenarios. The
open space inside a home becomes a transmission medium through which one VCD can replay voice commands to another VCD.
Fig. 1 illustrates how a smart home can have many VCDs capable of speaking to each other.

Most VCDs are equipped with array microphones, which means they have more than one microphone. The Amazon Echo Dot
3 uses an array of 4 microphones. This array of microphones allows the VCD to determine the location of the speaker, selection of
the best microphone and use the other microphones to reject background noise. This configuration enables VCDs to pick up voice
commands at long distances (few meters) in less than ideal conditions. This fact enables the VCD to be more susceptible to replay
attacks.

Automated Speaker Verification (ASV) systems have advanced in recent years and their application are increasing in a variety
of real-world authentication scenarios involving both logical and physical access (Sahidullah et al., 2019). The applications of ASV
are expected to be more ubiquitous in the future due to pervasiveness of smart speakers, smartphones, and other voice-enabled
smart devices. Audio-specific spoofing attacks (Sahidullah et al., 2019) on ASV can be categorized into replay, speech-synthesis
(SS), voice conversion (VC), and impersonation. Among all audio spoofing attacks, replay attacks could be more prevalent in the
future, as less tech-savvy intruders can generate them to disrupt the ASV system of a VCD (Todisco et al., 2017). Existing spoofing
datasets (ASVspoof 2017 dataset, 2019a; ASVspoof 2019 dataset, 2019b; Gong et al., 2019; RedDots Project, 2020) are designed
for evaluation of testbeds that consider replay spoofing as a binary-class problem. These datasets have been used in addressing
the scenario of a one-time replay, in applications such as voice-driven banking. However, we have demonstrated through
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Fig. 1. VCD connectivity in the home for sending/receiving audio.
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experimentation in our earlier work (Malik et al., 2019) that VCDs are very vulnerable to second-order replay attacks and are
unable to classify between the original and spoof samples in multi-hop scenarios. Second-order replays can contain significant
noise due to each subsequent replay contributing noise. Capturing replayed audio with this additional noise can be beneficial in
ASV research. Research has shown that a limitation of early ASV methodology has been using clean speech corpus prepared in
laboratory environments (Sahidullah et al., 2019).

This vulnerability of VCDs to multi-order replays can easily be exposed by an intruder to cause severe financial loss and data
theft. Additionally, existing datasets (e.g. ASVspoof 2017 and ASVspoof 2019) do not contain the audio samples recorded from
devices having array microphones, particularly in chained replay scenarios, which are quite common in IoMT. Therefore, there
exists a need to create a replay spoofing dataset to evaluate applications and testbeds that may involve multi-hop voice propaga-
tion scenarios and samples recorded with devices having microphone arrays. For this purpose, we designed a novel Voice Spoof-
ing Detection Corpus (VSDC). We developed this large-scale dataset to serve as an audio forensic testbed. Our dataset is the first
dataset to contain multi-order replays consisting of bona fide, first- and second-order replay samples that can effectively be used
to evaluate the performance of anti-spoofing methods in multi-hop scenarios. We ensured that we created a diverse replay
spoofing detection corpus in terms of environment, recording and playback devices, speakers, configurations, replay scenarios,
etc. More specifically, we used 35 microphones, 25 unique recording configurations, 60 unique playback configurations to gener-
ate a total of 14,050 samples belonging to 19 speakers of different ages and genders. Unlike traditional ASV systems which con-
sider replay detection as a binary class problem, chained VCDs consider it as a multiclass problem. Because it is possible for a
certain VCD, which itself has robust binary spoof countermeasure, to receive played back voice from other VCDs that are either
compromised or prone to voice spoofing attacks due to a weak or absent spoof countermeasure (Malik et al., 2020).

All four datasets ASVspoof 2019, ASVspoof 2017, ReMASC and VSDC are designed with assisting in the development of coun-
termeasures to voice replay attacks. The ReMASC and VSDC datasets specifically targeted and studied voice replay attacks on
VCDs. These datasets could be used to develop and evaluate the countermeasures against voice replay attacks on VCDs. Also,
these datasets could be used to develop anti-spoofing solutions for other voice-driven systems. The ASVspoof 2017 dataset uses
a subset of the RedDots (RedDots Project, 2020; Kinnunen et al., 2017) dataset for its bona fide recordings. The ASVspoof 2019
dataset uses the VCTK (Corpus, 2020) database for a part of its set. In ASVspoof 2019 replays were created by simulation; this was
done by prepossessing bona fide speech from the VCTK database.

Tables 1 and 2 highlight the differences between VSDC, ReMASC, and ASVspoof datasets (2017 and 2019). The salient features
of VSDC are the inclusion of second-order replay samples, and use of array microphones along with non-array microphones (e.g.
professional-grade microphones) at both first-order replay and second-order replay, which is needed to capture the characteris-
tics of [oT applications. Table 2 further highlights the number of recording devices, recording microphones, playback devices, and
environments used to develop these datasets. The ReMASC dataset used fewer microphones for recording bona fide speech as
their emphasis was placed on using the array microphones found in VCDs. The focus for VSDC was to use a large variety of micro-
phones to test how the audio signal of the replays changed between different microphones.

2. The landscape of multi-hop replay attacks

In this section, we briefly discuss the landscape of replay attacks involving VCDs. The addition of a voice interface introduces a
new attack surface to be exploited in homes, offices, businesses, and hospitals. These scenarios demonstrate that multiple replays
on VCDs can be used to exploit systems having voice interfaces. Although we discuss the scenarios of smart homes in this paper,
threats associated with replay attacks can go beyond homes, as voice-controlled applications are being developed for smart cities,
futuristic cars, and businesses. Amazon has already launched its smart assistant Alexa for business automation
(First the Home, 2019). Currently, Amazon is working on healthcare apps that use smart speakers to perform various tasks (Ama-
zon, 2019). Details of a few representative scenarios involving the multi-order replay attacks are discussed below. It is important
to mention that we have experimentally verified these scenarios.

