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Multiscale mathematical modeling of transport phenomena across different levels of biological systems,
such as cells, capillaries, tissues, and organs, has been increasingly helpful in describing how interactions
among these systems lead to their function and dysfunction. The development of models across these
scales is based on knowledge from various fields, such as engineering, physiology, and biophysics, and
it requires significant collaboration among scientists from the relevant areas. Therefore, a unified frame-
work to describe the fundamental principles and unite the established models could support this growing
research community. In this regard, the present work deals with the essential terminology required to
understand and model biological transport mechanisms, as well as to compile currently available mod-
els. An inclusive mathematical framework for models of mass transport mechanisms in different tissue
compartments, including cells, capillaries, and gland ducts, is developed, with a primary focus on the
mechanisms of membrane-mediated transporters such as channels, uniporters, symporters, pumps, and
antiporters. The main objective of this study is to provide a comprehensive tool to facilitate the analysis
of biological mass transport mechanisms and substantially decrease the time taken to find the appropri-

ate model for a study.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Mass transport mechanisms in complex biological systems, such
as cells, tissues, and organs, are tightly regulated; any dysregula-
tion can result in diseases, such as membrane disorders, cancer,
and other complex diseases. It is necessary to understand the rela-
tionships among transport mechanisms in different biological sys-
tems and to be able to predict their behavior under various con-
ditions. Mathematical and computational modeling are powerful
tools to describe the interactions that occur at the different levels
of biological systems and to predict tissue and organ behavior un-
der different conditions. Researchers have used mathematical mod-
els extensively to understand the diseases caused by perturbations
in biological transport processes [1-9]. Interest in this area of re-
search has grown rapidly, with many published examples demon-
strating the importance of these models in the analysis of trans-
port processes and transport-related disorders. This progress has
been enabled by the coupling of experimental and computational
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studies at multiple scales and cooperation among researchers from
different backgrounds.

Numerous mathematical models have been provided in chap-
ters of books in the fields of biology, physiology, and engineering
[10-26] as well as in research articles dealing with the neurologi-
cal system [27,28], cardiovascular system [29-32], respiratory sys-
tem [33,34], cellular level behavior [35-38], nutrient transport [39],
and membrane transporters and channels [40-42], among others.

However, there is a need to gather and examine the work that
has been done previously in order to develop an outline of the fur-
ther work required to make these models more practical and im-
prove the quality of their predictions. Furthermore, consolidating
all the models into one framework will provide researchers with
access to better alternative fitting models for different experimen-
tal/clinical analyses. In many cases, transport models that are in-
valid for the given operating conditions are used simply because
of the lack of a better alternative model. For example, in several
instances, movements of some molecules across the membrane
may be assumed to happen with the constant rate, simply because
of not having the relevant model describing the molecule move-
ment through the membrane-transporters available. With collect-
ing all the models unitedly, including those categorized based on
the types of membrane transporters, there is a possibility to obtain
extremely more accurate model information for the mass transport
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Nomenclature

Square brackets:

Subscripts E and compounds
(e.g., EA, EB, EAB):

Subscripts i, A, B, and C:

Superscripts M and N:

Kz

Bi

&o
Dw

Typically are used with letters
(e.g., [A], [B], [EA]) to indicate
the concentration of the sub-
strate.

When used with reaction or
transport quantities (e.g., reac-
tion rate constants, translocation
rate, concentration, flux), these
refer to carrier and to the
carrier-substrate complex, re-
spectively.

When used with reaction or
transport quantities (e.g., reac-
tion rate constants, concentra-
tion, flux), these refer to solute
'i",'A’, 'B’, and 'C, respectively.
When used with reaction or
transport quantities (e.g., con-
centration, flux), these refer to
the transport domain in a sys-
tem with multiple domains.
Faraday’s constant 96,490
(A - s/mol)

Boltzmann's constant
1.38 x 10233 (m? - kg/(s® - K))
Universal gas constant 8.314

(/(mol - K))

Restriction coefficient of a solute
/l'/

Operator to describe the change
of any changeable quantity (e.g.,
AmMN is osmotic pressure dif-
ference between M and N do-
mains)

Hill coefficient

Ratio of the surface area of com-
partment M to tissue volume
Molar volume of the solute
Electrical conductance of ion ‘i’
in the solution

Dynamic fluid viscosity
Operator to either get the gradi-
ent tensor of a vector, the diver-
gence of a vector or to find the
gradient of a scalar field
Osmotic pressure

Oncotic pressure

Electrical potential

Fluid density

Local charge density

Reflection coefficient of a solute
’i" through the membrane
Charge density on the immobi-
lized protein wall of the mem-
brane channel

Tortuosity coefficient

Porosity of the wall

Ratio of the volume faction oc-
cupied by compartment M to
the tissue volume

Dielectric constant

Solvent association factor

Ol =

—M.N

0

D;
fchannel
0

F convection
F filtration

g

&i,channel

I z” channel

J antiporter
JATPase

.] filtration

]i, convection
J idiffusion

J i,migration

M
Ji.wall

Jionchannel
szmporter
]uniporter

]waterchannel

K

Fluid velocity

Averaged fluid velocity
Volume-averaged molar concen-
tration of species 'i’

Logarithmic mean average of the
molar concentrations at the two
sides of the membrane
Volumetric reaction rate of so-
lute i’

Electric field

Available area of the heteroge-
neous porous membrane

Radius of the membrane pores
Surface area of the tube

Radius of the  spherical
molecule/solute

Tube radius

Molar concentration of species
,i/

The concentration of unbound
ligand for the Hill model
Diffusion coefficient of species 'i’
Open probability of the ion
channel

Axial volumetric convection fluid
flow rate in the tube

Volumetric filtration fluid flow
rate

Translocation rate constant
Membrane conductance for
channels of ion ‘i (channel
conductance)

Net current density of ion ‘i’
through the ion channels

The transported flux driven via
antiporters

The transported flux driven via
ATPase pumps

The transported flux due to the
hindered convection

Molar flux of solute ‘i’ by con-
vection

Molar flux of solute ‘i’ by diffu-
sion

Molar flux of solute ‘i’ by migra-
tion

The net outward molar flux of
solute ’i’ from domain ‘M’ across
the wall

The ion flux through the ion
channels

The transported flux driven via
symporters

The transported flux driven via
uniporters

The water flux through the wa-
ter channels

When wused in the carrier-
mediated transport equa-
tions (eg. KM =k M/kM,
KM = kgM/kiM), it indicates
the dissociation constant for a
reaction step.
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kt Binding rate constant (e.g., k; is
the binding constant for solute
A)

k= Unbinding rate constant (e.g., k,
is the unbinding constant for so-
lute A)

Ky The ligand concentration
at  which half-saturation is
achieved, for Hill model

KiM Equilibrium constant coefficient
for substrate /i’ in domain M
Km Michaelis-Menten rate constant,

which is the substrate concen-
tration at half the maximum
rate (Vmax)

K" Membrane partition coefficient
for solute ‘i’

Lyaterchannel Hydraulic conductivity of the
water channel

Ly Hydraulic conductivity (filtration
coefficient) of the membrane

I¢ Tube Length

My Molecular weight of the solvent

Q¢hannel The total number of open chan-

nels per unit area of the mem-

brane

P Hydraulic pressure

pm Membrane permeability coeffi-
cient to the solute ’i’

T Temperature

tm Membrane thickness

Upall Transmembrane fluid flow

Vin Membrane voltage or membrane

electric potential

Membrane reversal potential for

a single ion i’

Vinax Maximum  reaction  velocity
achieved at the saturated sub-
strate concentrations for the
Michaelis-Menten model

Z; lonic charge number on an ion
13/
i

‘/i, rev

mechanisms that are of interest to us. Another challenge in the
area of multiscale transport modeling of biological systems is the
lack of common language among researchers from relevant fields.
This study aims to provide an interface for researchers from differ-
ent fields with interest in the area of biological transport mech-
anisms. In this regard, the present work integrates engineering
principles with relevant physiological, biophysical, and biomedical
concepts and defines the essential terminology from the relevant
fields. To accomplish this, a full review of mass transport models
within and across individual biological systems, including capillar-
ies, the interstitial region, cell membranes, intracellular regions of
the cell, and duct lumina, has been performed. First, the essen-
tial concepts of continuity, transport, and the relevant kinetic equa-
tions and their connection to solute distribution in biological sys-
tems are outlined in Sections 2 and 3. Next, a detailed discussion
of the three main transport mechanisms, namely, convection, diffu-
sion, and migration, is provided in Sections 4.1, 4.2, and 4.3. An ap-
plication of these models to different types of membrane-mediated
transport mechanisms, including channels and carriers, along with
the relevant kinetic equations, is described in Sections 5.1 and
5.2. Detailed kinetic modeling approaches for membrane trans-

porters are described without emphasizing any particular family.
For each family of membrane transporters, most of the previously
published models are presented and transformed into a general
identical parametric form. Furthermore, our review of previously
published models prompted us to derive some new kinetic mod-
els for membrane-transporter mechanisms. This work does not at-
tempt to evaluate or analyze these models, but instead intends to
provide a comprehensive modeling toolbox that should facilitate
investigation of membrane transport mechanisms.

2. Model construction

Biological systems can be categorized into different levels, rang-
ing from cells and the interstitial region to capillaries, tissues, and
organs. For a living biological system to operate, nutrients and
other molecules must continuously move across the boundaries of
the system at each level and participate in biochemical reactions.

In this work, a heterogeneous representative elementary vol-
ume (REV) is used to represent the tissue at a macroscopic scale
(Fig. 1). Next, at the microscopic scale, each of the tissue com-
partments, including the cell, interstitial, and capillary phases, is
considered as an individual control volume (CV), and the trans-
port processes of fluids (solutions such as blood and air) and so-
lutes (such as nutrients, hormones, electrolytes, oxygen, and car-
bon dioxide) across the boundaries of these control volumes is
modeled.

The models of volume-averaged fluid flow and solute transport
(through the regions "M” and "N”) within the defined control vol-
umes are shown in Fig. 2. For the purpose of simplification, it is
assumed that the flow is incompressible, laminar, Newtonian, and
that there is no fluid accumulation in the boundaries.

The macroscopic mass and momentum continuity equations for
mass transport through regions "M” and "N” are as follows [43,44]:

V=0 (1)
ﬁﬁM —M ——M 1 Myw2-=M =M
— +uLvE :5(” V2 fVP) (2)

Where u is the fluid velocity in region M, p is the fluid den-
sity, VPM is the pressure drop along the tube, and w is the dy-
namic fluid viscosity.

The microscopic form of the Navier-Stokes and mass-
momentum conservation equations and the corresponding dy-
namic fluid flow model can be expressed using the equations
below [45-48]:

M
0 = vl Y M (3)

M
V- va' 4 YoM
m =Vt w ot Ywa

M “wall

—M
o (aa“t + uM.VuM) — VP 4 v
ou
ot

(4)
— v . %(MM V2 _ VFM>

Where yM is the ratio of the surface area of compartment M
to tissue volume and &M is the ratio of the constant volume oc-
cupied by compartment M to the tissue volume (volume fraction).
The product yM u’xa” represents the volumetric solution outflow
per unit tissue volume through the boundary of compartment M.

Similarly, the volume-averaged continuity equations of the so-
lute ‘i’ on the macroscopic scale (Eq. (5)) and microscopic scale
(Eqg. (6)) govern the distribution of the molar concentration of the
solute [49,50].
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Fig. 1. Representative Elementary Volume (REV) of a general tissue consists of capillary, interstitial fluid, and cells.
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N

Fig. 2. Volumetric fluid movement within a control volume (uM) and the trans-
membrane flow (uq). Solute transport flux within the control volume (M) can
happen by convection, diffusion, and migration mechanisms. ]‘.’f”wa“ represents the net
outward molar flux of solute /i’ from control volume ‘M’ to its adjacent compart-
ments across the wall (e.g., N). Transport between the M and N compartments can
occur either through the gaps between the cells of the wall separating the domains

(the curved arrow) or across the individual cell membranes (the straight arrow).

G - -
aitl = Rl - sz (5)
M
oG —M M M
=RV - T, (6)
Where,

C{V’ is the molar concentration of species ‘i’ in the control vol-
ume I(AM/ .
R; " refers to the volumetric metabolism reactions in which the
substrate participates (see Section 3 for more details).

_lf‘/’ is the bulk flux of species ’i’ within phase M, and is dis-
cusseagl in Section 4.

)S’—M]{Y’Wﬂ” represents the net outward molar flux of solute i’
from control volume ‘M’ to its adjacent compartments across the

wall (discussed in Sections 4 and 5)

3. Reaction mechanism (R;):

Cellular reactions can occur within the control volume (Rﬁ"’)
or at the surface of a separating wall (RQ{’[._N), and can lead to
the metabolism or transport of the substrate. In this study, three
commonly used approaches for modeling cellular reactions are
outlined. These models include the mass action law (Eqs. (7a)
and (7b)), the Michaelis-Menten (Eq. (8)) and Hill kinetics model

(Eqg. (9)), which are given below:

Mass Action Law :

— J v\ Vi 7a
n'™ order kinetics : RV = [TxM (C,-M> (7)
i=1
. o —M =M 7b
Firtst — order kinetics : R =K"C (7b)
M c"
Michaelis — Menten equation : R = Vinax———; (8)
Kn +G
Y C'Ih
Hill kinetics : R; = Vinax@where,§ = —L (9)

K 4 C

The law of mass action states that the rate of a reaction is pro-
portional to the concentrations of its reactants and products taken
to the power of their stoichiometric coefficient. Eq. (7a) represents
the law of mass action for a reaction with j substrates, where KiM
is the equilibrium constant coefficient for substrate /i’ in region M,
C; is the volume-averaged concentration of substrate i/, and v; is
the order of the reaction relative to substrate ’i’ which has a neg-
ative value for reactants and a positive value for products. In some
cases, especially for complex reactions, such as reversible, parallel,
and series reactions, the reaction rate can be shown in the form
of the first-order kinetic (Eq. (7b)), in which the reaction rate and
the substrate concentration has a linear relationship to each other
[51,52].

