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Abstract: The influence of external factors, including temperature, storage, aging, time, and shear

rate, on the general rheological behavior of raw human milk is investigated. Rotational and

oscillatory experiments were performed. Human milk showed non-Newtonian, shear-thinning,

thixotropic behavior with both yield and flow stresses. Storage and aging increased milk density and

decreased viscosity. In general, increases in temperature lowered density and viscosity with periods

of inconsistent behavior noted between 6–16 ◦C and over 40 ◦C. Non-homogeneous breakdown

between the yield and flow stresses was found which, when coupled with thixotropy, helps identify

the source of nutrient losses during tube feeding.
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1. Introduction

Milk is a species-specific bio-fluid produced in the mammary gland and traditionally fed directly

to young at the breast. In humans, exclusive breastfeeding is recommended for the first 6 months of

life with continued breastfeeding until 1 year of age or longer with introduction of complementary

foods [1]. When infants cannot feed directly at the breast, mothers express their milk to be fed by

artificial methods, such as gastric tubes, cups, or bottles [2]. Storage and feeding methods can result

in nutrient losses in expressed human milk [3–5] which indicates that rheological changes in milk

occur during storage and negatively impact flow. The main aim of this work is to explore rheological

behavior of human milk and how external factors impact that behavior.

Most rheological studies on mammalian milk occur with dairy animals, predominately bovine.

Studies often formed relationships between specific components in milk (i.e., fat), viscosity, and

some external factor. External factors known to impact viscosity include pressure, temperature, pH,

pasteurization, and homogenization [6–17]. Regression equations have been developed for different

applications and are presented in Table 1. These equations show that the basic rheological behavior of

bovine milk in regards to temperature appears to be consistent; milk viscosity decreases as temperature

increases. This decrease is dependent on whether or not the proteins have begun to denature [10] and

the concentration of proteins and fats. Difficulty comparing the studies lies in the lack of details, which

are summarized in Appendix A.

Modern studies use homogenized and pasteurized milk or milk products and assume Newtonian

behavior. However, an early work [6] found that raw bovine milk, both skim and whole, is a shear-

thinning non-Newtonian fluid with greater variability at low pressures. Repeated trials of milk

through capillary tubes at constant pressure resulted in lowering whole milk viscosity with repeated

runs (thixotropic) but no change in skim milk viscosity. The decrease in whole milk viscosity with

repeated experiments was even more evident as the age of the milk increased. Repeated trials with

homogenized whole milk produced results similar to skim milk with viscosity remaining constant

Fluids 2020, 5, 42; doi:10.3390/fluids5020042 www.mdpi.com/journal/fluids



Fluids 2020, 5, 42 2 of 22

during each run. The authors attributed the decrease in viscosity in raw whole milk from repeated

runs through a capillary to clumps of fat globules breaking up. They further investigated the effect of

aging on raw skim milk viscosity since previous studies found aging to increase the viscosity of raw

whole milk. Their results found that refrigeration of skim milk increased viscosity but freezing initially

decreased viscosity which later increased with longer freeze times. The authors concluded that bovine

milk viscosity was dependent on shearing force, age, method of storage, and mechanical agitation (for

raw whole milk). All testing occurred at 25 ◦C, below the melting temperature of bovine milk fat [18].

Table 1. Regression equations for bovine viscosity and density.

Author Regression Equation and Nomenclature

Snoeren et al. [10]

µ = µre f [1 +
1.25(φc+φnw+φdw)

1−
φc+φnw+φdw

φmax

]2

µre f (cP): viscosity of medium

φc: volume fractions of casein

φnw: volume fractions of native whey protein

φdw: volume fractions of denatured whey protein

φmax : maximum volume fractions of all protein

Jebson and Chen [11]
ln µ = 3.911 + 0.0202( S−482.5

0.85 )− 0.1291( T−52.5
7.5 )

S: solids content (g/kg)

T: temperature (◦K)

Phipps [13]

log10 µ = [1.2876+ 11.07× 10−4TC][F + F
5
3 ] + 0.7687×103

TK
− 2.4370

F: fat content (%)

TC : temperature (◦C)

TK : temperature (◦K)

Bakshi and Smith [12]

ln µ = −8.9 + 0.1F + 2721.5
T

ρ = 0.3T − 0.03T2 − 0.7F + 1034.5
F: fat content (%)

T: temperature (◦K)

Human milk rheological studies are limited. An early work by Blair noted shear-thinning behavior

but determined the decrease to be so minor that milk could be classified as Newtonian [19]. Blair’s

work was limited to shear rates above 100 s−1 but provided the basis for a major study on viscosity of

raw human milk by Waller et al. Assuming that raw human milk was Newtonian, Waller et al. explored

the kinematic viscosity of human milk during the first 10 days of lactation, when the composition of

milk, particularly proteins, changes the most [20]. They tested the samples at 37 ◦C when milk fat

was liquid [18]. Kinematic viscosity significantly decreased during the first 10 days postpartum which

corresponded to the drop in total nitrogen content. A linear relationship between the log of kinematic

viscosity, ν, and total nitrogen content, c, was determined and expressed as log ν = 0.65c − 0.07.

Waller et al. [20] further investigated the decrease in kinematic viscosity by exploring the

relationship between casein and globulin, two known protein nitrogens, which undergoes a significant

change during the first 14 days of lactation before becoming almost constant. This work demonstrated

a relationship between human milk content and viscosity yet is difficult to compare with other works.

Handling of samples prior to testing was inconsistent as some samples were fresh while others were

previously refrigerated, and time between collection and testing varied. Also, density differences were

not disclosed nor discussed.

A few more recent studies examined human milk viscosity with most research assuming

Newtonian flow behavior [21–26]. Almeida et al. studied human milk viscosity in regards to aging

as it pertains to clinical treatment of infants with dysphagia and determined no significant changes

occurred when previously frozen human milk was reheated and then maintained at 37 ◦C over 9 h [21].

A subsequent study in regards to managing infant dysphagia tested previously frozen human milk

samples from 2 donors at 25 ◦C from 1–1000 s−1 and found shear-thinning with greater variability in

viscosity when compared with infant formula [23]. Another study concerning lipid digestion by infants
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noted shear-thinning using a logarithmic shear rate sweep from 0.5–500 s−1 at 37 ◦C on previously

refrigerated human milk [22]. In a separate test conducted at an arbitrarily chosen 20 s−1, they dropped

milk pH from 6.5 to 4.0 with no changes in viscosity. The authors did not show the results of the

viscosity testing nor was density mentioned.

