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a b s t r a c t 

Multiscale mathematical modeling of transport phenomena across different levels of biological systems, 

such as cells, capillaries, tissues, and organs, has been increasingly helpful in describing how interactions 

among these systems lead to their function and dysfunction. The development of models across these 

scales is based on knowledge from various fields, such as engineering, physiology, and biophysics, and 

it requires significant collaboration among scientists from the relevant areas. Therefore, a unified frame- 

work to describe the fundamental principles and unite the established models could support this growing 

research community. In this regard, the present work deals with the essential terminology required to 

understand and model biological transport mechanisms, as well as to compile currently available mod- 

els. An inclusive mathematical framework for models of mass transport mechanisms in different tissue 

compartments, including cells, capillaries, and gland ducts, is developed, with a primary focus on the 

mechanisms of membrane-mediated transporters such as channels, uniporters, symporters, pumps, and 

antiporters. The main objective of this study is to provide a comprehensive tool to facilitate the analysis 

of biological mass transport mechanisms and substantially decrease the time taken to find the appropri- 

ate model for a study. 

© 2020 Elsevier Ltd. All rights reserved. 

1. Introduction 

Mass transport mechanisms in complex biological systems, such 

as cells, tissues, and organs, are tightly regulated; any dysregula- 

tion can result in diseases, such as membrane disorders, cancer, 

and other complex diseases. It is necessary to understand the rela- 

tionships among transport mechanisms in different biological sys- 

tems and to be able to predict their behavior under various con- 

ditions. Mathematical and computational modeling are powerful 

tools to describe the interactions that occur at the different levels 

of biological systems and to predict tissue and organ behavior un- 

der different conditions. Researchers have used mathematical mod- 

els extensively to understand the diseases caused by perturbations 

in biological transport processes [1–9] . Interest in this area of re- 

search has grown rapidly, with many published examples demon- 

strating the importance of these models in the analysis of trans- 

port processes and transport-related disorders. This progress has 

been enabled by the coupling of experimental and computational 
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studies at multiple scales and cooperation among researchers from 

different backgrounds. 

Numerous mathematical models have been provided in chap- 

ters of books in the fields of biology, physiology, and engineering 

[10–26] as well as in research articles dealing with the neurologi- 

cal system [27,28] , cardiovascular system [29–32] , respiratory sys- 

tem [33,34] , cellular level behavior [35–38] , nutrient transport [39] , 

and membrane transporters and channels [40–42] , among others. 

However, there is a need to gather and examine the work that 

has been done previously in order to develop an outline of the fur- 

ther work required to make these models more practical and im- 

prove the quality of their predictions. Furthermore, consolidating 

all the models into one framework will provide researchers with 

access to better alternative fitting models for different experimen- 

tal/clinical analyses. In many cases, transport models that are in- 

valid for the given operating conditions are used simply because 

of the lack of a better alternative model. For example, in several 

instances, movements of some molecules across the membrane 

may be assumed to happen with the constant rate, simply because 

of not having the relevant model describing the molecule move- 

ment through the membrane-transporters available. With collect- 

ing all the models unitedly, including those categorized based on 

the types of membrane transporters, there is a possibility to obtain 

extremely more accurate model information for the mass transport 

https://doi.org/10.1016/j.ijheatmasstransfer.2020.119777 
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Nomenclature 

Square brackets: Typically are used with letters 

(e.g., [A], [B], [EA]) to indicate 

the concentration of the sub- 

strate. 

Subscripts E and compounds When used with reaction or 

transport quantities (e.g., reac- 

tion rate constants, translocation 

rate, concentration, flux), these 

refer to carrier and to the 

carrier-substrate complex, re- 

spectively. 

(e.g., EA, EB, EAB): 

Subscripts i, A, B, and C: When used with reaction or 

transport quantities (e.g., reac- 

tion rate constants, concentra- 

tion, flux), these refer to solute 
1 i 1 , 1 A 1 , 1 B 1 , and 1 C 1 , respectively. 

Superscripts M and N: When used with reaction or 

transport quantities (e.g., con- 

centration, flux), these refer to 

the transport domain in a sys- 

tem with multiple domains. 

F Faraday’s constant 96,490 

( A ¨ s / mol ) 

K B Boltzmann’s constant 

1 . 38 ̂ 10 ́ 23 ( m 2 ¨ kg /( s 2 ¨ K )) 

R Universal gas constant 8.314 

( J /( mol ¨ K )) 

β i Restriction coefficient of a solute 
1 i 1 

� Operator to describe the change 

of any changeable quantity (e.g., 

�πM,N is osmotic pressure dif- 

ference between M and N do- 

mains) 

ηh Hill coefficient 

γM Ratio of the surface area of com- 

partment M to tissue volume 

ˆ νs Molar volume of the solute 

�8 
i 

Electrical conductance of ion 1 i 1 

in the solution 

μ Dynamic fluid viscosity 

∇ Operator to either get the gradi- 

ent tensor of a vector, the diver- 

gence of a vector or to find the 

gradient of a scalar field 

π Osmotic pressure 
ś

Oncotic pressure 

ψ Electrical potential 

ρ Fluid density 

σ ( y ) Local charge density 

σ i Reflection coefficient of a solute 
1 i 1 through the membrane 

σ p ( y ) Charge density on the immobi- 

lized protein wall of the mem- 

brane channel 

τ Tortuosity coefficient 

ε Porosity of the wall 

εM Ratio of the volume faction oc- 

cupied by compartment M to 

the tissue volume 

ε0 Dielectric constant 

∅ w Solvent association factor 

u Fluid velocity 

u Averaged fluid velocity 

C i Volume-averaged molar concen- 

tration of species 1 i 1 

C i 
M,N 

Logarithmic mean average of the 

molar concentrations at the two 

sides of the membrane 

R i Volumetric reaction rate of so- 

lute 1 i 1 

E Electric field 

A p Available area of the heteroge- 

neous porous membrane 

a p Radius of the membrane pores 

A s Surface area of the tube 

a s Radius of the spherical 

molecule/solute 

a t Tube radius 

C i Molar concentration of species 
1 i 1 

C L The concentration of unbound 

ligand for the Hill model 

D i Diffusion coefficient of species 1 i 1 

f channel o Open probability of the ion 

channel 

F convection Axial volumetric convection fluid 

flow rate in the tube 

F filtration Volumetric filtration fluid flow 

rate 

g Translocation rate constant 

g i,channel Membrane conductance for 

channels of ion 1 i 1 (channel 

conductance) 

I 2 
i,channel 

Net current density of ion 1 i 1 

through the ion channels 

J antiporter The transported flux driven via 

antiporters 

J ATPase The transported flux driven via 

ATPase pumps 

J filtration The transported flux due to the 

hindered convection 

J i, convection Molar flux of solute 1 i 1 by con- 

vection 

J i,diffusion Molar flux of solute 1 i 1 by diffu- 

sion 

J i,migration Molar flux of solute 1 i 1 by migra- 

tion 

J M 
i,wall 

The net outward molar flux of 

solute 1 i 1 from domain 1 M 1 across 

the wall 

J ionchannel The ion flux through the ion 

channels 

J symporter The transported flux driven via 

symporters 

J uniporter The transported flux driven via 

uniporters 

J waterchannel The water flux through the wa- 

ter channels 

K When used in the carrier- 

mediated transport equa- 

tions (e.g., K M 
A “ k ´M 

A 
{ k `M 

A 
, 

K M 
B “ k ´M 

B { k `N 
B ), it indicates 

the dissociation constant for a 

reaction step. 
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k ̀ Binding rate constant (e.g., k `
A 

is 

the binding constant for solute 

A) 

k ́ Unbinding rate constant (e.g., k ´
A 

is the unbinding constant for so- 

lute A) 

K A The ligand concentration 

at which half-saturation is 

achieved, for Hill model 

K M 
i Equilibrium constant coefficient 

for substrate 1 i 1 in domain M 

K m Michaelis-Menten rate constant, 

which is the substrate concen- 

tration at half the maximum 

rate ( V max ) 

K m 
i 

Membrane partition coefficient 

for solute 1 i 1 

L waterchannel 
p Hydraulic conductivity of the 

water channel 

L p Hydraulic conductivity (filtration 

coefficient) of the membrane 

l t Tube Length 

M w Molecular weight of the solvent 

O channel 
i 

The total number of open chan- 

nels per unit area of the mem- 

brane 

P Hydraulic pressure 

P m 
i 

Membrane permeability coeffi- 

cient to the solute 1 i 1 

T Temperature 

t m Membrane thickness 

u wall Transmembrane fluid flow 

V m Membrane voltage or membrane 

electric potential 

V i, rev Membrane reversal potential for 

a single ion 1 i 1 

V max Maximum reaction velocity 

achieved at the saturated sub- 

strate concentrations for the 

Michaelis-Menten model 

z i Ionic charge number on an ion 
1 i 1 

mechanisms that are of interest to us. Another challenge in the 

area of multiscale transport modeling of biological systems is the 

lack of common language among researchers from relevant fields. 

This study aims to provide an interface for researchers from differ- 

ent fields with interest in the area of biological transport mech- 

anisms. In this regard, the present work integrates engineering 

principles with relevant physiological, biophysical, and biomedical 

concepts and defines the essential terminology from the relevant 

fields. To accomplish this, a full review of mass transport models 

within and across individual biological systems, including capillar- 

ies, the interstitial region, cell membranes, intracellular regions of 

the cell, and duct lumina, has been performed. First, the essen- 

tial concepts of continuity, transport, and the relevant kinetic equa- 

tions and their connection to solute distribution in biological sys- 

tems are outlined in Sections 2 and 3 . Next, a detailed discussion 

of the three main transport mechanisms, namely, convection, diffu- 

sion, and migration, is provided in Sections 4.1, 4.2 , and 4.3 . An ap- 

plication of these models to different types of membrane-mediated 

transport mechanisms, including channels and carriers, along with 

the relevant kinetic equations, is described in Sections 5.1 and 

5.2 . Detailed kinetic modeling approaches for membrane trans- 

porters are described without emphasizing any particular family. 

For each family of membrane transporters, most of the previously 

published models are presented and transformed into a general 

identical parametric form. Furthermore, our review of previously 

published models prompted us to derive some new kinetic mod- 

els for membrane-transporter mechanisms. This work does not at- 

tempt to evaluate or analyze these models, but instead intends to 

provide a comprehensive modeling toolbox that should facilitate 

investigation of membrane transport mechanisms. 

2. Model construction 

Biological systems can be categorized into different levels, rang- 

ing from cells and the interstitial region to capillaries, tissues, and 

organs. For a living biological system to operate, nutrients and 

other molecules must continuously move across the boundaries of 

the system at each level and participate in biochemical reactions. 

In this work, a heterogeneous representative elementary vol- 

ume (REV) is used to represent the tissue at a macroscopic scale 

( Fig. 1 ). Next, at the microscopic scale, each of the tissue com- 

partments, including the cell, interstitial, and capillary phases, is 

considered as an individual control volume (CV), and the trans- 

port processes of fluids (solutions such as blood and air) and so- 

lutes (such as nutrients, hormones, electrolytes, oxygen, and car- 

bon dioxide) across the boundaries of these control volumes is 

modeled. 

The models of volume-averaged fluid flow and solute transport 

(through the regions ”M” and ”N”) within the defined control vol- 

umes are shown in Fig. 2 . For the purpose of simplification, it is 

assumed that the flow is incompressible, laminar, Newtonian, and 

that there is no fluid accumulation in the boundaries. 