2.1. Scenario 1: Webcam replay

Shown in Fig. 2 are the two scenarios where VCDs are used to replay audio to each other. In scenario 1, shown in Fig. 2(a), a
compromised webcam listens to a user giving commands to a Google Home device. In such a scenario, a webcam can be accessed
by compromising the homes WiFi network using a tool (e.g. Aircrack-NG (Aircrack-Ng, 2019)). The study of Common

Table 1
Comparison of datasets in terms of numbers of speakers, genuine and replayed
recordings (Gong et al., 2019; Delgado et al., 2018; Todisco et al., 2019).

Dataset Speakers  Genuine  Replayed Replayed (second-order)
ASVspoof2019 107 12,960 116,640 NA
ASVspoof2017 42 3,565 14,465 NA
ReMASC 55 9,240 45,472 NA

VSDC 19 1,687 6,179 6,184




R. Baumann et al. / Computer Speech & Language 65 (2020) 101132

Table 2

Comparison of datasets in terms of recording devices, recording microphones, playback devices and envi-
ronments (Gong et al., 2019; Delgado et al., 2018; Todisco et al., 2019).

Dataset Recording Devices ~ Recording Microphones  Playback Devices ~ Environments
ASVspoof2019 40 40 40 27
ASVspoof2017 25 25 26 22

ReMASC 2 2 4 4

VSDC 31 35 10 15
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Vulnerability and Exposures (CVEs) (CVE-2019-3948, 2019) shows that there exist many vulnerabilities that allow unauthenti-
cated access to webcams these days. After capturing audio of the victim at home, the attacker can use the webcam to replay com-
mands to a Google Home device in the absence of the victim. This demonstrates a traditional replay attack with only one point of
replay. The webcam in this scenario could also be a baby monitor or other compromised VCD. We have verified through experi-
ments that Google Home devices only authenticate the user based on the wake word “Hey Google”. As long as the audio record-
ing of the user saying, “Hey Google” in this scenario is clear enough, then an attacker can replay the wake phrase and insert any
subsequent command (e.g. “Open Garage Door”).

2.2. Scenario 2: Drop-In replay

In scenario 2, shown in Fig. 2(b), we describe a situation where an attacker obtains an original recording of a victim. In such a
scenario a co-worker or someone close to the victim can use social engineering techniques to direct a normal conversation in a
way that gets the victim to say the commands that the attacker is looking for. The attacker would record the entire conversation
without the victim’s knowledge and would be able to cut out the clips that he wants to use in the attack. The attacker intends to
replay the audio from his home to the victim’s home. The Amazon Echo devices offer a feature that allows audio conferencing
between these devices. This feature, called Drop-In, works between different homes and Echo devices owned by different people
if their contact list permissions are set to allow that contact to Drop-In. When using the Drop-In mode, the receiving Amazon
Echo device plays a small chime and changes the devices light ring to green, thus enabling the conference mode. The presence of
the recipient of the conference call is not required as the conference mode is enabled without any additional verification. If
another VCD is nearby, then commands can be replayed through the audio conference.

For example, if an attacker is able to add himself, to Bob’s contact list and allow himself the Drop-In permission, then the
attacker could start the audio conference between Amazon Echo VCDs at any time. By simply asking their Amazon Echo to
“Drop-in on Bob”. The attacker could then replay the command “Hey Google, open the garage door”. Although this scenario
requires that Bob’s Amazon Alexa contact list be exploited by the attacker gaining access to Bob’s smartphone, this scenario is
plausible, as a smartphone can be accessed by a trusted individual such as a friend, co-worker, or child.

This replay attack scenario demonstrates a proof-of-concept that VCDs in the home are vulnerable to replay attacks as long as
the victim’s audio can be played in front of a VCD in the home. This scenario is an example of a multi-hop replay attack as the
original audio is replayed once to an Amazon Echo and then replayed again from the victim’s Amazon Echo device. We observed
during the multi-hop replay scenarios that signal degradation due to multiple replays are unable to cause any problem as long as
the playback audio is audible. While this scenario used two Amazon Echo devices, they could be replaced with other devices
capable of transmitting audio such as a smartphone app being used to send audio to a webcam in another home.

2.3. Scenario 3: Drop-In multi-Home replay

In scenario 3 shown in Fig. 2(c), we describe a situation where an attacker has remotely managed to exploit a vulnerability in a
webcam to access its audio and video streams. The camera is conveniently located in the kitchen near an Amazon Echo device.
The attacker can quickly identify the presence of the victim at home and observe their interactions with the VCD by accessing the
camera. The Amazon Echo device itself does not have any voice verification system to verify the authenticity of any person. The
attacker can cause chaos at the victim’s home during his absence by issuing commands to change the thermostat settings, turning
on and off the lights, opening the garage door, etc. from the webcam. Every IoT device in the home that is connected to the Ama-
zon Echo is now accessible to the attacker.

The Amazon Echo Drop-In feature causes an additional threat in this situation. If the homeowner has allowed the Drop-In
mode between friends, family members, or with work colleagues, then the attacker will also have access to start an audio confer-
ence between other Amazon Echo devices. At this point, the attacker could Drop-In to another Amazon Alexa located in another
family members home. If there happens to be another VCD nearby, the attacker can then attempt to control IoT devices in the sec-
ond home as well. In this scenario, the attacker can easily control another home remotely through the Drop-In feature.

