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Abstract
Given a consistent bipartite graph� in T 2 with a complex-valued edge weighting E we
show the following two constructions are the same. The first is to form the Kasteleyn
operator of (�, E) and pass to its spectral transform, a coherent sheaf supported on a
spectral curve in (C×)2. The second is to form the conjugate Lagrangian L ⊂ T ∗T 2 of
�, equip it with a brane structure prescribed by E , and pass to its mirror coherent sheaf.
This lives on a stacky toric compactification of (C×)2 determined by the Legendrian
link which lifts the zig-zag paths of � (and to which the noncompact Lagrangian L
is asymptotic). We work in the setting of the coherent–constructible correspondence,
a sheaf-theoretic model of toric mirror symmetry. We also show that tensoring with
line bundles on the compactification is mirror to certain Legendrian autoisotopies of
the asymptotic boundary of L .
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1 Introduction

In pioneering work, Kenyon–Okounkov–Sheffield [43] showed that the statistical
properties of dimer configurations on a doubly periodic bipartite graph in R

2 are
largely determined by an algebraic curve: the spectral curve of its Kasteleyn operator
K (x, y). This is a matrix-valued Laurent polynomial that depends on a choice of edge
weights on the associated finite graph � in T 2 = R

2/Z
2. The vanishing locus of its

determinant defines a curve C ⊂ (C×)2, and its cokernel defines a sheaf supported on
C . As this spectral data only depends on edge weights up to gauge transformations, its
construction can be understood as a map from local systems on � to coherent sheaves
on (C×)2. The purpose of this paper is to identify this spectral transform as an instance
of homological mirror symmetry.

The algebro-geometric side of the mirror relation is a toric compactification X�

of TN := (C×)2. Here � denotes a complete (possibly stacky) fan in NR := R
2

determined by the zig-zag paths of �, a configuration of immersed curves canon-
ically associated to any bipartite surface graph. The symplectic counterpart of this
compactification is a singular Legendrian �� ⊂ T∞T 2 in the contact boundary of
T ∗T 2, described in [19,20]. Lagrangian branes asymptotic to �� are faithfully mod-
eled by constructible sheaves on T 2 with microsupport asymptotic to �� ; see [51,56]
or [30,41] for complementary approaches through Floer theory and pure sheaf theory,
respectively. In this form the mirror equivalence

Perf(X�) ∼= Shc��
(T 2)

between the dg categories of perfect complexes and constructible sheaves is referred
to as the coherent–constructible correspondence (or CCC) [19], proved in the stated
generality in [45].

Local systems on the graph � give rise to Lagrangian branes in T ∗T 2 via the
construction of [62]: up to Hamiltonian isotopy there is a canonical embedded exact
Lagrangian L� in T ∗T 2 which deformation retracts onto �. In particular, there is
an isomorphism Loc1(�) ∼= Loc1(L�) between their algebraic tori of rank one local
systems. The Lagrangian L� is noncompact but asymptotic to the Legendrian lift
�� ⊂ T∞T 2 of the zig-zag paths. It follows from the formalism of sheaf quantization
that there is an associated embedding Loc1(L�) ↪→ Shc��

(T 2). The resulting objects
were termed alternating sheaves in [62].

Provided � satisfies a certain consistency condition, �� is Legendrian isotopic to
the Legendrian link ��◦ associated to the rays of �. Following the results of [26],
such an isotopy quantizes to an equivalence Shc��

(T 2)
∼−→ Shc��◦ (T

2). On the other
hand, ��◦ is a subset of the singular Legendrian �� , hence there is a fully faithful
inclusion Shc��◦ (T

2) ↪→ Shc��
(T 2). The composition of these assembled maps with

the coherent–constructible correspondence now defines a map from local systems
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on � to coherent sheaves on X� . Our main result is that this provides a geometric
interpretation of the Kasteleyn operator K (x, y):

the mirror map from local systems to coherent sheaves is the spectral transform.

Theorem 1.1 (c.f. Theorem 5.3) Let � ⊂ T 2 be a consistent bipartite graph, � the
associated complete stacky fan. Then the following diagram commutes.

Shc��
(T 2) Shc��

(T 2) Perf(X�) Perf(TN )

Loc1(�)

{
pure sheaves of
dimension one

}

Loc1(L�)
∼

∼

spectral transform of K (x, y)

Here the bottom and top left maps are defined by a fixed Kasteleyn orientation. The
top row is the composition of (i) quantization of local systems on L� as alternating
sheaves, (ii) the GKS equivalence associated to a Legendrian isotopy�� → ��◦ and
the inclusion Shc��◦ (T

2) ⊂ Shc��
(T 2), (iii) theCCC, and (iv) restriction to TN ⊂ X� .

The Theorem can also be summarized more coarsely, without referencing the com-
pactification X� , as follows: L� supports objects of the wrapped Fukaya category
of T ∗T 2, and mirror objects in Perf(TN ) are supported on the spectral curve. Indeed
the notion of wrapping appears implicitly in the proof of Theorem 1.1 in the guise of
convolution with a free local system on T 2, see Lemma 2.7.

If �b
0 , �

w
0 ⊂ �0 denote the sets of black and white vertices of �, let us recall in

more detail that the Kasteleyn operator

K (x, y) : C[TN ]�b
0 → C[TN ]�w

0

is amatrix-valued function on TN whose entries are sign-twistedweighted edge counts.
The edgeweights depend on a choice of local system on�, and the signs are prescribed
by a Kasteleyn orientation. This is an assignment �1 → {±1} satisfying certain
conditions, and such an assignment can be identified with the choice of spin structure
on L� used to fix certain signs in the map Loc1(L�) ↪→ Shc��

(T 2). The spectral
transform of K (x, y) is its cokernel as a map of C[TN ]-modules, and for generic edge
weights is the pushforward of a line bundle on a smooth curve.

1.1 Isotopies and integrability

A main result of [25] is that the forgetful map from spectral data to the underlying
spectral curve defines an algebraic completely integrable system with respect to the
canonical Poisson structure on Loc1(L�). The coefficients of the defining equation
of the curve give a collection of regular functions on Loc1(L�), well-defined up to
an overall scalar. These provide Hamiltonians for the integrable system, and suitably



60 Page 4 of 36 D. Treumann et al.

normalized can be identified with summands of the partition function for the dimer
model on � (that is, they are weighted counts of perfect matchings, organized by their
associated class in H1(T 2)).

Different incarnations of this integrable system have been studied from a wide
range of points of view—see for example [3,8,10,11,14,21,29]. A generic fiber can be
identified with a finite cover of the Jacobian of the closureC ofC in (the coarse moduli
space of) X� . In [25,42] such an identification is determined as follows: a choice of
white vertex defines a section of cok K (x, y), and one pushes forward its vanishing
divisor from C to C .

In our framework, the identification of generic Liouville fibers with covers of Jaco-
bians is determined by the choice of isotopy�� → ��◦ . That is, given a local system
on L� each choice of isotopy determines an extension of cok K (x, y) to a sheaf on the
corresponding closed curve C . These sheaves are not in general isomorphic though
their restrictions to TN are.

To understand this ambiguity we consider the following elementary autoisotopies
of ��◦ : each ray ρ of � determines a collection of pairwise isotopic components
with parallel front projections in T 2, and we let σρ be the autoisotopy which moves
these in their normal direction until they become cyclically permuted (see Fig. 7).
These act by autoequivalences on Shc��◦ (T

2) following [26]. On the other hand, also
associated to ρ is a line bundle Lρ on X�—when X� is a variety this is just the line
bundle O(−Dρ) defined by the toric divisor Dρ , and is a root of O(−Dρ) when Dρ

has nontrivial stabilizers.

Proposition 1.2 (c.f. Proposition 6.1) The autoisotopy σρ acts on Shc��◦ (T
2) by the

restriction of the autoequivalence of Shc��
(T 2) ∼= Perf(X�) given by tensoring with

Lρ .

The finite covers appearing in the above discussion and in [25, Sec. 1.4.3] reflect the
discrepancy between the stack X� and its coarse moduli space: sheaves on the former
record extra information about the action of finite stabilizers, while the Jacobian of
a non-stacky spectral curve does not record this data. We discuss this issue in more
detail in Sect. 7.

The Poisson commutativity of the Goncharov–Kenyon Hamiltonians in the canon-
ical Poisson structure on Loc1(L�) should admit an alternative derivation from the
present point of view. On one hand, it is known that the relative Picard variety of a
family of smooth curves in a toric surface has a natural Poisson structure in which the
forgetful map to the Hilbert scheme is a Lagrangian fibration (this is a special case
of [10, Section 8]). On the other hand, it is understood by work of [2], pursued in the
present context in [61], that the Poisson structure on this space is essentially intrinsic
to the underlying category whose moduli we are considering. Thus in our example
the natural Poisson structures from the coherent and constructible descriptions of the
category should coincide, and a Lagrangian fibration for one is a Lagrangian fibration
for the other.
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1.2 Cluster structures

At any square face of � we may perform a local move to produce a new bipartite
graph �′, see Fig. 6. The dual graph of � is naturally a quiver (we orient it so that
its edges pass a white vertex on their right) and when � undergoes a square move its
dual graph undergoes a quiver mutation. Note that holonomies around the faces of �

provide distinguished coordinates on Loc1(�) (satisfying the single relation that their
product is equal to 1). A key result of [62] is that alternating sheaves before and after
a square move are related by a commutative diagram

Loc1(L�)

Loc1(L�′)

Shc��
(T 2)

Shc��′ (T
2).

∼
Here the right map is the equivalence defined by a canonical local isotopy �� → ��′
and the leftmap is the clusterX -transformation associated to the givenquivermutation.
Composition with this local isotopy identifies the sets of isotopies from ��◦ to ��

and ��′ , respectively. We immediately obtain the following result.

Corollary 1.3 Let �, �′ ⊂ T 2 be two consistent bipartite graphs differing by a square
move. Then we have a commutative diagram

Loc1(L�)

Loc1(L�′)

Shc��
(T 2)

Shc��′ (T
2)

∼ Perf(X�)

where the left map is the cluster X -transformation associated to the given quiver
mutation, and the maps to Perf(X�) are defined as in Theorem 1.1 by compatible
isotopies from �� , ��′ to ��◦ .

The further corollary that the spectral curve is preserved by cluster transforma-
tions, hence up to a scalar so are the Goncharov–Kenyon Hamiltonians, is proved
combinatorially in [25, Theorem 4.7].

The images of Loc1(�) in Shc��◦ (T
2) for various choices of graph � and isotopy

�� → ��◦ have the common property that they consist of sheaves whose microstalks
along ��◦ form a rank one local system. Such sheaves were called microlocal rank
one in [63] and simple sheaves in [44]. It follows from Proposition 1.2 that the moduli
space of microlocal rank one sheaves contains a countable family of components each
of which has a (partial) cluster X -structure. On the constructible side the components
are indexed by the Euler characteristic of the stalk of a sheaf at any point of T 2.
Passing to the coherent side by Theorem 1.1, the image of a microlocal rank one
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sheaf in Perf(X�) is generically a line bundle supported on a smooth curve, and the
components are indexed by the degree of this bundle.