The macroscopic mass and momentum continuity equations for 

mass transport through regions ”M” and ”N” are as follows [43,44] : 

∇ . ̄u “ 0 (1) 

B u 
M 

Bt 
` u 

M 
. ∇ u 

M 
“

1 

ρ

´

μM ∇ 
2 u 

M 
´ ∇ P 

M ¯

(2) 

Where u M is the fluid velocity in region M, ρ is the fluid den- 

sity, ∇P M is the pressure drop along the tube, and μ is the dy- 

namic fluid viscosity. 

The microscopic form of the Navier-Stokes and mass- 

momentum conservation equations and the corresponding dy- 

namic fluid flow model can be expressed using the equations 

below [45–48] : 

∇ . u M “ ∇ . u 
M 

`
γ M 

ε M 
u M 
wall “ 0 ñ ∇ . u 

M 
“ ´

γ M 

ε M 
u M 
wall (3) 

ρ

˜

B u 
M 

Bt 
` u 

M 
. ∇ u 

M 

¸

“ ´∇ P 
M 

` μM ∇ 
2 u 

M 

ñ
B u 

M 

Bt 
“ ´u 

M 
. ∇ u 

M 
`

1 

ρ

ˆ

μM ∇ 
2 u 

M 
´ ∇ P 

M 
˙

(4) 

Where γM is the ratio of the surface area of compartment M 

to tissue volume and εM is the ratio of the constant volume oc- 

cupied by compartment M to the tissue volume (volume fraction). 

The product γM u M 
wall 

represents the volumetric solution outflow 

per unit tissue volume through the boundary of compartment M. 

Similarly, the volume-averaged continuity equations of the so- 

lute 1 i 1 on the macroscopic scale ( Eq. (5) ) and microscopic scale 

( Eq. (6) ) govern the distribution of the molar concentration of the 

solute [49,50] . 
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Fig. 1. Representative Elementary Volume (REV) of a general tissue consists of capillary, interstitial fluid, and cells. 

Fig. 2. Volumetric fluid movement within a control volume ( u M ) and the trans- 

membrane flow ( u wall ). Solute transport flux within the control volume ( J M 
i ) can 

happen by convection, diffusion , and migration mechanisms. J M 
i,wall represents the net 

outward molar flux of solute 1 i 1 from control volume 1 M 1 to its adjacent compart- 

ments across the wall (e.g., N). Transport between the M and N compartments can 

occur either through the gaps between the cells of the wall separating the domains 

(the curved arrow) or across the individual cell membranes (the straight arrow). 

B C i 
Bt 

“ R i ́ ∇ . J i (5) 

B C i 
M 

Bt 
“ R i 

M 
´ ∇ . J i 

M 
´

γ M 

ε M 
J M 
i, wall (6) 

Where, 

C M 
i is the molar concentration of species 1 i 1 in the control vol- 

ume 1 M 1 . 

R i 
M 

refers to the volumetric metabolism reactions in which the 

substrate participates (see Section 3 for more details). 

J M 
i is the bulk flux of species 1 i 1 within phase M, and is dis- 

cussed in Section 4 . 
γM 

ε M 
J M 
i,wall 

represents the net outward molar flux of solute 1 i 1 

from control volume 1 M 1 to its adjacent compartments across the 

wall (discussed in Sections 4 and 5 ) 

3. Reaction mechanism (R i ): 

Cellular reactions can occur within the control volume ( R M 
i ) 

or at the surface of a separating wall ( R M´N 
s,i 

), and can lead to 

the metabolism or transport of the substrate. In this study, three 

commonly used approaches for modeling cellular reactions are 

outlined. These models include the mass action law ( Eqs. (7a) 

and (7b) ), the Michaelis-Menten ( Eq. (8) ) and Hill kinetics model 

( Eq. (9) ), which are given below: 

Mass Acti on Law : 

n th order kine tics : R i 
M 

“

j 
ź

i “1 

K M 
i 

ˆ

C i 
M 

˙νi (7a) 

Firt st ́ order kine tics : R i 
M 

“ K M C 
M 

(7b) 

Mich aelis ́ Ment en equa tion : R i 
M 

“ V max 
C i 

M 

K m ̀ C i 
M 

(8) 

Hill kinetics : R i 
M 

“ V max θwhere , θ “
C 

ηh 
L 

K 
ηh 
A `C 

ηh 
L 

(9) 

The law of mass action states that the rate of a reaction is pro- 

portional to the concentrations of its reactants and products taken 

to the power of their stoichiometric coefficient. Eq. (7a) represents 

the law of mass action for a reaction with j substrates, where K M 
i 

is the equilibrium constant coefficient for substrate 1 i 1 in region M, 

C i is the volume-averaged concentration of substrate 1 i 1 , and ν i is 

the order of the reaction relative to substrate 1 i 1 which has a neg- 

ative value for reactants and a positive value for products. In some 

cases, especially for complex reactions, such as reversible, parallel, 

and series reactions, the reaction rate can be shown in the form 

of the first-order kinetic ( Eq. (7b) ), in which the reaction rate and 

the substrate concentration has a linear relationship to each other 

[51,52] . 

The Michaelis-Menten equation ( Eq. (8) ) is one of the most ef- 

fective methods for modeling single-substrate, single-product en- 

zyme kinetics, and metabolic reactions. It relates the reaction ve- 

locity to the substrate concentration [53] . In the Michaelis-Menten 

equation, V max represents the maximum velocity achieved by the 

system at the maximum (saturated) substrate concentrations, and 

K m is the Michaelis-Menten constant, which represents the con- 

centration of the substrate when the reaction velocity is equal to 

half the maximum velocity [54] . 

The Hill equation, ( Eq. (9) ) is commonly used to describe the 

dependence between the binding of smaller molecules ( ligand , 

such as ions) to macromolecules (such as proteins). The term θ
in the Hill equation represents the fraction of macromolecules 
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Fig. 3. Transport across the cell membrane. Movement across the cell membrane can occur through channels, including ion channels ( Section 5.1.1 ) and water channels 

( Section 5.1.2 ), uniporters ( section 5.2.1 ), pumps ( Section 5.2.2 ), symporters (5.2.3) , antiporters ( Section 5.2.4 ), and cytosis . 

bound to the ligand. In obtaining θ , C L is the concentration of free 
(unbound) ligand, K A is the ligand concentration at which half- 

saturation (half-activation) is achieved, and ηh is the Hill coeffi- 

cient. The Hill coefficient is also known as the interaction coeffi- 

cient, and determines the extent of cooperativity between the lig- 

and and the macromolecule binding sites [55,56] . ηh ą 1 repre- 

sents positive cooperative binding, ηh ă 1 represents negative co- 

operative binding, and ηh “ 1 indicates a non-cooperative mech- 

anism (completely independent binding processes). In the case of 

ηh “ 1 the Hill equation reduces to the familiar Michaelis Menten 

model ( K A “ K m ) [57] . 

4. Mass transport mechanisms: 

The overall rate and type of material exchange within or across 

a compartment depend on the physical properties of the control 

volume and the structure of the separating wall, as well as the 

molecular features of the species being transported, such as their 

size, polarity, fat-solubility, diffusion coefficient, and the membrane 

partition coefficient for the solute. 

Possible transport mechanisms ”within” a control volume (e.g., 

M) are convection, diffusion , and migration , as follows: 

J M 
i “ J M 

i,con v ection ̀ J M 
i,di f f usion ̀ J M 

i,migration (10) 

These mechanisms and the related equations are discussed in 

Sections 4.1, 4.2 , and 4.3 , respectively. 

Transport ”between” the M and N domains occurs either 

through the gaps between the cells of the wall separating the do- 

mains or across the individual cell membranes (see Fig. 2 ). Mech- 

anisms of transport through gaps between the cells include filtra- 

tion ( section 4.1 ) and diffusion ( Section 4.2 ). Transport ”across the 

cell membrane” can occur via diffusion, ion channels ( Section 5.1.1 ), 

water channels ( Section 5.1.2 ), uniporters ( Section 5.2.1 ), pumps 

( Section 5.2.2 ), symporters (5.2.3) , antiporters ( Section 5.2.4 ), and 

cytosis (see Fig. 3 ). 

The net outward molar flux across the M ́ N interface ( J M,N 
i 

) is 

given by: 

γ M J M 
i,wall “

m 
ÿ

N“1 

γ M,N J M,N 
i 

(11) 

Where m is the total number of adjacent control volumes. The 

mass transport mechanisms across the M-N wall can be grouped 

as follows: 

J M,N 
i 

“ J filtration ̀ J diffusion ̀ J ionchannel ̀ J waterchannel ̀ J uniporter 
loo o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o omoo o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o on 

passive transport 

` J pump ̀ J symporter ̀ J antiporter ̀ J cytosis 
loo o o o o o o o o o o o o o o o o o o o o o omoo o o o o o o o o o o o o o o o o o o o o o on 

active transport 

(12) 

Where, 

J filtration is the transported flux due to the hindered convection, 

and is discussed in Section 4.1 , 

J diffusion is the transported flux due to the hindered diffusion, 

and is discussed in Section 4.2 , 

J ionchannel is the ion flux through the ion channels, and is dis- 

cussed in Section 5.1.1 , 

J waterchannel is the water flux through the water channels, and is 

discussed in Section 5.1.2 , 

J uniporters is the transported flux driven via uniporters, and is dis- 

cussed in section 5.2.1 , 

J pumps is the transported flux driven via pumps, and is discussed 

in Section 5.2.2 , 

J symporters is the transported flux driven via symporters, and is 

discussed in Section 5.2.3 , 

J antiporters is the transported flux driven via antiporters, and is 

discussed in Section 5.2.4 . 

J cytosis is the transported flux driven via cytosis mechanisms, 

and is not discussed in this work. 

Transport mechanisms can also be categorized as passive or 

active transport. Passive transport (filtration, diffusion, ion chan- 

nel, water channel, and uniporter mechanisms) involves the spon- 

taneous movement of the solutes, while active transport (pump, 

symporter, antiporter, and cytosis) requires an external source of 

energy. The following sections provide a detailed discussion of all 

these transport mechanisms except for cytosis, as the mechanism 

of cytosis is entirely different from the others. 
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Fig. 4. Convective flow inside the control volume ( u M , J M 
i,con v ection ) and filtration flow 

( u M´N , J M´N 
i, f ilt rat ion ) through the pores across the porous wall separating the compart- 

ments. 

4.1. Convection and filtration ( J convection and J filtration ): 

Convection is a mass transport mechanism that occurs due to 

the bulk motion of the fluid within a control volume and across 

the semipermeable porous wall. Fluid convection can be consid- 

ered at two levels: (i) Internal flow convection ( u M , J M 
i,con v ection ), 

i.e., flow within the control volume, and (ii) filtration flow 

( u M´N , J M´N 
i, f ilt rat ion 

), i.e., flow across the porous wall separating the 

compartments ( Fig. 4 ). 

(i) Internal flow convection (M): The Newtonian, laminar, and 

incompressible fluid flow inside a tube (control volume M) is gov- 

erned by the Navier-Stokes and continuity equations ( Eqs. (3) and 

(4) ). A cylindrical tube whose length ( l t ) is much larger than 

its radius ( a t ) has no substantial radial pressure distribution, and 

consequently, no radial fluid movement. Under these conditions, 

the Poiseuille-Hagen Law relates the local ”axial” fluid flow rate 

through a circular cross-sectional area of the tube to the hydro- 

dynamic pressure difference at the two ends of the tube segment 

in the z-direction and the fluid viscosity by Loudon and McCulloh 

[58] , Pirofsky [59] , and Singh et al. [60] : 

F M 
con v ection p z, tq “ ´

πa 4 t 
8 μ

BP M 

Bz 
(13) 

Where F M 
con v ection p z, tq is the axial volumetric flow rate in the 

tube per unit time ( cm 3 / s ), a t “ a t p z, tq ( cm ) is the local radius of 

the tube, ( μ) is the fluid viscosity ( Pa ¨ s ), and P “ P p z, tq is the 

local axial pressure ( Pa ). 