While we proposed a few scenarios, it can be assumed that the device with the weakest security will be exploited. Some VCDs
such as webcams and toys with voice driven interfaces (frontdoor, 2020) are known to have vulnerabilities that expose their cre-
dentials or audio streams due to the fast and inexpensive manner of their production. Once a VCD has been exploited, then an
attacker can have multiple options from listening and collecting audio to replaying audio or cloned voices.

3. Dataset

This paper presents a unique voice spoofing detection corpus consisting of bona fide, first- and second-order replay recordings
by setting up different scenarios of chained VCDs. This multi-hop replay feature in our corpus can be used to evaluate the perfor-
mance of different replay anti-spoofing algorithms under diverse recording and playback environments, configurations, and
devices. Our proposed VSDC can also be used to evaluate the performance of speaker verification systems as our corpus includes
audio samples of 19 different speakers. Additionally, VSDC adds more diversity to existing datasets in terms of sampling rate. For
example, the sampling rate of 96,000 HZ of VSDC, complements other datasets such as ASVspoof 2017, ReMasc, and ASVspoof
2019 which have sampling rates of 16,000 HZ and 44,100 HZ. The minimum length of each audio sample in our dataset is 6
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seconds in duration. Note that for original recordings, we have used both professional-grade microphones and cell phones. In
order to obtain data using cellphones/tablets, we designed and released Android and iPhone applications.

3.1. Definitions and data collection strategy

As this paper discusses the idea of multiple points/order of replays, we need to define the terminology used to specify the given
point of replay. We will refer to bona fide recordings of a person giving voice commands to a VCD as the zero point of replay or (OPR).
When the original recording is replayed from an audio speaker, we will refer to the output audio as the first point of replay or (1PR).
Similarly, when the 1PR audio is replayed through a chained VCD, we refer to that output audio as the second point of replay or (2PR).

Shown in Fig. 3 is the process of capturing audio to create the dataset consisting of OPR, 1PR, and 2PR. The bona fide phrases
(OPR files) can be captured on any recording device. The OPR files are then copied to a PC for generating the replays. The PC
replays the OPR file through an audio speaker creating the 1PR audio. VCDs are set up in an audio conference mode so that the
audio played at 1PR is replayed by the VCD at 2PR. The PC used for creating the data sample is simultaneously replaying the OPR
file while capturing the resulting 1PR and 2PR audio. The USB sound card connected to the PC in Fig. 3 can be replaced by the
onboard sound card of the PC or with a sound interface box.

For the data collection, we used the Audacity tool (Application, 2019) to simultaneously play the OPR audio while capturing
the resulting 1PR and 2PR audio. The Audacity tool can play from one audio track while simultaneously recording audio on other
tracks. To capture replays, a scenario such as two Amazon Echo devices in conference mode (Drop-In) is set up to create a chain
of VCDs. Audacity is set up with the bona fide (OPR) recording on track 1. The PC plays the audio through a connected audio
speaker; this output audio is recorded on track 2 by Audacity and becomes the 1PR recording. At the same time, the VCD replays
the audio to the next device in the chain. The resulting output is recorded on track 3 by Audacity and becomes the 2PR recording.
Using this method, we captured the 1PR and 2PR replays at the same time. It was necessary to maintain proper isolation between
the 1PR and 2PR environments to ensure that each respective microphone would not receive the same sound as the other (e.g.
the 2PR microphone would not overhear the sound coming from the audio speaker used in the 1PR environment). Audacity is
then used to trim the samples into 6-second lengths. All data samples at OPR, 1PR, and 2PR are exported as separate files. The rea-
soning for the WAV files all being 6 seconds in length is to make the automatic clipping of the samples easier. Note that all OPR
are replayed in our settings to get 1PR and 2PR simultaneously.

Recording was performed at a sample rate of 96,000Hz using a 32-bit float format. The exception to this was when Bluetooth
speakers were used for replays, a recording sample rate of 48,000Hz was instead used. This was due to the fact that the Bluetooth
speakers only supported a playback rate of 48,000Hz and Audacity would only allow simultaneous recording and playback at the
same rate. The resulting files were re-sampled to 96,000Hz. All files have been exported as WAV files at 96,000Hz 32-bit.

3.2. Voice commands and recording subjects

We used 42 different command phrases to create the bona fide recordings as shown in Table 3. All commands start with the
activation phrase “Hey Google”, “Computer” or “Alexa”. Some of the voice commands used for recordings include, “Hey Google,
turn on the kitchen light” and “Computer, turn off living room light”. The phrasing of a given command using the activation word
“Computer” reflects that replay attacks are not a vendor-specific issue. A total of 19 speakers, ages 18—60 years old, participated
in data collection. Out of 19 speakers, 10 are male, and 9 are female. Some of the speakers are not native English speakers. Each
speaker recorded the original file by repeating a given set of phrases typical of commands given to VCDs. Some of the volunteers
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Table 3
Phrases used for OPR samples.