The Michaelis-Menten equation (Eq. (8)) is one of the most ef-
fective methods for modeling single-substrate, single-product en-
zyme Kinetics, and metabolic reactions. It relates the reaction ve-
locity to the substrate concentration [53]. In the Michaelis-Menten
equation, Vpax represents the maximum velocity achieved by the
system at the maximum (saturated) substrate concentrations, and
K is the Michaelis-Menten constant, which represents the con-
centration of the substrate when the reaction velocity is equal to
half the maximum velocity [54].

The Hill equation, (Eq. (9)) is commonly used to describe the
dependence between the binding of smaller molecules (ligand,
such as ions) to macromolecules (such as proteins). The term 6
in the Hill equation represents the fraction of macromolecules
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Fig. 3. Transport across the cell membrane. Movement across the cell membrane can occur through channels, including ion channels (Section 5.1.1) and water channels
(Section 5.1.2), uniporters (section 5.2.1), pumps (Section 5.2.2), symporters (5.2.3), antiporters (Section 5.2.4), and cytosis.

bound to the ligand. In obtaining 6, C; is the concentration of free
(unbound) ligand, K, is the ligand concentration at which half-
saturation (half-activation) is achieved, and 7, is the Hill coeffi-
cient. The Hill coefficient is also known as the interaction coeffi-
cient, and determines the extent of cooperativity between the lig-
and and the macromolecule binding sites [55,56]. n, > 1 repre-
sents positive cooperative binding, 1, < 1 represents negative co-
operative binding, and n, = 1 indicates a non-cooperative mech-
anism (completely independent binding processes). In the case of
N, = 1 the Hill equation reduces to the familiar Michaelis Menten
model (K4 = Kpp) [57].

4. Mass transport mechanisms:

The overall rate and type of material exchange within or across
a compartment depend on the physical properties of the control
volume and the structure of the separating wall, as well as the
molecular features of the species being transported, such as their
size, polarity, fat-solubility, diffusion coefficient, and the membrane
partition coefficient for the solute.

Possible transport mechanisms "within” a control volume (e.g.,
M) are convection, diffusion, and migration, as follows:

J:w = J?/Iconvection +J?,/£1iffu$ion Jr-]?,/[migration (10)

These mechanisms and the related equations are discussed in
Sections 4.1, 4.2, and 4.3, respectively.

Transport "between” the M and N domains occurs either
through the gaps between the cells of the wall separating the do-
mains or across the individual cell membranes (see Fig. 2). Mech-
anisms of transport through gaps between the cells include filtra-
tion (section 4.1) and diffusion (Section 4.2). Transport "across the
cell membrane” can occur via diffusion, ion channels (Section 5.1.1),
water channels (Section 5.1.2), uniporters (Section 5.2.1), pumps
(Section 5.2.2), symporters (5.2.3), antiporters (Section 5.2.4), and
cytosis (see Fig. 3).

The net outward molar flux across the M — N interface (]lM*N) is
given by:

m
yMjlywall = Z VM'N.]:VLN (11)
N=1

Where m is the total number of adjacent control volumes. The
mass transport mechanisms across the M-N wall can be grouped
as follows:

M,N
],' = ]ﬁltration + ]diffusion + Jionchannel + Jwaterchannel + ]uniporter

passive transport (12)
+ Jpump + Jsymporter + Jantiporter + Jeytosis

active transport

Where,

Jitration is the transported flux due to the hindered convection,
and is discussed in Section 4.1,

Jaiffusion 1S the transported flux due to the hindered diffusion,
and is discussed in Section 4.2,

Jionchanner 1S the ion flux through the ion channels, and is dis-
cussed in Section 5.1.1,

Jwaterchanner 1 the water flux through the water channels, and is
discussed in Section 5.1.2,

Juniporters 1S the transported flux driven via uniporters, and is dis-
cussed in section 5.2.1,

Jpumps is the transported flux driven via pumps, and is discussed
in Section 5.2.2,

Jsymporters is the transported flux driven via symporters, and is
discussed in Section 5.2.3,

Jantiporters 1S the transported flux driven via antiporters, and is
discussed in Section 5.2.4.

Jeytosis is the transported flux driven via cytosis mechanisms,
and is not discussed in this work.

Transport mechanisms can also be categorized as passive or
active transport. Passive transport (filtration, diffusion, ion chan-
nel, water channel, and uniporter mechanisms) involves the spon-
taneous movement of the solutes, while active transport (pump,
symporter, antiporter, and cytosis) requires an external source of
energy. The following sections provide a detailed discussion of all
these transport mechanisms except for cytosis, as the mechanism
of cytosis is entirely different from the others.
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Fig. 4. Convective flow inside the control volume (uM j . and filtration flow
(uM—N. M—N

i[iltration) through the pores across the porous wall separating the compart-
ments.

4.1. Convection and filtration (Jeonvection a4 Jfitration):

Convection is a mass transport mechanism that occurs due to
the bulk motion of the fluid within a control volume and across
the semipermeable porous wall. Fluid convection can be consid-
ered at two levels: (i) Internal flow convection (uM,]L"/éonvection),
i.e, flow within the control volume, and (ii) filtration flow
(uM—N,]L’V'f;ga”on), i.e., flow across the porous wall separating the
compartments (Fig. 4).

(i) Internal flow convection (M): The Newtonian, laminar, and
incompressible fluid flow inside a tube (control volume M) is gov-
erned by the Navier-Stokes and continuity equations (Eqs. (3) and
(4)). A cylindrical tube whose length (I;) is much larger than
its radius (a;) has no substantial radial pressure distribution, and
consequently, no radial fluid movement. Under these conditions,
the Poiseuille-Hagen Law relates the local "axial” fluid flow rate
through a circular cross-sectional area of the tube to the hydro-
dynamic pressure difference at the two ends of the tube segment
in the z-direction and the fluid viscosity by Loudon and McCulloh
[58], Pirofsky [59], and Singh et al. [60]:

4 ApM
M ma; oP

Fonvection(Z: 1) = — 8u oz (13)

Where FC’(‘f’nyecﬁon(z, t) is the axial volumetric flow rate in the

tube per unit time (cm3/s), a = a¢(z, t) (cm) is the local radius of
the tube, (u) is the fluid viscosity (Pa - s), and P = P(z,t) is the
local axial pressure (Pa).

The axial fluid velocity within the tube (u(r)) through the to-
tal cross-sectional area of the tube is obtained by Fournier [61] and
Nield et al. [50]:

2F, i
. 7. M _ convection 2 _ 2
Convection — fluid : w) (r) = 7;1(1? (at r ) ”
(af — TZ) f?PM
4n 0z

Where uM(r) is a function of the radial distance from the center
of the tube (0 <1 < a).

The convective ﬂux of Fhe so}ut?, jﬁonvemon (mole|(s - m2)), is
coupled to the fluid velocity within the control volume M and
the solute concentration, CM (mole/m3), by Khakpour and Vafai
[62] and Gosele and Alt [63]:

M = uMcM (15)

i,convection

(ii) Filtration-transmembrane flow (from M to N): Filtration
involves the passage of a hindered convective flow through a
porous wall, and depends on the structure of the wall and the ef-
fective pressure difference between the two sides of the wall. The
effective pressure drop (APT%’[N ) is the net result of the hydrody-
namic pressure difference (APMN) and the osmotic pressure differ-
ence (ArMN) between the two sides of the pore opening, and is
given by Eq. (16a). The osmotic pressure difference is created by
the solutes that are retained from transport across the wall and is
obtained through Eq. (16b) [61,64].

M,N M.N M,N
APMN — APMN _ Az

net

Convection — solute :

(16a)

n
AN = RT Y o ACMN (16b)
i=1
Here, R is the universal gas constant (8.314 J/(mol - K)), T is the
temperature in Kelvin (human body temperature is around 300.98
K), and o; is the reflection coefficient. The reflection coefficient,
which is also known as the osmotic coefficient, determines the
real contribution of the osmotic pressure to the fluid flux through
the membrane and is independent of the solute concentration and
pressure.
The total volumetric filtration fluid flow rate through all
the pores across the porous wall can be obtained by applying
Poiseuille’s Law, and is expressed as follows [61,65-67]:

F;\gﬁan’on = LPAsAPIi\:z[}N (17a)
L a3 _ n"mwap
P 8uttm  8uttnm
A
where : & = A—p, Ap=nmal  As=2macl; (17b)
S

Where L, (m/(s - pa)) is the filtration coefficient, A; is the sur-
face area of the tube, and APr’z\ZEN is the effective pressure differ-
ence. The filtration coefficient, which is also known as hydraulic
conductivity, determines the hydraulic permeability of the porous
membrane to the fluid. The filtration coefficient can be obtained
through Eq. (17b), where ¢ is the porosity of the wall and relates
the actual available area of the heterogeneous porous membrane
(Ap) to its total circumferential area (As), n is the number of non-
uniform inert cylindrical membrane pores, n” is the density of the
pores across the membrane (n/As), ap is the radius of the mem-
brane pores, p is the dynamic viscosity of the fluid, and t is the
tortuosity coefficient, which relates the actual available transport
path to the membrane thickness, t; [17]. In obtaining the total cir-
cumferential area (As), a; and I; are the radius and length of the
tube, respectively.

The net outward filtrate fluid exchange velocity (filtration or
ultrafiltration velocity) across the membrane (u™VM) is given by
Schultz et al. [68]:

FM,N )
Filtration — fluid :  uMN = Jiration
ok " (18)
=L, (APMN —RTY’ o,-AC{‘”~N>
i=1

Eq. (19) relates the macroscopic filtrate fluid flow velocity
across the circumferential membrane area to its microscopic ve-
locity in the membrane pores (u}gr) [49].

1 a’
MN _ MN _ P M,N
W = (E)u = Surty APt (19)
At the microscopic level, the non-steady state convective flux of
the solute within the membrane pore (JP% ) is modified

i, filtration(solute)
due to the restriction caused by the solute-membrane interaction,

and is given by the expression [69]:
JPOTE — ﬁil)orecfore(y)ull\;{;'{\é (20)

i, filtration

Where f; is the restriction coefficient and depends on the in-
teractions between the solute and the porous wall, and C/*(y) is
the local concentration of the solute within the pore. The solute
transport flux rate due to the hindered convection across the mem-
brane from region M to N (also known as the solvent drag flux) is
expressed as [70-73]:

Filtration — solute : yﬁﬁmmn ~G"™a—op uMN
_MN cM _ N (21)
where: G = FoR ncw
1 1
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—MN . s

Where C; is the logarithmic mean average of the concentra-
tions at the two sides of the membrane and (1 — o;) represents the
fraction of the solute dragged across the membrane by the fluid
flow.

4.2. Diffusion (Jaiggusion):

Diffusion transport flux moves substances passively from a
higher concentration region to lower concentration. Similarly to
convection, diffusion can be considered at two levels: (i) diffusion
within the region (e.g., M), known as free diffusion, and (ii) diffu-
sion across the membrane separating the regions (e.g., between M
and N), which is known as restricted diffusion.

(i) Diffusion-within the region (free diffusion): The partial
differential form of Fick’s law below can be used to determine the
free diffusive flux [74]:

Jmiiffusion = 7D§VIVC1M (22)

Where D?/’ is the free diffusion coefficient for species ‘i’ in the
control volume M, and has the unit (cm?/s). Depending on whether
the molecule is charged or uncharged, Df"’ obtained using Eqs. (23),
(24), and (25a), respectively.

The diffusion coefficient for an uncharged solute in a dilute
liquid solution can be calculated either by applying the Wilke —
Chang method (Eq. (23)) [45,75,76] or the Stokes — Einstein method
(Eq. (24)) [49,67,77].

_ 7.4 x 10~ 15 TV 2wMw (23)

Wilke — chang : DM
(205)"° 1

i,uncharged

. . KgT
Stokes — Einstein: DM B

i,uncharged = 6T as L (24)

Where T is the temperature in Kelvin, @, is the solvent asso-
ciation factor, M, is the molecular weight of the solvent, ¥s is the
molar volume of the solute, and u is the solvent viscosity, as is the
radius of the spherical particle, and Kz is the Boltzmann’s constant
(1.38 x 10723 m2 . kg/(s? - K)).

The free diffusion coefficient for a charged particle can be ob-
tained from the expression [49]:

M RT Afo
Di,charged= 2 Izl

(25a)

Where R is the universal gas constant (8.314 J/(mol - K)), z; is
the ionic charge, F is Faraday’s constant (96, 490 A - s/mol), A is
the electrical conductance of ion /i’ in the solution (m?/(ohm - eq)).

(ii) Diffusion-through the membrane (restricted diffusion):
The one-dimensional restricted diffusion flux rate of a solute
through a thin semipermeable membrane can be determined us-
ing Fick’s equation as below:

oG
pore i
i diffusion ~ i (26)

= Digrsy

Where DI, £ is the effective diffusion coefficient of the solute
in the membrane. The effective diffusion coefficient, also known
as the restrictive diffusion coefficient, determines the effect of the
heterogeneity and tortuosity of the biological membrane on the
diffusion rate and is given by the expression [51,69,78]:

pm

Dftyy = D (27)

Where B/" and ™ are the solute restriction coefficient and tor-
tuosity coefficient of the membrane layer, respectively.

The diffusive flux equation can be obtained in terms of the
membrane permeability coefficient P™ (cm/sec) by integrating the

differential form of Fick’s equation over the membrane thickness,
tm (cm)[47,79].:

M.N
Jidifpusion = " (C:M - ) (28)
Where JMN has the unit of number of molecules per unit

i,dif fusion
area per unit time. Permeability (P™) is a phenomenological co-

efficient that relates the diffusion flux to the concentration gradi-
ent across the two sides of the membrane. The permeability of the
porous membrane towards a molecule is usually determined ex-
perimentally; however, it can also be obtained theoretically using
Eq. (29) [80].