A sequence of square moves that takes a bipartite graph � back to itself yields an
autoisotopy of of �� , hence an autoequivalence of Shc��

(T 2). At the level of moduli
spaces this is an example of the automorphismof a cluster variety attached to amutation
periodic sequence. That in the present case such automorphisms act on spectral data
by tensoring with line bundles, and in particular preserve the Goncharov–Kenyon
Hamiltonians,was observed in [25] (see also [21]). This also follows immediately from
our mirror-symmetric description of the spectral transform: any isotopy �� → ��◦
intertwines the autoisotopy defined by a periodic sequence of square moves with a
composition of the σρ , hence by Proposition 1.2 it acts on spectral data by tensoring
with a line bundle.

1.3 Further context

Our results complement manywell established other connections between dimermod-
els and mirror symmetry. The Legendrian �� can be identified with a skeleton of a
generic fiber of the Hori–Vafa potential W ∈ C[TM ] [36], where TM is the dual torus
of TN ⊂ X� [28,59,69]. This is a Laurent polynomial whose Newton polygon has
vertices on the rays of �.

Many aspects of mirror symmetry for X� and the total space Y of its anticanonical
bundle can be conveniently described in terms of a consistent bipartite graph �∨ for
which W−1(0) ⊂ TM is a spectral curve. The derived category Coh(Y ) of coherent
sheaves on Y is equivalent to the derived category of modules for a Jacobian algebra J
of the dual quiver of �∨, while X� itself is derived equivalent to the module category
of a subalgebra of J [32,38]. Mirror symmetrically,�∨ can be understood as encoding
the intersection pattern of a collection of Lagrangian three-spheres in the mirror {W =
uv} ⊂ TM × C

2 of Y , and J as encoding relations in its Fukaya category [12,22].
This summary only scratches the surface of an extensively developed circle of ideas:
an incomplete sampling of references includes [4,5,7,9,13,15,24,34,37,50,53,55,57,
64,67]. Note that in the present paper, while we are also interested in the B-side of
mirror symmetry for X� , it is Laurent polynomials on TN ⊂ X� rather than on the
dual torus TM which play the leading role—these have Newton polygons with edges
normal to the rays of �, as opposed to vertices on these rays.

We also note that the combinatorial construction of Lagrangians relevant to mirror
symmetry has been the topic of other recent and ongoing works, see [33,47–49]. Here
we apply the construction of [62] in a similar spirit, but with a tropical coamoeba
roughly in the role played by a tropical amoeba in the cited works. Results similar to
our Proposition 1.2 were also recently obtained in [31], but with the role of Legendrian
isotopies replaced monodromies of coefficients in Landau–Ginzburg potentials. It is
plausible to us that brane brickmodels [16–18] (see also [23]) and their generalizations
provide a combinatorial framework around which various aspects of the present work
could be extended to higher dimensions.

Finally, it is an elementary check, see for example [12,25], that the conjugate
Lagrangians L and their mirror smooth spectral curvesC all have the same topological
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type. One expects an explanation for this in terms of hyperkähler rotation. Indeed,
the spectral curves are Lagrangian with respect to the holomorphic symplectic form
dlog(x)∧ dlog(y), which is compatible with the flat hyperkähler metric associated to
any definite inner product on Z

2. When Z
2 is the square lattice and the spectral curve

is a Harnack curve, the description of C via the Ronkin function [42] can be used to
see that, in one of its symplectic structures, a natural symplectomorphism from TN to
T ∗T 2 carries C to a Lagrangian asymptotic to a Legendrian link isotopic to ��◦ .

1.4 Organization

The structure of the paper is as follows. In Sect. 2we review the coherent–constructible
correspondence. We prove a general formula computing the restriction of a coherent
sheaf on a toric stack to the open torus orbit in terms of the constructible side of the
CCC . In Sect. 3 we study Legendrian links arising from toric stacks of dimension
two and prove that a certain consistency condition on a Legendrian link � ⊂ T∞T 2

is a necessary and sufficient condition for it to be (cusplessly) Legendrian isotopic
to one arising from a toric DM stack. In Sect. 4 we review how such Legendrians
appear in the theory of dimer models. In Sect. 5 we prove our main theorem, and
in Sect. 6 establish a mirror relationship between Legendrian isotopies and tensor
products with line bundles. Finally, in Sect. 7 we characterize the mirror operation
of pushing forward to a coarse moduli space as arising from the action of a specific
Legendrian degeneration on constructible sheaves, clarifying the relationship between
the present work and related ones in which stacks do not appear.

1.5 Notation

Throughout, we fix a coefficient field k. Some of the references we rely on assume
for simplicity that k is the field of complex numbers, though this hypothesis does
not play any role in our constructions and arguments. In fact with a little more effort
one could replace k with a more general ring. We write Sh(M) for the unbounded
dg derived category of sheaves of k-vector spaces on a manifold M with possibly
nonempty boundary; we refer to an object of Sh(M) simply as a sheaf. We write
Shc(M) for the subcategory of sheaves with constructible cohomology with respect to
some Whitney stratification. Given a sheaf F ∈ Sh(M) we write SS(F) ⊂ T ∗M for
the microsupport or singular support of F . Throughout all functors will be assumed
derived unless otherwise stated.

Given a conic Lagrangian subset L ⊂ T ∗M we write ShL(M) ⊂ Sh(M) for the
full subcategory of sheaves with microsupport contained in L , similarly for ShcL(M).
We additionally have the subcategory Shw

L (M) ⊂ ShL(M) of compact objects, also
calledwrapped constructible sheaves [52]. Occasionallywe cite basic results from [44]
which are stated for ShcL(M) or Shc(M) but known to also hold for ShL(M) or Sh(M);
we refer to [41, Sec. 2] or [58] for a general discussion, citing [44] without comment
in the text. We write Loc1(M) ⊂ Loc(M) := ShM (M) for the subcategory of local
systems with rank one stalks concentrated in degree zero, and somewhat abusively
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also for the moduli space of such objects (which is an algebraic torus when M is a
compact torus).

We write T∞M for the cosphere bundle of M , which we view as the fiber-
wise boundary of the fiberwise spherical compactification of T ∗M . Given a subset
� ⊂ T∞M , we write Sh�(M) ⊂ Sh(M) for the full subcategory of sheaves with
microsupport contained in the union of the zero section and the cone over�, similarly
for Shc�(M), Shw

�(M). We write SS∞(F) ⊂ T∞M for the asymptotic microsupport
ofF , i.e. the intersection with T∞M of the closure of SS(F) in the fiberwise spherical
compactification of T ∗M .

Given a scheme or algebraic stack Y we write Coh(Y ) for the bounded dg
derived category of coherent sheaves on Y , IndCoh(Y ) for the ind-completion thereof,
QCoh(Y ) for the unbounded dg derived category of quasicoherent sheaves, and
Perf(Y ) for the subcategory of perfect complexes.

2 The coherent–constructible correspondence

In this section we explain how to compute the restriction of a coherent sheaf on a toric
variety to its open torus orbit in terms of the constructible side of the CCC. We begin
by fixing our notation and reviewing the statement of the CCC.

We fix dual lattices M and N of rank n, setting MR := M ⊗ R, NR := N ⊗ R. We
define a compact torus and a dual algebraic torus by

T n := MR/M, TN := N ⊗ k× (2.1)

and write p : MR → T n for the universal covering homomorphism.
Given a fan � in NR we write X� for the associated toric partial compactification

of TN .We also consider extended data� = (�, �̂, β), where �̂ is a fan in an auxiliary
lattice N̂ and β : N̂ → N is a homomorphism with finite cokernel and which induces
a combinatorial equivalence between �̂ and �. We refer to � as a stacky fan, though
several variants appear in the literature [1,27,66]. Associated to � is a toric DM stack
X� which has no nontrivial stabilizers on the open subspace TN ⊂ X� and whose
coarse moduli space is X� (see e.g. [45, §5]). When β is an isomorphism X� has no
nontrivial stabilizers at all and coincides with the variety X� .

Notation 2.1 Wewill be most interested in the following categories of sheaves onX� .

(1) Perfprop(X�), the dg category of perfect complexes with proper support,
(2) Coh(X�), the bounded dg derived category of coherent sheaves.

To� we also associate a conic Lagrangian L� in T ∗T n ∼= MR/M×NR as follows.
By assumption, β induces a correspondence between the cones σ̂ ∈ �̂ and the cones
σ ∈ �. We set Nσ = β(N̂ ∩span(σ̂ )) and Mσ = Hom(Nσ , Z). Given χ ∈ Mσ we set

σ⊥
χ := {m ∈ MR|〈m, s〉 = 〈χ, s〉 for any s ∈ β(N̂ ∩ σ̂ )}.

Each σ⊥
χ is a translate of σ⊥ := σ⊥

0 , and p(σ⊥) only depends on the image of χ in
the cokernel of the natural map M → Mσ . We can now define
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L� :=
⋃
σ∈�

⋃
χ∈Mσ

p(σ⊥
χ ) × (−σ). (2.2)

Note that when β is an isomorphism, hence X�
∼= X� , we have p(σ⊥

χ ) = p(σ⊥) for
all χ . In this case we may simply write L� for L� .

Since L� is conic it defines a Legendrian �� in the cosphere bundle T∞T n , the
quotient byR+ of the complement of the zero section in T ∗T n .Wewrite T∞T n, as we
view the cosphere bundle as the boundary of the fiberwise spherical compactification
of T ∗T n (in particular, we do not fix a choice of contact form on T∞T n , merely its
contact distribution).

Example 2.2 When M ∼= Z
2 and � is the complete fan with three rays generated

respectively by (1, 0), (0, 1), and (− 1,− 1), then X�
∼= P

2. In Fig. 1 we depict the
Legendrian �� ⊂ T∞T 2, which is the union of the cocircle above p(0) and three
circles which project to the geodesics {p(σ⊥)}σ∈�(1) (where �(1) denotes the set of
rays of �). Here and elsewhere we convey a Legendrian � ⊂ T∞T 2 by drawing
its front projection π(�) ⊂ T 2 together with hairs indicating the codirections which
comprise � itself.

Now define β : N̂ ∼= Z
3 → N by setting

β(e1) = (0, 1), β(e2) = (2, 0), β(e3) = (−1,−1),

and let �̂ ⊂ N̂R be the (non-complete) fan formed by the walls of the positive octant.
In this case X� is a stacky P

2 in which one component of the toric boundary has a
generic Z2 stabilizer. The Legendrian �� is the union of �� , another circle which
projects to a translate of p(σ⊥) (where σ is the ray generated by (1, 0)), and two
intervals in the cocircles above (1/2, 0) and (1/2, 1/2).