Phrases

Computer, turn on office lamp
Computer, turn off office lamp
Computer, turn on kitchen lights
Computer, turn off kitchen lights
Computer, turn on bedroom lamp
Computer, turn off bedroom lamp
Computer, turn on living room light
Computer, turn off living room light
Computer, who am |

Hey Google, turn on office lamp
Hey Google, turn off office lamp
Hey Google, turn on kitchen lights
Hey Google, turn off kitchen lights
Alexa, turn on office lamp

Alexa, turn off office lamp

Alexa, turn on kitchen lights
Alexa, turn on bedroom lamp
Alexa, turn on living room light
Alexa, give me an Easter egg
Alexa, tell me a joke

Alexa, set phasers to kill

Hey Google, turn off bedroom lamp
Hey Google, turn on living room light
Hey Google, turn off living room light
Hey Google, who am |

Hey Google, give me an Easter egg
Hey Google, good morning

Hey Google, tell me a joke

Hey Google, beam me up

Hey Google, set phasers to kill

Hey Google, tea, earl grey, hot

Hey Google, my name is Inigo Montoya
Hey Google, I want the truth

Hey Google, turn on bedroom lamp
Alexa, my name is Inigo Montoya
Alexa, [ want the truth

Alexa, turn off kitchen lights

Alexa, turn off bedroom lamp

Alexa, turn off living room light
Alexa, good morning

Alexa, beam me up

Alexa, tea, earl grey, hot

recorded the original phrase sets multiple times using different microphones in diverse environments. In total, 173 different OPR
source sets were created, each set being a specific individual under specific recording conditions. A total of 1,687 OPR source
phrases were spoken; the exact number of phrases each individual spoke varied, with each speaker recording no fewer than 9
phrases for a set.

3.3. OPR Environments

The OPR environment is the area where the bona fide sound samples are recorded. The VSDC includes samples recorded at 10
different unique environments (for OPR) that contain different amounts of ambient noise (Fig. 4). We recorded the samples in dif-
ferent environments to ensure diversity. The environments considered “noisy”, are the Computer Lab with Music, Car Off with
light rain, Car on with Light Rain, Cafeteria, and University Court Yard. The Computer Lab with Music environment contained
ambient noise from loud music. Both the Car on with Light Rain and Car Off with Light Rain environments are deemed as noisy
due to the consistent pattering of rain and surrounding cars. The Cafeteria environment contains ambient noise from student
activities. The University Courtyard environment contains rustling trees and background conversations. The environments classi-
fied as low noise are, the Office Desk, Kitchen Table, Bedroom, and Computer Lab. All indoor environments contain some back-
ground noise from air circulation systems.

3.4. Playback environments

For playback environments, we used a living room, home office desk, copy room, mini audio booths, conference room, lab
classrooms to create the 1PR and 2PR replays. A brief description of each environment is given below.

Fig. 4. Environments used for OPR recordings. (a) Bedroom, (b) Car Off Light Rain, (c) Car On, (d) Car On Light Rain, (e) Kitchen Table, (f) Computer Lab, (g) Com-
puter Lab with Music, (h) Office Desk, (i) University Cafe, (j) University Courtyard.
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Fig. 5. Playback Environments. (a) Living Room, (b) Home Office, (c) Copy Room, (d) Inside Mini Recording Booth, (e) Conference Room, (f) Computer Lab.

Living Room As shown in Fig. 5(a), we used a living room that would be typical of many homes. The living room presents itself
as an ideal environment for replays as it is typical of where many people would place their Smart Speaker (VCD). The large space
with carpeting would minimize any reverberation. Noise from air circulation systems may still occur spontaneously but at a
much quieter level than in an office building. Home Office Desk As shown in Fig. 5(b), we used a home office desk as a playback
environment. This would be a typical space where a person with several Smart Speakers (VCDs) in a home might place one. The
hard surface of the desk and nearby walls will provide for some audio reverberation. Copy Room As shown in Fig. 5(c), we used a
copy room located in a small alcove. This environment had some non-stationary noise caused by a copy machine and people
walking by. Mini Audio Booths As shown in Fig. 5(d), we designed the mini audio booths to eliminate background sounds, i.e.
sound of computer fans and air conditioners. Producing replay recordings in the audio booths allowed us to analyze the audio sig-
nals without ambient noise. The mini audio booths are effective in reducing ambient environmental noises. We used a sound
pressure level (SPL) meter to determine an SPL of 40 dBA for a quiet office and 35.8 dBA inside the mini audio booth. Further test-
ing shows that a large fan running 40 in. away from the microphone would produce an SPL of 56.5 dBA and 40.8 dBA in the office
and audio booth, respectively. Moreover, running a vacuum cleaner produces an SPL of 70 dBA in the office and 42.5 dBA inside
the audio booth. More specifically, we created two audio booths, one each for 1PR recordings and 2PR recordings. Shown in Fig. 5
(d) is the setup at 1PR, where a Bluetooth speaker is replaying an original audio sample. The Amazon Echo Dot is set to the
“Drop-In” audio-conferencing mode so that it can replay the audio to another Echo Dot in the second audio booth. Conference
Room As shown in Fig. 5(e), we used a conference room as it allowed for a relatively quiet space. This space still had noise from
the air circulation system and footsteps from a nearby corridor. The narrowness of the room and the large surface of the table
also allowed for the audio to reverberate. Computer Lab The computer lab playback environment used two computer labs adja-
cent to each other. One computer lab, shown in Fig. 5(f) is used for conducting the 1PR replay, where we placed a speaker, micro-
phones and the Echo Dot in Drop-In mode. In the next computer lab, we arranged the other Echo Dot along with the necessary
microphone to capture the 2PR playback. The computer labs contain the noise of air circulation systems only.

3.5. Equipment used for recording and playback

For recording the bona fide OPR source files and the 1PR and 2PR replays, we used several combinations of microphones and
microphone interface devices. More specifically, we used 35 distinct microphones for audio recordings, some of these are having
the same make and model. For details, see the metadata file included with the dataset. Shown in Table 4 are the combinations of
external microphones and their microphone interface devices. Devices with internal microphones are mentioned by the device
name. Several professional-grade microphones that use an XLR connection are used for recording and playback. These micro-
phones are connected to the PC using an audio interface box. The professional microphones connected by XLR cables are
highlighted in green in Table 4. An external USB microphone is used for making some of the OPR recordings. This type of micro-
phone can be characterized as a medium quality microphone and is highlighted in yellow in Table 4. We also used various inter-
nal microphones of laptops and cell phones. Internal microphones can be characterized as lower quality microphones and are
highlighted in red in Table 4.