KM

P = iDTeff (29)

Where K™ is the membrane partition coefficient for solute 'i'.

4.3. Migration (Jmigration):

The distribution of ions within a control volume or across the
membrane can generate an electric field (E, (V/m)). The produced
electric field exerts an external force on charged particles, causing
them to move either with or against the diffusive transport flux.
This type of transport is known as migration and the migrative flux
is obtained using the expression below [47,49,81,82]:

?,Amigration = EviM (CIM ) (30)

Where vM, and CM are the electrokinetic mobility (m?/(s - V))
and concentration of the ion, respectively. The single ion mobility
(v,M) and the diffusion coefficient (D§V’) are related by the expres-
sion:

DMzF
M_ Zic 1
vl RT (3 )

Where z; is the valence of the ion, F is the Faraday’s con-
stant (96, 490 A - s/mol), R is the universal gas constant (8.314
J/(mol - K)) and T is the temperature in Kelvin.

The relationship between the electrical field (mV/cm) and the
electric potential (mV) are given by:

E- -V

(32a)

TYMN Z yMN My (32b)

Where Vg is the electrical potential gradient. The electrical
potential gradient across the two sides of a thin membrane, which
is known as the membrane voltage (V,’,‘{’*N), can be obtained by us-
ing Eq. (32b).

5. Membrane mediated transport mechanisms:

After discussing the three main mass transport mechanisms,
convection (filtration), diffusion, and migration, this section deals
with transport across the membrane, which can be mediated via
specific groups of integrated membrane proteins known as trans-
porters [83]. Transporters are the class of membrane proteins
including channels (ion channels and water channels), pumps,
carrier-mediated proteins (uniporters, symporters, antiporters), and
receptor-mediated transporters. These membrane proteins play a
crucial role in maintaining the electrochemical gradient across the
cell membrane, the uptake of nutrients, drug transport, and the re-
moval of cell metabolism waste products [84,85]. For further de-
tails on the structure of these transporters, their molecular mech-
anisms, and their application in drug transport, please refer to ref-
erences [26,86-94].
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Fig. 5. Channel Transport Mechanism.

5.1. Channels (] ionchannels ] waterchannel ) ;

The lipid bilayer membrane of the cell is impermeable to
highly charged and hydrophilic molecules, such as ions and wa-
ter molecules. However, the cell membrane contains solute-specific
proteins known as channels that allow water molecules and
charged substances to diffuse or migrate through them (see Fig. 5)
[26,95]. Some of these channels are mainly permeable to ions, and
are thus called ion channels, while those that are permeable to wa-
ter molecules are known as water channels or aquaporins.

5.1.1. Ion channel (Jionchannet) :

Ion channels create pathways for the passive movement of
charged, hydrophilic molecules by diffusion and migration mech-
anisms. Various mathematical models can be used for the ion flux
through ion channels. In order for these models to be precise, the
size of the ion, possible reactions among the ions in the pathway,
and interactions of the wall of the protein channel with the ion
being transported should be considered [40,96-98]. Here, the ion
channel models are classified depending on their scale as (i) ion
distribution within (inside) the channel (ii) the net driven ion flux
through the ion channels from one side (M) of the membrane con-
taining the ion channels to the other (N).

(i) Ion flux within (alongside) the channel: The total ion flux
within a channel is commonly modeled using a modified form of
the Nernst-Planck equation. The Nernst-Planck equation gives the
total ionic flux as the balance between the diffusive flux (Eq. (22))
and the electrical drift (Eq. (30)) and can be written as below
[81,96,99]:

Jgon channel _ —D;ﬂ <VC1* + (%)Cl_vwieff) (33)

Where Dl’." is the ion diffusion coefficient and can be obtained

theoretically using Eq. (25a), and Vx//ff T is the effective potential,
which depends on the electrostatic potential and the interactions
between transferring ions and the channel wall.

The one-dimensional volume-averaged ion flux over the cross-
sectional area of the channel can be given as [49]:

on e _ (4G (Yo eramner A7 (9)
i ieff dy RT dy
(34)
Where D,’Zn eff is the restrictive diffusion coefficient for the ion

and can be obtained by applying Eq. (25a) in Eq. (27).

The one-dimensional form of the Poisson equation (Eq. (35)) re-
lates the spatial electric field distribution to the local charge den-
sity (o (y)) via the expression below [49]:

d2 eff m
godlz _F Z 26

————ion channel

o) = op(¥) (35)

Where ¢( is the dielectric constant (electrical permeability),

hannel,, .
the expression "F 3% ; z,G(y )w" M cums the charge density on

each of the ‘m’ individual ions, and o ,(y) is the charge density on
the immobilized protein wall of the membrane channel.

The combination of Eq. (34) with Eq. (35) is known as the
Poisson-Nernst-Planck (PNP) model, and can be used develop a full
model of ion distribution along the ion channels [96].

(ii) Net driven ion flux through the channel: The net ion flux
from region M to N through the channel (mol/cm? - s) is related to
the current across the membrane (A/cm?) by the expression[100]:

1 ,M.N

M,N _ I/i,charmel (36)
i,ion channel — Z,'F
//MN . . 727
Where | i.channel is the net current density of ion ‘i’ through

1 channel channels sensitive to ion ‘', and is given by the expres-
sion:

1”1 channel(vmﬂ t) = nz{,lchannel ftl)VChannel(Vm’t) ll channel(Vm’ £)
= oframel (o t) it (Vi ) (37)

Where nl channer 1S the ion channel density per unit area of

the membrane, f¢hamel(V,, t) is the probability that the ion chan-
nel is in open state at time t and has a value between 0 and 1
(0 < fghannel <1).

Most of these channels are not always open, and can be
switched between at least two states (the open and closed states)
in response to a chemical, electrophysiological, or hormonal stim-
ulus. The probability that the channel will be open is a function of
the membrane potential (Vi) and the channel structure; the prod-
uct n”; channet fo"¥ e is sometimes denoted by a single variable,
th“"”e’, which refers to the total number of open channels per
unit area of the membrane (An) (# of channels/cm?). Details of
the types of gating are beyond the scope of this work. For further
details, one can refer to references [87], [26], and [101-104].

i?”*” (Vin, t) is the current driven across the membrane through
one channel (from region M to N). The ion current through
the lipid bilayer membrane be modeled in two ways: using the
Ohm model (Eq. (38)) or the Goldman-Hodgkin-Katz (GHK) model
(Eq. (41)).

Ohm model: The current through a gating channel (i thmChannel)
according to Ohm’s law is given by the expression below [102,105]:

M N = &i.channel (Vm ’ C t) (VrIr\z/IN

10hn1 VM N) (38)

Lrev

Where g;channet (Vm, G t) is the membrane conductance for
channels of ion ‘i’ (channel conductance) in units of Siemens
(S =1/0Ohms) and can be a function of membrane voltage (V),
ion concentration (C) and time (t), Vr’,\l/"N is the membrane voltage
(Eq. (32b)), and Vl"fev is the membrane reversal potential for a sin-
gle ion ’i’. At equilibrium, there is a balance between the electrical
and chemical forces, and consequently, there is no net ionic flux
across the membrane; otherwise, the membrane potential will vary
and produce an electric field across the membrane, which in turn
produces an ion flux across the membrane. The membrane poten-
tial, which is also known as the equilibrium or resting potential, at
the equilibrium state (zero current) is known as the reversal po-
tential, and can be calculated for a particular charged ion ‘i’ using
the Nernst-potential equation below:

VN CM(m)
Vi,rev - l (CN(out)) (39)

The overall current flux (per unit area of the membrane) of the
individual ion /i’ using the Ohm model is given below:

Ohm current model :

1,M,N h 1
I 1Ohmchannel = ;i channel fl chare (Vm7 t) 8i channel (40)

<Vm Vll\fevN> :Oichannel(vm’t) 8i.channel (Vm VIA;IEVN>
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Goldman-Hodgkin-Katz current model: If the ion channel is suf-
ficiently short, and the charge density of the protein channel does
not exceed the ion charge density, the right-hand side of the Pois-
son equation (Eq. (35)) becomes zero. These assumptions lead to
a fixed electric potential and electric field across the membrane
(dyr/dy = —¥™/tm). The Goldman-Hodgkin-Katz (GHK) model ap-
proximates the ionic flux across the membrane through a given ion
channel by assuming a constant electric field across the membrane.
The GHK equation for outward ion current across the membrane
from M to N is written as [106]:

2r2yyM—N ~M N —z;FVM
MN —PM NZiFVn TG =G exp'i

ll GHK RT

(41)

1— exp=afim — —zIFV

Where PM~N, which has units of (cm/(pore - s)), is the mem-
brane permeability towards the specific ion ‘i’ through a single
pore, and determines the amplitude of the membrane conductance
for that ion.

The overall individual ionic current carried by ion ‘i’ per unit
area of the membrane can be calculated using the GHK model as
[102,107]:

Goldman — Hodgkin — Katz current model : (42)
M.N
I:IGHKChannel (42)
Z2F2YMN M _ N exp =20 "
n”i.channelfl ChannelPM NZi RT p _ (42)
1—exp (i)
M—N —zFVM
OchunnelPM szzev CM CN exp 27 (42)

RT 1—exp (—z,FVm *”)

5.1.2. Water channel (J\yaterchannel)

The small polar and uncharged molecule water can move across
the cell membrane by the simple diffusion mechanism. However,
the diffusion of water through the lipid membrane is relatively
slow; therefore, additional pathways for the movement of water
across the membrane must exist. Recent studies have shown that
the cell membrane contains water channels, known as Aquapor-
ins (AQP), that allow the passage of lipophobic water molecules
through the cell membrane [83,108,109]. These channels play a
crucial role in regulating the cell volume as well as in pathological
conditions [110,111]. More details about the discovery and various
types of water channels and their structure, regulation, and distri-
bution in different cell and tissue types in the body can be found
in references [112-115]. The water flux through the water channels
can be expressed as [100,116-118]:

ZUMNAnMN opA n )

M,N M,N
waterchannel — Lwafer p (APhydrauhc

pOnCOnC
(43)
Where ;% is the hydraulic conductivity of the membrane

towards water, APpygquic 1S the hydraulic pressure difference,
AT osmosis 1S the osmotic pressure difference (Eq. (16b)), and o; is
the reflection coefficient, which determines the real contribution of
the osmotic pressure to the driven water flux through these chan-
nels. A[ T, oncoric 1S the oncotic or colloid osmotic pressure differ-
ence, which corresponds to the osmotic pressure created by high-
molecular-weight plasma proteins. The oncotic pressure difference
can empirically be determined using the Landis and Pappenheimer
model (Eq. (44)) [119-121]:

M
Honcotic,total =21 C;[nviarem +0.16(C rotem)2 +0.009(C rotem)3 (44)

Where H’(ﬁcmmml is the plasma colloid osmotic pressure, and
M . . . s .
Cpmtein is the total plasma protein concentration within the region
M (grams of protein per 100 liters of solution).

5.2. Carrier — mediated/transport (Juniporter» Jpump, Jsymporter,
Jantiporter)-'

Some lipid-insoluble substances have low permeabilities across
the cell membrane, or are too large to enter the cell via filtra-
tion and diffusion mechanisms or move through membrane chan-
nels and pores. Moreover, in some situations, a cell must import
a solute against the direction of the electrochemical gradient to
meet its needs. In these scenarios, the relevant solute may cross
the membrane via membrane-integrated proteins known as carri-
ers; the corresponding transport mechanism is known as carrier-
mediated transport. Similarly to channels, these transporters are
highly solute-specific; however, unlike channels, they do not con-
tain hydrophobic pores. Therefore, carriers can only bind to one
or a few substrate molecules at a time, and transport via carri-
ers is much slower than via channels. Carrier-mediated transport
is a multi-step process. Its underlying mechanism is briefly ad-
dressed below and schematically depicted in Fig. 6. In the first
step, the substrate being transported (ligand) participates in a re-
versible binding (association) reaction with the binding site of the
carrier on one side of the membrane (see Fig. 6 b and c). After the
carrier-substrate complex has been formed, the carrier undergoes
a conformational change and translocates the substrate across the
membrane. Finally, the carrier releases the substrate at the other
face through a dissociation reaction. Energy is needed to achieve
the conformational change; depending on the source of the energy,
the carrier is categorized as a uniporter, pump, symporter, and an-
tiporter.

The uniport transport mechanism is a passive transport mech-
anism, as the carrier facilitates the downhill movement of a sin-
gle group of specific large polar molecules across the membrane,
such as glucose and amino acids, which cannot easily penetrate
the membrane. For this reason, transport through uniporters is of-
ten referred to as "facilitated diffusion”, in the sense that the mem-
brane transporter facilitates the transport driven by the concentra-
tion gradient between the two regions (e.g., M and N) [122,123].
However, it differs from other passive transport mechanisms (dif-
fusion, migration, convection, and channels) as the solute partici-
pates in a series of biochemical reactions with the fixed membrane
carrier to cross the membrane [122,124,125].

Active transport mechanisms are typically used by cells to trans-
port components against the electrochemical gradient. For this
movement to take place, an additional source of energy is needed.
This extra energy can be supplied by coupling the transport of the
solute to another cellular reaction or transport phenomenon. De-
pending on the source of the supplied energy, the transport mech-
anism can be classified as Primary active transport or Secondary ac-
tive transport [17,126,127].