The axial fluid velocity within the tube ( u M 
z p rq ) through the to- 

tal cross-sectional area of the tube is obtained by Fournier [61] and 

Nield et al. [50] : 

Conv ecti on ́ fluid : u 
M 
z p r q “

2 F conv ecti on 
πa 4 t 

´

a 2 t ´ r 2 
¯

“ ´

´

a 2 t ´ r 2 
¯

4 μ

BP M 

Bz 

(14) 

Where u M 
z p rq is a function of the radial distance from the center 

of the tube (0 ă r ă a t ). 

The convective flux of the solute , J M 
i,con v ection ( mole /( s ¨ m 2 )), is 

coupled to the fluid velocity within the control volume M and 

the solute concentration, C M 
i ( mole / m 3 ), by Khakpour and Vafai 

[62] and Gösele and Alt [63] : 

Conv ecti on ́ solu te : J M 
i , convection “ u 

M C M 
i (15) 

(ii) Filtration-transmembrane f low (from M to N): Filtration 

involves the passage of a hindered convective flow through a 

porous wall, and depends on the structure of the wall and the ef- 

fective pressure difference between the two sides of the wall. The 

effective pressure drop ( �P M,N 
net ) is the net result of the hydrody- 

namic pressure difference ( �P M,N ) and the osmotic pressure differ- 

ence ( �πM,N ) between the two sides of the pore opening, and is 

given by Eq. (16a) . The osmotic pressure difference is created by 

the solutes that are retained from transport across the wall and is 

obtained through Eq. (16b) [61,64] . 

�P M,N 
net “ �P M,N ´ �πM,N 

i 
(16a) 

�πM,N 
i 

“ RT 
n 

ÿ

i “1 

σi �C M,N 
i 

(16b) 

Here, R is the universal gas constant (8.314 J /( mol ̈ K )), T is the 

temperature in Kelvin (human body temperature is around 300.98 

K ), and σ i is the reflection coefficient. The reflection coefficient, 

which is also known as the osmotic coefficient, determines the 

real contribution of the osmotic pressure to the fluid flux through 

the membrane and is independent of the solute concentration and 

pressure. 

The total volumetric filtration fluid flow rate through all 

the pores across the porous wall can be obtained by applying 

Poiseuille’s Law, and is expressed as follows [61,65–67] : 

F M,N 
f ilt rat ion 

“ L p A s �P M,N 
net (17a) 

L P “
εa 2 p 

8 μτ t m 
“

n 2 πa 4 p 

8 μτ t m 

where : ε “
A p 

A s 
, A P “ nπa 2 p A s “ 2 πa t l t (17b) 

Where L p ( m /( s ¨ pa )) is the filtration coefficient, A s is the sur- 

face area of the tube, and �P M,N 
net is the effective pressure differ- 

ence. The filtration coefficient, which is also known as hydraulic 

conductivity, determines the hydraulic permeability of the porous 

membrane to the fluid. The filtration coefficient can be obtained 

through Eq. (17b) , where ε is the porosity of the wall and relates 

the actual available area of the heterogeneous porous membrane 

( A p ) to its total circumferential area ( A s ), n is the number of non- 

uniform inert cylindrical membrane pores, n 2 is the density of the 

pores across the membrane ( n / A s ), a p is the radius of the mem- 

brane pores, μ is the dynamic viscosity of the fluid, and τ is the 

tortuosity coefficient, which relates the actual available transport 

path to the membrane thickness, t m [17] . In obtaining the total cir- 

cumferential area ( A s ), a t and l t are the radius and length of the 

tube, respectively. 

The net outward filtrate fluid exchange velocity (filtration or 

ultrafiltration velocity) across the membrane ( u M,N ) is given by 

Schultz et al. [68] : 

Filt rati on ́ fluid : u 
M,N “

F M,N 
filt rati on 

A s 

“ L p 

˜

�P M,N ´ RT 
n 

ÿ

i “1 

σi �C M,N 
i 

¸ (18) 

Eq. (19) relates the macroscopic filtrate fluid flow velocity 

across the circumferential membrane area to its microscopic ve- 

locity in the membrane pores ( u M,N 
pore ) [49] . 

u 
M,N 
pore “

ˆ

1 

ε 

˙

u 
M,N “

a 2 p 

8 μτ t m 
�P M,N 

net (19) 

At the microscopic level, the non-steady state convective flux of 

the solute within the membrane pore ( J pore 
i, f ilt rat ion p solute q 

) is modified 

due to the restriction caused by the solute-membrane interaction, 

and is given by the expression [69] : 

J pore 
i, f ilt rat ion 

“ β pore 
i 

C pore 
i 

p y q u M,N 
pore (20) 

Where β i is the restriction coefficient and depends on the in- 

teractions between the solute and the porous wall, and C pore 
i 

p y q is 

the local concentration of the solute within the pore. The solute 

transport flux rate due to the hindered convection across the mem- 

brane from region M to N (also known as the solvent drag flux) is 

expressed as [70–73] : 

Filt rati on ́ solu te : J M,N 
i, filt rati on 

“ C i 
M,N 

p 1 ́ σi q u M,N 

where ; C i 
M,N 

“
C M 
i ´C N 

i 

ln C M 
i 

´ ln C N 
i 

(21) 
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Where C i 
M,N 

is the logarithmic mean average of the concentra- 

tions at the two sides of the membrane and ( 1 ́ σi ) represents the 

fraction of the solute dragged across the membrane by the fluid 

flow. 

4.2. Diffusion ( J diffusion ): 

Diffusion transport flux moves substances passively from a 

higher concentration region to lower concentration. Similarly to 

convection, diffusion can be considered at two levels: (i) diffusion 

within the region (e.g., M), known as free diffusion , and (ii) diffu- 

sion across the membrane separating the regions (e.g., between M 

and N), which is known as restricted diffusion . 

(i) Diffusion-within the region (free diffusion): The partial 

differential form of Fick’s law below can be used to determine the 

free diffusive flux [74] : 

J M 
i, diffusion “ ´D 

M 
i ∇C M 

i (22) 

Where D M 
i is the free diffusion coefficient for species 1 i 1 in the 

control volume M , and has the unit ( cm 2 / s ). Depending on whether 

the molecule is charged or uncharged, D M 
i obtained using Eqs. (23) , 

(24) , and (25a) , respectively. 

The diffusion coefficient for an uncharged solute in a dilute 

liquid solution can be calculated either by applying the W ilke ́

Chang method ( Eq. (23) ) [45,75,76] or the Stokes ́ Einstein method 

( Eq. (24) ) [49,67,77] . 

Wilke ́ chang : D 
M 
i, unch arged “ 7 . 4 ̂ 10 ´15 T 

a 
∅ w M w 

`
ř

ˆ νs 
˘0 . 6 

μ
(23) 

Stok es ́ Eins tein : D 
M 
i, unch arged “

K B T 

6 πa s μ
(24) 

Where T is the temperature in Kelvin, ∅ w is the solvent asso- 

ciation factor, M w is the molecular weight of the solvent, ˆ νs is the 
molar volume of the solute, and μ is the solvent viscosity, a s is the 

radius of the spherical particle, and K B is the Boltzmann’s constant 

( 1 . 38 ̂ 10 ́ 23 m 2 ¨ kg /( s 2 ¨ K )). 

The free diffusion coefficient for a charged particle can be ob- 

tained from the expression [49] : 

D 
M 
i,charged “

ˆ

RT 

F 2 

˙

�8 
i 

| z i | 
(25a) 

Where R is the universal gas constant (8.314 J /( mol ¨ K )), z i is 

the ionic charge, F is Faraday’s constant (96, 490 A ̈ s / mol ), �8 
i 

is 

the electrical conductance of ion 1 i 1 in the solution ( m 2 /( ohm ̈ eq )). 

(ii) Diffusion-through the membrane (restricted diffusion): 

The one-dimensional restricted diffusion flux rate of a solute 

through a thin semipermeable membrane can be determined us- 

ing Fick’s equation as below: 

J pore 
i, diffusion 

“ ´D 
m 
i, eff

BC i 
By 

(26) 

Where D m 
i,e f f 

is the effective diffusion coefficient of the solute 

in the membrane. The effective diffusion coefficient, also known 

as the restrictive diffusion coefficient, determines the effect of the 

heterogeneity and tortuosity of the biological membrane on the 

diffusion rate and is given by the expression [51,69,78] : 

D 
m 
i,e f f “

βm 
i 

τm 
D 
m 
i (27) 

Where βm 
i 

and τm are the solute restriction coefficient and tor- 

tuosity coefficient of the membrane layer, respectively. 

The diffusive flux equation can be obtained in terms of the 

membrane permeability coefficient P m 
i 

( cm / sec ) by integrating the 

differential form of Fick’s equation over the membrane thickness, 

t m ( cm ) [47,79] .: 

J M,N 
i, diffusion 

“ P m 
i 

´

C M 
i ´C N i 

¯

(28) 

Where J M,N 
i,di f f usion 

has the unit of number of molecules per unit 

area per unit time. Permeability ( P m 
i 
) is a phenomenological co- 

efficient that relates the diffusion flux to the concentration gradi- 

ent across the two sides of the membrane. The permeability of the 

porous membrane towards a molecule is usually determined ex- 

perimentally; however, it can also be obtained theoretically using 

Eq. (29) [80] . 

P m 
i “

K m 
i 

t m 
D 
m 
i,e f f (29) 

Where K m 
i 

is the membrane partition coefficient for solute 1 i 1 . 

4.3. Migration ( J migration ): 

The distribution of ions within a control volume or across the 

membrane can generate an electric field ( E , ( V / m )). The produced 

electric field exerts an external force on charged particles, causing 

them to move either with or against the diffusive transport flux. 

This type of transport is known as migration and the migrative flux 

is obtained using the expression below [47,49,81,82] : 

J M 
i , migration “ E νM 

i 

´

C M 
i 

¯

(30) 

Where νM 
i , and C M 

i are the electrokinetic mobility ( m 2 /( s ¨ V )) 

and concentration of the ion, respectively. The single ion mobility 

( νM 
i ) and the diffusion coefficient ( D M 

i ) are related by the expres- 

sion: 

νM 
i “

D M 
i z i F 

RT 
(31) 

Where z i is the valence of the ion, F is the Faraday’s con- 

stant (96, 490 A ¨ s / mol ), R is the universal gas constant (8.314 

J /( mol ¨ K )) and T is the temperature in Kelvin. 

The relationship between the electrical field ( mV / cm ) and the 

electric potential ( mV ) are given by: 

E “ ´∇ ψ E (32a) 

∇ ψ 
M´N 
E “ V M´N 

m “ ψ 
M ´ ψ 

N (32b) 

Where ∇ψ E is the electrical potential gradient. The electrical 

potential gradient across the two sides of a thin membrane, which 

is known as the membrane voltage ( V M,N 
m ), can be obtained by us- 

ing Eq. (32b) . 