In light of the importance of human milk to the health and development of infants, this work

aims to explore the general rheological behavior of human milk in response to temperature, storage

(refrigeration/freezing), aging (constant body temperature), time (thixotropy), and shear rate with

additional consideration of the intra-individual milk content variations between breasts of the same

woman (inter-breast) and over the course of a single expression of milk by pump or infant suckling

(intra-feed). Particular attention is given to low shear rates and body temperature, as experienced in

tube feeding [4,5,27,28].

2. Materials and Methods

2.1. Recruitment and Milk Collection

A total of 8 participants were recruited and provided informed consent at different points in

the study (for further details concerning recruitment and milk collection procedures, please refer

to [29]). The Institutional Review Board of University of Texas at Tyler approved the study (IRB 15–10).

Participants #1–6 expressed simultaneously from both left (L) and right (R) breasts continuously

until milk flow stopped using double electric vacuum pumps. Participants who expressed larger

volumes had 20 mL separated from total volume for testing unless participant opted to donate the

entire expression (Participants #2, #5, & #6). Participants #7–8 expressed approximately 15 mL at the

beginning of their expression/nursing (hereafter referred to as foremilk (F)) and additional milk at the

end of their expression/nursing (hereafter referred to as hindmilk (H)). Participant #8 expressed using

a double electric vacuum pump while Participant #7 hand expressed before and after breastfeeding

her infant only from the suckled breast. In total 15 raw human milk samples were obtained ranging

in volume from 5 mL to 52 mL. Macronutrient content was calculated as outlined in Appendix B.

All fresh samples were tested within 5 h of expression with most tests beginning within 30 min.

Any volume not aliquoted for fresh testing was immediately refrigerated/frozen as a whole (not in

aliquots). Refrigerated samples were held at 4 ◦C for up to 5 days while frozen samples were held at

−20 ◦C for 3 months until thawed in a warm water bath between 30–40 ◦C. After thawing, samples

were held at 4 ◦C for up to 5 days.

2.2. Experimental Methods

The procedures for density and viscosity testing are detailed by Alatalo and Hassanipour [29]

with an overview provided below. Density (ρ) was measured at temperature equilibrium with

an Anton-Paar DMA 4500M density meter with an accuracy rating of ±0.00005 g cm−3 and ±0.03 ◦C.

To study the effect of storage, density was calculated at a single temperature for Participants #1–6

within 10 min after expression and compared with the results of density after freezing and thawing.

The density of the foremilk and hindmilk of Participant #8 was tested the same day as expressed

and after refrigeration at 4 ◦C to determine the effect of time of expression (hereafter referred to as

intra-feed variations) and storage by refrigeration. Testing parameters for experiments on the density

meter are outlined in Table 2.
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Table 2. Density Testing Details.

Parameter Test # 1 Test # 2

Temperature Range 3–50 ◦C 36–41 ◦C

Tested Sample(s) #1–6 * #8 **

Total Data Points 40 6

Measured At Sample Equilibrium

Recording Frequency Every ◦C

Sample Volume 1.3 mL

* After freezing; ** Fresh.

Viscosity experiments were performed using an Anton-Paar MCR-302 rheometer. Shear-dependent

rotational experiments used a cone-plate measuring system with Peltier temperature controlled plate

and hood. The cone measured 49.9384 mm in diameter with a 50 µm truncation and 0.49◦ angle.

Since the focus of this study is on low shear rates and sample availability was limited, the cone-plate

measuring system allowed for more experiments as testing required loading volumes of 0.4 mL trimmed

to 0.29 mL. The test parameters were initially determined by testing whole raw bovine milk purchased

from Lavon Farms, Plano, Texas, USA, and are outlined in Table 3. Two separate shear rate ranges were

tested. For both tests, samples were brought to 37 ◦C and held at that temperature for 4 min before

applying shear. Body temperature was chosen due to the practice of warming infant feeds to body

temperature, particularly in fragile and preterm infants [27,28]. Three separate temperature sweep

ranges were tested using a linear ramp profile of 1 ◦C every minute. All tests occurred with a 4 min

pre-shear of 50 s−1 at the initial temperature for the individual sweep. The viscosity was read after the

pre-shear and compared with the first data reading of the sweep. This comparison was made to ensure

that temperature was the only variable affecting the viscosity readings during the sweep. The shear rate

of 50 s−1 was chosen based on the shear rate point used by the National Dysphagia Diet for classification

of food thickness and to allow for comparison with results published by Frazier et al. [23]. The loop test

followed the same 4 min rest period at 37 ◦C as the shear rate tests.

Oscillatory experiments on the Anton-Paar MCR-302 were performed using a double gap cylinder

measuring system with Peltier temperature control. The use of a double-gap cylinder measuring

system requires greater sample volume, 4 mL, but significantly increases the available shear area

enabling uniform shear conditions on both the inner and outer walls and detects lower torques better

compared to other measuring systems [30]. The bob effective length, inner diameter and outer diameter

are 40, 24.66 and 26.66 mm respectively. The cup inner diameter is 23.826 mm and outer diameter

is 27.592 mm. Samples from Participants #2, #5, and #6 from both left and right breasts were heated

to 37 ◦C and held at that temperature for 4 min before applying shear strain. The oscillating shear

strain was applied using a logarithmic ramp from 0.01% to 1000% with a constant angular frequency

of 5 rad s−1 which approximates infant suckling [31]. The duration of the test was set by the device.

Testing parameters for all experiments on the rheometer are summarized in Table 3.

The complex shear modulus, G?, was broken down into its two components: (1) G′—the storage

modulus that characterizes the elastic behavior—and (2) G′′—the loss modulus that characterizes

the viscous behavior. The limit of the linear viscoelastic (LVE) region, γL, was used to determine the

yield point, τy, for each sample. For consistency between samples, γL was determined at the highest

G′ value before the slope of the curve became negative. The flow point, τf , was determined from

the crossover points for G′ and G′′ where viscous behavior begins to dominate. While some authors

associate the crossover stress and strain as the yield point, this association is inaccurate since G′ and

G′′ are only valid in the LVE region [32]. The final characteristic of raw human milk considered in this

study was the flow transition index (FTI). The FTI is the ratio of τy to τf and describes the transition

behavior of the milk from the LVE region until flow begins.
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Table 3. Viscosity Testing Details.