Notation 2.3 We will work with the following categories of sheaves on T n [44,52].

(1) Shc��
(T n), the dg category of constructible sheaves with asymptotic microsupport

contained in �� ,
(2) Shw

��
(T n), the dg category of wrapped constructible sheaves with asymptotic

microsupport contained in �� .

β(e1)

β(e2)β(e3)

Σ ⊂ NR ΛΣ ⊂ T∞T 2 ΛΣ ⊂ T∞T 2

Fig. 1 The Legendrians in T∞T 2 associated to X�
∼= P

2 and a stack X� whose coarse moduli space is
P
2
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y

1

1

1

1
0 0

0 0

0

F ∈ Coh(

k

k

k

k

k

k

k

2) O(x,y)[−2] OP2(1)[−2]

Fig. 2 Constructiblemirrors of some coherent sheaves onP
2. From left to right: a general object of Coh(P2),

a (shifted) skyscraper at a point (x, y) ∈ A
2 ⊂ P

2, and the (shifted) line bundleO
P2 (1)[−2]

Wrapped constructible sheaves are by definition the compact objects in the unbounded
dg derived category Sh�� (T n) of sheaves with prescribed microsupport but no further
size restriction; in particular the stalks of a wrapped constructible sheaf F need not
be finite-dimensional. Convolution on T n induces symmetric monoidal structures on
Shc��

(T n) and Sh�� (T n), and Shw
��

(T n) ⊂ Sh�� (T n) is closed under convolution
when X� is smooth.

The following result ofKuwagaki builds on and complements the results of [6,19,20,
46,60,65,68], which taken together categorify the familiar relation between polytopes
and line bundles on toric varieties

Theorem 2.4 [45] For any stacky fan � there is a commutative diagram

CCCX�
: Coh(X�) Shw

��
(T n)

Perfprop(X�) Shc��
(T n).

∼

∼

where the top and bottom functors are equivalences. The bottom is a monoidal equiv-
alence with respect to the tensor product on X� and the convolution product on T n,
as is the top when X� is smooth.

Example 2.5 When � is the fan of P
2, an object of Sh��(T 2) is determined by its

stalks at p(0) and a generic point in each component of T 2
� π(��)—where π :

T∞T 2 � T 2 denotes the projection—together with six generization maps satisfying
obvious relations, see Fig. 2. In this way the coherent–constructible correspondence
recovers the Beilinson description of Coh(P2) in terms of quiver representations.

Example 2.6 Suppose that M ∼= Z
2 and that � is a complete fan, in which case X�

is a complete toric surface. We have the following key examples of the coherent–
constructible correspondence, generalizing the right two pictures in Fig. 2:
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(1) Suppose F ∈ Coh(X�) is the structure sheaf of a point (x, y) ∈ TN ⊂ X� . Then
CCCX� (F) is a local system on T 2 with holonomies x and y around the given
generators of M ∼= π1(T 2), placed in degree − 2.

(2) Suppose F ∈ Coh(X�) is an ample line bundle on X� . Then there is a polygon
P ⊂ MR such that CCCX� (F) ∼= p∗i!ωP◦ , where ωP◦ is the dualizing sheaf
on the interior P◦ of P , i : P◦ ↪→ MR the inclusion, and p : MR � T 2 the
projection. The inward normal fan of P is a coarsening of �.

The following lemma will be used in Sect. 5. Note that the identification N ∼=
Hom(M, Z) induces an identification ofk[TN ]with the group algebra ofM ∼= π1(T n),
and a corresponding equivalence of dg categories

k[TN ]-mod ∼= Loc(T n) (2.3)

The coherent–constructible correspondence is the composition of this with the shift-
by-n functor F �→ F[n] (a normalization prescribed by the requirement that the
equivalence be monoidal).

Lemma 2.7 Let F ∈ Shw
��

(T n) be a wrapped constructible sheaf (as in 2.3). Then

the restriction of CCC−1
X�

(F) ∈ Coh(X�) to TN is isomorphic as a k[TN ]-module to
�c(p∗F) with the natural action of π1(T n) by deck transformations.

Proof Let ωMR
denote the dualizing complex on MR, so that an orientation of MR

gives an isomorphism ωMR

∼= kMR
[n]. We recall that for G ∈ Coh(X�) we have

CCCTN (i∗TNG) ∼= CCCX�
(G)�p!(ωMR

)

in ShT n (T n) ∼= Loc(T n) ([19, Th. 3.8], [45, Cor. 12.8]). That is, the coherent–
constructible correspondence intertwines restriction to TN and convolution with a
shifted free local system on T n . For any sheaf F ∈ Sh(T n), a base-change argument
(which we give below) shows that the stalk of the local system F�p!ωMR

at zero is
naturally identified with �c((p∗F) ⊗ ωMR

). After choosing an orientation of MR, the
projection formula [44, Prop. 2.6.6] gives

�c((p
∗F) ⊗ ωMR

) ∼= �c(p
∗F) ⊗ k[n] = �c(p

∗F)[n]

Since CCCTN is the shift-by-n of the equivalence of categories induced by the iso-
morphism of rings k[TN ] ∼= k[π1(T n)], we may prove the Proposition by giving an
isomorphism

�c((p
∗F) ⊗ ωMR

) ∼= (F�p!ωMR
)|0 (2.4)

and computing the deck group action.
The left half of the diagram below shows a Cartesian square of continuous maps

between locally compact spaces. The base-change isomorphism associated to this
diagram is (2.4), indicated in the right-half of the diagram.
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MR T n × MR

{0}

T n × T n

T n

t �→ (p(t), −t)

id × p

m

p∗F ⊗ ωMR
F � ωMR

�c(p∗F ⊗ ωMR
)

∼= (F�p!ωMR
)|0

F � p!ωMR
.

F�p!ωMR
.

Form ∈ M , let τm : MR → MR : t �→ t+m denote the translation bym. Since p◦
τm = p we have a natural isomorphism τ ∗

m p∗F ∼= p∗F , and an adjoint isomorphism

p∗F ∼= τm,∗ p∗F = τm,! p∗F . We also have an isomorphism ωMR

∼→ τm,!ωMR
,

natural isomorphism τ !
mωMR

∼= ωMR
, and an adjoint isomorphism ωMR

∼−→ τm,!ωMR
,

giving the equivariant structure on ωMR
. Together these define a map

�c(p
∗F ⊗ ωMR

) → �c(τm,!(p∗F ⊗ ωMR
)) = �c(p

∗F ⊗ ωMR
) (2.5)

(using �c ◦ τm,! = �c) which give the deck action on �c(p∗F ⊗ ωMR
). Since (p(t +

m),−(t + m)) = (p(t),−t − m), the top map in the diagram intertwines τm with
id × τ−m , and p∗F ⊗ ωMR

→ τm,!(p∗F ⊗ ωMR
) is pulled back from

F � ωMR

∼−→ (id × τ−m)!(F � ωMR
).

Writing τ−m : p!ωMR
→ p!ωMR

for the image of ωMR
→ τ−m,!ωMR

under p!,
(making use of p!τ−m,! = p!) it follows that (2.5) coincides with

(id�τ−m)|0 : (F�p!ωMR
)|0 → (F�p!ωMR

)|0
under the base-change isomorphism. ��

3 From fans to Legendrian links

We now specialize to the case M ∼= Z
2 and fix a complete stacky fan �. In Exam-

ple 2.6 we saw how to describe mirrors of skyscrapers sheaves and line bundles onX�

in terms of the coherent–constructible correspondence. The remainder of the paper
can be understood as explaining how the mirrors of coherent sheaves supported on
hypersurfaces in X� may be described using dimer models.

We first note that a generic hypersurface C in the underlying variety X� will
intersect the toric boundary D := X� � TN only along the smooth part of D. In
other words, C will lie in the smooth, non-complete toric surface X�◦ defined by the
subfan �◦ of � formed by its 1-dimensional cones (rays) together with the origin.
Set-theoretically X�◦ is the union of TN and a copy of k× for each ray of �. Letting
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�◦ = (�◦, �̂◦, β), the same is true of X�◦ , the difference between X�◦ and X�◦
being that in the former the k× attached to the ray σ has the cyclic group Cσ :=
(N ∩ span(σ ))/(β(N̂ ) ∩ span(σ )) as a stabilizer.

The Legendrian ��◦ ⊂ T∞T 2 is a link with a connected component for each ray
of � (recall again that we set T 2 := MR/M). These project onto geodesics passing
through the origin in T 2, and the singular Legendrian �� is the union of ��◦ with
the fiber of T∞T 2 at the origin. The Legendrian ��◦ is contained in ��◦ , which is
also a link and whose remaining components project to geodesics not passing through
the origin. While the components of ��◦ are mutually nonisotopic, ��◦ has |Cσ |
pairwise isotopic components associated to each σ ∈ �.

An important feature ofmicrolocal sheaf theory is that the action of contact isotopies
on the cosphere bundle of a manifold M quantizes to an action on its sheaf category
Sh(M) [26]. By a contact isotopy we mean a family {φt }t∈I of contactomorphisms
φt : T∞M → T∞M which assemble into a smooth map T∞M × I → T∞M ,
and such that φ0 is the identity (here I := [0, 1]). On a practical level, this means
that in studying sheaves microsupported on ��◦ we have the freedom to isotope ��◦
as we wish and instead study sheaves microsupported on the new Legendrian. More
formally we have the following result, where Ṫ ∗M ⊂ T ∗M is the complement of the
zero section.

Theorem 3.1 [26] Let {φt }t∈I be a contact isotopy of T∞M. Then there is a unique
locally bounded sheaf KφI ∈ Shc(I × M × M) such that

(1) the intersection of {t} × T∞M × T∞M with the projection of SS(K�) ∩ I ×
Ṫ ∗M × Ṫ ∗M to I × T∞M × T∞M is equal to the graph of φt ,

(2) the restriction of KφI to {0} × M × M is the constant sheaf of the diagonal.

Convolution with the restriction Kφt of KφI to {t}×M×M defines an autoequivalence
of Sh(M) such that SS(Kφt (F)) = φt (SS(F)) for any F ∈ Sh(M) and t ∈ I .

It follows that for any Legendrian � ⊂ T∞M convolution with Kφt restricts to

an equivalence Sh�(M)
∼−→ Shφt (�)(M). In fact, by [26, Prop. 3.12] this restriction

only depends on the Legendrian isotopy {φt (�)}t∈I and can be alternatively described
as follows, where Mt := M × {t} ⊂ M × I (see also [70, Theorem 3.1], [41, Sec.
2.11]). Here given a smooth family {�t }t∈I of Legendrians in T∞M we write �I ⊂
T∞(M × I ) for the unique Legendrian whose projection to (T∞M) × I is the given
family (see e.g. [26, Sec. A.2]).