Shown in Table 5 are the 14 1PR playback configurations used in the proposed VSDC. The composition of configurations con-
sists of a speaker, amplifier, and a sound card. We used a variety of speakers ranging from low to high quality. Devices such as
laptops that contain built-in speakers represent the low quality, whereas those using an external speaker either connected via
Bluetooth or aux cable are considered devices of medium quality. Finally, the speakers considered to be high quality are those
whose manufacturer’s specifications report that they produce a sound frequency response near the full range of human hearing
of about 80Hz - 20,000Hz.
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Table 4
List of all configurations of recording microphone
models and sound cards used.

OPR Recording Configuration

Audio-Technica ST95MKII | Zoom R16
Audio-Technica ST95MKII | Presonus Studio 24
Shure SM58 | Zoom R16

Shure SM58 | Presonus Studio 24

Behringer ECM8000 | Zoom R16

Electro-Voice 635A/B | Zoom R16

Blue Yeti | Mac Book Pro-2018

MacBook Pro-2018 (Internal Microphone)
Acer (Internal Microphone)

Samsung Galaxy S7 (Internal Microphone)
iPhone 5S (Internal Microphone)

iPhone 8 (Internal Microphone)

iPhone XR (Internal Microphone)

iPhone 7 (Internal Microphone)

(7) Android Phones

1PR and 2PR Recording Configuration
Audio-Technica ST95MKII | Zoom R16
Audio-Technica ST95MKII | Presonus Studio 24
Shure SM58 | Zoom R16

Shure SM58 | Presonus Studio 24

Behringer ECM8000 | Zoom R16

Acoustic Magic Array Microphone | Presonus Studio 24

xFormatted as [Microphone] | [soundcard] or [device].
Devices containing an internal microphone and
soundcard are listed as the device name.

We used 8 different configurations of devices to transmit the 1PR audio having the corresponding 2PR recordings as shown in
Table 6. The device configurations vary from Amazon Echos using the Drop-In audio conferencing feature to laptops and tablets
connected using Google Meet.

Amazon Drop-In audio conferencing offers easy transmission of audio from one location to another using VCDs. We used sev-
eral different combinations of Amazon Echo devices to test their audio quality. All of the Amazon devices, even the previous Gen-
eration 2 Echo Dot with smaller speakers, are able to replay commands to another VCD with acceptable results. All Amazon Echo
devices contain audio-out jacks, which allow them to be connected to external speakers for improved quality. We connected
external speakers for various sample sets to analyze the changes in the audio signal. We used a variety of external speakers rang-
ing from small battery-powered external speakers to home theater speakers and studio monitor speakers.

For devices other than Amazon Echo, we used Google Meet as a means to transmit the 1PR audio to 2PR. Although Google
Meet is only available on laptops and tablets, however, it can still be used to launch an audio replay attack. Laptops, tablets and
phones can easily be left at other locations with the intention of replaying audio to VCDs at a later time. We used the laptops and
Google Meet to ensure the use of high-quality microphones. The audio quality of the replays is limited to the quality of Amazon
Echos microphone in the configurations where we used the Amazon Echo devices. It can be expected that competition amongst
VCD manufacturers will continue to improve their audio capabilities, likely to the point that products will become available for

Table 5
List of all Playback configurations used in playing back audio in the 1PR
recording environment.

1PR Playback Configuration

Polk R150 Speaker | Yamaha HTR-5840 | ZOOM R16

Polk R150 Speaker | Yamaha HTR-5840 | Asus GL504GM-DS74

Polk R150 Speaker | Yamaha HTR-5840 | USB Audio Card Ugreen 30521
Polk R150 Speaker | Fisher 143 | USB Audio Card Ugreen 30521

Bose 141 Speaker | Yamaha HTR-5840 | USB Audio Card Ugreen 30521
Presonus Eris E5 | ZOOM R16

Presonus Eris E5 | USB Audio Card Ugreen 30521

Bose Soundlink 415,859 | Asus GL504GM-DS74 (Wired)

Bose Soundlink 415,859 | Asus GL504GM-DS74 (Bluetooth)

SBT6050R | Asus GL504GM-DS74(Wired)

SBT6050R | Asus GL504GM-DS74(Bluetooth)

MacBook Pro-2018 (Internal Speaker)

Acer Nitro Spin 5 (Internal Speaker)

Acer Aspire E5-574G (Internal Speaker)
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Table 6

VCD, 1PR to 2PR Replay Configuration.

Source Target Connection Method
Echo Dot 2 Echo Dot 2 Amazon Drop-In
EchoDot2  Echo Dot 3 Amazon Drop-In
EchoDot3  Echo Dot 2 Amazon Drop-In
EchoDot3  Echo Dot 3 Amazon Drop-In
Echo Dot 3 EchoPlusGen2  Amazon Drop-In
EchoDot3  Echo Input Amazon Drop-In
LG G6 Asus Tablet Google Meet
Laptop Laptop Google Meet

the audiophile market. Therefore, we conclude that it is worthwhile to study the audio characteristics of replay attacks on all
types of audio equipment.