Parameter
Shear Rate Sweep Temperature Sweep

Shear Rate Loop Amplitude Sweep
Test #1 Test #2 Test #1 Test #2 Test #3

Temperature(s) 37 ◦C 0–50 ◦C 29–45 ◦C 36–43 ◦C 37 ◦C 37 ◦C

Sample(s) #1–6 *, 8 ** #1–6 *, 8 ** #1–6 *, 8 *** #1–6 * #7 ** #8 *** #2 *, 5 *, 6 *

# Data Points 100 40 51 33 8 400 25

Measured At
Linear Ramp Linear Ramp

50 s−1 50 s−1 50 s−1 1–200–1 s−1 0.01–1000%
1–100 s−1 0.01–20 s−1 at ω = 5 rad s−1

Point Density 1 γ̇−1 2 γ̇−1 1 ◦C 60 s−1 1 ◦C 30 s−1 1 ◦C 60 s−1 1 γ̇−1 6 decade−1

Recording Frequency
Constant Linear Ramp Constant Constant Constant Constant Set By
Every 2 s 10–1 s Every 60 s Every 30 s Every 60 s Every 1 s Device

Volume 0.29 mL 0.29 mL 0.29 mL 0.29 mL 0.29 mL 0.29 mL 4.0 mL

Test Time 440 s 460 s 55 min 21 min 12 min 640 s Varied

* After freezing only; ** Fresh & After refrigeration; ***After refrigeration only.
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2.3. Uncertainty Analysis

Limited sample volume often restricts the number of times experiments can be repeated. When

dealing with a biofluid, the composition from an individual is in constant flux and would require

either pooling samples or limiting experiments to single-samples (no repetition). One of the goals

of this work is to explore the breadth of rheological behavior of human milk normally found in

nature. In keeping with that purpose and the limited sample sizes noted in Section 2.1, repetition of

experiments was minimized. Since density is assumed to be incompressible, the accuracy of the meter

was considered sufficient for uncertainty. To estimate the uncertainty of rheological single-sample

experiments, the Kline-McClintock method [33] was employed and described herein.

The Anton-Paar MCR-302 rheometer has torque resolution of 0.1 nNm, angle resolution

(determined from displacement by optical encoder) of 10 nrad, temperature resolution of 0.1 ◦C, and time

constant of 5 ms. Viscosity measurements for cone-plate system are calculated from McKennell [34]:

µ =
3αT

2πr3ω
(1)

where α is cone angle, T is measured torque, r is cone radius, and ω is rotational speed. The uncertainty

of the cone geometry is ±0.005◦ for angle and ±0.00005 mm for diameter. Using Kline-McClintock [33]

analysis, the uncertainty for the cone-plate measuring system are determined using:

wµ =

√

(

3 × 10−10α

2πr3ω

)2

+

(

10−3T

24r3ω

)2

+

(

−1.5 × 10−8αT

πr3ω2

)2

+

(

−7.5 × 10−8αT

πr4ω

)2

(2)

with r = 0.0249692 m and α = 0.49◦ for all rotational tests. The vast majority of wµ remained under

1.03% with less than 10 data points having a higher uncertainty at γ̇ ≤ 1 s−1. The maximum uncertainty

was 8.20% for wµ = 0.3 mPa s at γ̇ = 0.01 s−1.

3. Results

3.1. Milk Content

The macronutrient content of milk samples, presented in Table 4, was assumed to match reference

values from clinical studies. These values do not account for the natural variations found between

breasts of the same participant [35] but provide reasonable expected values for evaluation of data.

Further discussion of these values is provided in Appendix B.

Table 4. Estimated Macronutrient Content.

Participant Month of Lactation Carbohydrates (g/100 mL) Proteins (g/100 mL) Fats (g/100 mL)

#1 9.0 7.01 0.80 4.11

#2 16.0 6.80 0.97 5.23

#3 12.5 6.91 0.90 4.67

#4 12.25 6.91 0.89 4.63

#5 3.5 7.18 0.66 3.23

#6 4.25 7.16 0.68 3.35

#7F 8.0 7.04 0.78 3.17

#7H 8.0 7.04 0.78 6.61

#8F 1.0 7.26 0.60 2.25

#8H 1.0 7.26 0.60 4.81
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3.2. Flow Behavior of Human Milk

Human milk demonstrates shear-thinning non-Newtonian behavior in response to increasing

shear rates (see Figure 1a) as reported regarding human milk by [22,23]. While the slope of the

curve decreases at higher shear rates, viscosity never becomes constant over the range of shear rates

tested. Conversely, as shear rate approaches 0 s−1, viscosity approaches infinity. This flow behavior

is especially evident in the Shear Rate Sweep Test #2 results in Figure 1b, which began at 0.01 s−1

and provides greater detail of rheological behavior at or near zero. The standard deviation (SD) for

milk viscosity was largest at lower shear rates (±683.6 mPa s at 0.01 s−1) and consistently decreased

as shear rate increased (±0.7 mPa s at 100 s−1). By 61 s−1, the standard deviation was ≤1 mPa s.

While milk with the lowest viscosity values fell within the expected range of standard deviation,

the highest viscosity milk remained outside the standard deviation range for the entire sweep. Some

milk demonstrated an oscillatory viscosity pattern at low shear rates, generally between 10–60 s−1,

that was obscured when calculating the mean viscosity for the samples [29]. Two likely sources for

these viscosity patterns are deformation of fat globules, which usually range in size from 1–10 µm,

and the breakdown of casein micelles (comprising approximately 13% of total protein) into smaller

micelles [36] similar to breaking up red cell aggregation in blood [37].
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Figure 1. Shear-thinning flow behavior of human milk. Raw human milk demonstrates shear-thinning

flow behavior with µ decreasing as γ̇ increases. The maximum and minimum µ values for each Shear

Rate Sweep Test are presented to show the range of data in comparison with the mean and SD. (a) Shear

Rate Sweep Test #1 (1–100 s−1) shows a continuously decreasing slope that never reaches Newtonian.