5. Membrane mediated transport mechanisms: 

After discussing the three main mass transport mechanisms, 

convection (filtration), diffusion, and migration, this section deals 

with transport across the membrane, which can be mediated via 

specific groups of integrated membrane proteins known as trans- 

porters [83] . Transporters are the class of membrane proteins 

including channels (ion channels and water channels), pumps, 

carrier-mediated proteins (uniporters, symporters, antiporters), and 

receptor-mediated transporters. These membrane proteins play a 

crucial role in maintaining the electrochemical gradient across the 

cell membrane, the uptake of nutrients, drug transport, and the re- 

moval of cell metabolism waste products [84,85] . For further de- 

tails on the structure of these transporters, their molecular mech- 

anisms, and their application in drug transport, please refer to ref- 

erences [26,86–94] . 
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Fig. 5. Channel Transport Mechanism. 

5.1. Channels ( J ionchannel , J waterchannel ): 

The lipid bilayer membrane of the cell is impermeable to 

highly charged and hydrophilic molecules, such as ions and wa- 

ter molecules. However, the cell membrane contains solute-specific 

proteins known as channels that allow water molecules and 

charged substances to diffuse or migrate through them (see Fig. 5 ) 

[26,95] . Some of these channels are mainly permeable to ions, and 

are thus called ion channels, while those that are permeable to wa- 

ter molecules are known as water channels or aquaporins. 

5.1.1. Ion channel ( J ionchannel ) : 

Ion channels create pathways for the passive movement of 

charged, hydrophilic molecules by diffusion and migration mech- 

anisms. Various mathematical models can be used for the ion flux 

through ion channels. In order for these models to be precise, the 

size of the ion, possible reactions among the ions in the pathway, 

and interactions of the wall of the protein channel with the ion 

being transported should be considered [40,96–98] . Here, the ion 

channel models are classified depending on their scale as (i) ion 

distribution within (inside) the channel (ii) the net driven ion flux 

through the ion channels from one side (M) of the membrane con- 

taining the ion channels to the other (N). 

(i) Ion flux within (alongside) the channel: The total ion flux 

within a channel is commonly modeled using a modified form of 

the Nernst-Planck equation. The Nernst-Planck equation gives the 

total ionic flux as the balance between the diffusive flux ( Eq. (22) ) 

and the electrical drift ( Eq. (30) ) and can be written as below 

[81,96,99] : 

J ion channel 
i “ ´D 

m 
i 

ˆ

∇ C i ̀

ˆ

z i F 

RT 

˙

C i ∇ ψ 
e f f 
i 

˙

(33) 

Where D m 
i 

is the ion diffusion coefficient and can be obtained 

theoretically using Eq. (25a) , and ∇ ψ 
e f f 
i 

is the effective potential, 

which depends on the electrostatic potential and the interactions 

between transferring ions and the channel wall. 

The one-dimensional volume-averaged ion flux over the cross- 

sectional area of the channel can be given as [49] : 

J i 
ion channel 

“ ´D m i, eff

¨

˝

d C i p y q 
ion chan nel 

dy 
`

ˆ

z i F 

RT 

˙

C i 
ion chan nel dψ 

eff

i p y q 

dy 

˛

‚

(34) 

Where D m 
ion,e f f 

is the restrictive diffusion coefficient for the ion 

and can be obtained by applying Eq. (25a) in Eq. (27) . 

The one-dimensional form of the Poisson equation ( Eq. (35) ) re- 

lates the spatial electric field distribution to the local charge den- 

sity ( σ ( y )) via the expression below [49] : 

σ p y q “ ´ε 0 
d 2 ψ eff

dy 2 
“ F 

m 
ÿ

i “1 

z i C i p y q 
ion chan nel 

` σp p y q (35) 

Where ε0 is the dielectric constant (electrical permeability), 

the expression ”F 
řm 

i “1 z i C i p y q 
ion chan nel 

” sums the charge density on 

each of the 1 m 1 individual ions, and σ p ( y ) is the charge density on 

the immobilized protein wall of the membrane channel. 

The combination of Eq. (34) with Eq. (35) is known as the 

Poisson-Nernst-Planck (PNP) model, and can be used develop a full 

model of ion distribution along the ion channels [96] . 

(ii) Net driven ion flux through the channel: The net ion flux 

from region M to N through the channel ( mol / cm 2 ¨ s ) is related to 

the current across the membrane ( A / cm 2 ) by the expression [100] : 

J M,N 
i, ion chan nel 

“
I 1 1 M,N 

i, chan nel 

z i F 
(36) 

Where I 2 M,N 
i,channel is the net current density of ion 

1 i 1 through 

n i,channel channels sensitive to ion 
1 i 1 , and is given by the expres- 

sion: 

I 2 
M,N 
i, chan nel p V m , t q “ n 2 i, chan nel f i, chan nel o p V m , t q i M,N 

i, chan nel 
p V m , t q 

“ O 
chan nel 
i p V m , t q i M,N 

i, chan nel 
p V m , t q (37) 

Where n 2 
i,channel 

is the ion channel density per unit area of 

the membrane, f channel o p V m , tq is the probability that the ion chan- 

nel is in open state at time t and has a value between 0 and 1 

( 0 ď f channel o ď 1 ). 

Most of these channels are not always open, and can be 

switched between at least two states (the open and closed states) 

in response to a chemical, electrophysiological, or hormonal stim- 

ulus. The probability that the channel will be open is a function of 

the membrane potential ( V m ) and the channel structure; the prod- 

uct n 2 i,channel f 
i,channel 
o is sometimes denoted by a single variable, 

O channel 
i 

, which refers to the total number of open channels per 

unit area of the membrane ( A m ) ( # of channels { cm 2 ). Details of 

the types of gating are beyond the scope of this work. For further 

details, one can refer to references [87] , [26] , and [101–104] . 

i M,N 
i 

p V m , tq is the current driven across the membrane through 

one channel (from region M to N). The ion current through 

the lipid bilayer membrane be modeled in two ways: using the 

Ohm model ( Eq. (38) ) or the Goldman-Hodgkin-Katz (GHK) model 

( Eq. (41) ). 

Ohm model : The current through a gating channel ( i M,N 
i,OhmChannel 

) 

according to Ohm’s law is given by the expression below [102,105] : 

i M,N 
i,Ohm 

“ g i,channel p V m , C, tq 
´

V M,N 
m ´V M´N 

i,re v 

¯

(38) 

Where g i,channel ( V m , C, t ) is the membrane conductance for 

channels of ion 1 i 1 (channel conductance) in units of Siemens 

( S “ 1 { Ohms ) and can be a function of membrane voltage ( V m ), 

ion concentration ( C ) and time ( t ), V M,N 
m is the membrane voltage 

( Eq. (32b) ), and V M´N 
i,re v 

is the membrane reversal potential for a sin- 

gle ion 1 i 1 . At equilibrium, there is a balance between the electrical 

and chemical forces, and consequently, there is no net ionic flux 

across the membrane; otherwise, the membrane potential will vary 

and produce an electric field across the membrane, which in turn 

produces an ion flux across the membrane. The membrane poten- 

tial, which is also known as the equilibrium or resting potential, at 

the equilibrium state (zero current) is known as the reversal po- 

tential, and can be calculated for a particular charged ion 1 i 1 using 

the Nernst-potential equation below: 

V M´N 
i,re v 

“ ´
RT 

z i F 
ln 

´ C 
Mp in q 
i 

C 
Np outq 
i 

¯

(39) 

The overall current flux (per unit area of the membrane) of the 

individual ion 1 i 1 using the Ohm model is given below: 

Ohm curr ent model : 

I 1 1 M,N 
i, Ohmc hann el 

“ n 2 i, chan nel f i, chan nel o p V m , t q g i, chan nel 
´

V m ́ V M´N 
i, rev 

¯

“ O 
chan nel 
i p V m , t q g i, chan nel 

´

V m ́ V M´N 
i, rev 

¯

(40) 
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Goldman-Hodgkin-Katz current model : If the ion channel is suf- 

ficiently short, and the charge density of the protein channel does 

not exceed the ion charge density, the right-hand side of the Pois- 

son equation ( Eq. (35) ) becomes zero. These assumptions lead to 

a fixed electric potential and electric field across the membrane 

( dψ { dy “ ´ψ m { t m ). The Goldman-Hodgkin-Katz ( GHK ) model ap- 

proximates the ionic flux across the membrane through a given ion 

channel by assuming a constant electric field across the membrane. 

The GHK equation for outward ion current across the membrane 

from M to N is written as [106] : 

i M,N 
i,GHK 

“ P M´N 
i 

z 2 
i F 

2 V M´N 
m 

RT 

C M 
i ´C N 

i exp 
´z i F V 

M´N 
m 

RT 

1 ́ exp ´z i F V 
M´N 
m 

RT 

(41) 

Where P M´N 
i 

, which has units of ( cm /( pore ¨ s )), is the mem- 

brane permeability towards the specific ion 1 i 1 through a single 

pore, and determines the amplitude of the membrane conductance 

for that ion. 

The overall individual ionic current carried by ion 1 i 1 per unit 

area of the membrane can be calculated using the GHK model as 

[102,107] : 

Gold man ́ Hodg kin ́ Katz curr ent model : (42) 

I 2 M,N 
i, GHKC hann el 

“ (42) 

n 2 i, chan nel f 
i, chan nel 
o P M´N 

i 

z 2 
i F 

2 V M´N 
m 

RT 

C M 
i ´C N 

i exp 
´z i F V 

M´N 
m 

RT 

1 ́ exp 

ˆ

´z i F V 
M´N 
m 

RT 

˙ “ (42) 

O 
chan nel 
i P M´N 

i 

z 2 
i F 

2 V M´N 
m 

RT 

C M 
i ´C N 

i exp 
´z i F V 

M´N 
m 

RT 

1 ́ exp 

ˆ

´z i F V 
M´N 
m 

RT 

˙ (42) 

5.1.2. Water channel ( J waterchannel ) 

The small polar and uncharged molecule water can move across 

the cell membrane by the simple diffusion mechanism. However, 

the diffusion of water through the lipid membrane is relatively 

slow; therefore, additional pathways for the movement of water 

across the membrane must exist. Recent studies have shown that 

the cell membrane contains water channels, known as Aquapor- 

ins (AQP), that allow the passage of lipophobic water molecules 

through the cell membrane [83,108,109] . These channels play a 

crucial role in regulating the cell volume as well as in pathological 

conditions [110,111] . More details about the discovery and various 

types of water channels and their structure, regulation, and distri- 

bution in different cell and tissue types in the body can be found 

in references [112–115] . The water flux through the water channels 

can be expressed as [100,116–118] : 

J M,N 
wate rcha nnel 

“ L AQP water ,p 

¨

˝�P M,N 
hydr aulic ́

ÿ

i 

σMN 
i �πM,N 

i 
´ σp �

M,N 
ź

p, onco tic 

˛

‚

(43) 

Where L AQP 
water,p is the hydraulic conductivity of the membrane 

towards water, �P hydraulic is the hydraulic pressure difference, 

�π osmosis is the osmotic pressure difference ( Eq. (16b) ), and σ i is 

the reflection coefficient, which determines the real contribution of 

the osmotic pressure to the driven water flux through these chan- 

nels. �
ś

p,oncotic is the oncotic or colloid osmotic pressure differ- 

ence, which corresponds to the osmotic pressure created by high- 

molecular-weight plasma proteins. The oncotic pressure difference 

can empirically be determined using the Landis and Pappenheimer 

model ( Eq. (44) ) [119–121] : 

źM 

oncotic,total 
“ 2 . 1 C M 

protein ̀ 0 . 16 p C M 
protein q 

2 ` 0 . 009 p C M 
protein q 

3 (44) 

Where 
śM 

oncotic,total is the plasma colloid osmotic pressure, and 

C M 
protein is the total plasma protein concentration within the region 

M (grams of protein per 100 liters of solution). 