3.6. Data availability

The dataset is organized into different folders, where each folder has all the recordings (OPR, 1PR and 2PR) of a unique
speaker. Each speaker folder contains three sub-folders, including the audio samples of OPR, 1PR, and 2PR. The naming conven-
tion of the file specifies the sample number, point of replay, speaker, environment, microphone at OPR, configuration number
and phrase number as shown in Table 7. The proposed voice spoofing detection corpus is available at (VSDC, 0000) for research
purposes. The elements of the file naming convention are described below.

e Sample set Number: Indicates the original OPR file the sample is based from

¢ Point of Replay: Indicates at which point of replay this sample was created

e Speaker: Human speaker/volunteer who recorded this sample

¢ Environment: Recording Environment of the OPR sample

e Microphone: The microphone that was used for the OPR recording

¢ Configuration Number: The configuration setup that was used to make the 1PR and 2PR samples. The configuration is based
on replay speaker, replay device, 1PR to 2PR transmission device and method

e Phrase: In each configuration, the volunteer spoke at least 9 phrases. This number indicates the phrase among all phrases
spoke for that sample

¢ Example filename: 11-1PR-S2-E6-M7-C8-01

Shown in Table 8 is the number of samples collected at each point of replay. “Sample” refers to each 6-second audio file that
can have any phrase listed in Table 3. The OPR samples are the original bona fide phrases used. The OPR files are replayed multiple
times with unique microphone and speaker configurations to create the 1PR and 2PR samples.

The dataset contains 14,050 files indicated in Table 8. Many of the OPR sets are used more than once to create the subsequent
replay sets. We do not include these OPR files more than once in the data set.

4. Experiments and results

We used standard spoofing countermeasure on multiple datasets to compare VSDC to three other datasets i.e. ASVspoof 2017
(Delgado et al., 2018), ASVspoof 2019 (Todisco et al., 2019), and ReMASC (Gong et al., 2019). Since constant Q cepstral coefficients
(CQCC) features and Gaussian mixture model (GMM) classifier were used as a baseline of ASVspoof 2017 and 2019, we used the
same for our experiments. For evaluation, ASVspoof 2017 used the metric of equal error rate (EER) while ASVspoof 2019
employed min-tDCF (tandem-decision cost function) along with the EER. Therefore, we used the EER metric for ASVspoof 2017
and EER and min-tDCF metrics (Kinnunen et al., 2018) for ASVspoof 2019 to perform comparative analysis with VSDC.

Table 7
An example of a replay configuration.

Example filename: 11-1PR-S2-E6-M7-C8-01

Sample set Number 11
Point of Replay (PR) 1PR
Speaker S2
Environment E6
Microphone M7
Configuration Number C28

Phrase 01
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Table 8
Number of samples for different
points of replay.

Sample Type ~ Number of Samples

OPR 1687
1PR 6179
2PR 6184
Total 14050

4.1. Experiment-1: Training on proposed VSDC for multi-order replay attacks

To test the effectiveness of our dataset in terms of detecting both first- and second-order replay, we performed an experiment
in two stages: first using bona fide and first-order replay samples, and then using bona fide and second-order replay samples.

In the first stage of this experiment, we evaluated the performance of the CQCC-GMM baseline countermeasure on our dataset
using only bona fide and first-order replay samples. We used the 20-D CQCC variant, including the static, delta, and delta-delta
coefficients. For this purpose, we used 60% samples for each of the bona fide and first-order replays to train the baseline counter-
measure. In the second stage of this experiment, we evaluated the same baseline countermeasure using only the bona fide and
second-order replay samples. The results obtained for both stages are shown in Table 9. Similarly, we repeated this experiment
using the CQCC-GMM countermeasure using the 30-D CQCC variant including the static, delta, and delta-delta coefficients on
VSDC. The results are reported in Table 9.

The results of this experiment indicate that first-order replays are more challenging to detect than second-order replay
attacks, due to the fact that an additional playback device and microphone will increase distortion in second-order replays. Addi-
tionally, the baseline countermeasure using more CQCC features achieves a smaller EER as compared to the one using fewer
CQCC features when evaluated on VSDC. More specifically, we observed a drop in EER of 3.25% on OPR-1PR set and 1.96% on OPR-
2PR set. Therefore, we used the CQCC-GMM countermeasure with 30-D CQCC variant for all of the remaining experiments.

4.2. Experiment-2: Training on ASVspoof datasets

We designed a two-stage experiment to investigate the capability of the ASVspoof baseline CQCC-GMM countermeasure for
replay detection in more diverse conditions. First, we trained the baseline CQCC-GMM countermeasure on the training samples
of ASVspoof 2017 database version-2 (Delgado et al., 2018) and tested it on the development (dev) and evaluation (eval) sets of
ASVspoof 2017 dataset, the OPR-1PR and OPR-2PR testing sets of the proposed VSDC (VSDC, 0000), and the testing set of ReMASC
dataset (Gong et al., 2019). Similarly, in the second stage of this experiment, we trained the baseline CQCC-GMM countermeasure
using training samples from the ASVspoof 2019 dataset. The results of this experiment are provided in Tables 10 and 11.

From the results (Table 10 and 11), we can clearly observe that the performance of the baseline countermeasure degrades on
VSDC and ReMASC datasets. More specifically, we experience an increase in average EER of 26.62% on VSDC (both OPR-1PR and
OPR-2PR sets) and 35.12% on ReMASC compared to the ASVspoof 2017 (dev + eval sets) dataset. Whereas, we observed an
increase in EER of 7.74% on VSDC and 20.49% on ReMASC over ASVspoof 2019 (dev + eval sets) dataset. These results indicate

Table 9
Results of model trained on OPR-1PR and OPR-2PR Test sets.