In primary active transport, the cell directly utilizes chemical
energy stored in chemical bonds, which is mainly released by the
hydrolysis of adenosine triphosphate molecules or an equivalent
high-energy phosphoryl bond. Adenosine triphosphate, which is
abbreviated as ATP, is known as the energy molecule of the cell.
ATP molecules can release a large amount of energy via their con-
version to adenosine diphosphate (ADP) and the release of a phos-
phate (P;) ion group (ATP <=> ADP +P,). ATPase is the enzyme
that catalyzes the ATP dephosphorylation reaction. For this reason,
this family of transporters is commonly known as “ATPase pumps”
and/or “ATP powered pumps"” [95,125,128].

Secondary active transport mechanisms couple the electro-
chemical potential produced across the membrane during the
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Fig. 6. A possible process by which a carrier protein can mediate the transport of a solute molecule across the lipid bilayer membrane. Figure a represents a uniporter (E),
which transports a single solute (A) from one side of the membrane (M) to the other (N). Figures b and c represent the step-wise transport mechanism of solute (or ligand)
A from one side of the membrane to the other side, besides the corresponding kinetic terms. First, the ligand binds the carrier on one side of the membrane (M) to form a
EAy complex; next, this complex passes the ligand across the membrane through a translocation step (carrier conformational shift) and then dissociates at the N side of the

membrane. In Figure b, k/;"M and k; M

are the association and dissociation rates, and superscripts show the side of the membrane that the reaction is taking place (sides M or

N of the membrane). gEA and g’EVA are the carrier-ligand translocation rate constants with superscripts representing the side of the membrane translocation originates in (e.g.,
g’g’A is the translocation rate constant from M side to N side of the membrane). In Figure c, I(’V’ is the dissociation equilibrium constants and is defined as K"” =k, /k/;*'M.
Moreover, in Figure c, there are two cycles: the inner cycle represents the forward substrate transport (influx); the outer cycle represents the backward flux (efﬂux)
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Fig. 7. Uniporter Transport Mechanism.

transport of one group of components to the simultaneous up-
hill transport of another group of substances [129,130]. The re-
quired electrochemical energy can be obtained from the simulta-
neous downhill transport of another family of solutes by the same
transporter, or it can be exerted by the indirect involvement of the
ATP hydrolysis reaction during the primary active transport of the
other substrates. Cotransporters are capable of transporting two
or more different families of solutes, and secondary active trans-
porters can be further categorized as symporters and antiporters.
The transport mechanism in which both types of solutes move in
the same direction relative to each other is called symport trans-
port, whereas the mechanism in which the solutes move in oppo-
site directions is referred to as antiport transport.

The approach taken in developing the mathematical model of
the transported flux driven via carriers differs from the ones dis-
cussed in earlier sections of this work. Since these transporters are
embedded in the phospholipid bilayer membrane, they cannot dif-

fuse across the membrane. Therefore, in the mathematical equa-
tions related to the carrier transport mechanism, there is no term
associated with the diffusion coefficient, and the thermal behav-
ior of the molecules is captured in the reaction rate coefficients.
Consequently, to develop a quantitative model of the flux trans-
ported by each transporter, one must know the rate expression of
all steps, including the association and dissociation constants for
the reaction steps occurring on the membrane surfaces, as well
as the translocation rate constants for translocating the unloaded
and loaded carriers. The rate constants for the binding and un-
binding of solute A on the surface of the membrane can be deter-
mined experimentally, and are k;‘*M and k;M, respectively for the M
side; the equivalent values for the N side are qu and k;N (Fig. 6-
b) [131]. The translocation rate of the transporter (denoted as g,
g, etc.) determines the number of molecules that the transporter
can transport per one molecule of the carrier. The translocation
rate constants are a function of the membrane permeability (P) to
the transporter in addition to the total available number of trans-
porters ([E]) and have units of inverse seconds (1/s) (g = P[E]:).
The carrier translocation rate constants and the total amount of
the carrier are experimentally determined.

The kinetic models for each individual carrier differ from one
another with respect to some details of their mechanisms and the
solute transported. For some of these transporters to translocate
the solutes, the binding and unbinding of each of the solutes must
occur in a particular order. Furthermore, in some cases, several
substances (competitors) compete with the solutes being trans-



S. Zaheri and E. Hassanipour/International Journal of Heat and Mass Transfer 158 (2020) 119777 1
M
’“ pinding- {5, 4 a2
maing . . ”
Em EAy 8§ \Ey + Ay EAy,
M
M 8k
N 8 —
824 = Mo Ey
Translocation : o Y
Membrane g
EAy, —— EAy
N
8Ea
; Unbind { A
N 8 nbinding : _A
g 8§ \EAy == Ay +Ey
By ~ EAy
A AM — A\]
Net Transport Flux from M to N
M M\, N N N\ M
MNGe) _ [y (8Ea@™)8E — (8ga@ )8k 1)
J oo = '
wnporter RyRyy + RvRym
M N (net) M,N(net)
A,uniporter ~— “ uniporter (2)
Where
[E]l; = [Elm + [EAlm + [EAIN + [Ely
M _ [Alu N _ [Aly
Ok o =g
Ry = (1+a™) Ry =(1+a")
Rym = %’,w + KIW,‘(Y " Ryy = a',} + g“,},\ o
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is transformed to the general form of the resistance parameters from Stein model [131].

Fig. 9. ATPase Transport Mechanism.

ported during each translocation cycle for the same binding sites
on the carrier. To reduce the modeling complexity of the trans-
port mechanisms while still obtaining accurate prediction of the
transported fluxes, one can make appropriate simplifying assump-
tions. The rapid equilibrium and quasi-steady-state assumptions are
commonly used assumptions that are applied to most of the mod-
els discussed in this paper. Another assumption that is occasion-
ally used is the carrier symmetric assumption. Each of these as-
sumptions is discussed in more detail below. In the "rapid equi-
librium assumption”, the surface binding and unbinding reactions
are assumed to occur much faster than the translocation of the
complexes between the two sides of the membrane. That is, the
rate-limiting step of the transport cycle is the translocation of the
carrier-solute complexes from one side of the membrane to the

Fig. 10. Symporter Transport Mechanism.

other. The rapid equilibrium assumption allows the concentrations
at the membrane surfaces to be determined by assuming that the
equilibrium constant coefficients are independent of the reaction

—
path (e.g., in Fig. 6 b and ¢, KM = k}M - [A[]&[JEM, for side M, and
M
—
N _ Ay _ [AIN[ElN
Ky = T for the other surface) [131].

In thNe "quasi-steady-state”, it is assumed that due to the high
affinity of the substrates with respect to the carrier, the concen-
tration of the intermediate complex does not change on the time
scale of carrier production rate, and the total number of carriers
per unit area of the membrane ([E];) is conserved during each cy-

cle (ie., in Fig. 6, [E]; « [A] = AT = 0).
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Schematic configuration of the symporter slippage transport mechanism
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Fig. 11. (a) A schematic configuration of the symport slippage transport mechanism and the regarding net transport flux. Dissociation constants (KA” R I(B"ﬂ, Kg”) and the
translocation rate constants (g’g’ ,g%’jq, gﬁ.’g, g’EVﬂ‘B) are depicted in the reaction cycle in the left panel. [E]; is the total number of transporter per unit area of the membrane.
In this model empty carrier and the partially loaded carrier can slipp across the membrane. The flux equation is transformed to the general form of the resistance from
Stein model [131] (part 1/2 continued on the next page). (b) A schematic configuration of the symport slippage transport mechanism and the regarding net flux transport
equation. Dissociation constants (K}, KM KM) and the translocation rate constants (g, g, gi. g¥.) are depicted in the reaction cycle in the left panel. [E]; is the total
number of transporter per unit area of the membrane. In this model empty carrier and the partially loaded carrier can slipp across the membrane. The flux equation is
transformed to the general form of the resistance from Stein model [131] (part 2/2 continued from previous page).
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the symporter ordered binding with no slippage, for transport of two solutes where A

binds first. Dissociation constants (K4 and Ksp terms) and the translocation rate constants (gg and ggap terms) are depicted in the reaction cycle in the left panel. [E]; is the

total number of transporter per unit area of the membrane. The flux equation is tran

In the ”"carrier symmetry assumption,” the dissociation con-
stants on both sides of the membrane are the same (e.g., K/"(’ =
K};’ = K, in Fig. 6-c) and that the backward and forward transloca-
tion reactions of the carrier occur at the same speed (e.g., in Fig. 6,
gM =g, = gpa and g)f = gl = gg).

In the remainder of this work, detailed studies of each carrier
group and several well-known kinetic models are presented. Fur-
thermore, for each carrier, a simplified model and its simplifying
assumptions are outlined. Subsequently, following the kinetic pa-
rameterization of Stein (2012) [131], all models are transformed
into a general identical resistance parametric form. Each model in-
cludes a figure that demonstrates a possible kinetic model in the
left panel, while the right panel depicts a related sequence of reac-
tion equations that address the transport mechanism by the carrier
(e.g., see Fig. 8). In each scheme, there are two cycles: the inner
cycle represents the forward transport of substrates (influx); the
outer cycle represents backward flux (efflux). The corresponding

net flux of the carriers driven across the membrane is expressed
as jM,N(net) —]M‘N

- N
carrier  ~ Jcarrier carrier®

sformed to the general form of the resistance from Stein model [131].

5.2.1. Uniporter Mmechanism (Jyniporter):

The uniport transport mechanism facilitates the downhill move-
ment of a single group of specific large polar molecules across the
membrane which cannot easily penetrate the membrane (see Fig.
7). Fig. 8 shows a possible reaction cycle for a uniporter (E) that
can face the M side of the membrane, where it binds to solute A to
form the complex EAy;. Next, the carrier-substrate complex translo-
cates across the membrane with a translocation rate constant g’,_:"i‘
to face the other side of the membrane (EAy). In the last step,
the loaded carrier (EAy) undergoes a dissociation reaction that re-
leases substrate A at the N side of the membrane. The translocation
of the free carrier, Ey and Ey, takes place with translocation rate
constants ofg’g” and g’g’ respectively. Stein (2012) [131] developed
this model using the following assumptions: 1) the binding and
unbinding reactions of the solute are rapid relative to the translo-
cation step, 2) the quasi-steady-state assumption is valid, and 3)
the carrier is non-symmetric; therefore, distinct equilibrium con-
stants (KM and KY) and different translocation constants (g, g,
g’g’ , ggA) are considered. The net turnover rate of the uniporter and
the flux of molecules of A transported through the uniporter from
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Schematic configuration of the two-substrate symporter ordered binding transport mechanism,
where B binds first
{ Ky Kih
B,, + Ey, == EB,, | EB,; + A, == EBA,,
M
KM KM 8k
Ey e=—> EBy = EABy Ey == Ey
E
M
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[E]l; = [Elm + [EBly + [EABly + [EAB]y + [EBly + [Ely
Ry = (1 +p" +a’MpM) Ry =(1+p"+a™pY)
Rum = g} + giapBY Ryn = gy + giagBY

Fig. 13. A schematic configuration and the regarding net flux transport equation of the symporter mechanism with no slippage, for transport of two solutes where binding
happens in order and B binds first. Dissociation constants (Kzs and Ky terms) and the translocation rate constants (gz and ggp terms) are depicted in the reaction cycle in
the right panel. [E]; is the total number of transporter per unit area of the membrane. The flux equation is transformed to the general resistance form from Stein model

[131].

side M to side N of the membrane can be obtained using equations
45 and 46, respectively.

Uniporter simplified model:

If one invokes the symmetric assumption for the dissociation
constants (i.e., K = KA/’ = K}\V ), three different cases can be consid-
ered depending on the relative value of the translocation rate con-
stant of the free carrier constant to that of the carrier-ligand com-
plex (g to gga) in addition to the solute concentration at the N
side ([A]y) relative to the dissociation constant (K). The "one-way”
solute flux for each case is expressed as below [49]:

case # 1) gea » g and [Aly = K: In this situation, an increase
in [A]y leads to a higher transporter flux J¥N )

uniporter
[Alm
Am2 + @) +K

case # 2) gga « gp and [Aly < K: In this situation, increases in
[A]y cause the transporter flux JN ) from M to N to fall, and

M.N

uniporter (E]c8ea (47)

. uniporter
vice versa:
MN [Alm
- — [E (48)
Jumporter (E]e8Ea [Alm(1 + @) 12K

Alm

case # 3) gpa = ge: The turnover of the loaded and unloaded
carriers occurs at the same rate. In this case, when the concen-
tration of the substrate is much higher than the availability of the
carrier, the one-way flux of the solute from the M membrane sur-
face to the N side will be:

_ ([E]thA> [Alm
2 K+ [Alm
Eq. (49) is identical to the single-substrate enzymatic Michaelis-

Menten reactions on the surface of the membrane and describes
the rate of uptake of the substance as:

M,N
uniporter

(49)

M.N
uniporter

(50)

Ymx i ALy

Where Vimax and Ky, are the Michaelis-Menten parameters. The
maximum velocity (Vmax) occurs when the solute concentration
reaches infinity starting from an initial value of zero, and corre-
sponds to the number of available sites on the carrier for sub-
stance uptake. Comparing Eqs. 849) and (50), the maximum veloc-
ity of the reaction is Vipax = [Ef%. Km = K is the half-saturation
rate constant and represents the concentration of the substrate at
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Schematic configuration of the ABAC symporter transport mechanism,
where the order of binding is A, B, second A, and C
and the unbinding reactions occur in the reverse order of binding
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Fig. 14. (a) A schematic configuration of the ABAC symporter mechanism transporting of three solutes and the regarding net flux transport equation. In this configuration,
the carrier exists in 5 different states on each side of the membrane. Dissociation constants (Ku, Kap, Kapa, and Kapac terms) and the translocation rate constants (gg, gea, Zeas,
Zeaga, and geapac terms) are depicted in the reaction cycle in the right panel. [E]; is the total number of transporter per unit area of the membrane. Transport equations are
reparametrized and transformed into the general resistance form from Delpire model [134] (part 1/2 continued on next page). (b) A schematic configuration of the ABAC
symporter mechanism transporting of three solutes and the regarding net flux transport equation. In this configuration, the carrier exists in 5 different states on each side of
the membrane. Dissociation constants (K, Kap, Kapa, and Kapac terms) and the translocation rate constants (gg, gga, Eea, Seaa, and geapac terms) are depicted in the reaction
cycle in the right panel. [E]; is the total number of transporter per unit area of the membrane. Transport equations are reparametrized and transformed into the general

resistance form from Delpire model [134] (part 2/2 continued from previous page).

which the half-maximal rate is observed. The half-saturation rate
constant also determines the number of carrier turnovers and, con-
sequently, the number of molecules of the solute transported by
the carrier per unit time by each translocation of the solute-carrier
complex.