Corollary 3.2 [26]Let {�t }t∈I be aLegendrian isotopy in T∞M.Then for any t ∈ I the
restriction functor i∗Mt

: Sh�I (M× I ) → Sh�t (M) is an equivalence. The composition

i∗Mt
◦ (i∗M0

)−1 : Sh�0(M)
∼−→ Sh�t (M) is isomorphic to convolution with the GKS

kernel Kφt for any contact isotopy {φt }t∈I such that �t = φt (�0) for all t ∈ I .

With this Corollary in hand we will write K{�t } : Sh�0(M)
∼−→ Sh�1(M) for

the equivalence associated to a Legendrian isotopy {�t }t∈I . Following the discussion
preceding Theorem 3.1, we would now like to characterize Legendrian links in T∞T 2

which are Legendrian isotopic to some ��◦ . If we restrict our attention to isotopies
which do not create cusps in the front projection, we will see in Proposition 3.5 that
the resulting links are exactly those which satisfy the following condition.
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Definition 3.3 A Legendrian link � ⊂ T∞T 2 is consistent if

• its projection � → T 2 is an immersion (in particular, its image has no cusps),
• no component has a homotopically trivial projection,
• no component has a projection whose lift to the universal cover of T 2 has a self-
intersection,

• no pair of components have projections whose lifts to the universal cover bound a
parallel bigon.

Here and elsewhere we say a bigon formed by two strands of the front projection
of a Legendrian is anti-parallel (below left) if the induced co-orientations of the edges
are both inward or both outward, and is parallel (below right) otherwise. We allow
bigons which have other strands (or different parts of the same strands) meeting their
interior, i.e. the pictures below may be embedded into a larger immersed curve but
would still be referred to as bigons.

anti-parallel bigon parallel bigon

As discussed in Sect. 4, the term consistent is adapted from the literature on dimer
models. It is clear ��◦ is consistent, and that any Legendrian isotopy which preserves
the first condition in Definition 3.3 preserves the rest. To argue that all consistent
Legendrians are isotopic to ones associated to stacky fans we will apply the following
useful property, which ensures that isotopies of individual components of a consistent
Legendrian extend to well-behaved isotopies of the entire link. Recall that we write π

for the projection T∞T 2 → T 2.

Lemma 3.4 Let � ⊂ T∞T 2 be a consistent Legendrian link, and �i a component
of �. Let �′

i ⊂ T∞T 2 be a Legendrian such that γ := �i � (�i ∩ �′
i ) and γ ′ :=

�′
i � (�i ∩ �′

i ) are intervals whose projections form the boundary of an embedded
bigon B ⊂ S, and such that the projections of γ ′ and � intersect at finitely many
points. Then �′

i extends to a consistent Legendrian �′ ⊂ T∞T 2 which is the result of
an isotopy � → �′ that takes �i onto �′

i , is stationary outside a neighborhood of B,
and moves � minimally in the following sense: any point of � whose projection lies
on π(γ ′) is held fixed unless it is an endpoint of an interval γ ′′ ⊂ � whose projection
lies in B and forms a parallel bigon with a subinterval of π(γ ′).

Proof We induct on the number of embedded bigons in B with boundary formed by the
projections of two intervals in�∪γ ′. By perturbing�wemay assume that B�π(�)

has finitely many components. An embedded bigon is a union of such components, so
in particular there are finitely many.

If there are no embedded bigons in B other than B itself, then the intersection
of π(�) with B consists of a collection of embedded arcs connecting its two edges,
any two arcs intersecting at most once. Any isotopy π(�i ) → π(�′

i ) that creates no
tangencies to these arcs and is stationary on π(�i � γ ) lifts to a Legendrian isotopy
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�i → �′
i which avoids the other components of �, hence extends to an isotopy

� → �′ := (� � γ ) ∪ γ ′ whose result is consistent if � is.
If on the other hand there are bigons properly contained in B, choose a bigon B ′

which is minimal in the sense that no other bigons are properly contained in it. If one
edge of B ′ is a subinterval of π(γ ′), then similarly to the previous paragraph we can
isotope the other edge to lie just outside of B without creating tangencies to the rest
of π(�). The Legendrian lift of this again extends to an isotopy of � whose result is
consistent and whose projection has strictly fewer bigons contained in B.

If both edges of B ′ lie along π(�) then again there is an isotopy that carries one
edge across B ′ to lie just outside the other edge, and which creates no tangencies
among strands of π(�) crossing the interior of B ′. A tangency is created between the
two edges, but since � is consistent the co-orientations of these edges are opposite.
Thus this again lifts to a Legendrian isotopy that decreases the number of bigons and
preserves consistency. ��
Proposition 3.5 If a Legendrian link � ⊂ T∞T 2 is consistent then it can be Legen-
drian isotoped so that its front projection is a union of geodesics. In particular, it is
isotopic to a Legendrian of the form ��◦ for a unique complete stacky fan �.

Proof It suffices by induction to show there is an isotopy of � which carries an arbi-
trary component �i with non-geodesic projection to a Legendrian �′

i with geodesic
projection, and which leaves stationary all components whose projections are already
geodesic. Note that since the projection of �i is a homotopically nontrivial simple
closed curve, it is clear that there exists a Legendrian �′

i with geodesic projection
which is Legendrian isotopic to�i (through an isotopy that is allowed to pass through
other components of �)—let us fix such a �′

i , which without loss of generality we
may choose so that π(�′

i ) ∩ π(�) is finite and π(�′
i ) ∩ π(�i ) is nonempty. We now

build the desired isotopy of � inductively by composing a sequence of isotopies, each
of which decreases the number of intersection points of π(�i ) and π(�′

i ), until they
are in a position where Lemma 3.4 can be used to align them.

Consider first that since π(�′
i )∩π(�i ) is nonempty there must exist an embedded

bigon B ⊂ T 2 whose boundary is the union of the projections of intervals γ ⊂ �i

and γ ′ ⊂ �′
i , and which contains no smaller bigons of this kind. Since the signs of

the intersections of π(�i ) with π(�′
i ) sum to zero, we can find two of opposite signs

which are adjacent in the natural order along �i and let γ be the interval between
these. Since T 2

� �′
i is an annulus, one of the two components of T 2

� (�′
i ∪ γ ) is a

bigon B. As two bigons of this kind are either disjoint or one is properly contained in
the other, we can choose B to contain no other such bigons.

Suppose that π(�′
i )∩π(�i ) consists of more than two points. By Lemma 3.4 there

is an isotopy of � which is supported in a neighborhood of B and which carries γ so
that its projection lies just outside the opposite edge of B (so to be precise, we apply
Lemma 3.4 so that the interval γ in its statement is slightly larger than what we call γ
here, as we want the endpoints of our γ to be pushed off of π(�′

i )). Moreover, during
the induction in the proof of the Lemma—wherein smaller bigons are erased by pulling
one of their edges across the other one—we can always avoid moving components of
� with geodesic projection. This follows since at most one edge of a bigon can be
straight, and we get to choose which edge to move at each step in the induction.



60 Page 16 of 36 D. Treumann et al.

This isotopy clearly decreases the number of intersection points ofπ(�i ) andπ(�′
i )

by two.
Suppose now that π(�′

i ) ∩ π(�i ) consists of two points. We proceed as above,
except we choose the initial isotopy of � to carry γ so that its projection lies just
outside the opposite edge of B except at a single point, where π(γ ) is tangent to
π(�′

i ). But now π(�i ) and π(�′
i ) bound a single large bigon whose two corners wrap

around T 2 and touch at this point. A final application of Lemma 3.4 as above lets us
isotope � onto �′

i without disturbing any components with geodesic projection.
Finally, it is straightforward to see that a Legendrian � with geodesic front projec-

tion is isotopic to a suitable��◦ . First, let � be the complete fan whose rays are those
which define the conormal lifts of the components of �. Now let N̂ = ⊕

ρ∈�(1) Zeρ

and let �̂ be the complete fan in N̂ whose rays are {R≥0eρ}. Finally, let β take eρ to
the mρ th multiple of the generator of N ∩ ρ, where mρ is the number of components
of � which are lifted from their front projection by the conormal direction ρ. ��

4 Legendrian links from bipartite graphs

We now explain how interesting isotopy representatives of a consistent Legendrian
link ��◦ ⊂ T∞T 2 may be obtained systematically from bipartite graphs.

Let � ⊂ T 2 be an embedded bipartite graph with vertices colored black and white.
The zig-zag paths of � are a collection of immersed curves determined up to isotopy
by the following conditions: they lie in an open set that retracts onto �, their crossings
all lie on edges of � with a unique crossing on each edge, and these crossings are the
only points where the zig-zags meet �. We label the components of the complement
of the zig-zag paths as white, black, or null according to whether they contain a white
vertex, a black vertex, or no vertices.

Definition 4.1 [62, §4] The alternating Legendrian �� associated to � is the Leg-
endrian lift of its zig-zag paths, co-oriented so that the boundaries of black and white
regions are co-oriented inward and outward, respectively.

An alternating sheaf is an object A ∈ Sh��(T 2) which fits into a triangle

i∗kB → i!kW [2] → A → i∗kB[1] (4.1)

where the left hand map, viewed as a section of H om(i∗kB, i!kW [2]), has nonzero
stalk at each zig-zag crossing. Here kB and kW are the constant sheaves on the union
of the black and white regions of T 2

� π(��), respectively.

Alternating Legendrians are distinguished representatives of their Legendrian iso-
topy class in that �� has a canonical exact embedded Lagrangian filling L� ⊂ T ∗T 2

[62]. This Lagrangian deformation retracts onto � and its image in T 2 is the union
of the black and white regions. Sheaf quantization of L� yields a fully faithful func-
tor Loc1(L�) ↪→ Sh��(T 2) from rank one local systems on L� to sheaves whose
microsupport at infinity is contained in �� . This functor can be described Floer theo-
retically via the equivalence Sh(T 2) ∼= Fukin f T ∗T 2 of [51,56] or sheaf theoretically
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as in [30,41]. Alternating sheaves can be equivalently characterized as the objects in
the image of Loc1(L�) in Sh��(T 2).

Note that there is a Z
|�1|
2 -torsor of trivializations

H om(i∗kB, i!kW [2]) ∼=
⊕

crossings
p ∈π(��)

kp

of the Hom sheaf on the left which arise by base change from Z to k (we write �1
and �0 for the edge and vertex sets of �). Here the right-hand side is the direct sum
of skyscraper sheaves supported at the crossings of π(��). A choice of such trivi-
alization identifies isomorphism classes of alternating sheaves with (k×)�1/(k×)�0 ,
hence with the torus Loc1(�) of rank one local systems on �. Since L� retracts
onto � we have Loc1(�) ∼= Loc1(L�), hence a trivialization as above defines an
embedding Loc1(L�) ↪→ Sh��(T 2) whose essential image is the subcategory of
alternating sheaves. In fact, there is a standard choice of such trivialization: the Z

|�1|
2 -

torsor above is canonically identified with a choice of component of �� above each
crossing, and we can consistently choose the “left” component at each crossing [62]
(in fact consistently choosing the “right” component results in the same embedding
Loc1(L�) ↪→ Sh��(T 2)).