5.2. Car r ier ́ med iated { transport ( J uniporter , J pump , J symporter , 

J antiporter ): 

Some lipid-insoluble substances have low permeabilities across 

the cell membrane, or are too large to enter the cell via filtra- 

tion and diffusion mechanisms or move through membrane chan- 

nels and pores. Moreover, in some situations, a cell must import 

a solute against the direction of the electrochemical gradient to 

meet its needs. In these scenarios, the relevant solute may cross 

the membrane via membrane-integrated proteins known as carri- 

ers ; the corresponding transport mechanism is known as carrier- 

mediated transport . Similarly to channels, these transporters are 

highly solute-specific; however, unlike channels, they do not con- 

tain hydrophobic pores. Therefore, carriers can only bind to one 

or a few substrate molecules at a time, and transport via carri- 

ers is much slower than via channels. Carrier-mediated transport 

is a multi-step process. Its underlying mechanism is briefly ad- 

dressed below and schematically depicted in Fig. 6 . In the first 

step, the substrate being transported (ligand) participates in a re- 

versible binding (association) reaction with the binding site of the 

carrier on one side of the membrane (see Fig. 6 b and c). After the 

carrier-substrate complex has been formed, the carrier undergoes 

a conformational change and translocates the substrate across the 

membrane. Finally, the carrier releases the substrate at the other 

face through a dissociation reaction. Energy is needed to achieve 

the conformational change; depending on the source of the energy, 

the carrier is categorized as a uniporter , pump , symporter , and an- 

tiporter . 

The uniport transport mechanism is a passive transport mech- 

anism, as the carrier facilitates the downhill movement of a sin- 

gle group of specific large polar molecules across the membrane, 

such as glucose and amino acids, which cannot easily penetrate 

the membrane. For this reason, transport through uniporters is of- 

ten referred to as ”facilitated diffusion ”, in the sense that the mem- 

brane transporter facilitates the transport driven by the concentra- 

tion gradient between the two regions (e.g., M and N) [122,123] . 

However, it differs from other passive transport mechanisms (dif- 

fusion, migration, convection, and channels) as the solute partici- 

pates in a series of biochemical reactions with the fixed membrane 

carrier to cross the membrane [122,124,125] . 

Active transport mechanisms are typically used by cells to trans- 

port components against the electrochemical gradient. For this 

movement to take place, an additional source of energy is needed. 

This extra energy can be supplied by coupling the transport of the 

solute to another cellular reaction or transport phenomenon. De- 

pending on the source of the supplied energy, the transport mech- 

anism can be classified as Primary active transport or Secondary ac- 

tive transport [17,126,127] . 

In primary active transport, the cell directly utilizes chemical 

energy stored in chemical bonds, which is mainly released by the 

hydrolysis of adenosine triphosphate molecules or an equivalent 

high-energy phosphoryl bond. Adenosine triphosphate, which is 

abbreviated as ATP , is known as the energy molecule of the cell. 

ATP molecules can release a large amount of energy via their con- 

version to adenosine diphosphate ( ADP ) and the release of a phos- 

phate ( P i ) ion group (ATP ă“ą ADP `P i ). ATPase is the enzyme 

that catalyzes the ATP dephosphorylation reaction. For this reason, 

this family of transporters is commonly known as “ATPase pumps”

and/or “ATP powered pumps" [95,125,128] . 

Secondary active transport mechanisms couple the electro- 

chemical potential produced across the membrane during the 
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Fig. 6. A possible process by which a carrier protein can mediate the transport of a solute molecule across the lipid bilayer membrane. Figure a represents a uniporter (E), 

which transports a single solute (A) from one side of the membrane (M) to the other (N). Figures b and c represent the step-wise transport mechanism of solute (or ligand) 

A from one side of the membrane to the other side, besides the corresponding kinetic terms. First, the ligand binds the carrier on one side of the membrane (M) to form a 

EA M complex; next, this complex passes the ligand across the membrane through a translocation step (carrier conformational shift) and then dissociates at the N side of the 

membrane. In Figure b , k `M 
A and k ´M 

A are the association and dissociation rates, and superscripts show the side of the membrane that the reaction is taking place (sides M or 

N of the membrane). g M EA and g 
N 
EA are the carrier-ligand translocation rate constants with superscripts representing the side of the membrane translocation originates in (e.g., 

g M EA is the translocation rate constant from M side to N side of the membrane). In Figure c , K M A is the dissociation equilibrium constants and is defined as K M A “ k ´M 
A { k `M 

A . 

Moreover, in Figure c , there are two cycles: the inner cycle represents the forward substrate transport (influx); the outer cycle represents the backward flux (efflux). 

Fig. 7. Uniporter Transport Mechanism. 

transport of one group of components to the simultaneous up- 

hill transport of another group of substances [129,130] . The re- 

quired electrochemical energy can be obtained from the simulta- 

neous downhill transport of another family of solutes by the same 

transporter, or it can be exerted by the indirect involvement of the 

ATP hydrolysis reaction during the primary active transport of the 

other substrates. Cotransporters are capable of transporting two 

or more different families of solutes, and secondary active trans- 

porters can be further categorized as symporters and antiporters . 

The transport mechanism in which both types of solutes move in 

the same direction relative to each other is called symport trans- 

port, whereas the mechanism in which the solutes move in oppo- 

site directions is referred to as antiport transport. 

The approach taken in developing the mathematical model of 

the transported flux driven via carriers differs from the ones dis- 

cussed in earlier sections of this work. Since these transporters are 

embedded in the phospholipid bilayer membrane, they cannot dif- 

fuse across the membrane. Therefore, in the mathematical equa- 

tions related to the carrier transport mechanism, there is no term 

associated with the diffusion coefficient, and the thermal behav- 

ior of the molecules is captured in the reaction rate coefficients. 

Consequently, to develop a quantitative model of the flux trans- 

ported by each transporter, one must know the rate expression of 

all steps, including the association and dissociation constants for 

the reaction steps occurring on the membrane surfaces, as well 

as the translocation rate constants for translocating the unloaded 

and loaded carriers. The rate constants for the binding and un- 

binding of solute A on the surface of the membrane can be deter- 

mined experimentally, and are k `
A M 

and k ´
A M 

, respectively for the M 

side; the equivalent values for the N side are k `
A N 

and k ´
A N 

( Fig. 6 - 

b) [131] . The translocation rate of the transporter (denoted as g E , 

g EA , etc.) determines the number of molecules that the transporter 

can transport per one molecule of the carrier. The translocation 

rate constants are a function of the membrane permeability ( P ) to 

the transporter in addition to the total available number of trans- 

porters ([ E ] t ) and have units of inverse seconds (1/ s ) ( g “ P r Es t ). 

The carrier translocation rate constants and the total amount of 

the carrier are experimentally determined. 

The kinetic models for each individual carrier differ from one 

another with respect to some details of their mechanisms and the 

solute transported. For some of these transporters to translocate 

the solutes, the binding and unbinding of each of the solutes must 

occur in a particular order. Furthermore, in some cases, several 

substances (competitors) compete with the solutes being trans- 
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Fig. 8. A schematic configuration of the uniporter transport mechanism and the regarding net flux transport equation. Dissociation constants ( K M A , K 
N 
A ) and the translocation 

rate constants ( g M E , g 
M 
EA , g 

N 
E , g 

N 
EA ) are depicted in the reaction cycle in the right panel. [ E ] t is the total number of transporter per unit area of the membrane. The flux equation 

is transformed to the general form of the resistance parameters from Stein model [131] . 

Fig. 9. ATPase Transport Mechanism. 

ported during each translocation cycle for the same binding sites 

on the carrier. To reduce the modeling complexity of the trans- 

port mechanisms while still obtaining accurate prediction of the 

transported fluxes, one can make appropriate simplifying assump- 

tions. The rapid equilibrium and quasi-steady-state assumptions are 

commonly used assumptions that are applied to most of the mod- 

els discussed in this paper. Another assumption that is occasion- 

ally used is the carrier symmetric assumption . Each of these as- 

sumptions is discussed in more detail below. In the ”rapid equi- 

librium assumption”, the surface binding and unbinding reactions 

are assumed to occur much faster than the translocation of the 

complexes between the two sides of the membrane. That is, the 

rate-limiting step of the transport cycle is the translocation of the 

carrier-solute complexes from one side of the membrane to the 

Fig. 10. Symporter Transport Mechanism. 

other. The rapid equilibrium assumption allows the concentrations 

at the membrane surfaces to be determined by assuming that the 

equilibrium constant coefficients are independent of the reaction 

path (e.g., in Fig. 6 b and c, K M 
A “

k ´
A M 

k `
A M 

“
r A s M r Es M 

r EA s M 
for side M, and 

K N 
A “

k ´
A N 

k `
A N 

“
r A s N r Es N 

r EA s N 
for the other surface) [131] . 

In the ”quasi-steady-state”, it is assumed that due to the high 

affinity of the substrates with respect to the carrier, the concen- 

tration of the intermediate complex does not change on the time 

scale of carrier production rate, and the total number of carriers 

per unit area of the membrane ([ E ] t ) is conserved during each cy- 

cle (i.e., in Fig. 6 , r Es t ! r A s ñ dr EA s 
dt 

“ 0 ). 
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Fig. 11. (a) A schematic configuration of the symport slippage transport mechanism and the regarding net transport flux. Dissociation constants ( K M A , K 
M 
BA , K 

M 
B ) and the 

translocation rate constants ( g M E , g 
M 
EA , g 

M 
EB , g 

M 
EAB ) are depicted in the reaction cycle in the left panel. [ E ] t is the total number of transporter per unit area of the membrane. 

In this model empty carrier and the partially loaded carrier can slipp across the membrane. The flux equation is transformed to the general form of the resistance from 

Stein model [131] (part 1/2 continued on the next page). (b) A schematic configuration of the symport slippage transport mechanism and the regarding net flux transport 

equation. Dissociation constants ( K M A , K 
M 
BA , K 

M 
B ) and the translocation rate constants ( g 

M 
E , g 

M 
EA , g 

M 
EB , g 

M 
EAB ) are depicted in the reaction cycle in the left panel. [ E ] t is the total 

number of transporter per unit area of the membrane. In this model empty carrier and the partially loaded carrier can slipp across the membrane. The flux equation is 

transformed to the general form of the resistance from Stein model [131] (part 2/2 continued from previous page). 
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Fig. 12. A schematic configuration and the regarding net flux transport equation of the symporter ordered binding with no slippage, for transport of two solutes where A 

binds first. Dissociation constants ( K A and K AB terms) and the translocation rate constants ( g E and g EAB terms) are depicted in the reaction cycle in the left panel. [ E ] t is the 

total number of transporter per unit area of the membrane. The flux equation is transformed to the general form of the resistance from Stein model [131] . 

In the ”carrier symmetry assumption,” the dissociation con- 

stants on both sides of the membrane are the same (e.g., K M 
A “

K N 
A “ K A in Fig. 6 -c) and that the backward and forward transloca- 

tion reactions of the carrier occur at the same speed (e.g., in Fig. 6 , 

g M 
EA “ g N 

EA “ g EA and g 
M 
E “ g N 

E “ g E ). 