(b) Shear Rate Sweep Test #2 highlights limγ̇→0 µ → ∞.

To determine the presence of time dependence for the viscosity, the Shear Rate Loop Test from

1 s−1 to 200 s−1 and back to 1 s−1 was performed on the 5-day post-refrigerated milk from Participant

#8. The result of each sample was similar with a maximum uncertainty of 0.22 mPa s calculated from

Equation (2) (see Figure 2) and confirmed human milk to be a thixotropic fluid.
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Figure 2. Evidence of time dependence for human milk flow properties. Shear Rate Loop Test

demonstrates time dependence for human milk for both foremilk and hindmilk. Viscosity of milk

from the right breast ended higher while milk from the left breast ended lower and shows inter-breast

variation (see Section 3.4).

Rheological rotational tests where viscosity approaches infinity as shear rate approaches 0 s−1

indicate the existence of a yield stress that defines a plastic fluid. This behavior was seen in every Shear

Rate Sweep Test for human milk, which suggests that raw human milk has a yield point (i.e., plastic

fluid) and firm texture when at rest. The Amplitude Sweep Test with controlled shear strain allowed

for calculation of shear stress, phase shift, complex modulus, storage modulus, and loss modulus

that confirmed the viscoelastic behavior of raw human milk, particularly as it pertains to infant

suckling behavior. All samples had G′ values greater than G′′ in the LVE region as shown in Figure 3a

for Participant #6, although the differences between G′ and G′′ were small (0.2936 ± 0.5200 Pa).

This relationship classifies raw human milk as a viscoelastic solid (gel-like). Since G′ increased

linearly for some samples in the LVE region, such as Sample #6L in Figure 3a, the yield point was

confirmed using the stress-strain curve as shown in Figure 4. The increase in G′ within the LVE

region indicates a strengthening of structure under small amplitudes. Increases in intermolecular

crosslinking, aggregation, and particle size of proteins within raw milk has been found in response to

increases in shear rate below 500 s−1 which likely accounts for the increase in G′ [38]. The mean γL

was 1.10 ± 0.76%.

The shear stress necessary to begin breakdown of structure and initiate flow, τy, varied between

samples with a mean value of 13.903 ± 26.901 mPa showing a wide range of expected values.

Inter-breast differences ranged from a factor of 5 to a factor of 100 with each participant having

milk from one breast that required <1 mPa to initiate yielding (intra-individual variations discussed

further in Section 3.4). Homogeneous flow begins at τf when G′ crosses G′′, as shown in Figure 3a for

Participant #6, allowing for viscous dominated flow behavior. The mean τf was 24.28 ± 35.68 mPa.

Both τy and τf can be seen in Figure 3b. The mean difference between τy and τf for each sample was

10.38 ± 10.01 mPa. FTI values, which describe the transition behavior of milk from the LVE region

τf , ranged from 1.39 to 22.17 with mean FTI of 6.34 ± 8.08. A summary of these points are provided

in Table 5.
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Figure 3. The viscoelastic behavior of human milk represented by milk from Participant #6. (a) The

deformation at the limit of LVE, γy, and crossover of G′ and G′′. (b) The corresponding shear stress

required for yield and flow of human milk.
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Figure 4. Determining the yield point by finding the limit of the linear-elastic (LE) region. When

a straight line is fitted to the linear region of the stress-strain curve, where the Law of Elasticity applies,

the final point before the yield exceeds the line corresponds to the end of the LVE shown in Figure 3.

Table 5. Limit of LVE region (γL), yield point (τy), flow point (τf ), and flow transition index (FTI)

values for six samples.

Sample Density (g cm−3) γL (%) τy (mPa) τf (mPa) FTI

2R 1.02432 1.47 8.428 22.37 2.65
2L 1.02656 0.32 0.220 1.68 7.63

5R 1.03002 1.00 0.891 2.00 2.24
5L 1.02604 2.16 4.766 9.26 1.94

6R 1.02210 1.47 68.433 95.30 1.39
6L 1.02795 0.15 0.680 15.07 22.17

mean ± SD 1.10 ± 0.76 13.903 ± 26.901 24.28 ± 35.68 6.34 ± 8.08

3.3. Effect of Temperature on Human Milk Density and Viscosity

The effect of temperature on density for the first 12 samples post freezing, expressed as specific

gravity (ρmilk/ρwater) in Figure 5, shows a decrease as the temperature increases. The density decrease

was approximately 0.02 g cm−3 over 47 ◦C for each sample, although the decrease is not linear. The slopes
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for specific gravity curves decrease above 20 ◦C and indicate that at lower temperatures volume changes

of components within the milk exert a larger influence on density than at higher temperatures.
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Figure 5. Human milk density response to temperature. Specific gravity (SG) (ρmilk/ρwater) shows

greater changes in lower temperature range. The maximum and minimum SG values both fall outside

the expected standard deviation (SD) range shown in the figure.

Temperature influences on viscosity were detected by Temperature Sweep Tests #1 and #2.

The pre-shear viscosity value was compared to the first viscosity recorded during the actual

temperature sweep with only 2 pre-shear viscosity values varying greater than 1 mPa s compared to the

first data point in the sweep. These results indicated that 4 min was sufficient time for the milk particles

to orient themselves and to isolate the effect of temperature on the viscosity. Temperatures greater than

50 ◦C were avoided to prevent denaturization of proteins that would alter viscosity [14]. In general

an increase in temperature decreased the viscosity. However as shown in Figure 6a, some samples

demonstrated an increase in viscosity between 6–16 ◦C before returning to anticipated behavior

resulting in the mean temperature rise seen between 8–11 ◦C. This range corresponds to the slope

change in specific gravity seen in Figure 5. All the samples that were tested to 50 ◦C demonstrated

an increase in viscosity beginning as early as 41 ◦C for some samples and all samples by 46 ◦C.

Temperature Sweep Test #2 used a new loading of sample from Participants #1–6 over a smaller

temperature range (29–45 ◦C) and faster recording frequency to shorten the total testing time and

ensure that viscosity increases above 40 ◦C were not related to sample drying due to the long test time

in Temperature Sweep Test #1. The results from both temperature sweeps were averaged over normal

milk reheating temperature ranges and presented in Figure 6b.