5.2.2. Primary active transport mechanism (Jpump):

ATPase pumps use the energy released during ATP hydrolysis to
pump one or more groups of ions and molecules against an uphill
electrochemical gradient (see Fig. 9). The net result of the step-
wise uphill transport of one substance (A) via an ATPase pump is
summarized in the following reaction equation:

AN + (ATP)N = AM + (ADP)N + (PI)N

As is clear from the above reaction equation, the direction of
transport depends on the concentration of ATP and ADP molecules

in contact with the cell membrane, as well as the substrate con-
centrations ([A]y; and [A]y). ATP molecules are abundantly pro-
duced in the cell; therefore, normally the intracellular (N side) con-
centration of ATP is high, which results in a positive transport flux
and allows the pump to pump A out of the cell (from N to M). This
is advantageous when the pump is used to exclude A from the cell.
If the concentration of A); outside the cell is very high, the pump
will work in the opposite direction, and A molecules will move
from outside (M) to the inside (N) of the cell while contributing
to ATP production [49].

For the primary active transport mechanism, the carrier can be
present in three states: the empty unloaded carrier (E), the carrier-
solute complex (EA), and the carrier-solute-phosphate bound com-
plex (EAP). Among these three states, only the unloaded carrier (E)
and the phosphorylated carrier-solute complex (EAP) can cross the
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Fig. 14. Continued

membrane. Upon applying symmetric assumption for the translo-
cation rate constants of the loaded and unloaded carriers (ggap =
el =8N e =g¥ =g, and gpap = gr = g) and the symmetric
dissociation constants between carrier and substance on both sides
of the membrane (K, = K} = KIY), the net flux driven across the
membrane (Ja_pymp :]X‘%mp - Xﬁmp) is obtained from the expres-
sion [49]:

K (KMo [Alm—KRsp [Al)

]A.pump = [E]fg<(KM

EAP+'(Z'\P+2K£§§P'(£4P)[A]M[A]N (51 )
+I<A(1+2K£‘$"P)[A]M+KA(1+2K£VA,,)[A]N+2K§)
_ [AIN[ElN _ [AlMlE] N _ [EAP] M _
Where K, = [I:D,"X]NN _[EMTMM’ Fap = [EA]A?I’ and KY, =
[EAP]
[EAly

Pumps simplified model:

Another method to describe the flux of ion-coupled transport
across the plasma membrane by an ATPase pump is to apply the
Hill model (Eq. (9)). The Hill model of the ATPase pump is given
by the expression [55,132]:

AL
Japump = I owmp | =7 (52)
pump A,pump [A][r\/lpump +KI;15%”£
Where /T;’L‘,mp is the maximum velocity of uptake, npump is

the Hill coefficient, and Kpymp is the [A]y concentration at which

Japump is half ]Rj;’;mp. When npump = 1 this single-subtrate trans-

port model becomes similar to the Michaelis-Menten equation, and
can be written as:
[Aln >

( [A]N + Km,pump

The primary active transport mechanism can also transport
more than one substrate. Assuming that the ATPase pump actively
transports a molecules of A from the M side of the membrane to
its N side and simultaneously transports b molecules of B in the
opposite direction (from N to M) with the corresponding ratio aA:
bB, and further assuming the binding of each of the components
to the carrier is an independent process, the overall transport re-
action mechanism can be represented as

ATP + aAy + bBy = ADP + Pi + aAy + bBy

and the associated net fluxes of solutes A and B transported across
the pump can be obtained using Eqs. (54a) and (54b), respectively,
where the minus sign takes into account the direction of the flux
of B [133].

max

A,pump (53)

.]A,pump =

a b
[Aly (Blm
— Jpax 54a
]A,pump A,pump [ [A]N + K/{\V [B]M + Kg/[ ( )
—b
JB,pump = a %;,[Z,mp (54b)
In Eq. (54a), Jo, ) is the maximum A efflux, KM, and K} are

the apparent dissociation constants of the complexes created at the
M or N sides of the membrane, respectively.
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Schematic configuration of the ABCB symporter first on- first off transport mechanism,
where order of binding is A,B,C, and second B and the order of unbinding is A, B, C, and B
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Fig. 15. (a) A schematic configuration of the symporter mechanism transporting three solutes (ABCB), and the corresponding net transported flux equation. In this config-
uration, the carrier exists in 5 different states on each side of the membrane. Dissociation constants (Ks, Kap, Kasc, Kapcs, Kpcs, Kcg, and K terms), and the translocation
rate constants (gr and ggapcp terms) are depicted in the reaction cycle in the right panel. [E]; is the total number of transporter per unit area of the membrane (part 1/2
continued on next page). (b) A schematic configuration of the symporter mechanism transporting three solutes (ABCB), and the corresponding net transported flux equation.
In this configuration, the carrier (cotransporter) exists in 5 different states on each side of the membrane. Dissociation constants (K, Kap, Kapc, Kapcs, Kacs, Kcg, and Kp terms),
and the translocation rate constants (gg and grapcp terms) are depicted in the reaction cycle in the right panel. [E]; is the total number of transporter per unit area of the
membrane (part 2/ 2 continued from last page).
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A schematic configuration of the competitive symporter ordered binding transport mechanism
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Fig. 16. (a) A schematic configuration of the competitive symporter ordered binding transport mechanism of two solutes and the regarding net flux transport equation.
In this configuration, the carrier exists in four different states on each surface of the membrane. Transport equations are reparametrized and transformed into the general
resistance form from Layton model [100]. Dissociation constants (K, Kap, Kac terms), and the translocation rate constants (g, ggac, and ggap terms) are depicted in the
reaction cycle in the right panel. Subscripts M and N, denote the M and N sides of the cell membrane (part 1/2 continued on next page). (b) A schematic configuration
of the competitive symporter ordered binding transport mechanism of two solutes and the regarding net flux transport equation. In this configuration, the carrier exists
in four different states on each side of the membrane. Transport equations are reparametrized and transformed into the general resistance form from Layton model [100].
Dissociation constants (K, Kap, Kac terms), and the translocation rate constants (gg, ggac, and geap terms) are depicted in the reaction cycle in the right panel. Subscripts M
and N, denote the M and N sides of the cell membrane. [E]; is the total number of transporter per unit area of the membrane (part 2/2 continued from previous page).

5.2.3. Symport transport mechanism (Jsymporter): ordered binding model, symporter three substrates-ordered binding
Symporters are capable of co-transporting two or more solutes model, symporter competitor-ordered binding model, and the sym-
against the concentration gradient of one solute or group of so- porter simplified model. In the development of these models, it is

lutes (see Fig. 10). This section includes several kinetic models of assumed that the binding and unbinding of the solvent with the
symporters, namely, symporter slippage, symporter two substrates- carrier on the two surfaces of the membrane is rapid relative to
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A general simplified model of symporter with three substrates
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Fig. 17. Symporter simplified model. The following assumptions are used: (1) the rapid binding and unbinding assumption, (2) the quasi-steady-state assumption, (3) sym-
metric carrier assumption (similarity for all rate constants), (4) symporter has a single site which bound the transported solute, (5) the transported solute competed for the
same binding sites, and (6) finally, the empty symporter does not cross the membrane (there is no slippage of empty carrier).

the translocation step (rapid equilibrium assumption), and that the
turnover rate of the carrier-solute complex can be obtained by in-
voking the quasi-steady-state assumption.

Symporter Slippage:

Fig. 11 depicts a possible model for a symporter with a random
binding order and partial slippage during each transport cycle. In
this symport system, the carrier, E, can be oriented toward the M
surface of the membrane, where either substrate A or B may bind
to it to form the complex EAy or EB,; respectively. Next, these
complexes may undergo another association reaction to form the
fully loaded carrier-solute complex (EABy) or they may face the N
side of the membrane through a translocation step (EAy or EBy).
In this configuration, it is assumed that there are no restrictions
on the order of binding, and carrier can cross the membrane in
all states, i.e., in the empty (E), partially loaded (EA, EB), and fully
loaded carrier (EAB) states, with no sequential translocation order.
Turner derived the transport equation of fluxes via this transport
mechanism in 1982 and Stein reproduced the kinetic scheme in
2012 [131]. Using the Turner model, the turnover rate of an indi-
vidual symporter is obtained by invoking the quasi-steady-state as-
sumption. Additionally, the binding reactions are assumed to occur
much faster than the translocation steps, so that the concentration
of the bound carrier can be determined using the dissociation con-
stants (Ks, Kg, and Kga). Furthermore, distinct solute dissociation
constants for each step are considered, and the translocation rate
constants (gg, 8ga, &g, and ggap) are not necessarily equal. The rate
of the net outward transport fluxes for A and B can be obtained us-
ing equations 55a and 55b, respectively [131]. In these equations,
the parameters «, 8, and R are related to the carrier translocation
rate constants and the dissociation constants, and are expressed in
terms of experimentally measurable parameters at the bottom of
Fig. 11.

Two-substrate symporter ordered binding models:

Kinetic schemes for sequential binding (ordered binding) co-
transport mechanisms involving two solutes are depicted in

Fig. 18. Antiporter Transport Mechanism.

Figs. 12 and 13. When A binds first, the symport transport mech-
anism shown in Fig. 13 applies, and the corresponding net flux of
A and B through the symporter can be expressed using equations
56b and 56¢, respectively. Similarly, the mechanism for the case in
which B binds first is illustrated in Fig. 14, and the corresponding
net outward flux of A and B can be obtained using equations 57b
and 57c, respectively. In these equations, an':égf}?r is the steady-
state turnover rate of the symporter (expressed in equations 56a
and 57a, accordingly), and the parameters «, 8, and R are related
to the carrier translocation rate constants and the dissociation con-
stants, which are expressed in terms of experimentally measurable
parameters at the bottom of the Figs. 13 and 14, accordingly. These
models were developed and parameterized by Stein (2012) [131].
In these models, it is assumed that the partially loaded carriers
(EA and EB) cannot translocate at either side of the membrane, and
only the fully loaded carrier (EAB) is able to cross the membrane.

Three-substrate symporter ordered binding model:

Fig. 14 shows a kinetic scheme for a carrier, E, that is capable of
transporting molecules of A, B, and C in a ratio of 2A: B: C and ex-
hibits a sequential binding order. In the first step, the carrier faces
the M side of the membrane and binds to a molecule of A. After
the complex EA); is formed, a molecule of B binds to EAy; to form
the EAB); complex, followed by the binding of a second molecule
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Schematic configuration of the eight-state antiporter ordered binding transport mechanism
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Fig. 19. (a) A schematic configuration of the antiporter eight-state transport mechanism and the resulting net transport flux equations. In developing this model, it is
assumed that the dissociation constants for binding reactions are not affected by binding of A and B (which means to have K} = K}o™N and KMoN = KMoN)_ 1t is also
assumed that: 1) the carrier is non-symmetric and 2) binding reaction occur much faster relative to the translocation of the carrier (rapid binding assumption) (part 1/2
continued on the next page). (b) A schematic configuration of the antiporter eight-state transport mechanism and the resulting net transport flux equations. In developing
this model, it is assumed that the dissociation constants for binding reactions are not affected by binding of A and B (which means to have K}V = KMoN and KMoN = KiforN),
It is also assumed that: 1) the carrier is non-symmetric and 2) binding reaction occur much faster relative to the translocation of the carrier (rapid binding assumption)
(part 2/2 continued from previous page).
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Fig. 20. A schematic configuration of the antiporter six-state mechanism of two solutes and the regarding net flux transport equation. Transport equations are reparametrized
and transformed into the general resistance form from Weinstein et al. (2000) model [137], the flux equations are transformed to the general form of the resistance terms.
In developing this model, it is assumed that the dissociation constants for binding reactions is not affected by binding of A and B (which means to have K}V = K}MN and
Kgﬁ"‘”N = I(A/'WN ). It is also assumed that: 1) the carrier is non-symmetric and 2) binding reaction occur much faster relative to the translocation of the carrier (rapid binding

assumption).

of A to form complex EABAy;. Finally, a molecule of C binds to
the transporter to give the fully loaded carrier complex EABACy. In
this model, the carriers can translocate across the membrane in all
states (i.e., in the empty, partially loaded, and fully loaded states),
and the unbinding reactions occur in the reverse order of binding.
This is referred to as a "first on last off” binding order, since the
molecule which binds first (e.g., A) on one side of the membrane
is the last to unbind from the other side of the membrane. A trans-
port model for this mechanism was first developed by [134]. In this
work, the kinetic parameterization method of [131] is followed,
and the net outward fluxes of A, B, and C transported through the
cotransporter are represented by equations 58a, 58b, and 58c, re-
spectively.

Fig. 15 depicts a different binding/unbinding order for multi-
ple solutes on a carrier. In the scheme, the stoichiometric ratio
of the transport reaction is A: 2B: C and the order of binding is
as follows: first, solute A binds to the carrier on surface M of
the membrane to form the complex EAy then the first molecule
of B binds to EAy to form the complex EABy is formed. This
binding is followed by the binding of substrate C and the forma-
tion of the complex EABCy complex. In the last binding step, the
second molecule of B is bound, and the full complex (EABCB;)
is formed on the M face of the membrane. In this work, the
model of the kinetic-transport mechanism is driven by applying

[131] parameterization method, and the overall transport fluxes
of A, B, and C are expressed in equations 59b, 59c¢, and 59d,
respectively.