In the remainder of this work, detailed studies of each carrier 

group and several well-known kinetic models are presented. Fur- 

thermore, for each carrier, a simplified model and its simplifying 

assumptions are outlined. Subsequently, following the kinetic pa- 

rameterization of Stein (2012) [131] , all models are transformed 

into a general identical resistance parametric form. Each model in- 

cludes a figure that demonstrates a possible kinetic model in the 

left panel, while the right panel depicts a related sequence of reac- 

tion equations that address the transport mechanism by the carrier 

(e.g., see Fig. 8 ). In each scheme, there are two cycles: the inner 

cycle represents the forward transport of substrates (influx); the 

outer cycle represents backward flux (efflux). The corresponding 

net flux of the carriers driven across the membrane is expressed 

as J 
M,Np netq 
car r ier 

“ J M,N 
car r ier ́

J N,M 
car r ier 

. 

5.2.1. Uniporter Mmechanism ( J Uniporter ): 

The uniport transport mechanism facilitates the downhill move- 

ment of a single group of specific large polar molecules across the 

membrane which cannot easily penetrate the membrane (see Fig. 

7 ). Fig. 8 shows a possible reaction cycle for a uniporter (E) that 

can face the M side of the membrane, where it binds to solute A to 

form the complex EA M . Next, the carrier-substrate complex translo- 

cates across the membrane with a translocation rate constant g M 
EA 

to face the other side of the membrane ( EA N ). In the last step, 

the loaded carrier ( EA N ) undergoes a dissociation reaction that re- 

leases substrate A at the N side of the membrane. The translocation 

of the free carrier, E M and E N , takes place with translocation rate 

constants of g M 
E and g N 

E , respectively. Stein (2012) [131] developed 

this model using the following assumptions: 1) the binding and 

unbinding reactions of the solute are rapid relative to the translo- 

cation step, 2) the quasi-steady-state assumption is valid, and 3) 

the carrier is non-symmetric; therefore, distinct equilibrium con- 

stants ( K M 
A and K N 

A ) and different translocation constants ( g 
M 
E , g 

M 
EA , 

g N 
E , g 

N 
EA ) are considered. The net turnover rate of the uniporter and 

the flux of molecules of A transported through the uniporter from 
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Fig. 13. A schematic configuration and the regarding net flux transport equation of the symporter mechanism with no slippage, for transport of two solutes where binding 

happens in order and B binds first. Dissociation constants ( K BA and K B terms) and the translocation rate constants ( g E and g EAB terms) are depicted in the reaction cycle in 

the right panel. [ E ] t is the total number of transporter per unit area of the membrane. The flux equation is transformed to the general resistance form from Stein model 

[131] . 

side M to side N of the membrane can be obtained using equations 

45 and 46, respectively. 

Uniporter simplified model: 

If one invokes the symmetric assumption for the dissociation 

constants (i.e., K “ K M 
A “ K N 

A ), three different cases can be consid- 

ered depending on the relative value of the translocation rate con- 

stant of the free carrier constant to that of the carrier-ligand com- 

plex ( g E to g EA ) in addition to the solute concentration at the N 

side ([ A ] N ) relative to the dissociation constant (K). The ”one-way”

solute flux for each case is expressed as below [49] : 

case # 1) g EA " g E and [ A ] N ě K : In this situation, an increase 

in [ A ] N leads to a higher transporter flux ( J 
M,N 
uniporter 

): 

J M,N 
uniporter 

“ r Es t g EA 
r A s M 

r A s M p 2 ̀
K 

r A s N 
q ̀ K 

(47) 

case # 2) g EA ! g E and [ A ] N ď K : In this situation, increases in 

[ A ] N cause the transporter flux ( J 
M,N 
uniporter 

) from M to N to fall, and 

vice versa: 

J M,N 
uniporter 

“ r Es t g EA 
r A s M 

r A s M p 1 ̀
r A s N 
r A s M 

q ̀ 2 K 
(48) 

case # 3) g EA “ g E : The turnover of the loaded and unloaded 

carriers occurs at the same rate. In this case, when the concen- 

tration of the substrate is much higher than the availability of the 

carrier, the one-way flux of the solute from the M membrane sur- 

face to the N side will be: 

J M,N 
uniporter 

“

ˆ

r Es t g EA 
2 

˙

r A s M 

K ̀ r A s M 
(49) 

Eq. (49) is identical to the single-substrate enzymatic Michaelis- 

Menten reactions on the surface of the membrane and describes 

the rate of uptake of the substance as: 

J M,N 
unip orter 

“ V max 
r A s M 

K m ̀ r A s M 

(50) 

Where V max and K m are the Michaelis-Menten parameters. The 

maximum velocity ( V max ) occurs when the solute concentration 

reaches infinity starting from an initial value of zero, and corre- 

sponds to the number of available sites on the carrier for sub- 

stance uptake. Comparing Eqs. (49) and (50) , the maximum veloc- 

ity of the reaction is V max “
r Es t g EA 

2 . K m “ K is the half-saturation 

rate constant and represents the concentration of the substrate at 
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Fig. 14. (a) A schematic configuration of the ABAC symporter mechanism transporting of three solutes and the regarding net flux transport equation. In this configuration, 

the carrier exists in 5 different states on each side of the membrane. Dissociation constants ( K A , K AB , K ABA , and K ABAC terms) and the translocation rate constants ( g E , g EA , g EAB , 

g EABA , and g EABAC terms) are depicted in the reaction cycle in the right panel. [ E ] t is the total number of transporter per unit area of the membrane. Transport equations are 

reparametrized and transformed into the general resistance form from Delpire model [134] (part 1/2 continued on next page). (b) A schematic configuration of the ABAC 

symporter mechanism transporting of three solutes and the regarding net flux transport equation. In this configuration, the carrier exists in 5 different states on each side of 

the membrane. Dissociation constants ( K A , K AB , K ABA , and K ABAC terms) and the translocation rate constants ( g E , g EA , g EAB , g EABA , and g EABAC terms) are depicted in the reaction 

cycle in the right panel. [ E ] t is the total number of transporter per unit area of the membrane. Transport equations are reparametrized and transformed into the general 

resistance form from Delpire model [134] (part 2/2 continued from previous page). 

which the half-maximal rate is observed. The half-saturation rate 

constant also determines the number of carrier turnovers and, con- 

sequently, the number of molecules of the solute transported by 

the carrier per unit time by each translocation of the solute-carrier 

complex. 

5.2.2. Primary active transport mechanism ( J pump ): 

ATPase pumps use the energy released during ATP hydrolysis to 

pump one or more groups of ions and molecules against an uphill 

electrochemical gradient (see Fig. 9 ). The net result of the step- 

wise uphill transport of one substance (A) via an ATPase pump is 

summarized in the following reaction equation: 

A N ̀ p ATP q N é A M ̀ p ADP q N ̀ p Pi q N 

As is clear from the above reaction equation, the direction of 

transport depends on the concentration of ATP and ADP molecules 

in contact with the cell membrane, as well as the substrate con- 

centrations ([ A ] M and [ A ] N ). ATP molecules are abundantly pro- 

duced in the cell; therefore, normally the intracellular (N side) con- 

centration of ATP is high, which results in a positive transport flux 

and allows the pump to pump A out of the cell (from N to M). This 

is advantageous when the pump is used to exclude A from the cell. 

If the concentration of A M outside the cell is very high, the pump 

will work in the opposite direction, and A molecules will move 

from outside (M) to the inside (N) of the cell while contributing 

to ATP production [49] . 

For the primary active transport mechanism, the carrier can be 

present in three states: the empty unloaded carrier (E), the carrier- 

solute complex (EA), and the carrier-solute-phosphate bound com- 

plex (EAP). Among these three states, only the unloaded carrier (E) 

and the phosphorylated carrier-solute complex (EAP) can cross the 
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Fig. 14. Continued 

membrane. Upon applying symmetric assumption for the translo- 

cation rate constants of the loaded and unloaded carriers ( g EAP “

g M 
EAP “ g N 

EAP , g E “ g M 
E “ g N 

E , and g EAP “ g E “ g) and the symmetric 

dissociation constants between carrier and substance on both sides 

of the membrane ( K A “ K M 
A “ K N 

A ), the net flux driven across the 

membrane ( J A,pump “ J N,M 
A,pump ́

J M,N 
A,pump 

) is obtained from the expres- 

sion [49] : 

J A,pump “ r Es t g 

˜

K A p K M EAP r A s M ́ K N 
EAP r A s N q 

p K M 
EAP ̀ K N 

EAP ̀ 2 K M 
EAP K 

N 
EAP q r A s M r A s N 

`K A p 1 ̀ 2 K M 
EAP q r A s M ̀ K A p 1 ̀ 2 K N 

EAP q r A s N ̀ 2 K 2 
A 

¸ (51) 

Where K A “
r A s N r Es N 

r EA s N 
“

r A s M r Es M 
r EA s M 

, K N 
EAP “

r EAPs N 
r EA s N 

, and K M 
EAP “

r EAPs M 
r EA s M 

. 

Pumps simplified model: 

Another method to describe the flux of ion-coupled transport 

across the plasma membrane by an ATPase pump is to apply the 

Hill model ( Eq. (9) ). The Hill model of the ATPase pump is given 

by the expression [55,132] : 

J A, pump “ J max 
A, pump 

˜

r A s 
ηpump 
N 

r A s 
ηpump 
N ` K 

ηpump 
pump 

¸

(52) 

Where J max 
A,pump is the maximum velocity of uptake, ηpump is 

the Hill coefficient, and K pump is the [ A ] N concentration at which 

J A,pump is half J 
max 
A,pump . When ηpump “ 1 this single-subtrate trans- 

port model becomes similar to the Michaelis-Menten equation, and 

can be written as: 

J A,pump “ J max 
A,pump 

˜

r A s N 
r A s N ̀ K m,pump 

¸

(53) 

The primary active transport mechanism can also transport 

more than one substrate. Assuming that the ATPase pump actively 

transports a molecules of A from the M side of the membrane to 

its N side and simultaneously transports b molecules of B in the 

opposite direction (from N to M) with the corresponding ratio aA : 

bB , and further assuming the binding of each of the components 

to the carrier is an independent process, the overall transport re- 

action mechanism can be represented as 

ATP ̀ aA M ̀ bB N é ADP ̀ Pi ̀ aA N ̀ bB M 

and the associated net fluxes of solutes A and B transported across 

the pump can be obtained using Eqs. (54a) and (54b) , respectively, 

where the minus sign takes into account the direction of the flux 

of B [133] . 

J A, pump “ J max 
A, pump 

«

r A s N 
r A s N ̀ K N 

A 

ffa «
r B s M 

r B s M ̀ K M 
B 

ffb 

(54a) 

J B, pump “
´b 

a 
J M,N 
A, pump (54b) 

In Eq. (54a) , J max 
A,pump is the maximum A efflux, K M 

A , and K 
N 
B are 

the apparent dissociation constants of the complexes created at the 

M or N sides of the membrane, respectively. 
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Fig. 15. (a) A schematic configuration of the symporter mechanism transporting three solutes (ABCB), and the corresponding net transported flux equation. In this config- 

uration, the carrier exists in 5 different states on each side of the membrane. Dissociation constants ( K A , K AB , K ABC , K ABCB , K BCB , K CB , and K B terms), and the translocation 

rate constants ( g E and g EABCB terms) are depicted in the reaction cycle in the right panel. [ E ] t is the total number of transporter per unit area of the membrane (part 1/2 

continued on next page). (b) A schematic configuration of the symporter mechanism transporting three solutes (ABCB), and the corresponding net transported flux equation. 