A linear approximation of each individual Temperature Sweep Test #1 and #2 result for

Samples #1–6 was completed in MATLAB using the “fit” function and polynomial model “poly1”.

The mean ± SD slope from 36–40 ◦C was −0.11941 ± 0.13916. All but one sample had a negative slope

indicating a decrease in viscosity as temperature increased. The slope for Temperature Sweep Test

#2 (29–45 ◦C) result for Sample #6L was positive (0.06988) which prompted a second test with a new

loading that also resulted in a positive slope (0.1078). Both the density and specific gravity slopes over

that same temperature range were unremarkable for Sample #6L. The slope for Temperature Sweep Test

#1 (0–50 ◦C) for Sample #6L was negative (−0.07364) as expected. The only noted differences between

the tests were in point density and recording frequency. The possibility exists that Temperature Sweep

Test #2 for Sample #6L with repetition contained experimental errors since the slopes were inconsistent
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with all other results, although the positive slopes were so small that the resultant viscosity values,

which increase with temperature increase, fail to be significant.
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Figure 6. Human milk viscosity response to temperature at 50 s−1. Human milk viscosity generally

decreased as temperature increased. The highest (maximum) and lowest (minimum) viscosity values

are presented to show the range of recorded data with maximum viscosity falling outside the expected

value range of SD. (a) Unexpected increases in mean and maximum viscosity began at 8 ◦C and 46 ◦C.

(b) While temperature decreased viscosity over normal reheating temperature ranges, the decrease

was minimal.

3.4. Changes in Density and Viscosity Associated with Intra-Individual Human Milk Variations

Inter-breast density varied among participants and likely stems from the known inter-breast

variations in milk composition, which can be significant [35] (further discussion in Appendix B).

At 37 ◦C the difference between breasts ranged from as high as 0.00730 g cm−3 for Participant #1 to

as low as 0.00011 g cm−3 for Participant #4. The mean difference was 0.00289 g cm−3 with details for

each participant shown in Table 6.

Table 6. Human milk, after thawing from the same participant but different breasts, shows differences

in ρ (g cm−3) at 37 ◦C.

Participant Right Breast Left Breast Difference

1 1.02443 1.01713 0.00730

2 1.02432 1.02656 0.00224

3 1.02583 1.02883 0.00300

4 1.02750 1.02761 0.00011

5 1.03002 1.02604 0.00398

6 1.02210 1.02795 0.00585

Mean ± SD 0.00289 ± 0.00269
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The mean±SD density of fresh milk foremilk and hindmilk for Participant #8 is shown Figure 7

and reflects intra-feed variations that correspond to intra-feed variations in fat seen in Table 4. Milk

reheating practices and temperatures can vary [28], so the small temperature range around 37 ◦C in

Figure 7 highlights the degree of change in density with small fluctuations in temperature. All fresh

samples were held at 37 ◦C until time of testing. The difference between fresh foremilk and hindmilk

density in Figure 7 averaged 0.00489 g cm−3 in the right breast and 0.00464 g cm−3 in the left over the

temperature range tested.
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Figure 7. Density Test #2 for samples from Participant #8 for intra-feed (foremilk/hindmilk) and

inter-breast (shown with SD caps) variations tested fresh. While higher fat content lowers density,

inter-breast differences are minimal, particularly for hindmilk.

Temperature Sweep Tests #1 and #3 for Samples #8 and #7, respectively, show viscosity differences

(Figures 8 and 9) correspond to intra-feed variations in fat content with hindmilk consistently having

higher viscosity compared to foremilk from the same breast and feed. Hindmilk viscosity increased

when the temperature increased beginning at 41 ◦C for Sample #7H (Figure 8) and at 44 ◦C and 47 ◦C

for Samples #8LH and #8RH, respectively, (Figure 9a). Foremilk failed to show any increase in viscosity

suggesting that the increase is associated with higher fat content, particularly since the highest fat

content milk, Sample #7H, also showed the earliest increase in viscosity at 39.5 ◦C. This finding merits

further investigation considering possible implications for infant feeding. A closer look at viscosity

over reheating temperature range showed hindmilk was higher than foremilk (see Figure 9b) with the

Sample #8R hindmilk twice the viscosity value of either Sample #8 foremilk sample.
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Figure 8. Temperature Sweep Test #3 at γ̇ = 50 s−1 shows intra-feed variations in viscosity that relate

to composition. Hindmilk consistently has higher viscosity compared to foremilk from the same breast

and expression (intra-feed variations). When the samples were aged at 37 ◦C for 6 h (filled diamonds),

the foremilk viscosity decreased slightly while hindmilk increased (see Section 3.5). Samples from

Participant #7.
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Figure 9. Temperature Sweep Test #1 for samples from Participant #8 at γ̇ = 50 s−1 after 5 days

refrigeration. (a) Temperature decreased viscosity for both foremilk and hindmilk until 45 ◦C when

hindmilk began to increase, (b) A closer look over body temperature range shows a steady decrease in

viscosity in response to temperature.

Shear Rate Sweep Tests #1 and #2 for samples from Participant #8 showed intra-feed variations

particularly at low shear rates <10 s−1. At γ̇ = 0.01 s−1, fresh foremilk viscosity exceeded fresh hindmilk

viscosity by more than one order of magnitude, which can be seen in Figure 10a. At that same shear

rate the inter-breast viscosity variations for foremilk (right breast dominated) exceeded the differences

for hindmilk (left breast dominated). As shear rate approached 100 s−1, the intra-feed variations did

not remain consistent. As seen in Figure 10b, fresh foremilk from the right breast dominated all other

samples yet viscosity for fresh foremilk from the left breast was lower than other samples, including

previously refrigerated ones (for further discussion regarding storage effects, see Section 3.5). These

results clearly show the influence of proteins at low shear rates on milk rheology similar to research on

raw skim bovine milk [6].

Inter-breast and intra-feed thixotropic viscosity variations appeared in Shear Rate Loop Test.

A comparison of start and end viscosities at 1 s−1 for the loop test shows that milk from the left breast

decreased viscosity while milk from the right breast increased viscosity. The percentage of increase or

decrease is presented in Table 7. The differences in fat content between foremilk and hindmilk do not

appear to be a factor in determining whether viscosity increases or decreases with time.