Competitive symporter ordered binding model:

Fig. 16 shows a competitive symport transport mechanism in-
volving substrates A, B, and C, in which C competes with B for the
same binding sites on the carrier. In the first step, a molecule of A
binds to the empty carrier (E), followed by the binding of a B or C
molecule to form the complex EAB or EAC, respectively. Next, the
formed complexes cross the membrane (EACy or EABy), where they
undergo dissociation reactions in which A unbinds last from both
complexes. In this model, it is assumed that the carrier can ex-
ist in four different states at each side of the membrane, that only
the fully loaded (EAB and EAC) and empty carriers (E) can cross the
membrane. The net outward fluxes of B, C, and A can be obtained
through equations 60a, 60b, and 60c, respectively. This model can
also be applied to the symport transport mechanism of three sub-
strates in a ratio of A: B: C [100].

Symporter simplified model:

To conclude the section on symporters, a commonly used re-
duced symporter carrier model is presented (see Fig. 17). In this
model, the rapid-equilibrium assumption, quasi-steady-state as-
sumption, and symmetric carrier assumption (K} = KN = K,, K} =
KY = Kg, KM = KN = K¢) are invoked [135]. Furthermore, it is as-
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Schematic configuration of the antiporter with competitor-ordered binding transport mechanism
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Fig. 21. (a) A schematic configuration of the antiporter with competitor-ordered binding transport mechanism of two solutes and the regarding net transport flux equations.
In this configuration, the carrier exists in four different states on each side of the membrane. Transport equations are reparameterized to the general model from Layton
model [100]. Dissociation constants (K4, Kp, and K¢ terms), and the translocation rate constants (gga, s, and ggc terms) are depicted in the reaction cycle in the right panel.
Subscripts M and N, denote the M and N sides of the membrane. [E]; is the total number of transporter per unit area of the membrane (part 1/2 continued on next page).
(b) A schematic configuration of the antiporter with competitor-ordered binding transport mechanism of two solutes and the regarding net transport flux equations. In this
configuration, the carrier exists in four different states on each side of the membrane. Transport equations are reparametrized and transformed into the general resistance
form from Layton model [100]. Dissociation constants (Ku, Kz, and K¢ terms), and the translocation rate constants (gga, ggs, and ggc terms) are depicted in the reaction cycle
in the right panel. Subscripts M and N, denote the M and N sides of the membrane. [E]; is the total number of transporter per unit area of the membrane (part 2/2 continued

from previous page).

sumed the binding and unbinding steps do not follow a particular
sequential order. Under these assumptions, for the general case of
a symporter transporting three solutes in the ratio of aA: bB: cC,
the net outward symporter turnover rate is given by equation 61a
and the corresponding solute fluxes of A, B, and C are given by
equations 61b, 61c, and 61d, respectively.

5.2.4. Antiporter transport mechanism (Jantiporter):

Antiporters, which are also known as exchangers (see Fig. 18),
are modeled very similarly to symporters. This section covers sev-
eral commonly used antiporter models, namely, the eight-state an-
tiporter ordered binding model, six-state antiporter ordered binding
model, competitive antiporter ordered-binding model, and simplified
antiporter model.
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A general simplified antiporter transport with three substrates
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Fig. 22. Antiporter Simplified Model. The following assumptions are used: (1) the rapid binding and unbind assumptions, (2) the quasi-steady-state assumption, (3) similarity
assumption for all rate constants (4) antiporter has a single site which bound the transported solute (5) the transported solute competed for the same binding sites (6) finally,

the empty antiporter does not cross the membrane.

Eight-state antiporter ordered binding model:

Fig. 19 shows a scheme of an antiporter transport mechanism
in which the substrate A moves from M to N while B is simultane-
ously transported in the opposite direction. This model is known as
the "eight-state” mechanism, as the carrier can exist in eight forms
at the two sides of the membrane (E,;, EAy, EBy, EABy, En, EAn,
EBy and EABy). In the first step, the carrier, E, can be facing the M
or N side of the membrane, where either solute B or A can bind
to the carrier so that the A-carrier complex (EA);) and B-carrier
complex (EBy) are formed at opposite sides of the membrane. If
the translocation of the formed complexes takes place, each of the
complexes can undergo either a dissociation reaction or another
binding reaction. If the dissociation reaction occurs, solute A will
be released from the M face and solute B from the N surface of
the membrane. If another binding reaction occurs, the complexes
EABy and EAB), will be formed at opposite sides of the membrane.
Cha et al. (2009) developed a model for eight-state antiporter flux
transport equations [136]; here, their model is reparametrized and
transformed into the general resistance form. In this model, it is
assumed that the dissociation constants for the binding reactions
(association reactions) are not affected by the binding of A and B
(that is, KMorN — gMorN and KMorN — gMorN) It is also assumed that
the carrier is non-symmetric, and that the binding reaction occurs
much faster than the translocation steps (rapid binding assump-
tion). Under these assumptions, the antiporter flux can be obtained
via equation 62a and the transported fluxes of A and B are given
by equations 62b and 62c, respectively.

Six-state antiporter ordered binding model:

The six-state model is very similar to the eight-state model, ex-
cept that A and B cannot bind simultaneously to the transporter,
and consequently, the formation of the complexes EABy and EABy
does not occur. Fig. 20 shows the "ping-pong” model of a six-state
antiport transport model. As shown in Fig. 20, in the first step,
component A binds to the protein on the outside surface. Assuming

that the binding of solute B to the carrier occurs simultaneously
on the other side of the membrane, the A-carrier (EAy) and B-
carrier (EBy) complexes are formed on opposite sides of the mem-
brane. After translocation of the formed complexes, each of the
complexes undergoes a dissociation reaction. These dissociation re-
actions lead to the release of solutes A and B from the N (inside)
and M (outside) faces of the membrane, respectively. The A and B
fluxes driven from region M to N via this antiport mechanism must
be equal and opposite (i.e., ]gfa’:tipor[er =— A/_Ib[:,mparrer)' The six-state
model was first developed by Weinstein et al. (2000) [137] under
the rapid binding assumption, i.e., the assumption that the solute
binding and unbinding reactions at both sides of the membrane
occur much faster than the translocation of the carrier complex. In
this work, Stein’s kinetic parameterization method is applied [131],
and the transport fluxes are transformed into the resistance forms.
The A and B fluxes are expressed in equations 63a and 63b, re-
spectively.

Antiporter with competitor-ordered binding model:

Fig. 21 shows a competitive antiporter transport model involv-
ing molecules of A, B, and C, in which C competes with B for the
same binding sites on the carrier. In this configuration, A flows
from the M side to the N side, B moves in the opposite direction,
and only the loaded carrier can cross the membrane. Here, dis-
tinct affinities and dissociation constants at the two sides of the
membrane and for each of the solutes are considered, and the for-
ward and backward translocation rate constants of a given solute
can differ. In this model, the rapid binding and unbinding assump-
tion and the quasi-steady-state assumption are used. Under these
assumptions, the outward fluxes for each of the solutes A, B, and C
are obtained by equations 64a, 64b, and 64c, respectively [100].

Antiporter simplified model:

Simplified models of antiport and symport transporters have
been developed using similar assumptions. Sohma et al. (1996) de-
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veloped a simplified antiporter model for the one-to-one transport
of two substrates[138][138]. Here, their model is extended to the
general case of an antiporter transporting three solutes in a ratio of
aA: bB: cC (see Fig. 22). The following assumptions are used: 1) the
rapid binding and unbinding assumption, 2) the quasi-steady-state
assumption, and 3) the symmetric carrier assumption (i.e., the ve-
locity constants ggptiporter fOr transport from the M to the N side
of the membrane vice-versa are the same, g’g\ = g’g’A = Zantiporter»
and the dissociation constants for each solute on both faces are the
same, KM = KN = K,, KM = K = Kg), 4) the antiporter has a single
binding site for the transported solutes, 5) the transported solutes
compete for the same binding sites, and 6) finally, the empty an-
tiporter does not cross the membrane. Using these assumptions,
the steady-state turnover rate of the exchanger can be derived
from equation 65a, and the corresponding fluxes of substrates A, B,
and C are obtained through equations 65b, 65c, and 65d, respec-
tively.

6. Discussion and conclusion

Multiscale mathematical modeling of biological transport mech-
anisms in the human body has advanced significantly over the
last few decades. Simultaneous advances in experimental tech-
niques and computational power have produced models with
much greater predictive power, complexity, and usefulness; these
models can be used to achieve a more thorough understanding
of membrane physiology and disorders. These advances have also
led to new techniques in the prevention, diagnosis, and treatment
of diseases caused by membrane disorders. This work focused on
compiling the mathematical models that have been developed for
biological transport in tissue compartments. The tissue volume was
divided into five different compartments, including the capillary,
interstitial region, cell membrane, intracellular space, and duct lu-
men. Next, mass transport models for fluids and solutes within
and across the walls of these compartments were described. These
transport mechanisms include diffusion, convection, migration, and
membrane-mediated transport mechanisms (channels, uniporters,
ATPase pumps, symporters, and antiporters). One or more of these
mass transport mechanisms may occur in each of the five compart-
ments. In capillaries and ducts, convection is the dominant mech-
anism of solute transport within these compartments [139,140],
and filtration (or hindered convection) is the controlling transport
mechanism for fluid flow across their walls [141-143]. Transport
within the interstitial matrix occurs mainly via the diffusion mech-
anism. Mass transport across the cell membrane occurs via diffu-
sion, filtration, water channels, various ion channels, and differ-
ent families of transporters such as pumps, symporters, and an-
tiporters.

The mathematical models describing these transport mecha-
nisms were discussed, and the terminology used for the funda-
mental concepts of these models was highlighted. The membrane
carriers and ion channels were a particular focus. Both detailed and
simplified models were provided for the former. Depending on the
purpose of the study, one or more of these models can be applied.
As discussed earlier, the physics underlying most of these models
is similar; the differences among them arise from the binding and
unbinding order of the solutes and the assumptions applied for
various reaction steps. The basic building blocks of the transport
process include the diffusion, convection, and migration mecha-
nisms. These three transport mechanisms occur along an existing
gradient (e.g., a pressure, chemical, or electrochemical gradient),
and their models require physical parameters such as hydraulic
conductance, permeability, diffusion coefficients, viscosity, and mo-
bility. For the convection mechanism, the existing pressure gradi-
ents play a controlling role, and the associated parameters are the
solute sieving coefficient and hydraulic conductance of the solvent.

Diffusion and migration are driven by chemical and electrochem-
ical gradients; the main physical parameters of these processes
are the diffusion coefficient and the electrokinetic mobility, respec-
tively. Other transport mechanisms can be expressed as combina-
tions of the main transport mechanisms and using the kinetic reac-
tion equations (the mass-action kinetic, Hill model, and Michaelis-
Menten equations); depending on the type of transport, one or
more of these equations will be applicable. For example, water
channels are modeled as a combination of the diffusion and filtra-
tion equations. In the same fashion, the combination of diffusion
and migration equations can be used to model the ionic current
through the ion channels, which leads to the non-linear Goldman-
Hodgkin-Katz model. The linear Ohmic model can also be applied
to derive the current through ion channels. In the Ohmic model,
the parameters are the membrane electric conductance towards
the specific ion of interest and the density of ion channels per unit
membrane. Carrier-mediated transport mechanisms are based on
a different modeling approach. Since these transporters are fixed
within the membrane, they are described merely by using kinetic
reaction equations, and the thermal behavior of the transporting
molecules is captured in the reaction rate coefficients. These mod-
els are experimentally traceable, which allows them to be used
as reflective tools for examining the behavior of the transporters
and making predictions. Therefore, to model multi-step transporter
mechanisms, interpolation of the kinetic data is needed. To facili-
tate the selection of the appropriate kinetic model for transform-
ing the experimentally obtained kinetic data to the appropriate
mathematical model, these transporters were categorized into var-
ious groups, and appropriate models for quantitative description of
their function were provided.

The development of models at each scale has been achieved by
substantial efforts of several established research experts in the in-
terdisciplinary research area of biological mass transport mecha-
nisms. It is not possible to acknowledge or discuss all the research
endeavors in different fields in this research area. The comprehen-
sive overview completed in this work represents an attempt to
compile the relevant terminology and the developed mass trans-
port mathematical models in biological systems, which have re-
sulted from various lines of research expertise, in a single paper.
These contemporary theories and modeling techniques will pro-
vide essential knowledge and bridge the gap between physiolo-
gists, biophysicists, and engineers interested in modeling biologi-
cal mass transport processes. Finally, as modeling becomes more
prevalent, there is still a need to ensure that the proper physics
assumptions are elucidated and considered, and that new model-
ing methodologies and simplifications are directed towards the key
issues. Thus, there remain significant issues that require more re-
search and understanding. While our study was not designed to
address the potential issues of currently available models, we hope
that researchers can use this work as additional tool to improve
the accuracy of the existing models and generate novel models,
which in turn could lead to critical discoveries in the important
areas of health, pathology, medicine, and membrane disease.

Funding

This work was supported by the National Science Foundation
under grant number 1454334,

Declaration of Competing Interest

There are no conflicts of interest to declare.



S. Zaheri and E. Hassanipour /International Journal of Heat and Mass Transfer 158 (2020) 119777 25

CRediT authorship contribution statement

Shadi Zaheri: Writing - original draft, Conceptualization, Data
curation, Formal analysis, Resources. Fatemeh Hassanipour: Writ-
ing - original draft, Conceptualization, Data curation, Formal anal-
ysis, Resources.

Acknowledgment

The authors would like to thank all the researchers from vari-
ous fields who have contributed to a better understanding of the
biological systems over the past decades.