Baseline Model EER(%)
Features Classifier =~ OPR-1PRTestset ~ OPR-2PR Test set
CQCC 20-D variant ~ GMM 20.54 10.74
CQCC30-Dvariant ~GMM 17.29 8.78

Table 10
Performance evaluation on ASVspoof 2017, VSDC, and ReMASC.
Dataset(Training) ASVspoof 2017  ASVspoof 2017 & VSDC  ASVspoof 2017 & ReMASC
EER (%)
Dataset (Testing) ~ ASVspoof 2017 (Dev) 12.08 11.04 11.89
ASVspoof 2017 (Eval)  29.95 25.24 27.04
VSDC(OPR-1PR) 52.12 43.67 49.11
VSDC(OPR-2PR) 43.16 3217 39.98

ReMASC (Test) 56.14 45.6 43.67
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Table 11

Performance evaluation on ASVspoof 2019, VSDC, and ReMASC.
Dataset(Training) ASVspoof 2019 ASVspoof 2019 & VSDC  ASVspoof 2019 & ReMASC

EER(%) min-tDCF EER(%)  min-tDCF  EER(%) min-tDCF

Dataset (Testing) ~ ASVspoof 2019 (Dev) 22.66 0414 15.79 0.326 18.91 0.391
ASVspoof 2019 (Eval) 23.16 0424 17.39 0.347 21.89 0.402
VSDC(OPR-1PR) 34.25 0.567 28.2 0.456 32.15 0.467
VSDC(OPR-2PR) 27.05 0.504 225 0.407 25.98 0.487
ReMASC (Test) 434 0.617 38.7 0.591 31.8 0.467

that the performance of the countermeasure has a dependency on the recording environment, and recording and playback set-
tings.

4.3. Experiment-3: Training on combined set (ASVspoof and VSDC)

To test our hypothesis that training the anti-spoofing system with a more diverse dataset containing the attributes mentioned
previously can enhance the performance of the baseline countermeasure, we designed our third experiment to train the CQCC-
GMM baseline countermeasure on the combined corpus comprised of both the ASVspoof and our VSDC samples. We performed
this experiment in two stages. First, we trained the baseline countermeasure on the combined corpus consisting of the training
samples of ASVspoof 2017 and VSDC. Later, we tested the trained model on each of the three datasets and results are reported in
Table 10. We observed a drop in EER of 4.71% on the eval set, 1.04% on the dev set, 10.9% on OPR-1PR, 11% on OPR-2PR, and
10.54% on the ReMASC test set than the EER obtained by the model trained only on the ASVspoof 2017 dataset.

In the second stage, we trained the CQCC-GMM baseline countermeasure on the combined training corpus of ASVspoof 2019
and VSDC and results are reported in Table 11. For ASVspoof 2019 dataset, we observed a drop in average EER and min-tDCF of
6.32% and 0.083 than those achieved on the model trained only on the ASVspoof 2019 dataset. Similarly, for VSDC and ReMASC
datasets, we observed a decrease in average EER of 5.3% and 4.7%, and min-tDCF of 0.1 and 0.26 respectively.

From the results (Table 10 and 11) of this experiment, we can conclude that training the anti-spoofing model with additional
audio samples collected in more diverse settings and scenarios can enhance the performance of the anti-spoofing model.

4.4. Experiment-4: Training on combined set (ASVspoof and ReMASC

To further investigate the effect of training the countermeasure on the combined corpus, we extend our third experiment to
train the CQCC-GMM baseline countermeasure on the combined corpus consisting of both the ASVspoof and ReMASC samples.
For this experiment, we partitioned the ReMASC dataset into “train” and “test” sets. Like the previous experiment, we also con-
ducted this experiment in two stages. First, we trained the CQCC-GMM countermeasure on the combined corpus consisting of
the training samples of ASVspoof 2017 and ReMASC and results are provided in Table 10. We observed a drop in EER of 0.19%
and 2.95% on dev and eval sets, 12.47% on ReMASC, 3.01% on OPR-1PR, and 3.18% on OPR-2PR than the EER achieved on the coun-
termeasure trained using the ASVspoof 2017 dataset only.

In the second stage, we trained the CQCC-GMM baseline countermeasure on the combined corpus of ASVspoof 2019 (train)
and ReMASC (train) datasets and results are provided in Table 11. We observed a drop in average EER of 2.51% on ASVspoof 2019
dataset, 11.6% on ReMASC dataset, and 15.49% on VSDC than the EER obtained by the model trained only on the ASVspoof 2019
dataset. Hence, we conclude that training on this combined corpus improves the detection performance of the countermeasure.

From the results (Table 10 and 11) of this experiment, we can conclude that training the anti-spoofing model with additional
audio samples collected in more realistic scenarios as reported in ReMASC (Gong et al., 2019) improves the performance of the
anti-spoofing model.

4.5. Experiment-5: Analysis of spoofing detection performance on VSDC using different environments during the replays.

We designed this experiment to examine and compare the performance of the baseline countermeasure for spoofing detec-
tion on the samples replayed in different environments. For this purpose, we selected and categorized the samples from our data-
set based on the environment used to generate the replays. For this experiment, we selected two rooms i.e. audio chamber and
conference room. We selected the samples replayed in these two environments because they are different in terms of external
noise. More specifically, the audio chamber is almost free of noise, whereas, conference room contains the noise of the air circula-
tion system and footsteps. We performed this experiment in two stages. In the first stage, we evaluated the performance of the
replay samples played in the audio chamber, whereas, in the second stage, we examined the replay samples in the conference
room environment. For samples replayed in each of these environments, we divided our selected collection into two sets that are
OPR-1PR and OPR-2PR. We used 60% of the samples from each collection for training and the rest for testing. The results are
reported in Table 12.