Table 7. Start and end viscosities at 1 s−1 for the loop test.

Sample Initial µ (mPa s) Final µ (mPa s) Increase/Decrease (%)

Left Foremilk 9.4136 9.2705 −1.52

Right Foremilk 9.3010 13.9690 +50.19

Left Hindmilk 21.6380 10.1380 −53.15

Right Hindmilk 12.8800 16.6060 +28.93
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Figure 10. Shear Rate Sweep Tests #2 (Figure 10a) and #1 (Figure 10b) results for milk from Participant

#8 show both inter-breast and intra-feed variations in viscosity. Effect of 3 days of refrigeration on milk

viscosity associated with intra-individual variations is also seen (discussed in Section 3.5). (a) The low

shear rates experienced during the beginning and end of a suck cycle show higher viscosity in fresh

foremilk (lower fat) compared to hindmilk (higher fat). Storage by refrigeration lowered viscosity of

each sample until crossover for foremilk at 8 s−1 and hindmilk at 6 s−1. Inter-breast variations were

greater for fresh foremilk than fresh hindmilk and for fresh milk compared to stored milk. (b) The

starting viscosity (at γ̇ = 1 s−1) for all fresh samples was higher than after 3 days of refrigeration but

that pattern did not continue as shear rate increased.

3.5. The Effect of Storage & Aging on Human Milk Density and Viscosity

Density measurements for both fresh and previously frozen milk are shown in Table 8. The average

density for fresh milk, after removing the outlier Samples 3R and 3L, was 0.964 g cm−3 with a standard

deviation of 0.007 g cm−3. The source of deviation for fresh Samples 3R and 3L is assumed to be due

to experimental error since they were tested at the same time. A 95% confidence interval for both fresh

and thawed density mean was calculated using a t distribution. The results show an increasing in

density for thawed milk (average 6.8%) when compared with fresh milk measurements at the same

temperature, with the samples having the lowest fresh density increasing the most.
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Table 8. Human milk density increased in response to storage at −20 ◦C for 3 months. Fresh samples

were tested within 20 min of expression in a single reading at the milk temperature at time of arrival to

equipment. The thawed values for comparison were recorded in Density Test #1. The fresh results for

milk from Participant #3 were outliers due to assumed experimental error and removed from these

test results.

Sample Temperature (◦C) Fresh ρ (g cm−3) Thawed ρ (g cm−3)

1R 26.4 0.970 1.029

1L 24.8 0.964 1.022

2R 25.8 0.967 1.028

2L 26.7 0.964 1.030

4R 26.0 0.972 1.031

4L 27.0 0.969 1.031

5R 24.8 0.952 1.034

5L 25.4 0.962 1.030

6R 26.2 0.968 1.026

6L 26.0 0.952 1.032

Mean ± SD 25.9 ± 0.74 0.964 ± 0.007 1.029 ± 0.003

95% Confidence Interval 0.959 ≤ ρmean ≤ 0.969 1.008 ≤ ρmean ≤ 1.050

Patterns in viscosity changes due to storage by refrigeration and aging were determined with

milk from Participants #7 and #8. Participant #7’s milk was tested at a constant shear rate of 50 s−1

over a small temperature range representative of milk reheating temperatures both fresh and after

aging at a constant 37 ◦C for 6 h similar to what [21] performed. Aging effects can be seen in Figure 8.

Hindmilk viscosity increased with aging while foremilk viscosity decreased.

Participant #8’s milk samples were held at 37 ◦C and not initially tested until 5 h after collection.

Due to this delay, data regarding changes due to aging at 37 ◦C were not obtained. All samples

from Participant #8 were tested at 5 h after expression and after 3 days refrigeration at 4 ◦C using

Shear Rate Sweep Tests #1 and #2. For the fresh and 3 days post-refrigeration tests, each foremilk and

hindmilk sample was tested twice with a new loading and then averaged. The results in Figure 10a

show that the fresh milk samples tested considerably higher at very low shear rates (Shear Rate

Sweep Test #2) compared to post-refrigeration samples. This pattern does not continue for all samples

as shear rate increases. Figure 10b shows that at 1 s−1 milk viscosity was greater when fresh than

post-refrigeration, yet by 100 s−1 post-refrigeration samples were greater for all but right breast

foremilk, which maintained a significant difference between fresh and post-refrigeration results

throughout testing.

4. Discussion

To date there is very little rheological data pertaining to raw human milk, which is not surprising

considering early works determined human milk to be approximately Newtonian [19] and few

engineering models of breastfeeding have been produced [39–41]. In this study, freshly expressed

human milk was tested to determine general behavior patterns and alterations in density and viscosity

in response to environmental factors, storage, aging, and intra-individual milk content variations.

Density is frequently used by clinicians and in research studies when estimating milk intake (mass

or volume) for infants by assuming density is close to 1 g cm−3 [42–44]. Since human milk is a dynamic

biofluid with over 100 components that show intra-feed variations during each breastfeed [35,36,45–51]

and factors such as temperature and storage affect density, understanding the range of variation can

help ensure more accurate estimations of milk intake. The results of this study show that in the

clinical setting where test-weighing is used to estimate infant intake, this approximation is sufficient

considering infant scale accuracy is often ±1 g or more. Inter-breast differences in milk density existed
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and likely originated from composition differences [35,46]. The influence of intra-feed composition

changes on density are evident when comparing foremilk and hindmilk. Since fat concentration

varies the most over the course of a single expression/feed while lactose and protein remain fairly

constant [47,52], the differences in density between foremilk and hindmilk are primarily due to fat

fluctuations with higher fat content decreasing density.

Human milk flow behavior demonstrated consistent patterns of variation with regards to shear

rate, temperature, storage, and aging when variations in macronutrient content was considered,

although its thixotropic behavior, similar to blood [53], provided large range of expected values for

some experiments. The Shear Rate Loop Test results were inconsistent in pattern with inter-breast

variations since milk viscosity from one breast increased and from the other breast decreased as shear

ramped down. The test was performed on post-refrigerated milk, so the effect of dissolved gases,

that may be present in fresh milk, were minimized. However, chemical reactions and composition

changes during storage (i.e., bacterial growth) could affect viscosity and be reflected in tests for

thixotropy. In bovine milk studies, thixotropy was noted only in whole not skim milk [6] which

suggests that the human milk fat globule has an associated relaxation time after deformation under

shear. Since thixotropic behavior remained after storage, the fat globules maintained elasticity, although

whether elasticity alters during storage is unknown but likely because lipolysis of human milk lipids

occurs when milk is stored at any temperature above −70 ◦C [54].