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at 10.1016/j.ijjheatmasstransfer.2020.
119777

References

[1] D. Moulton, V. Sulzer, G. Apodaca, H. Byrne, S. Waters, Mathematical mod-
elling of stretch-induced membrane traffic in bladder umbrella cells, J. Theor.
Biol. 409 (2016) 115-132.

[2] E. Drioli, M. Nakagaki, Membranes and Membrane Processes, Springer Science
& Business Media, 2013.

[3] W. Ang, AW. Mohammad, Mathematical modeling of membrane operations
for water treatment, in: Advances in Membrane Technologies for Water Treat-
ment, Elsevier, 2015, pp. 379-407.

[4] N.V. Mantzaris, S. Webb, H.G. Othmer, Mathematical modeling of tumor-in-
duced angiogenesis, ]. Math. Biol. 49 (2) (2004) 111-187.

[5] A. Beicha, R. Zaamouche, Mathematical modeling of flux in ultrafiltration
membrane, Recent Patents Chem Eng. 5 (2) (2012) 110-115.

[6] H.S. Silva, A. Kapela, N.M. Tsoukias, A mathematical model of plasma mem-
brane electrophysiology and calcium dynamics in vascular endothelial cells,
Am. ]. Physiol.-Cell Physiol. 293 (1) (2007) C277-C293.

[7] RA. Devenyi, FA. Ortega, W. Groenendaal, T. Krogh-Madsen, D.J. Christini,

E.A. Sobie, Differential roles of two delayed rectifier potassium currents in

regulation of ventricular action potential duration and arrhythmia suscepti-

bility, J. Physiol. (Lond.) 595 (7) (2017) 2301-2317.

M. Ursino, E. Magosso, Acute cardiovascular response to isocapnic hypoxia. i.

a mathematical model, Am. ]. Physiol.-Heart Circul. Physiol. 279 (1) (2000)

H149-H165.

A.T. Fojo, E.A. Kendall, P. Kasaie, S. Shrestha, T.A. Louis, D.W. Dowdy, Mathe-

matical modeling of "Chronic” infectious diseases: unpacking the black box,

in: Open Forum Infectious Diseases, 4, Oxford University Press US, 2017,

p. ofx172.

[10] L. Edelstein-Keshet, Mathematical Models in Biology, SIAM, 2005.

[11] J.D. Murray, Mathematical Biology I, 2, springer, 2002.

[12] L. Geris, et al., Computational Modeling in Tissue Engineering, Springer, 2013.

[13] V.C. Rideout, Mathematical and Computer Modeling of Physiological Systems,
Prentice Hall Englewood Cliffs, NJ:, 1991.

[14] W. Stillwell, An Introduction to Biological Membranes: From Bilayers to Rafts,
Newnes, 2013.

[15] P.L. Yeagle, The membranes of cells, Academic Press, 2016.

[16] JJ. Batzel, M. Bachar, F. Kappel, Mathematical Modeling and Validation in
Physiology: Applications to the Cardiovascular and Respiratory Systems, 2064,
Springer, 2012.

[17] ]J. Feher, Quantitative Human Physiology: An Introduction, Academic press,
2017.

[18] R.I. Macey, Mathematical models of membrane transport processes, in: Phys-
iology of Membrane Disorders, Springer, 1986, pp. 111-131.

[19] ]J.P. Keener, ]. Sneyd, Mathematical physiology, 1, Springer, 1998.

[20] S. Motta, F. Pappalardo, Mathematical modeling of biological systems., Brief.
Bioinformat. 14 (4) (2013) 411-422, doi:10.1093/bib/bbs061.

[21] R. Martin, M. Fisher, R. Minchin, K. Teo, A mathematical model of cancer
chemotherapy with an optimal selection of parameters, Math. Biosci. 99 (2)
(1990) 205-230.

[22] Z. Liu, C. Yang, A mathematical model of cancer treatment by radiotherapy
followed by chemotherapy, Math. Comput. Simul. 124 (2016) 1-15.

[23] S. Khadraoui, F. Harrou, H.N. Nounou, M.N. Nounou, A. Datta, S.P. Bhat-
tacharyya, A measurement-based control design approach for efficient cancer
chemotherapy, Inf. Sci. 333 (2016) 108-125.

[24] H. Moradi, G. Vossoughi, H. Salarieh, Optimal robust control of drug deliv-
ery in cancer chemotherapy: a comparison between three control approaches,
Comput. Methods Progr. Biomed. 112 (1) (2013) 69-83.

[25] T. Sund, A mathematical model for counter-current multiplications in the
swim-bladder., ]. Physiol. (Lond.) 267 (3) (1977) 679-696.

[26] D.-M. Oh, H.-k. Han, G.L. Amidon, Drug Transport and Targeting, in: Mem-
brane Transporters as Drug Targets, Springer, 2002, pp. 59-88.

[8

9

[27] S. Brady, G. Siegel, RW. Albers, D. Price, Basic neurochemistry: Principles of
molecular, cellular, and medical neurobiology, Academic press, 2011.

[28] M. Almog, A. Korngreen, Is realistic neuronal modeling realistic? J. Neuro-
physiol. 116 (5) (2016) 2180-2209.

[29] A. Farghadan, A. Arzani, The combined effect of wall shear stress topology
and magnitude on cardiovascular mass transport, Int. J. Heat Mass Transf. 131
(2019) 252-260.

[30] R. Klabunde, Cardiovascular Physiology Concepts, Lippincott Williams &
Wilkins, 2011.

[31] EM. Melchior, R.S. Srinivasan, ]J.B. Charles, Mathematical modeling of human
cardiovascular system for simulation of orthostatic response, Am. J. Phys-
iol.-Heart Circulator. Physiol. 262 (6) (1992) H1920-H1933.

[32] A. Albanese, L. Cheng, M. Ursino, NW. Chbat, An integrated mathematical
model of the human cardiopulmonary system: model development, Am. ].
Physiol.-Heart Circulator. Physiol. 310 (7) (2015) H899-H921.

[33] J. Xi, PW. Longest, Numerical predictions of submicrometer aerosol deposition
in the nasal cavity using a novel drift flux approach, Int. J. Heat Mass Transf.
51 (23-24) (2008) 5562-5577.

[34] G. Nucci, C. Cobelli, Mathematical models of respiratory mechanics, in: Mod-
eling Methodology for Physiology and Medicine, Elsevier, 2001, pp. 279-304.

[35] L. Mao, H. Udaykumar, J. Karlsson, Simulation of micro-scale interaction
between ice and biological cells, Int. J. Heat Mass Transf. 46 (26) (2003)
5123-5136.

[36] L.G. Palmer, Epithelial transport in the journal of general physiology, J. Gen.
Physiol. 149 (10) (2017) 897-909.

[37] J.M. Han, V. Periwal, A mathematical model of calcium dynamics: obesity and
mitochondria-associated ER membranes, bioRxiv (2018) 477968.

[38] B. Binder, A. Goede, N. Berndt, H.-G. Holzhiitter, A conceptual mathematical
model of the dynamic self-organisation of distinct cellular organelles, PLoS
ONE 4 (12) (2009) e8295.

[39] AK. Babcock, T.Q. Garvey, M. Berman, A mathematical model for membrane
transport of amino acid and Na+ in vesicles, J. Membr. Biol. 49 (2) (1979)
157-1609.

[40] J. Mikekisz, ]. Gomulkiewicz, S. Miekisz, Mathematical models of ion transport
through cell membrane channels, Math. Applicanda 42 (1) (2014) 39-62.

[41] E. Gin, EJ. Crampin, D.A. Brown, T,J. Shuttleworth, D.I. Yule, J. Sneyd, A math-
ematical model of fluid secretion from a parotid acinar cell, ]. Theor. Biol. 248
(1) (2007) 64-80.

[42] N. Alaa, H. Lefraich, Computational simulation of a new system modelling
ions electromigration through biological membranes, Theor. Biol. Med. Mod-
ell. 10 (1) (2013) 51.

[43] K. Vafai, Handbook of Porous Media, Crc Press, 2015.

[44] V.R. Voller, A. Brent, C. Prakash, The modelling of heat, mass and solute
transport in solidification systems, Int. J. Heat Mass Transf. 32 (9) (1989)
1719-1731.

[45] W. Liu, G. Zhao, Z. Shu, T. Wang, K. Zhu, D. Gao, High-precision approach
based on microfluidic perfusion chamber for quantitative analysis of biophys-
ical properties of cell membrane, Int. J. Heat. Mass Transf. 86 (2015) 869-879.

[46] K. Cook, A. Marafie, et al,, The role of porous media in modeling fluid flow
within hollow fiber membranes of the total artificial lung, ]J. Porous. Media
15 (2) (2012).

[47] K. Vafai, Porous Media: Applications in Biological Systems and Biotechnology,
CRC Press, 2010.

[48] L. Wang, L.-P. Wang, Z. Guo, J. Mi, Volume-averaged macroscopic equation
for fluid flow in moving porous media, Int. J. Heat Mass Transf. 82 (2015)
357-368.

[49] ].S. Ultman, H. Baskaran, G.M. Saidel, Biomedical Mass Transport and Chem-
ical Reaction: Physicochemical Principles and Mathematical Modeling, John
Wiley & Sons, 2016.

[50] D.A. Nield, A. Bejan, et al., Convection in Porous Media, 3, Springer, 2006.

[51] R.B. Bird, Transport phenomena, Appl. Mech. Rev. 55 (1) (2002) R1-R4.

[52] C.G. Hill, TW. Root, An Introduction to Chemical Engineering Kinetics & Reac-
tor Design, Wiley Online Library, 1977.

[53] S. Becker, Modeling of Microscale Transport in Biological Processes, Academic
Press, 2016.

[54] ]. Pallares, J.A. Ferré, A simple model to predict mass transfer rates and kinet-
ics of biochemical and biomedical Michaelis-Menten surface reactions, Int. .
Heat Mass Transf. 80 (2015) 192-198.

[55] J.S. Lolkema, D.-]. Slotboom, The hill analysis and co-ion-driven transporter
kinetics, J. Gen. Physiol. 145 (6) (2015) 565-574.

[56] J.N. Weiss, The hill equation revisited: uses and misuses., FASEB J. 11 (11)
(1997) 835-841.

[57] O. Yifrach, Hill coefficient for estimating the magnitude of cooperativity in
gating transitions of voltage-dependent ion channels, Biophys. J. 87 (2) (2004)
822-830.

[58] C. Loudon, K. McCulloh, Application of the hagen-poiseuille equation to fluid
feeding through short tubes, Ann. Entomol. Soc. Am. 92 (1) (1999) 153-158.

[59] B. Pirofsky, The determination of blood viscosity in man by a method based
on poiseuille’s law, J. Clin. Invest. 32 (4) (1953) 292-298.

[60] S. Singh, L.\V. Randle, P.T. Callaghan, CJ. Watson, CJ. Callaghan, Beyond
poiseuille: preservation fluid flow in an experimental model, J. Transplant.
2013 (2013).

[61] R.L. Fournier, Basic transport phenomena in biomedical engineering, CRC
press, 2017.

[62] M. Khakpour, K. Vafai, Critical assessment of arterial transport models, Int. ]J.
Heat Mass Transf. 51 (3-4) (2008) 807-822.



26 S. Zaheri and E. Hassanipour/International Journal of Heat and Mass Transfer 158 (2020) 119777

[63] W. Gosele, C. Alt, Filtration, Ullmann’s Encyclopedia Industr. Chem. (2005).

[64] L. Costanzo, Physiology Cases and Problems, Lippincott Williams & Wilkins,
2012.

[65] CJ. Geankoplis, Transport Processes and Separation Process Princi-
ples:(Includes Unit Operations), Prentice Hall Professional Technical Ref-
erence, 2003.

[66] L. Luo, B. Yu, J. Cai, M. Mei, Symmetry is not always prefect, Int ] Heat Mass
Transf 53 (21-22) (2010) 5022-5024.

[67] E.M. Renkin, Filtration, diffusion, and molecular sieving through porous cellu-
lose membranes, ]. Gen. Physiol. 38 (2) (1954) 225-243.

[68] J.S. Schultz, R. Valentine, C.Y. Choi, Reflection coefficients of homopore mem-
branes: effect of molecular size and configuration., ]J. Gen. Physiol. 73 (1)
(1979) 49-60.

[69] B. Aberg, ].V. Higglund, A convection-diffusion model of capillary permeabil-
ity with reference to single-injection experiments, Ups. J. Med. Sci. 79 (1)
(1974) 7-17.

[70] M. Kojic, M. Milosevic, N. Kojic, Z. Starosolski, K. Ghaghada, R. Serda, A. An-
napragada, M. Ferrari, A. Ziemys, A multi-scale FE model for convective-d-
iffusive drug transport within tumor and large vascular networks, Comput.
Methods Appl. Mech. Eng. 294 (2015) 100-122.

[71] J. Lu, W.-Q. Lu, A numerical simulation for mass transfer through the porous
membrane of parallel straight channels, Int. ]. Heat Mass Transf. 53 (11-12)
(2010) 2404-2413.

[72] B. Rippe, M. Townsley, ]. Parker, A. Taylor, Osmotic reflection coefficient for
total plasma protein in lung microvessels, J. Appl. Physiol. 58 (2) (1985)
436-442.

[73] LJ. Groome, G.T. Kinasemitz, ].N. Diana, Diffusion and convection across het-
eroporous membranes: a simple macroscopic equation, Microvasc. Res. 26 (3)
(1983) 307-322.

[74] S.M. Hassanizadeh, Derivation of basic equations of mass transport in porous
media, part 2. Generalized Darcy’s and Fick's laws, Adv. Water Resour. 9 (4)
(1986) 207-222.

[75] C. Wilke, P. Chang, Correlation of diffusion coefficients in dilute solutions,
AIChE J. 1 (2) (1955) 264-270.