We say that the bipartite graph � ⊂ T 2 is consistent if the Legendrian �� is. This
restates [39, Def. 3.5], which in turn is one of several related formulations [7,9,37,50],
and indeed we have defined the notion of consistent Legendrian to make this so. If �

is consistent, then by Proposition 3.5 there is a unique complete stacky fan � such
that �� and ��◦ are Legendrian isotopic.

Not all consistent Legendrians are isotopic to oneswhich arise frombipartite graphs.
Those that do are characterized by the following property. First, we can use the orien-
tation of T 2 to turn co-oriented curves into oriented curves—we orient a co-oriented
curve γ so that the conormal hairs point right. This allows us to define the homology
class of a co-oriented curve. Since the zig-zag paths bound the union of the black
and white regions their homology classes sum to zero. It follows from [25, Theorem
2.5] and Proposition 3.5 that any consistent Legendrian satisfying this condition is
Legendrian isotopic to �� for some bipartite graph �. We also have the following
notion—see e.g. [25].

Definition 4.2 The Newton polygon P ⊂ MR
∼= H1(T 2; R) of � is the convex lattice

polygon, unique up to translation, whose set of counterclockwise-oriented primitive
edge vectors are exactly the homology classes of the set of zig-zag paths of �.

Note that the underlying fan� ⊂ NR associated to��◦ ∼= �� is the inward normal
fan of P , and� further records the length of each edge, measured in primitive vectors.

Example 4.3 Let � be the projection of the hexagonal lattice in R
2 to a minimal

fundamental domain, as pictured at the left of Fig. 3. The Legendrian �� has three
components, the associated homology classes ofwhich are (1, 0), (0,−1) and (−1, 1).
The Newton polygon P is a right triangle whose inward normal fan is the fan � of
P
2. Since the edges of P are all primitive (equivalently, no two components of ��
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β(e1)

β(e2)β(e3)

Γ ⊂ T 2 ΛΣ◦ ⊂ T∞T 2 P ⊂ MR Σ ⊂ NR

Fig. 3 The projection of the hexagonal lattice to a minimal fundamental domain

β(e1)

β(e2)β(e3)

ΛΣ◦ ⊂ T∞T 2 P ⊂ MR Σ ⊂ NR

Fig. 4 The projection of the hexagonal lattice to a double cover of a minimal fundamental domain

are isotopic), the associated stacky fan � is trivial (i.e. X� is isomorphic to its coarse
moduli space) and the β(ei ) are just the primitive generators of the rays of �. We will
see in Example 5.4 how, after contact isotopy, homological mirror symmetry matches
constructible sheaves with singular support contained in�� with coherent sheaves on
X�

∼= P
2.

Example 4.4 Let us also treat a double cover of the previous example: the projection of
the hexagonal lattice to a fundamental domain which is twice as wide. The Legendrian
�� now has four components whose homology classes are (0, 1), (0, 1), (−1, 0), and
(1,−2), see Fig. 4. The inward normal fan � of the new Newton polygon P has three
rays with generators (1, 0), (0, 1), and (−2, 1). The stacky fan � is now nontrivial,
with β mapping the three generators of N̂ ∼= Z

3 respectively onto the primitive vectors
(0, 1), (1,−2) and the nonprimitive vector (2, 0).

5 The Kasteleyn operator and themirror map

If � ⊂ T 2 is a consistent bipartite graph we have seen that there is a unique complete
stacky fan � such that the alternating Legendrian �� is Legendrian isotopic to ��◦ .
Following [26] such an isotopy quantizes to an equivalence Shc��

(T 2) ∼= Shc��◦ (T
2).

The coherent–constructible correspondence provides a mirror description of the lat-
ter category as Perf prop(X�◦). On the other hand, quantization of the conjugate
Lagrangian L� as alternating sheaves yields an embedding Loc1(L�) ↪→ Shc��

(T 2).
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In this section we show that the composition

Loc1(L�) ↪→ Shc��
(T 2) ∼= Shc��◦ (T

2) ∼= Perf prop(X�◦)

is naturally described by the Kasteleyn operator, whose definition we first recall.
Let L ∈ Loc1(�) be a rank one local system and choose trivializations of the stalks

of L at the vertices of �. We write L(E) for the parallel transport across an edge E
from its black endpoint to its white endpoint. We also let �b

0 , �
w
0 ⊂ �0 denote the sets

of black and white vertices, respectively.
We choose generators x, y of M , providing a trivialization kM ∼= k[x±1, y±1].

We also choose simple closed curves γx , γy in T 2 representing the Poincaré duals of
x and y with respect to some choice of orientation. We assume that γx , γy avoid p(0)
and all vertices of �, and that each of them intersect any edge of � at most once. Given
an edge E of �, we define 〈γx , E〉 to be 1 (resp. − 1, 0) if E crosses γx positively
(resp. negatively, not at all) when oriented from black to white (〈γy, E〉 is defined the
same way).

We will also need the notion of a Kasteleyn orientation κ of �. This is a function
κ : �1 → {± 1} such that the product of the values of κ around a face of � is − 1
(resp. 1) if the number of edges on its boundary is 0 mod 4 (resp. 2 mod 4).

Definition 5.1 Given a Kasteleyn orientation κ , the Kasteleyn operator KL ofL is the
(�w

0 × �b
0)-matrix-valued Laurent polynomial whose (vb, vw) entry is

(KL)(vb,vw) =
∑

E incident
to vb,vw

L(E)κ(E)x 〈γx ,E〉y〈γy ,E〉.

Since the entries of KL are elements of kM ∼= k[TN ] we can regard it as a homo-
morphism

KL : k[TN ]�b
0 → k[TN ]�w

0

of free k[TN ]-modules. By the spectral transform of KL we mean its cokernel in
k[TN ]-mod. While the entries of KL depend on the gauge fixing and choice of γx and
γy , these ambiguities can be absorbed by automorphisms of k[TN ]�b

0 and k[TN ]�w
0

hence the spectral transform is independent of them.

Proposition 5.2 TheKasteleyn operator KL is injective as a homomorphism ofk[TN ]-
modules. Its spectral tranform is a pure sheaf of dimension one supported on the
spectral curve C, which is defined as the vanishing locus of the determinant of KL.

Proof That the determinant of KL is not identically zero follows from its identification
as a sum over perfect matchings on � [43, Prop. 3.1], together with the fact that
consistency of � implies that it admits a perfect matching [40, Prop. 7.1]. It follows
that the vanishing locus of det KL, hence the support of the spectral transform, is
indeed one-dimensional.
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Moreover, it follows that the kernel of KL as a matrix over the function field of
TN , which contains the kernel of KL acting on k[TN ]�b

0 , is zero. Since the spectral
transform thus has a free resolution of length two, it follows by [35, Prop. 1.1.10] that
it is in fact pure of dimension one. ��

While C need not be reduced or smooth in general, for generic L it is and in this
case the spectral transform of KL is the pushforward of a line bundle from C to TN .

Since the edges of � are in bijection with the crossings of π(��), we can view the
Kasteleyn orientation κ as the data of a trivialization

H om(i∗kB, i!kW [2]) ∼=
⊕

crossings
p ∈π(��)

kp (5.1)

as in Sect. 4 (recall that B,W ⊂ T 2 denote the unions of the black andwhite regions of
T 2

�π(��)). We simply interpret the signs in κ as twisting the standard trivialization
by multiplication on the right-hand side of (5.1). Thus κ fixes a choice of signs in the
embedding of Loc1(L�) into Shc��

(T 2) as alternating sheaves.

Theorem 5.3 Let � ⊂ T 2 be a consistent bipartite graph, � the associated complete
stacky fan, and {�t }t∈I a Legendrian isotopy with �0 = �� and �1 = ��◦ . Then
the following diagram commutes.

Shc��
(T 2) Shc��◦ (T

2) Perf prop(X�◦) Perf prop(TN )

Loc1(�)

{
pure sheaves of
dimension one

}

Loc1(L�)
K{�t }

∼
CCC−1

X�◦
∼

i∗TN

∼

spectral transform of KL

Here the bottom and top left maps are defined by any fixed Kasteleyn orientation.

Proof LetL ∈ Loc1(�) be a local systemandA ∈ Shc��
(T 2) the associated alternating

sheaf. We first claim that

p!ωMR
�A ∼= p!ωMR

�K{�t }(A). (5.2)

Let AI denote the image of A under the inverse GKS equivalence (i∗
T 2
0
)−1 :

Shc�0
(T 2)

∼−→ Shc�I
(T 2 × I ) of Corollary 3.2. It suffices to show that p!ωMR

�AI :=
(m × idI )!(p!ωMR

� AI ) ∈ Sh(T 2 × I ) is locally constant: by base change
i∗
T 2
0
(p!ωMR

�AI ) ∼= (p!ωMR
�A) and i∗

T 2
1
(p!ωMR

�AI ) ∼= p!ωMR
�K{�t }(A), but if

p!ωMR
�AI is locally free i∗

T 2
t
(p!ωMR

�AI ) ∼= i∗
T 2
t ′
(p!ωMR

�AI ) for all t, t ′.
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We can bound the singular support of the proper pushforward p!ωMR
�AI using

[44, Prop. 5.4.4]. In the case at hand it says that

SS(p!ωMR
�AI ) ⊂ {(p(m), n, t, τ ) ∈ T ∗T 2 × T ∗ I such that ∃(p(m1), n) ∈ SS(p!ωMR

),

(p(m2), n, t, τ ) ∈ SS(AI ) with p(m1 + m2) = p(m)}.

Since p!ωMR
is locally free n = 0. On the other hand nonzero covectors in SS(AI )

are in the cone over �I , and one can easily check in a local model that a covector
(0, τ ) in this cone must have τ = 0.

It now follows from (5.2) and Lemma 2.7 that

i∗TN (CCC−1
X�◦ (K{�t }(A))) ∼= CCC−1

TN
(p!ωMR

�K{�t }(A))

∼= CCC−1
TN

(p!ωMR
�A) ∼= �c(p

∗(A)).

Note that even though A is not microsupported on �� , the rightmost isomorphism
follows from the same proof as the Lemma.

Using the presentation (4.1) we obtain a triangle

�c(p
∗(i∗kB)) → �c(p

∗(i!kW [2])) → �c(p
∗(A)) → �c(p

∗(i∗kB))[1].