The viscosity curve as a function of shear rate clearly shows non-Newtonian, shear-thinning flow

behavior. As shear rate approaches 0 s−1, viscosity approaches infinity indicating that raw human milk

has a yield point and firm texture at rest, which was confirmed with oscillatory tests. The viscosity

curve of individual samples showed an oscillatory behavior beginning around 20 s−1 (see [29]) that

smoothed as shear rate increased. The oscillations are likely due to changes in orientation, shape,

and size of various milk particles. The decrease in slope at higher shear rates likely accounts for the

many researchers who assumed Newtonian behavior for milk. However, currently there is insufficient

research on human milk to define at what shear rate Newtonian behavior begins. Since milk is often

infused at slow rates in narrow tubes, the non-Newtonian flow behavior is significant especially at low

shear rates.

The non-Newtonian flow behavior at low shear rates also pertains to the oscillatory nature

of suckling that constantly varies the pressure profile exerted upon milk when fed from artificial

nipples. From the oscillatory testing, inter-breast variations in yield and flow points were determined.

The disparities in yield and flow points indicate large differences in the structural strengths or gel

strengths of the milk between breasts. This gel-like structure likely helps keep particles from settling

when the milk is at rest. The decrease of the G′ curves after the LVE region begins the nonlinear

viscoelastic regime [32] and indicates a slow decline in structural strength, which demonstrates

a smoother, more homogeneous flow behavior. A gradual rise in G′′ after the LVE region occurred in

4 of the 6 samples tested and indicates that deformation energy was transformed into friction heat

due to internal viscous friction while elastic behavior dominated. The high standard deviation shows

the range of shear stress required to complete the necessary structural breakdown to initiate viscous

dominated behavior.

Samples with FTI closer to 1 had a greater tendency for brittle fracturing or non-homogeneous

breakdown to occur past the yield point. Sample 6R had the FTI closest to 1 and, as seen in Figure 3a,

showed the steepest curve upon leaving the LVE region and had the highest G′ value. So 6R

experienced a large amount of internal viscous friction as it transitioned from elastic dominated

to viscous dominated flow behavior. Other samples had FTI close to 1 with steep strain curves upon

leaving the LVE region, so non-homogeneous breakdown appears common and may be correlated to

fat content. Fat content is the only component with large intra-feed variations where pressure forces at

the breast vary from multiple sources, like alveolar contractions and suckling. In tube feeding, fat is

the component with the largest losses with significant protein losses also reported [4,5]. The loss of

nutrients during tube feeding is likely due to non-homogeneous breakdown whereby a shear stress
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between the yield point and flow point is exerted causing a lower fat milk to flow. The apparent wall

shear stress, (γ̇a), for tube feedings can vary from low (2.6 s−1) to high (1697.7 s−1) depending on flow

rate and tube diameter (see Appendix C). Even though certain feeding parameters result in a high γ̇a,

fat losses of over 50% are reported [5], which indicate pressure within the tube is insufficient to achieve

homogeneous flow. Additionally, the thixotropic behavior of human milk adds an additional factor

that likely contributes to feeding problems and requires further study.

The current recommendation for feeding preterm infants human milk is to warm milk to body

temperature with the ideal temperature range of 35.5–37.2 ◦C although reported prefeed temperatures

vary greatly (21.8–46.4 ◦C) [55]. Of particular interest in this study was the temperature range between

36–40 ◦C that immediately surrounds the normal body temperature. The mean density change between

36–40 ◦C was −0.0017 g cm−3 and viscosity decreased with fresh foremilk decreasing more compared

to fresh hindmilk. However, higher temperatures showed areas of unusual flow behavior that could

impact infant feeding. As noted in Section 3, viscosity began increasing for some samples as early as

41 ◦C and in all samples by 46 ◦C. The higher fat, hindmilk samples’ viscosities began increasing at

lower temperatures than their foremilk counterparts. Since feeding hindmilk to preterm infants is

common in hospitals [48], small variations in heat have less impact on improving flow in tubing, but

temperatures above 40 ◦C should be avoided.

The impact of storage on density and viscosity also suggested interesting changes in milk content.

Past research tested milk after storage [18], but for the fresh samples in Table 8, density increased due

to storage. Density for pure water is 0.9970–0.9965 g cm−3 for 25–27◦, so freshly expressed milk density

appears to be lower than water. One reason could be due to chemical changes [7,9] that altered the

attraction between molecules and increased volume. Alternatively, milk may contain dissolved gases.

The source of gases in human milk could be in vivo, being diffused from blood, or introduced during

expression by vacuum pump. If the source is in vivo, then human milk is compressible, which theory

requires further testing. Regardless of the source, with storage dissolved gases would be released

leading to an increase in density. Dissolved gases would also impact viscosity behavior in fresh milk

at low shears causing a higher resistance to flow and possible slip effects. This study found that

refrigeration appears to decrease viscosity compared to fresh, particularly at low shear rates, which is

supported by previous findings on bovine milk [6].

Lastly, the intra-feed variations associated with foremilk and hindmilk provided insight into

the influence of fat content on milk viscosity. The hindmilk samples with higher fat content had

lower viscosities than foremilk samples at low shear rates as shown in Figure 10a. This trend was

also seen when the samples were tested over a higher shear sweep in Figure 10b. However, with the

exception of fresh right-side foremilk, no extreme differences were seen at 100 s−1. While the number

of samples is insufficient to make absolute statements, the results demonstrate previously unreported

flow behaviors. Since intra-feed protein concentration is stable, foremilk contains a higher protein to

fat ratio. The protein composition during early lactation was found to heavily influence viscosity [20].

These results indicate that the protein content may have a stronger influence on viscosity at lower

shear rates than previously thought and is supported by [38]. While testing for the milk yield point

was not conducted on these samples, the extremely high viscosity values at 0.01 s−1 for the foremilk

likely denotes higher internal cohesion forces when the protein to fat ratio is higher by allowing for

formation of larger casein micelles that require greater shear stress to breakdown into smaller micelles

to achieve flow.