[76] E. Nagy, Basic equations of the mass transport through a membrane layer,
Elsevier, 2012.

[77] P. Bordat, F. Affouard, M. Descamps, F. Miiller-Plathe, The breakdown of the
Stokes-Einstein relation in supercooled binary liquids, ]. Phys. 15 (32) (2003)
5397.

[78] H.L. Weissberg, Effective diffusion coefficient in porous media, J. Appl. Phys.
34 (9) (1963) 2636-2639.

[79] H.-h. Chen, H. Shen, S. Heimfeld, K.K. Tran, ]J. Reems, A. Folch, D. Gao, A
microfluidic study of mouse dendritic cell membrane transport properties
of water and cryoprotectants, Int. J. Heat Mass Transf. 51 (23-24) (2008)
5687-5694.

[80] W. Shinoda, Permeability across lipid membranes, Biochimica et Biophysica
Acta (BBA)-Biomembranes 1858 (10) (2016) 2254-2265.

[81] J. Newman, The effect of migration in laminar diffusion layers, Int. J. Heat
Mass Transf. 10 (7) (1967) 983-997.

[82] N. Ibl, Fundamentals of transport phenomena in electrolytic systems, in:
Comprehensive Treatise of Electrochemistry, Springer, 1983, pp. 1-63.

[83] NJ. Yang, MJ. Hinner, Getting across the cell membrane: an overview for
small molecules, peptides, and proteins, Site-Specific Protein Label. (2015)
29-53.

[84] D.L. Nelson, A.L. Lehninger, M.M. Cox, Lehninger Principles of Biochemistry,
Macmillan, 2008.

[85] R. Funk, lon gradients in tissue and organ biology, Biol. Syst. Open Access 2
(2) (2013) 10-4172.

[86] R. Krdamer, C. Ziegler, Membrane Transport Mechanism: 3D Structure and Be-
yond, 17, Springer Science & Business Media, 2014.

[87] C. Peracchia, Handbook of Membrane Channels: Molecular and Cellular Phys-
iology, Academic Press, 2012.

[88] Q. Yan, Membrane Transporters: Methods and Protocols, 227, Springer Science
& Business Media, 2003.

[89] M.A. Hediger, M.F. Romero, J.-B. Peng, A. Rolfs, H. Takanaga, E.A. Bruford, The
abcs of solute carriers: physiological, pathological and therapeutic implica-
tions of human membrane transport proteins, Pfliigers Archiv 447 (5) (2004)
465-468.

[90] S.G. Dahl, 1. Sylte, A.W. Ravna, Structures and models of transporter proteins,
J. Pharmacol. Exp. Ther. 309 (3) (2004) 853-860.

[91] G. Wisedchaisri, S.L. Reichow, T. Gonen, Advances in structural and functional
analysis of membrane proteins by electron crystallography, Structure 19 (10)
(2011) 1381-1393.

[92] D.L. Theobald, C. Miller, Membrane transport proteins: surprises in structural
sameness, Nature Struct. Mol. Biol. 17 (1) (2010) 2.

[93] K. Venko, A.R. Choudhury, M. Novi¢, Computational approaches for revealing
the structure of membrane transporters: case study on bilitranslocase, Com-
put. Struct. Biotechnol. J. 15 (2017) 232-242.

[94] S.P. Alexander, E. Kelly, N.V. Marrion, J.A. Peters, E. Faccenda, S.D. Harding,
A.J. Pawson, J.L. Sharman, C. Southan, J.A. Davies, et al., The concise guide
to pharmacology 2017/18: other ion channels, Br. ]. Pharmacol. 174 (2017)
$195-5207.

[95] B. Alberts, D. Bray, K. Hopkin, A.D. Johnson, ]. Lewis, M. Raff, K. Roberts,
P. Walter, Essential Cell Biology, Garland Science, 2015.

[96] C. Maffeo, S. Bhattacharya, J. Yoo, D. Wells, A. Aksimentiev, Modeling and sim-
ulation of ion channels, Chem. Rev. 112 (12) (2012) 6250-6284.

[97] V. Salari, H. Naeij, A. Shafiee, Quantum interference and selectivity through
biological ion channels, Sci. Rep. 7 (2017) 41625.

[98] S. Yesylevskyy, V. Kharkyanen, Hierarchy of motions and quasi-particles in a
simplified model of potassium channel selectivity filter, J. Biol. Phys. 30 (2)
(2004) 187-201.

[99] S.R. Mathur, J.Y. Murthy, A multigrid method for the poisson-nernst-planck
equations, Int. ]. Heat Mass Transf. 52 (17-18) (2009) 4031-4039.

[100] A.T. Layton, A. Edwards, Mathematical Modeling in Renal Physiology, Springer,
2014

[101] J.D. Stockand, M.S. Shapiro, lon Channels: Methods and Protocols, 337,
Springer Science & Business Media, 2006.

[102] B. Hille, et al., lon Channels of Excitable Membranes, 507, Sinauer Sunderland,
MA, 2001.

[103] J. Zheng, M.C. Trudeau, Handbook of lon Channels, CRC Press, 2015.

[104] B. Hille, Ionic channels in excitable membranes. current problems and bio-
physical approaches, Biophys. J. 22 (2) (1978) 283-294.

[105] A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current
and its application to conduction and excitation in nerve, J. Physiol. (Lond.)
117 (4) (1952) 500-544.

[106] C.M. Armstrong, The na/k pump, cl ion, and osmotic stabilization of cells,
Proc. Natl. Acad. Sci. 100 (10) (2003) 6257-6262.

[107] C.V. Falkenberg, J.G. Georgiadis, Water and solute active transport through hu-
man epidermis: contribution of electromigration, Int. J. Heat Mass Transf. 51
(23-24) (2008) 5623-5632.

[108] A. Hill, Fluid transport: a guide for the perplexed, ]. Membr. Biol. 223 (1)
(2008) 1-11.

[109] K. Takata, T. Matsuzaki, Y. Tajika, Aquaporins: water channel proteins of the
cell membrane, Prog. Histochem. Cytochem. 39 (1) (2004) 1-83.

[110] A. Verkman, Aquaporins in clinical medicine, Annu. Rev. Med. 63 (2012)
303-316.

[111] M.C. Papadopoulos, S. Saadoun, Key roles of aquaporins in tumor biol-
ogy, Biochimica et Biophysica Acta (BBA)-Biomembranes 1848 (10) (2015)
2576-2583.

[112] RE. Day, P. Kitchen, D.S. Owen, C. Bland, L. Marshall, A.C. Conner, RM. Bill,
M.T. Conner, Human aquaporins: regulators of transcellular water flow,
Biochimica et Biophysica Acta (BBA)-General Subjects 1840 (5) (2014)
1492-1506.

[113] J.M. Carbrey, P. Agre, Discovery of the aquaporins and development of the
field, in: Aquaporins, Springer, 2009, pp. 3-28.

[114] N.C. de Lanerolle, T.-S. Lee, D.D. Spencer, Astrocytes and epilepsy, Neurother-
apeutics 7 (4) (2010) 424-438.

[115] K. Tani, Y. Fujiyoshi, Water channel structures analysed by electron crystallog-
raphy, Biochimica et Biophysica Acta (BBA)-General Subjects 1840 (5) (2014)
1605-1613.

[116] K. Alleva, O. Chara, G. Amodeo, Aquaporins: another piece in the osmotic puz-
zle, FEBS Lett. 586 (19) (2012) 2991-2999.

[117] O. Kedem, A. Katchalsky, Thermodynamic analysis of the permeability of bi-
ological membranes to non-electrolytes, Biochim. Biophys. Acta 27 (1958)
229-246.

[118] H.Y. Elmoazzen, J.A. Elliott, L.E. McGann, Osmotic transport across cell mem-
branes in nondilute solutions: a new nondilute solute transport equation, Bio-
phys. J. 96 (7) (2009) 2559-2571.

[119] E. Landis, Exchange of substances through the capillary walls, Handbook
Physiol. Circulation II (1963) 961-1034.

[120] J. Mitchell, R. Schmidt, ]. Shepherd, F. Abboud, Handbook of Physiology, Sec-
tion 2: The Cardiovascular System, vol. 3. peripheral Circulation and Organ
Blood Flow, Oxford University Press, 1983.

[121] S. Barclay, D. Bennett, The direct measurement of plasma colloid osmotic
pressure is superior to colloid osmotic pressure derived from albumin or total
protein, Intensive Care Med. 13 (2) (1987) 114-118.

[122] ]J.S. Schultz, ]J.D. Goddard, S.R. Suchdeo, Facilitated transport via carrier-medi-
ated diffusion in membranes: part I. Mechanistic aspects, experimental sys-
tems and characteristic regimes, AIChE J. 20 (3) (1974) 417-445.

[123] A.S. Popel, ].D. Hellums, Theory of oxygen transport to tissue, Crit. Rev.
Biomed. Eng. 17 (3) (1989) 257.

[124] E. Cussler, R. Aris, A. Bhown, On the limits of facilitated diffusion, J. Memb.
Sci. 43 (2-3) (1989) 149-164.

[125] J.E. Darnell, H.F. Lodish, D. Baltimore, et al., Molecular Cell Biology, 2, Scien-
tific American Books New York, 1990.

[126] S.A. Shaikh, P.-C. Wen, G. Enkavi, Z. Huang, E. Tajkhorshid, Capturing func-
tional motions of membrane channels and transporters with molecular dy-
namics simulation, J. Comput. Theor. Nanosci. 7 (12) (2010) 2481-2500.

[127] A. Katzir-Katchalsky, P.F. Curran, Nonequilibrium Thermodynamics in Bio-
physics, Harvard University Press, 1965.

[128] A. Kleinzeller, D.J. Benos, M.]. Caplan, Cell Biology and Membrane Transport
Processes, 41, Academic Press, 1994.

[129] R. Gaur, L. Mishra, S.K.S. Gupta, Diffusion and transport of molecules in liv-
ing cells, in: Modelling and Simulation of Diffusive Processes, Springer, 2014,
pp. 27-49.

[130] S.G. Schultz, S. Schultz, Basic Principles of Membrane Transport, 2, CUP
Archive, 1980.

[131] W. Stein, Transport and Diffusion Across Cell Membranes, Elsevier, 2012.

[132] T.R. Shannon, K.S. Ginsburg, D.M. Bers, Reverse mode of the sarcoplas-
mic reticulum calcium pump and load-dependent cytosolic calcium decline
in voltage-clamped cardiac ventricular myocytes, Biophys. J. 78 (1) (2000)
322-333.



S. Zaheri and E. Hassanipour /International Journal of Heat and Mass Transfer 158 (2020) 119777 27

[133] R. Garay, P. Garrahan, The interaction of sodium and potassium with the
sodium pump in red cells, J. Physiol. (Lond.) 231 (2) (1973) 297-325.

[134] E. Delpire, K.B. Gagnon, Kinetics of hyperosmotically stimulated Na-K-2Cl co-
transporter in xenopus laevis oocytes, Am. J. Physiol.-Cell Physiol. 301 (5)
(2011) C1074-C1085.

[135] T. Hartmann, A. Verkman, Model of ion transport regulation in chloride-se-
creting airway epithelial cells, Integrated description of electrical, chemical,
and fluorescence measurements,, Biophys. J. 58 (2) (1990) 391-401.

[136] C.Y. Cha, C. Oka, Y.E. Earm, S. Wakabayashi, A. Noma, A model of Na+/H+ ex-
changer and its central role in regulation of pH and Na+ in cardiac myocytes,
Biophys. J. 97 (10) (2009) 2674-2683.

[137] A.M. Weinstein, A mathematical model of the outer medullary collecting duct
of the rat, Am. J. Physiol.-Renal Physiol. 279 (1) (2000) F24-F45.

[138] Y. Sohma, M. Gray, Y. Imai, B. Argent, A mathematical model of the pancreatic
ductal epithelium, J. Membr. Biol. 154 (1) (1996) 53-67.

[139] H.W. Florey, The transport of materials across the capillary wall, Q. J. Exp.
Physiol. Cognate Med. Sci. 49 (2) (1964) 117-128.

[140] J. Aroesty, J.F. Gross, Convection and diffusion in the microcirculation, Mi-
crovasc. Res. 2 (3) (1970) 247-267.

[141] C. Michel, Fluid exchange in the microcirculation, J. Physiol. (Lond.) 557 (3)
(2004) 701-702.

[142] Y. Himeno, M. Ikebuchi, A. Maeda, A. Noma, A. Amano, Mechanisms under-
lying the volume regulation of interstitial fluid by capillaries: a simulation
study, Integrat. Med. Res. 5 (1) (2016) 11-21.

[143] D. Zinemanas, R. Beyar, S. Sideman, Relating mechanics, blood flow and mass
transport in the cardiac muscle, Int. J. Heat Mass Transf. 37 (1994) 191-205.



	A comprehensive approach to the mathematical modeling of mass transport in biological systems: Fundamental concepts and models
	1 Introduction
	2 Model construction
	3 Reaction mechanism (Ri):
	4 Mass transport mechanisms:
	4.1 Convection and filtration (Jconvection and Jfiltration):
	4.2 Diffusion (Jdiffusion):
	4.3 Migration (Jmigration):

	5 Membrane mediated transport mechanisms:
	5.1 Channels (Jionchannel, Jwaterchannel):
	5.1.1 Ion channel (Jionchannel) :
	5.1.2 Water channel (Jwaterchannel)

	5.2  (Juniporter, Jpump, Jsymporter, Jantiporter):
	5.2.1 Uniporter Mmechanism (JUniporter):
	5.2.2 Primary active transport mechanism (Jpump):
	5.2.3 Symport transport mechanism (JSymporter):
	5.2.4 Antiporter transport mechanism (Jantiporter):


	6 Discussion and conclusion
	Funding
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgment
	Supplementary material
	References