We immediately have p∗(i∗kB) ∼= i∗kp−1(B) and p∗(i!kW [2]) ∼= i!kp−1(W )[2]. The
preimages p−1(B) and p−1(W ) are disjoint unions of contractible open sets in cor-
respondence with p−1(�b

0) and p−1(�w
0 ), respectively. We identify π0(p−1(B)) and

π0(p−1(W )) with M × �b
0 and M × �w

0 as follows. The lifts p−1(γx ), p−1(γy) carve
MR into fundamental domains which each contain a unique element of M , and given
v ∈ �0 there is a unique point of p−1(v) in each such domain.

Recalling that k[TN ] ∼= kM , it follows that we have M-equivariant isomorphisms

�c(p
∗(i∗kB)) ∼= (⊕Mk)�

b
0 ∼= k[TN ]�b

0 , �c(p
∗(i!kW [2])) ∼= (⊕Mk)�

w
0 ∼= k[TN ]�w

0 .

In particular, both are supported in cohomological degree zero. The fact that the first
map in the resulting triangle

k[TN ]�b
0 → k[TN ]�w

0 → �c(p
∗(A)) → k[TN ]�b

0 [1]

is the Kasteleyn operator of L now follows immediately from the way we associated
A to L in the first place. Note also that since KL is injective by Proposition 5.2, the
cone over it is just its cokernel. ��

The slightly different statement of Theorem 1.1 follows easily from Theorem 5.3,
just being reformulated in terms of the complete stack X� .

Example 5.4 We continue with Example 4.3. The top row of Fig. 5 illustrates the
triangle

i∗kB → i!kW [2] → A → i∗kB[1]
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Fig. 5 The action of a Legendrian isotopy from �� to �� on an alternating sheaf in �� (right column,
top to bottom). Here � is the hexagonal lattice projected to a minimal fundamental domain (as in Fig. 3)
and � is the fan of P

2

presenting an alternating sheaf A. The Hom sheaf H om(i∗kB, i!kW [2]) is a sum of
skyscraper sheaves at the three crossings of π(��). Up to isomorphism A is deter-
mined by a section of this sum which is nonvanishing at all three crossings. Note that
whereasA is an object of Shc��

(T 2), the sheaves i∗kB and i!kW [2] are not: above the
crossings of π(��) their singular support contains an interval of codirections which
lie outside �� . Informally, these codirections “cancel out” upon taking the cone.

Let {�t }t∈I be the Legendrian isotopy which carries �� to ��◦ by moving each
front projection up and to the right in the pictured fundamental domain. That is, starting
from the top right of Fig. 5 we collapse the upper right triangle into the upper right
corner while expanding the lower left triangle to take up the entire upper right half
of the picture. In this case, using the main theorem of [70] one can in fact extend the
associated GKS equivalence K{�t } to an equivalence Shc�′

�
(T 2)

∼−→ Shc��
(T 2), where

�′
� := �� ∪ SS∞(i∗kB) ∪ SS∞(i!kW [2]). (5.3)

Composing with the coherent–constructible correspondence for P
2, the choice of a

section ofH om(i∗kB, i!kW [2]) becomes the choice of a linear equation for a hyper-
plane H ⊂ P

2. The nonvanishing condition at crossings translates to the condition that
H does not meet the TN -fixed points in P

2. The alternating sheaf A itself is mapped
to the structure sheaf of H , while i∗kB and i!kW [2] are mapped toOP2(−1) andOP2 ,
respectively.
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Remark 5.5 One can extend K{�t } to an equivalence Shc
�′

�
(T 2)

∼−→ Shc��
(T 2) more

generally, where �′
� is as in (5.3), provided one can find an isotopy between the

singular Legendrians �′
� and �� which satisfies the criteria of [70]. However, we

do not know whether this is possible for arbitrary �. When it is possible, the sheaves
i∗kB and i!kW [2] are taken by the composition of K{�t } and the CCC to direct sums
of line bundles on X� .

Given a quadrilateral face of a bipartite graph � ⊂ T 2, we can produce a new
bipartite graph �′ by performing a square move. The new graph is obtained from
� by gluing in the local picture of Fig. 6. The Legendrians �� and ��′ are related
by a Legendrian isotopy supported above a small open set containing the face. The
Lagrangians L� and L�′ discussed in the introduction are related as the two inequiva-
lent Lagrangian surgeries on a singular Lagrangian which interpolates between them
[62].

The relation between alternating sheaves defined with respect to the two graphs �

and �′ is naturally described in terms of face coordinates. That is, for any face F of
� we have a function XF on Loc1(�) whose value on a local system is its holonomy
around ∂F (taken counterclockwise in the local model of Fig. 6). The coordinate
ring of Loc1(�) is the quotient of the Laurent polynomial ring in its face coordinates
modulo the relation that the product of all face coordinates is 1.

Note that the dual graph of � is naturally a quiver (we orient the dual graph so that
any edge passes a white vertex on its right) and when � undergoes a square move its
dual graph undergoes a quiver mutation. A key result of [62] is that alternating sheaves
before and after a square move are related by a commutative diagram

Loc1(L�)

Loc1(L�′)

Shc��
(T 2)

Shc��′ (T
2).

∼

Here the right map is the equivalence defined by the local isotopy �� → ��′ and
the left map is the cluster X -transformation associated to the mutation of the dual
quiver. Explicitly this means the two families of alternating sheaves are related by the
following rational map. Let XM , X ′

M be the face coordinates of the middle faces of
�, �′ in Fig. 6, and XSW , X ′

SW the face coordinates of the southwest faces (similarly
for XNE , etc. . .). Then the two sets of face coordinates are related by

X ′
M = X−1

M , X ′
SE = XSE (1 + XM ), X ′

NW = XNW (1 + XM ),

X ′
SW = XSW (1 + X−1

M )−1, X ′
NE = XNE (1 + X−1

M )−1

and X ′
F = XF if F does not share an edge with the given square face.

We also note from [62] that the appearance of positive signs in the above formula is
equivalent to the sign condition on the Kasteleyn orientation κ at the given square face.
Had we specified the trivialization (5.1) with a function �1 → {± 1} whose product



60 Page 24 of 36 D. Treumann et al.

Fig. 6 The square move � → �′ as a Legendrian isotopy �� → �′
� . Shaded regions indicate the images

of the Lagrangians L� , L�′ , and in the center frame of an immersed Lagrangian of which they are surgeries

around this face was 1 we would instead see minus signs in the above coordinate
change. From the preceding discussion and Theorem 5.3 one immediately obtains
Corollary 1.3.

6 Legendrian isotopies and discrete integrable systems

In statingTheorem5.3wefixed an arbitrary choice of Legendrian isotopy��
∼−→ ��◦ .

However, there are many inequivalent choices, as the autoisotopy group of ��◦ is
disconnected. In this section we show that the action of autoisotopies on Shc��◦ (T

2)

is mirrored by the action of tensoring by line bundles on coherent sheaves (hence this
action preserves the restriction to TN , as follows implicitly from Theorem 5.3).

Recall from Sect. 2 that the components of ��◦ are in correspondence with pairs
of a ray ρ ∈ �(1) and an element [χ ] ∈ Cρ , where Cρ is the cokernel of the natural
map M → Mρ . For each ray ρ, we let χρ ∈ Mρ be the generator whose value on
a generator of ρ ∩ N is positive (this distinguishes χρ from the generator −χρ). We
choose a splitting Mρ ⊗ R ↪→ MR of MR → Mρ ⊗ R, which lets us regard χρ as a
point in MR such that |Cρ |χρ ∈ M . In the notation of Sect. 2 the locus ρ⊥

nχρ
⊂ MR

can then be written as the translate ρ⊥ + nχρ . Moreover, ��◦ itself can be written as

��◦ :=
⋃

ρ∈�(1)

|Cρ |−1⋃
n=0

p(ρ⊥ + nχρ) × [−ρ].

Here we have identified T∞T 2 with T 2 × (NR � {0})/R+, and given a subset S of
NR we write [S] for its image in (NR � {0})/R+.

Given a ray ρ of � we now define a Legendrian isotopy {�ρ
t }t∈I with �

ρ
0 = �

ρ
1 =

��◦ by setting

�
ρ
t :=

⎛
⎜⎜⎝

⋃
ρ′∈�(1)
ρ′ �=ρ

|Cρ′ |−1⋃
n=0

p((ρ′)⊥ + nχρ′ ) × [−ρ′]

⎞
⎟⎟⎠ ∪

⎛
⎝|Cρ |−1⋃

n=0

p(ρ⊥ + (n + t)χρ) × [−ρ]
⎞
⎠ .
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That is, the components of ��◦ labeled by the ray ρ move around T 2 and become
cyclically permuted at the end of the isotopy, while the remaining components are left
stationary. The associated GKS functor K{�ρ

t } is an autoequivalence of Sh��◦ (T 2).
On the coherent side we will relate this autoequivalence to a line bundle Lρ onX� .

It is characterized by the condition L|Cρ |
ρ

∼= π∗O(−Dρ), where Dρ is the toric divisor
in X� associated to ρ and π is the projection from X� to its coarse moduli space X� .
It can also be characterized on the constructible side as follows. Let ρL , ρR ∈ �(1)
be the rays adjacent to ρ in the cyclic order on �(1). Then the lines ρ⊥ + χρ, (ρL)⊥,

and (ρR)⊥ bound a unique closed triangle Tρ ⊂ MR (unless ρL = −ρR , in which
case Tρ degenerates to an interval). Then Lρ is the unique line bundle such that the
closure of the support of Tρ := CCCX�

(Lρ) is equal to p(Tρ) ⊂ T 2.

Proposition 6.1 Let� be a complete two-dimensional stacky fan, ρ ∈ �(1) a ray, and
i : X�◦ ↪→ X� the inclusion. Then the following diagram of functors commutes.

Perf prop(X�◦) Shc��◦ (T
2)

Perf prop(X�◦) Shc��◦ (T
2)

CCCX�◦
∼

∼ K{�ρ
t }∼i∗Lρ ⊗ −

CCCX�◦
∼

Proof Recall that the coherent–constructible correspondence is a monoidal equiva-
lence intertwining the standard tensor product on the coherent sidewith the convolution
product on the constructible side. Thus we obtain a canonically commutative diagram
from the one above by replacing K{�ρ

t } with the functor CCCX�◦ (i∗Lρ)�−.
We first claim that ifF ∈ Shc��◦ thenCCCX�◦ (i∗Lρ)�F ∼= Tρ�F , where as above

Tρ := CCCX�
(Lρ); note that CCCX�◦ (i∗Lρ) and CCCX�

(Lρ) are not themselves
isomorphic, as the former will have infinite-rank stalks (since unlikeLρ the restriction
i∗Lρ does not have proper support). On the other hand, if G ∈ Perf prop(X�◦) then
we do have CCCX�◦ (G) ∼= CCCX�

(i∗G). Setting F̂ = CCC−1
X�◦ (F), we use this

together with the push–pull isomorphism i∗(i∗Lρ ⊗ F̂) ∼= Lρ ⊗ i∗F̂ to obtain

CCCX�◦ (i
∗Lρ)�F ∼= CCCX�◦ (i

∗Lρ ⊗ F̂)

∼= CCCX�
(Lρ ⊗ i∗F̂)

∼= Tρ�F .