In this configuration, the carrier (cotransporter) exists in 5 different states on each side of the membrane. Dissociation constants ( K A , K AB , K ABC , K ABCB , K BCB , K CB , and K B terms), 

and the translocation rate constants ( g E and g EABCB terms) are depicted in the reaction cycle in the right panel. [ E ] t is the total number of transporter per unit area of the 

membrane (part 2/ 2 continued from last page). 
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Fig. 16. (a) A schematic configuration of the competitive symporter ordered binding transport mechanism of two solutes and the regarding net flux transport equation. 

In this configuration, the carrier exists in four different states on each surface of the membrane. Transport equations are reparametrized and transformed into the general 

resistance form from Layton model [100] . Dissociation constants ( K A , K AB , K AC terms), and the translocation rate constants ( g E , g EAC , and g EAB terms) are depicted in the 

reaction cycle in the right panel. Subscripts M and N, denote the M and N sides of the cell membrane (part 1/2 continued on next page). (b) A schematic configuration 

of the competitive symporter ordered binding transport mechanism of two solutes and the regarding net flux transport equation. In this configuration, the carrier exists 

in four different states on each side of the membrane. Transport equations are reparametrized and transformed into the general resistance form from Layton model [100] . 

Dissociation constants ( K A , K AB , K AC terms), and the translocation rate constants ( g E , g EAC , and g EAB terms) are depicted in the reaction cycle in the right panel. Subscripts M 

and N, denote the M and N sides of the cell membrane. [ E ] t is the total number of transporter per unit area of the membrane (part 2/2 continued from previous page). 

5.2.3. Symport transport mechanism ( J Symporter ): 

Symporters are capable of co-transporting two or more solutes 

against the concentration gradient of one solute or group of so- 

lutes (see Fig. 10 ). This section includes several kinetic models of 

symporters, namely, symporter slippage, symporter two substrates- 

ordered binding model, symporter three substrates-ordered binding 

model, symporter competitor-ordered binding model , and the sym- 

porter simplified model . In the development of these models, it is 

assumed that the binding and unbinding of the solvent with the 

carrier on the two surfaces of the membrane is rapid relative to 
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Fig. 17. Symporter simplified model. The following assumptions are used: (1) the rapid binding and unbinding assumption, (2) the quasi-steady-state assumption, (3) sym- 

metric carrier assumption (similarity for all rate constants), (4) symporter has a single site which bound the transported solute, (5) the transported solute competed for the 

same binding sites, and (6) finally, the empty symporter does not cross the membrane (there is no slippage of empty carrier). 

the translocation step (rapid equilibrium assumption), and that the 

turnover rate of the carrier-solute complex can be obtained by in- 

voking the quasi-steady-state assumption. 

Symporter Slippage: 

Fig. 11 depicts a possible model for a symporter with a random 

binding order and partial slippage during each transport cycle. In 

this symport system, the carrier, E, can be oriented toward the M 

surface of the membrane, where either substrate A or B may bind 

to it to form the complex EA M or EB M , respectively. Next, these 

complexes may undergo another association reaction to form the 

fully loaded carrier-solute complex ( EAB M ) or they may face the N 

side of the membrane through a translocation step ( EA N or EB N ). 

In this configuration, it is assumed that there are no restrictions 

on the order of binding, and carrier can cross the membrane in 

all states, i.e., in the empty ( E ), partially loaded ( EA, EB ), and fully 

loaded carrier ( EAB ) states, with no sequential translocation order. 

Turner derived the transport equation of fluxes via this transport 

mechanism in 1982 and Stein reproduced the kinetic scheme in 

2012 [131] . Using the Turner model, the turnover rate of an indi- 

vidual symporter is obtained by invoking the quasi-steady-state as- 

sumption. Additionally, the binding reactions are assumed to occur 

much faster than the translocation steps, so that the concentration 

of the bound carrier can be determined using the dissociation con- 

stants ( K A , K B , and K BA ). Furthermore, distinct solute dissociation 

constants for each step are considered, and the translocation rate 

constants ( g E , g EA , g EB , and g EAB ) are not necessarily equal. The rate 

of the net outward transport fluxes for A and B can be obtained us- 

ing equations 55a and 55b, respectively [131] . In these equations, 

the parameters α, β , and R are related to the carrier translocation 

rate constants and the dissociation constants, and are expressed in 

terms of experimentally measurable parameters at the bottom of 

Fig. 11 . 

Two-substrate symporter ordered binding models: 

Kinetic schemes for sequential binding (ordered binding) co- 

transport mechanisms involving two solutes are depicted in 

Fig. 18. Antiporter Transport Mechanism. 

Figs. 12 and 13 . When A binds first, the symport transport mech- 

anism shown in Fig. 13 applies, and the corresponding net flux of 

A and B through the symporter can be expressed using equations 

56b and 56c, respectively. Similarly, the mechanism for the case in 

which B binds first is illustrated in Fig. 14 , and the corresponding 

net outward flux of A and B can be obtained using equations 57b 

and 57c, respectively. In these equations, J 
M,Np netq 
symporter is the steady- 

state turnover rate of the symporter (expressed in equations 56a 

and 57a, accordingly), and the parameters α, β , and R are related 

to the carrier translocation rate constants and the dissociation con- 

stants, which are expressed in terms of experimentally measurable 

parameters at the bottom of the Figs. 13 and 14 , accordingly. These 

models were developed and parameterized by Stein (2012) [131] . 

In these models, it is assumed that the partially loaded carriers 

( EA and EB ) cannot translocate at either side of the membrane, and 

only the fully loaded carrier ( EAB ) is able to cross the membrane. 

Three-substrate symporter ordered binding model: 

Fig. 14 shows a kinetic scheme for a carrier, E , that is capable of 

transporting molecules of A, B , and C in a ratio of 2 A : B : C and ex- 

hibits a sequential binding order. In the first step, the carrier faces 

the M side of the membrane and binds to a molecule of A . After 

the complex EA M is formed, a molecule of B binds to EA M to form 

the EAB M complex, followed by the binding of a second molecule 
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Fig. 19. (a) A schematic configuration of the antiporter eight-state transport mechanism and the resulting net transport flux equations. In developing this model, it is 

assumed that the dissociation constants for binding reactions are not affected by binding of A and B (which means to have K MorN 
AB “ K MorN 

B and K MorN 
BA “ K MorN 

A ). It is also 

assumed that: 1) the carrier is non-symmetric and 2) binding reaction occur much faster relative to the translocation of the carrier (rapid binding assumption) (part 1/2 

continued on the next page). (b) A schematic configuration of the antiporter eight-state transport mechanism and the resulting net transport flux equations. In developing 

this model, it is assumed that the dissociation constants for binding reactions are not affected by binding of A and B (which means to have K MorN 
AB “ K MorN 

B and K MorN 
BA “ K MorN 

A ). 

It is also assumed that: 1) the carrier is non-symmetric and 2) binding reaction occur much faster relative to the translocation of the carrier (rapid binding assumption) 

(part 2/2 continued from previous page). 
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Fig. 20. A schematic configuration of the antiporter six-state mechanism of two solutes and the regarding net flux transport equation. Transport equations are reparametrized 

and transformed into the general resistance form from Weinstein et al. (20 0 0) model [137] , the flux equations are transformed to the general form of the resistance terms. 

In developing this model, it is assumed that the dissociation constants for binding reactions is not affected by binding of A and B (which means to have K MorN 
AB “ K MorN 

B and 

K MorN 
BA “ K MorN 

A ). It is also assumed that: 1) the carrier is non-symmetric and 2) binding reaction occur much faster relative to the translocation of the carrier (rapid binding 

assumption). 

of A to form complex EABA M . Finally, a molecule of C binds to 

the transporter to give the fully loaded carrier complex EABAC M . In 

this model, the carriers can translocate across the membrane in all 

states (i.e., in the empty, partially loaded, and fully loaded states), 

and the unbinding reactions occur in the reverse order of binding. 

This is referred to as a ”first on last off” binding order, since the 

molecule which binds first (e.g., A) on one side of the membrane 

is the last to unbind from the other side of the membrane. A trans- 

port model for this mechanism was first developed by [134] . In this 

work, the kinetic parameterization method of [131] is followed, 

and the net outward fluxes of A, B, and C transported through the 

cotransporter are represented by equations 58a, 58b, and 58c, re- 

spectively. 

Fig. 15 depicts a different binding/unbinding order for multi- 

ple solutes on a carrier. In the scheme, the stoichiometric ratio 

of the transport reaction is A : 2 B : C and the order of binding is 

as follows: first, solute A binds to the carrier on surface M of 

the membrane to form the complex EA M then the first molecule 

of B binds to EA M to form the complex EAB M is formed. This 

binding is followed by the binding of substrate C and the forma- 

tion of the complex EABC M complex. In the last binding step, the 

second molecule of B is bound, and the full complex ( EABCB M ) 

is formed on the M face of the membrane. In this work, the 

model of the kinetic-transport mechanism is driven by applying 

[131] parameterization method, and the overall transport fluxes 

of A, B, and C are expressed in equations 59b, 59c, and 59d, 

respectively. 

Competitive symporter ordered binding model: 

Fig. 16 shows a competitive symport transport mechanism in- 

volving substrates A, B , and C , in which C competes with B for the 

same binding sites on the carrier. In the first step, a molecule of A 

binds to the empty carrier ( E ), followed by the binding of a B or C 

molecule to form the complex EAB or EAC , respectively. Next, the 

formed complexes cross the membrane ( EAC N or EAB N ), where they 

undergo dissociation reactions in which A unbinds last from both 

complexes. In this model, it is assumed that the carrier can ex- 

ist in four different states at each side of the membrane, that only 

the fully loaded ( EAB and EAC ) and empty carriers (E) can cross the 

membrane. The net outward fluxes of B, C , and A can be obtained 

through equations 60a, 60b, and 60c, respectively. This model can 

also be applied to the symport transport mechanism of three sub- 

strates in a ratio of A : B : C [100] . 

Symporter simplified model: 

To conclude the section on symporters, a commonly used re- 

duced symporter carrier model is presented (see Fig. 17 ). In this 

model, the rapid-equilibrium assumption, quasi-steady-state as- 

sumption, and symmetric carrier assumption ( K M 
A “ K N 

A “ K A , K 
M 
B “

K N 
B “ K B , K 

M 
C “ K N 

C “ K C ) are invoked [135] . Furthermore, it is as- 
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Fig. 21. (a) A schematic configuration of the antiporter with competitor-ordered binding transport mechanism of two solutes and the regarding net transport flux equations. 

In this configuration, the carrier exists in four different states on each side of the membrane. Transport equations are reparameterized to the general model from Layton 

model [100] . Dissociation constants ( K A , K B , and K C terms), and the translocation rate constants ( g EA , g EB , and g EC terms) are depicted in the reaction cycle in the right panel. 

Subscripts M and N, denote the M and N sides of the membrane. [ E ] t is the total number of transporter per unit area of the membrane (part 1/2 continued on next page). 