From the results presented in Table 12, we observed that the samples replayed in the noise-free audio chamber obtained 5.3%
and 3.99% higher (absolute) EERs on OPR-1PR and OPR-2PR test sets respectively, when compared to the samples replayed at the
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Table 12
Analysis of spoofing detection performance on VSDC using differ-
ent environments during replays.

Playback Environment ~ EER(%) EER(%)
OPR-1PR Test-set OPR-2PR Test-set
Audio Chamber 234 13.9
Conference Room 18.1 9.89
Table 13

Analysis of spoofing detection
performance on VSDC using
different playback devices
during replays.

Playback Devices EER(%)

Presonus Studio 24 ~ 20.47
Acer Aspire 16.15

conference room. This is attributed to the fact that the audio chamber does not add any environmental noise, so that only the arti-
facts caused by the playback device are present in the replay signal. Additionally, as per the patterns of results obtained in other
experiments, we also observed low EER for OPR-2PR than OPR-1PR samples.

4.6. Experiment-6: Analysis of spoofing detection performance on VSDC using different playback devices.

We designed this experiment to examine and compare the performance of the baseline countermeasure for spoofing detec-
tion on the samples replayed with different devices. For this purpose, we selected the samples from our dataset based on the
playback devices used for replays. For this experiment, we selected two playback devices i.e. Acer Aspire laptop with internal
speaker (low-quality) and Presonus Studio 24 interface connected to a Presonus E5 external speaker (high-quality). We selected
these two playback devices for this experiment due to their difference in playback quality. The results of this experiment are
reported in Table 13.

From the results (Table 13), we observed that the samples replayed using the Presonus Studio 24 with high-quality Presonus
E5 external speaker achieved a 4.32% higher EER than the samples replayed using the Acer Aspire a device with internal speakers.
This is attributed to the fact that the low-quality built-in speaker of Acer Aspire device adds more artifacts in the replay signal
that makes it more different from the bona fide recording and thus easier for the anti-spoofing model to classify between bona
fide and replay samples.

4.7. Discussion.

VSDC aims to evaluate the performance of replay spoofing detection in multi-hop scenarios, when used in conjunction with
other datasets such as ASVspoof (2017 and 2019) and ReMASC, it can also be used to evaluate the speaker verification and spoof
detection in first-order replay scenarios. This section presents a performance analysis of different experiments (discussed above)
on the proposed VSDC, ASVspoof (2017 and 2019), and ReMASC datasets using the CQCC-GMM countermeasure. The results of
Experiment-1 clearly indicate that second-order replays are easier to detect and achieve on average 9.15% smaller EER than the
first-order replays.

The results achieved on the ASVspoof 2017 and ASVspoof 2019 datasets in Experiments 2—4 show that the baseline counter-
measure achieves lower EER on ASVspoof 2019 as compared to ASVspoof 2017 dataset. This pattern is visible in all these experi-
ments (Experiments 2—4) regardles of whether the ASVspoof dataset is used alone for training or in combination with VSDC or
ReMASC datasets. Perhaps this is because the simulation-based approach of ASVspoof 2019; introduces less distortion during the
replay process compared to real replay recordings of ASVspoof 2017. The simulations are generated by changing one parameter
at a time to examine different factors affecting the impact of replay attacks on ASV systems, along with the reliability of the anti-
spoofing models. Additionally, our dataset configurations, environment and recording conditions are closer to the ASVspoof
2019 than ASVspoof 2017. This might be the possible reason of getting better results on VSDC for ASVspoof 2019 experiments
(Table 11) than ASVspoof 2017 experiments (Table 10).

The results of Experiment-5 indicate that the performance of countermeasures in terms of replay attack detection also depends
on the playback environment, where significant background noise contributes to higher detection performance and vice versa.
From the results of Experiment-6, we observed that the quality of speakers in playback devices also affects the detection perfor-
mance of the countermeasure. More explicitly, devices with high quality speakers make it more difficult for the countermeasures
to detect replay attacks.
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5. Conclusion

VCDs can be exploited in IoT driven environments to generate various spoofing attacks including chains of replays. Existing
audio spoofing datasets cannot be used to evaluate countermeasures against multi-hop voice spoofing in the IoT environment.
Therefore, this paper presents a dataset consisting of bona fide, first-order, and second-order replay samples to evaluate anti-
spoofing algorithms meant to detect multi-order replay attacks. The proposed dataset contributes to the existing spoofing data-
sets mainly through adding more diversity in playback scenarios (i.e. multi-hop replay attack), recording environments, use of
array microphones along with non-array microphones (e.g. professional-grade microphones) at both 1PR and 2PR to capture
audio characteristics useful to the development of future [oT applications.

Performance evaluation on CQCC-GMM countermeasure using the proposed VSDC shows lower EER compared to ASVspoof
2017 and ASVspoof 2019 datasets due to one or more of the following potential reasons: the use of microphone arrays along
with non-array microphones (e.g. professional grade microphones) at both 1PR and 2PR, add the diversity in playback devices
and acoustic environments. Evaluation also showed that the discrimination between bona fide and first-order replay samples is
more challenging than discrimination between bona fide and second-order replay samples. Moreover, we conclude that the char-
acteristics of playback devices must also be thoroughly investigated to identify the difference in features of the first-order replay
and second-order replay spoofing samples. Additionally, results of training on combined sets (VSDC and ASVspoof) shows that
training the anti-spoofing model with additional audio samples collected in more diverse settings and scenarios can improve the
performance of the anti-spoofing model, therefore, VSDC could be used along with ASVspoof for the performance evaluation of
future anti-spoofing methods.
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