The sheaf Tρ is an example of a twisted polytope sheaf [68]. In the case at hand we
have Tρ

∼= p!T̂ρ for the following sheaf T̂ρ on MR. First, let mL ,mR ∈ MR denote
the points where the line ρ⊥ + χρ crosses the lines ρ⊥

L , ρ⊥
R , respectively. We write

I[mL ,mR ] ⊂ MR for the interval with endpoints mL ,mR , similarly for I[0,mL ], I[0,mR ].
They form the boundary of the (possibly degenerate) triangle Tρ discussed before
the Proposition. We also write σ[ρL , ρR ] ⊂ NR for the cone whose boundary rays are
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ρL , ρR but which does not contain ρ in its interior, similarly for σ[ρ, ρL ], σ[ρ, ρR ]—note
that σρL ,ρR need not be convex.

The singular support of T̂ρ will be

SS(T̂ρ) = (Tρ × {0}) ∪ (I[mL ,mR ] × ρ) ∪ (I[0,mR ] × ρR) ∪ (I[m0,mL ] × ρL)

∪ ({0} × σ[ρL , ρR ]) ∪ ({mL} × σ[ρ, ρL ]) ∪ ({mR} × σ[ρ, ρR ]),

where as usual we identify T ∗MR withMR×NR. If ρ is in the positive span of ρL , ρR ,
then T̂ρ is characterized by this singular support condition and the property that its
stalk at any interior point of Tρ is k[1]. Otherwise we have T̂ρ

∼= j∗kTρ . Examples of
the two cases are pictured below, hairs indicating codirections of singular support.

ρL

ρR

ρ

k[1]

ρL

ρR

ρ

k

In each case, different choices of stacky structure on the pictured fan result in different
scalings of the pictured triangle.

We now define a sheaf Tρ,I ∈ Sh(T 2 × I ) as follows. Let s : MR × I → MR × I
be the scaling map (m, t) �→ (tm, t). Then we set Tρ,I := (p× idI )!s!(T̂ρ �kI ). We
have i∗

T 2
1
Tρ,I ∼= Tρ by construction, where as usual we write T 2

t for T 2×{t} ⊂ T 2× I .

Moreover, i∗
T 2
0
Tρ,I is the skyscraper sheaf k{0}. Indeed, i∗T 2

0
Tρ,I is a priori a skyscraper

at 0 with stalk �(Tρ), but �(F) ∼= k whenever CCC−1
X�

(F) is a line bundle L since
�(F) ∼= Hom(kT 2 ,F) ∼= Hom(O(1,1)[−2],L). Taking singular support we obtain a
family {SS∞(i∗

T 2
t
Tρ,I )} of piecewise smooth Legendrians homeomorphic to S1.

Recall from Corollary 3.2 that K{�ρ
t } is defined by composing the equivalences

Shc
�

ρ
0
(T 2)

∼←−−
i∗
T 20

Shc
�

ρ
I
(T 2 × I )

∼−−→
i∗
T 21

Shc
�

ρ
1
(T 2).

On the other hand, proper pushforward alongm×idI : T 2×T 2× I → T 2× I defines
a pointwise convolution functor Tρ,I �− : Shc��◦ (T

2) → Shc(T 2 × I ). We claim this
provides the inverse to the restriction i∗

T 2
0
above. This is equivalent to claiming that

for any F ∈ Shc
�

ρ
0
(T 2) the sheaf Tρ,I �F has singular support on �

ρ
I and satisfies

i∗
T 2
0
(Tρ,I �F) ∼= F . The latter claim follows since convolution and i∗

T 2
0
commute by

base change and since i∗
T 2
0
Tρ,I ∼= k{0}.
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Λρ
0 := ΛΣ◦ Λρ

t= 1
2

Λρ
1 := ΛΣ◦

Fig. 7 The family �
ρ
t for ρ the horizontal ray (corresponding to the vertical blue strands) in a fan for a

stacky P
2

The fact that Tρ,I �F has singular support on �
ρ
I will follow from the bound on

singular support of a proper pushforward given by [44, Prop. 5.4.4]. Here it says that

SS(Tρ,I �F) ⊂ {(p(m), n, t, τ ) ∈ T ∗T 2 × T ∗ I such that ∃(p(m1), n) ∈ SS(F),

(p(m2), n, t, τ ) ∈ SS(Tρ,I ) with p(m1 + m2) = p(m)}. (6.1)

Let βρ ∈ ρ be the generator of ρ ∩ β(N̂ ) ∼= N, i.e. the element of ρ which pairs to 1
with χρ . Explicitly we can then write

�
ρ
I =

⎛
⎜⎜⎝

⋃
ρ′∈�(1)
ρ′ �=ρ

|Cρ′ |−1⋃
n=0

p((ρ′)⊥ + nχρ′) × [−ρ′] × I

⎞
⎟⎟⎠

∪
⎛
⎝|Cρ |−1⋃

n=0

p(ρ⊥ + (n + t)χρ) × [−βρ + dt]
⎞
⎠ .

From this we observe that to show SS(Tρ,I �F) ⊂ �
ρ
I it suffices to show that

SS(Tρ,I ) ∩ (
T 2 ×

⎛
⎝ ⋃

ρ′∈�(1)

[−ρ′]
⎞
⎠ × T ∗ I

) ⊂ �
ρ
I .

This follows since 1) the only covectors that appear in SS(F) ⊂ ��◦ are of the form
[−ρ′] for some ρ′ ∈ �(1), and 2) for any t the subset

⋃
n p(ρ⊥ + (n+ t)χρ) is closed

undermultiplication by
⋃

n p(ρ⊥+nχρ) and for any ρ′ the subset
⋃

n p((ρ′)⊥+nχρ′)
is closed under multiplication by itself.
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One can now explicitly check that the left hand side of Eq. 6.1 is in fact contained
in

⎛
⎝ ⋃

ρ′ �=ρ,ρL ,ρR

{0} × [−ρ′] × I

⎞
⎠ ∪

⎛
⎝ ⋃

i∈{L,R}
p(ρ⊥

i ) × [−ρi ] × I

⎞
⎠

∪ (
p(ρ⊥ + tχρ) × [−βρ + dt]),

which in turn is indeed contained in�ρ,I (it is straightforward to identify the left hand
side more explicitly given the singular support of Tρ,I , but the given bound is simpler
to write and is sufficient).

Now that we have shown Tρ,I �− supplies the inverse to the restriction functor
i∗
T 2
0

: Shc
�

ρ
I
(T 2 × I ) → Shc

�
ρ
0
(T 2), the Proposition follows: by base change we have

K{�ρ
t } ∼= i∗

T 2
1
(Tρ,I �−) ∼= i∗

T 2
1
(Tρ,I )�− ∼= Tρ�−,

and as explained at the beginning of the proof the functor on the right is intertwined
with i∗Lρ ⊗ − by the CCC . ��

7 Coarsemoduli spaces and Legendrian degenerations

Suppose � is a consistent bipartite graph whose Newton polygon has non-primitive
edges. To obtain a faithful mirror description of Sh��(T 2) one must consider the toric
stack X�◦ , which in this case is not isomorphic to its coarse moduli space, the toric
variety X�◦ . That is, the pushforward π∗ : Coh(X�◦) → Coh(X�◦) is not fully faith-
ful. In this section we explicitly describe the mirror functor Shw

��◦ (T
2) → Shw

��◦ (T
2)

as an example of a general class of functors associated to Legendrian satellites and
degenerations. This allows one to reformulate the main content of Theorem 5.3 purely
in terms of ordinary varieties rather than stacks. Moreover, it illuminates the result
of [25] that the cluster integrable systems considered in loc. cit. are in general finite
covers of those considered by e.g. Beauville: the former are directly related to the
stack X� , the latter to the variety X� .

We call a family {�t }t∈I of Legendrians in T∞M a Legendrian degeneration if

(1) the total space of the family in T ∗M × I is closed, and
(2) the family is an isotopy of smooth Legendrians for t ∈ [0, 1) ⊂ I .

In particular �1 need not be homeomorphic to �0 nor even smooth, though it will be
smooth in our main example: effectively, we generalize the notion of a Legendrian
isotopy to allow more complicated behavior at t = 1.

A special case of this notion is that of a Legendrian satellite. Suppose p : K � K ′
is a covering space map of compact 1-manifolds, and Cyl(p) the mapping cylinder

Cyl(p) = ((I × K ) � K ′)/ ∼ (1, k) ∼ p(k) for k ∈ K .
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Then {�t }t∈I is a Legendrian satellite if its total space in T ∗M × I is the image
of an embedding of Cyl(p) compatible with its projection to I . More precisely, for
t sufficiently close to 1 the link �t lives in a tubular neighborhood of �1 and is a
Legendrian satellite of �1 in the sense of e.g. [54]. The family {�t }t∈I can then be
thought of as a way of recording a particular realization of �t as a satellite.

To a Legendrian degeneration we may associate a functor

K{�t } : Sh�0(M) → Sh�1(M)

which generalizes the GKS equivalence attached to a Legendrian isotopy (though is
no longer an equivalence in general). Recall as in Corollary 3.2 that restriction from
M ×[0, 1) to M ×{0} yields an equivalence Sh�[0,1) (M ×[0, 1)) ∼−→ Sh�0(M), where
�[0,1) ⊂ T ∗(M×[0, 1)) is the Legendrian which lifts the isotopy {�t }t∈[0,1). We now
define K{�t } to be the composition

Sh�0(M)
∼−−−→

(i∗0 )−1
Sh�[0,1) (M × [0, 1)) −−−−−−−→

(idM×i[0,1))∗
Sh(M × I ) −−−−−−→

(idM×i1)∗
Sh(M).

(7.1)

Lemma 7.1 [70, Prop. 2.12] The composition (7.1) takes values in Sh�1(M), hence
defines a functor K{�t } : Sh�0(M) → Sh�1(M).