(b) A schematic configuration of the antiporter with competitor-ordered binding transport mechanism of two solutes and the regarding net transport flux equations. In this 

configuration, the carrier exists in four different states on each side of the membrane. Transport equations are reparametrized and transformed into the general resistance 

form from Layton model [100] . Dissociation constants ( K A , K B , and K C terms), and the translocation rate constants ( g EA , g EB , and g EC terms) are depicted in the reaction cycle 

in the right panel. Subscripts M and N, denote the M and N sides of the membrane. [ E ] t is the total number of transporter per unit area of the membrane (part 2/2 continued 

from previous page). 

sumed the binding and unbinding steps do not follow a particular 

sequential order. Under these assumptions, for the general case of 

a symporter transporting three solutes in the ratio of aA : bB : cC , 

the net outward symporter turnover rate is given by equation 61a 

and the corresponding solute fluxes of A, B, and C are given by 

equations 61b, 61c, and 61d, respectively. 

5.2.4. Antiporter transport mechanism ( J antiporter ): 

Antiporters, which are also known as exchangers (see Fig. 18 ), 

are modeled very similarly to symporters. This section covers sev- 

eral commonly used antiporter models, namely, the eight-state an- 

tiporter ordered binding model, six-state antiporter ordered binding 

model, competitive antiporter ordered-binding model, and simplified 

antiporter model. 
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Fig. 22. Antiporter Simplified Model. The following assumptions are used: (1) the rapid binding and unbind assumptions, (2) the quasi-steady-state assumption, (3) similarity 

assumption for all rate constants (4) antiporter has a single site which bound the transported solute (5) the transported solute competed for the same binding sites (6) finally, 

the empty antiporter does not cross the membrane. 

Eight-state antiporter ordered binding model: 

Fig. 19 shows a scheme of an antiporter transport mechanism 

in which the substrate A moves from M to N while B is simultane- 

ously transported in the opposite direction. This model is known as 

the ”eight-state” mechanism, as the carrier can exist in eight forms 

at the two sides of the membrane ( E M , EA M , EB M , EAB M , E N , EA N , 

EB N and EAB N ). In the first step, the carrier, E , can be facing the M 

or N side of the membrane, where either solute B or A can bind 

to the carrier so that the A-carrier complex ( EA M ) and B-carrier 

complex ( EB N ) are formed at opposite sides of the membrane. If 

the translocation of the formed complexes takes place, each of the 

complexes can undergo either a dissociation reaction or another 

binding reaction. If the dissociation reaction occurs, solute A will 

be released from the M face and solute B from the N surface of 

the membrane. If another binding reaction occurs, the complexes 

EAB N and EAB M will be formed at opposite sides of the membrane. 

Cha et al. (2009) developed a model for eight-state antiporter flux 

transport equations [136] ; here, their model is reparametrized and 

transformed into the general resistance form. In this model, it is 

assumed that the dissociation constants for the binding reactions 

(association reactions) are not affected by the binding of A and B 

(that is, K MorN 
AB “ K MorN 

B and K MorN 
BA “ K MorN 

A ). It is also assumed that 

the carrier is non-symmetric, and that the binding reaction occurs 

much faster than the translocation steps (rapid binding assump- 

tion). Under these assumptions, the antiporter flux can be obtained 

via equation 62a and the transported fluxes of A and B are given 

by equations 62b and 62c, respectively. 

Six-state antiporter ordered binding model: 

The six-state model is very similar to the eight-state model, ex- 

cept that A and B cannot bind simultaneously to the transporter, 

and consequently, the formation of the complexes EAB M and EAB N 
does not occur. Fig. 20 shows the ”ping-pong” model of a six-state 

antiport transport model. As shown in Fig. 20 , in the first step, 

component A binds to the protein on the outside surface. Assuming 

that the binding of solute B to the carrier occurs simultaneously 

on the other side of the membrane, the A-carrier ( EA M ) and B- 

carrier ( EB N ) complexes are formed on opposite sides of the mem- 

brane. After translocation of the formed complexes, each of the 

complexes undergoes a dissociation reaction. These dissociation re- 

actions lead to the release of solutes A and B from the N (inside) 

and M (outside) faces of the membrane, respectively. The A and B 

fluxes driven from region M to N via this antiport mechanism must 

be equal and opposite (i.e., J M,N 
B,antiporter 

“ ´J M,N 
A,antiporter 

). The six-state 

model was first developed by Weinstein et al. (20 0 0) [137] under 

the rapid binding assumption, i.e., the assumption that the solute 

binding and unbinding reactions at both sides of the membrane 

occur much faster than the translocation of the carrier complex. In 

this work, Stein’s kinetic parameterization method is applied [131] , 

and the transport fluxes are transformed into the resistance forms. 

The A and B fluxes are expressed in equations 63a and 63b, re- 

spectively. 

Antiporter with competitor-ordered binding model: 

Fig. 21 shows a competitive antiporter transport model involv- 

ing molecules of A, B , and C , in which C competes with B for the 

same binding sites on the carrier. In this configuration, A flows 

from the M side to the N side, B moves in the opposite direction, 

and only the loaded carrier can cross the membrane. Here, dis- 

tinct affinities and dissociation constants at the two sides of the 

membrane and for each of the solutes are considered, and the for- 

ward and backward translocation rate constants of a given solute 

can differ. In this model, the rapid binding and unbinding assump- 

tion and the quasi-steady-state assumption are used. Under these 

assumptions, the outward fluxes for each of the solutes A, B , and C 

are obtained by equations 64a, 64b, and 64c, respectively [100] . 

Antiporter simplified model: 

Simplified models of antiport and symport transporters have 

been developed using similar assumptions. Sohma et al. (1996) de- 
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veloped a simplified antiporter model for the one-to-one transport 

of two substrates[ 138 ] [138] . Here, their model is extended to the 

general case of an antiporter transporting three solutes in a ratio of 

aA : bB : cC (see Fig. 22 ) . The following assumptions are used: 1) the 

rapid binding and unbinding assumption, 2) the quasi-steady-state 

assumption, and 3) the symmetric carrier assumption (i.e., the ve- 

locity constants g antiporter for transport from the M to the N side 

of the membrane vice-versa are the same, g M 
EA “ g N 

EA “ g antiporter , 

and the dissociation constants for each solute on both faces are the 

same, K M 
A “ K N 

A “ K A , K 
M 
B “ K N 

B “ K B ), 4) the antiporter has a single 

binding site for the transported solutes, 5) the transported solutes 

compete for the same binding sites, and 6) finally, the empty an- 

tiporter does not cross the membrane. Using these assumptions, 

the steady-state turnover rate of the exchanger can be derived 

from equation 65a, and the corresponding fluxes of substrates A, B , 

and C are obtained through equations 65b, 65c, and 65d, respec- 

tively. 

6. Discussion and conclusion 

Multiscale mathematical modeling of biological transport mech- 

anisms in the human body has advanced significantly over the 

last few decades. Simultaneous advances in experimental tech- 

niques and computational power have produced models with 

much greater predictive power, complexity, and usefulness; these 

models can be used to achieve a more thorough understanding 

of membrane physiology and disorders. These advances have also 

led to new techniques in the prevention, diagnosis, and treatment 

of diseases caused by membrane disorders. This work focused on 

compiling the mathematical models that have been developed for 

biological transport in tissue compartments. The tissue volume was 

divided into five different compartments, including the capillary, 

interstitial region, cell membrane, intracellular space, and duct lu- 

men. Next, mass transport models for fluids and solutes within 

and across the walls of these compartments were described. These 

transport mechanisms include diffusion, convection, migration, and 

membrane-mediated transport mechanisms (channels, uniporters, 

ATPase pumps, symporters, and antiporters). One or more of these 

mass transport mechanisms may occur in each of the five compart- 

ments. In capillaries and ducts, convection is the dominant mech- 

anism of solute transport within these compartments [139,140] , 

and filtration (or hindered convection) is the controlling transport 

mechanism for fluid flow across their walls [141–143] . Transport 

within the interstitial matrix occurs mainly via the diffusion mech- 

anism. Mass transport across the cell membrane occurs via diffu- 

sion, filtration, water channels, various ion channels, and differ- 

ent families of transporters such as pumps, symporters, and an- 

tiporters. 

The mathematical models describing these transport mecha- 

nisms were discussed, and the terminology used for the funda- 

mental concepts of these models was highlighted. The membrane 

carriers and ion channels were a particular focus. Both detailed and 

simplified models were provided for the former. Depending on the 

purpose of the study, one or more of these models can be applied. 

As discussed earlier, the physics underlying most of these models 

is similar; the differences among them arise from the binding and 

unbinding order of the solutes and the assumptions applied for 

various reaction steps. The basic building blocks of the transport 

process include the diffusion, convection, and migration mecha- 

nisms. These three transport mechanisms occur along an existing 

gradient (e.g., a pressure, chemical, or electrochemical gradient), 

and their models require physical parameters such as hydraulic 

conductance, permeability, diffusion coefficients, viscosity, and mo- 

bility. For the convection mechanism, the existing pressure gradi- 

ents play a controlling role, and the associated parameters are the 

solute sieving coefficient and hydraulic conductance of the solvent. 

Diffusion and migration are driven by chemical and electrochem- 

ical gradients; the main physical parameters of these processes 

are the diffusion coefficient and the electrokinetic mobility, respec- 

tively. Other transport mechanisms can be expressed as combina- 

tions of the main transport mechanisms and using the kinetic reac- 

tion equations (the mass-action kinetic, Hill model, and Michaelis- 

Menten equations); depending on the type of transport, one or 

more of these equations will be applicable. For example, water 

channels are modeled as a combination of the diffusion and filtra- 

tion equations. In the same fashion, the combination of diffusion 

and migration equations can be used to model the ionic current 

through the ion channels, which leads to the non-linear Goldman- 

Hodgkin-Katz model. The linear Ohmic model can also be applied 

to derive the current through ion channels. In the Ohmic model, 

the parameters are the membrane electric conductance towards 

the specific ion of interest and the density of ion channels per unit 

membrane. Carrier-mediated transport mechanisms are based on 

a different modeling approach. Since these transporters are fixed 

within the membrane, they are described merely by using kinetic 

reaction equations, and the thermal behavior of the transporting 

molecules is captured in the reaction rate coefficients. These mod- 

els are experimentally traceable, which allows them to be used 

as reflective tools for examining the behavior of the transporters 

and making predictions. Therefore, to model multi-step transporter 

mechanisms, interpolation of the kinetic data is needed. To facili- 

tate the selection of the appropriate kinetic model for transform- 

ing the experimentally obtained kinetic data to the appropriate 

mathematical model, these transporters were categorized into var- 

ious groups, and appropriate models for quantitative description of 

their function were provided. 

The development of models at each scale has been achieved by 

substantial efforts of several established research experts in the in- 

terdisciplinary research area of biological mass transport mecha- 

nisms. It is not possible to acknowledge or discuss all the research 

endeavors in different fields in this research area. The comprehen- 

sive overview completed in this work represents an attempt to 

compile the relevant terminology and the developed mass trans- 

port mathematical models in biological systems, which have re- 

sulted from various lines of research expertise, in a single paper. 

These contemporary theories and modeling techniques will pro- 

vide essential knowledge and bridge the gap between physiolo- 

gists, biophysicists, and engineers interested in modeling biologi- 

cal mass transport processes. Finally, as modeling becomes more 

prevalent, there is still a need to ensure that the proper physics 

assumptions are elucidated and considered, and that new model- 

ing methodologies and simplifications are directed towards the key 

issues. Thus, there remain significant issues that require more re- 

search and understanding. While our study was not designed to 

address the potential issues of currently available models, we hope 

that researchers can use this work as additional tool to improve 

the accuracy of the existing models and generate novel models, 

which in turn could lead to critical discoveries in the important 

areas of health, pathology, medicine, and membrane disease. 
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