Proof Suppose F ∈ Sh�[0,1) (M × [0, 1)). By [44, Thm. 6.3.1] if (p(m), [n], 1, τ ) is
a point of SS((idM × i[0,1))∗F) then for some τ ′ ∈ T ∗

1 I the point (p(m), [n], 1, τ ′)
is in the closure of SS(F) ⊂ T ∗(M × [0, 1)) in T ∗(M × I ). Since the total space of
{�t }t∈I is closed it follows that [n] ∈ �1. On the other hand, restriction to M × {1}
acts on singular support by intersecting with T ∗M ×T ∗

1 I then projecting to T
∗M [44,

Prop. 5.4.5], hence the result follows. ��
Example 7.2 The following figure illustrates a Legendrian degeneration of a 3-strand
braid to a single strand. An object of Sh�0 and its image under (7.1) are indicated on
the left and right.

BA

C

D

E FG

C

G

C

G

In the sheaf on the left, the several ways of defining a map fromC → G by composing
strand-crossing maps (C → B → F → G and C → A → E → G, etc.) coincide;
this composition supplies the strand-crossing map in the degenerated sheaf on the
right. The thicker paintbrush used in the right part of the figure figure conveys (to us)
a sense in which a Legendrian degeneration �1 is obtained by “blurring” some of the
features of �0—sheaves on �1 are likewise obtained by blurring some of the features
of sheaves on �0.
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Λ0 := ΛΣ◦ Λt Λ1 := ΛΣ◦

Fig. 8 The Legendrian degeneration ��◦ → ��◦ for a stacky P
2 with stabilizers of cardinality 3, 2, and

2 on its toric divisors

Now we return to the setting of previous sections, with M ∼= Z
2, � a stacky fan,

and � its underlying ordinary fan. We do, however, allow � to be non-complete. We
have the Legendrian links ��◦ and ��◦ in T∞T 2, the latter being a closed subset
of the former. We realize ��◦ as a Legendrian satellite of ��◦ as described below.
Informally, each component of ��◦ is isotopic to a unique component of ��◦ , and
moves towards it at uniform speed as t goes from 0 to 1, colliding with it at t = 1.

Recall again that the components of ��◦ are in correspondence with pairs of a
ray ρ ∈ �(1) and an element [χ ] ∈ Cρ , where Cρ is the cokernel of the natural map
M → Mρ . As in Sect. 6, given a ray ρ we letχρ ∈ Mρ be the generator whose value on
a generator of ρ ∩N is positive. We use a splitting Mρ ⊗R ↪→ MR of MR → Mρ ⊗R

to regard χρ as a point in MR such that |Cρ |χρ ∈ M . We now consider the family

�t :=
⋃

ρ∈�(1)

|Cρ |−1⋃
n=0

p(ρ⊥ + n(1 − t)χρ) × [−ρ]. (7.2)

As before, we have identified T∞T 2 with T 2 × (NR � {0})/R+, and given a subset
S of NR we write [S] for its image in (NR � {0})/R+. We have �0 = ��◦ and
�1 = ��◦ , while �t is isotopic to ��◦ for t ∈ (0, 1). As a satellite this is somewhat
trivial: for t close to 1 the link �t meets a tubular neighborhood of the component of
��◦ attached to ρ along an unlink with |Cρ | strands. The main result of this section
is to identify the counterpart of the associated degeneration functor

K{�t } : Sh��◦ (T 2) → Sh��◦ (T 2)

under the coherent–constructible correspondence (Fig. 8).

Theorem 7.3 The coherent–constructible correspondence intertwines K{�t } with the
pushforward π∗ : Coh(X�◦) → Coh(X�◦). That is, K{�t } restricts to a functor of
wrapped sheaf categories and we have a commuting diagram of functors
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Coh(X�◦) Shw
��◦ (T

2)

Coh(X�◦) Shw
��◦ (T

2).

CCCX�◦
∼

K{�t }π∗

CCCX�◦
∼

Proof We begin by recalling that since π is proper the coherent–constructible corre-
spondence intertwines the pullback π∗ : Coh(X�◦) ↪→ Coh(X�◦) with the trivial
inclusion id∗

T 2 : Shw
��◦ (T

2) ↪→ Shw
��◦ (T

2) (by [45, Prop. 9.3] in the present general-
ity, following [19,60,65]). That is, we have a diagram

Coh(X�◦) Shw
��◦ (T

2)

Coh(X�◦) Shw
��◦ (T

2)

CCCX�◦
∼

id∗
T 2π∗

CCCX�◦
∼

A priori K{�t } gives a functor between the large sheaf categories Sh��◦ (T 2) and
Sh��◦ (T 2). The above diagram extends to one involving these categories on the right
and IndCoh on the left. On the other hand, since π∗ is the right adjoint of π∗, the
Theorem follows once we establish the corresponding adjunction between K{�t } and
id∗

T 2—in particular it will follow that K{�t } preserves wrapped sheaf categories since
π∗ preserves Coh. We will show this adjunction directly in the degenerate case when
� has a single ray, then derive the general case by reducing to an affine cover.

When � has a single ray ρ, consider the following continuous map ψ : T 2 → T 2.
Any point in T 2 can be written as p(x + yχρ) for some x ∈ ρ⊥

0 and a unique y ∈ R

with 0 ≤ y < |Cρ |. We then define ψ so that on such a point we have

ψ(p(x + yχρ)) =
{
p(x + |Cρ |(y + 1 − |Cρ |)χρ) |Cρ | − 1 ≤ y < |Cρ |
p(x) 0 ≤ y < |Cρ | − 1.

That is, ψ retracts an annulus containing the front projection of ��◦ onto the front
projection of ��◦ (which consists of a single geodesic). The needed adjunction now
follows from the straightforward observation that K{�t } ∼= ψ∗, while the trivial inclu-
sion is isomorphic to ψ∗.

For general � we denote by �ρ the subfan consisting of {0} and a single ray
ρ ∈ �(1), similarly for �ρ . Consider the diagram formed by the dg categories
IndCoh(X�ρ ) together with their restriction functors to IndCoh(TN ). By Zariski
descent IndCoh(X�◦) is the limit of this diagram, similarly for IndCoh(X�◦). In
particular, the functor π∗ : IndCoh(X�◦) → IndCoh(X�◦) is completely deter-
mined by the fact that under restriction it is intertwined with the local pushforwards
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IndCoh(X�◦
ρ
) → IndCoh(X�◦

ρ
) in a way further compatible with restriction to TN . In

particular, we have a commutative diagram

IndCoh(X�◦) IndCoh(X�◦)

IndCoh(X�ρ ) IndCoh(X�ρ ).

π∗

π∗

i∗X�ρ
i∗X�ρ

To show that the CCC identifies π∗ and K{�t } it thus suffices to show that K{�t } has
the corresponding compatibilities on the constructible side of the CCC, since we have
shown the CCC identifies pushforward and degeneration for each �ρ .

More explicitly, we denote by K{�ρ
t } : Sh��ρ

(T 2) → Sh��ρ
(T 2) the degeneration

functor corresponding to a single ρ ∈ �◦. We also set �ρ := CCC−1
X�ρ

(OX�ρ
) ∈

Sh��ρ
(T 2). The restriction functors from X�◦ to X�ρ and from X�◦ to X�ρ are

identified with convolution with �ρ by the CCC. Thus what we must check explicitly
is the commutativity of the following diagram, corresponding to the isomorphism
π∗i∗X�ρ

∼= i∗X�ρ
π∗ of functors IndCoh(X�) → IndCoh(X�ρ ).

Sh��◦ (T 2) Sh��◦ (T 2)

Sh��ρ
(T 2) Sh��ρ

(T 2)

K{�t }

K{�ρ
t }

�ρ�− �ρ�−

Consider the Legendrian �[0,1) ⊂ T∞(T 2 × [0, 1)) associated to the isotopy
{�t }t∈[0,1). Given subsets� ⊂ T∞X ,�′ ⊂ T∞Y wewill write�×̇�′ ⊂ T∞(X×Y )

for the subset whose cone in T ∗(X × Y ) is the product of the cones of � and �′. We
then let �I be the union in T∞(T 2 × I ) of �[0,1) with �1×̇T∞{1} I . We now consider

the pointwise multiplication mapm : T 2 ×T 2 × I → T 2 × I and claim the following
about the interaction of�1 = ��◦ with�I : ifF ∈ Sh�1(T

2) and G ∈ Sh�I (T
2 × I ),

then m!(F � G) is also in Sh�I (T
2 × I ).

To see this, we once again apply [44, Prop. 5.4.4], obtaining

SS(m!(F � G)) ⊂{(p(m), n, t, τ ) ∈ T ∗T 2 × T ∗ I such that ∃(p(m1), n) ∈ SS(F),

(p(m2), n, t, τ ) ∈ SS(G) with p(m1 + m2) = p(m)}.

If n is nonzero for such a point then n must lie on the negative of some ray ρ since
(p(m1), n) ∈ SS(F) and F ∈ Sh��◦ (T 2). On the other hand, we must then have
p(m1) ∈ p(ρ⊥

0 ) while p(m2) lies on
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|Cρ |−1⋃
n=0

p(ρ⊥ + n(1 − t)χρ) ⊂ T 2.

Since this second set is closed under addition by elements of p(ρ⊥
0 ) the claim follows.

It follows in particular that we have a well-defined arrow on the right side of the
following square, which then commutes by base change.

Sh�1×̇�0
(T 2 × T 2) Sh�1×̇�[0,1) (T

2 × T 2 × [0, 1))

Sh�0(T
2) Sh�[0,1) (T

2 × [0, 1))

i∗0

m!m!

i∗0

Here and below we abbreviate e.g. (idT 2×T 2 × i0)∗ to i∗0 when no ambiguity should
result. We note again that since {�t } is an isotopy for t ∈ [0, 1) the horizontal arrows
are in fact equivalences.

We now consider the following diagram, its middle vertical arrow also being well-
defined by the preceding discussion.

Sh�1×̇�[0,1) (T
2 × T 2 × [0, 1)) Sh�1×̇�I

(T 2 × T 2 × I ) Sh�1×̇�1
(T 2 × T 2)

Sh�[0,1) (T
2 × [0, 1)) Sh�I (T

2 × I ) Sh�1(T
2)

(i[0,1))∗ i∗1

(i[0,1))∗ i∗1

m! m! m!

The left square commutes since the two ways around the square are just different
ways of factoring the product map (m × i)∗ (T 2 being compact). The right square
commutes by base change. Thus combining the total square with the one obtained
above we obtain another commuting square

Sh�1×̇�0
(T 2 × T 2) Sh�1×̇�1

(T 2 × T 2)

Sh�0(T
2) Sh�1(T

2).

i∗1 ◦ (i[0,1))∗ ◦ (i∗0 )−1

m!m!

i∗1 ◦ (i[0,1))∗ ◦ (i∗0 )−1

We now compare the two ways around the square after precomposing with the functor

�ρ � − : Sh�0(T
2) → Sh�1×̇�0

(T 2 × T 2).
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The top right path results in the functor�ρ�K{�t }(−)while the bottom left path results
in K{�t }(�ρ�−). Thus we have identified the two functors we needed to identify,
completing the proof. ��
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