5. Conclusions

Raw human milk flow properties vary with respect to temperature, storage, aging, time, and

shear rate. Density of fresh milk when newly expressed may be lower than water due to dissolved

gases that are released into the atmosphere during storage. A clear non-Newtonian flow behavior was

found with large variations in viscosity, especially at low shear rates. The structural strength of milk

varied with many samples showing non-homogeneous breakdown during the transition from yielding
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to flowing. This flow behavior can explain why tube feeding results in nutrient losses. The results

highlight the need for sufficient pressure application to achieve homogeneous flow.
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Appendix A

As the dairy industry grew, the need to model the relationship between viscosity and factors such

as content and temperature led to the development of a series of regression equations. The usefulness

of each equation depends on the application for which it was developed. Snoeren et al. found

a relationship between the voluminosity of bovine milk proteins and the dynamic viscosity of

commercial skim milk [10]. They showed that viscosity of heat-treated skim milk is a function

of the volume fractions of casein, native whey protein, denatured whey protein, and the viscosity of

the medium. Based on Bateman and Sharp’s research on raw bovine milk [6], Snoeren et al. should

have considered the shear rates used in testing due to the presence of native whey protein, which is

found in raw bovine milk, yet no mention of shear rate is provided. Additionally, no data concerning

the temperature of the milk used by Snoeren et al. was provided, even though studies show that

temperature affects the viscosity of skim milk [14].

The effect of temperature and fat content on milk viscosity was investigated by Jebson and

Chen [11]. They noted that whole milk has a higher solid content and higher viscosity in comparison

to skim milk. In their research on the evaporation of bovine whole milk, for concentrates of solids

content (larger that 450 g/kg), they adapted a relation for viscosity as a function of temperature and

concentrate total solid. Similarly, Phipps [13] examined the relationship between viscosity, bovine

cream fat content up to 50%, and temperature variations of 40 ◦C to 80 ◦C. He determined a regression

equation for viscosity for creams with fat content (F) of less than 40%, as a function of temperature and

fat content. Neither research considered shear rate in their experiments or equations.

More recent work with raw bovine milk was completed by Bakshi and Smith [12]. They performed

several experiments on bovine milk to find a regression equation for the experimental value of viscosity

based on the variable parameters of fat content and temperature. They noted that homogenized milk

has a higher viscosity than raw milk which they attributed to the fine, dispersed state of the fat when

homogenized. The temperature range tested was 0 ◦C to 30 ◦C and fat content range was 0.1% to 30%.

Bakshi and Smith found the viscosities of skim milk and whole milk at 30 ◦C, to be about the same,

approximately 1.25 mPa s. They also found that at lower temperatures, the effect of fat percentage on

viscosity is greater. Similarly, they found a relationship between density, temperature, and fat content.

All experimental work was performed at temperatures when milk fats are solid [18]. No regression

equations were determined for raw milk nor was shear rate disclosed.
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Appendix B

Human milk content varies in response to multiple factors. However, prior clinical studies provide

some general guidelines that allow for estimation of content, which were used in this study.

Determining macronutrient content. Equations (A1)–(A3) determined by [49] based on month

of lactation (n) to approximate macronutrient content (g/dL) are applicable under the following

condition: the breast is fully emptied between the hours of 08:00 and 14:00. Participants #1–6 all met

this requirement, so Equations (A1)–(A3) were used to calculate macronutrient content reported in the

main text with limitations described later in this Appendix. For Participants #7–8, Equations (A1)–(A3)

were used to calculate macronutrient content of their entire breast content and then modified to account

for the normal variations found in foremilk and hindmilk based on percentages provided by [48].

The procedure for these modifications is outlined herein.

Carbohydrate = 7.2915 − 0.0309 n (A1)

True Protein = 0.5732 + 0.0258 n (A2)

Fat = 2.673 + 0.1597 n (A3)

Adjusting macronutrient content in foremilk and hindmilk. Over the course of a single feed,

researchers [35,50] found that, between foremilk and hindmilk, protein levels remain the same, glucose

decreases, and fat significantly increases 2–3 fold. Participants #7–8 both expressed milk after 14:00,

however, since protein and carbohydrate content remains fairly constant throughout the day, only

fat content was increased to account for the time of day [51]. Based on the aforementioned works,

the assumption was made to exclude the changes in glucose since the molecular size is negligible when

compared to fat globules, and macronutrient values were only adjusted for the fat content using the

ratios found in [48] where foremilk has 82% and hindmilk has 161% of fat compared to composite or

whole expression milk. Thus Equations (A1) and (A2) were employed to calculate carbohydrates and

proteins, respectively. For fat, a composite value was found using Equation (A3), converted to g/L,

and then used to calculate creamatocrit (%) using Equation (A4) [56]. The resulting creamatocrit value

was then adjusted to foremilk or hindmilk based on [48] and converted back to g/dL.

Creamatocrit = 0.146 × Fat + 0.59 (A4)

Limitations of Equations (A1)–(A3). These equations do not take into consideration the natural

variations between mothers nor the normal content differences between the breasts of the same mother,

particularly fat. The differences between breasts for macronutrients involve fats and carbohydrates,

primarily glucose. Work by [35] found significant fat variations in 60% of participants with results

equally split between which breast expressed higher fat milk. The percent difference between breasts

for those participants ranged from 25–72% with a mean difference of 46%. The significant fat differences

may have stemmed from time differences between when each breast was last fed from. Glucose also

showed significant differences in 60% of participants with 50% showing higher glucose in milk from

the left breast and 10% with higher glucose in right breast milk.

Appendix C

Various tubes and feeding rates are used in medicine with huge losses in fat and protein

reported [4,5]. Since human milk viscosity shows high dependence on shear rate, the apparent

wall shear rate should be maximized to ease milk flow. Methods for tube feeding include continuous

drip and bolus feed with a syringe over a specified time period. Calculating the apparent wall shear

rate (γ̇a) for tube feeding of human milk can be approximated by using the equation

γ̇a =
4Q

πr3
(A5)
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for a Newtonian fluid flow through a circular duct where Q is the volumetric flow rate and r is the

radius of the tube [57]. Using tube diameters [5] and feeding rates [48,58] reported in literature in

combination with Equation (A5), a table of approximate apparent wall shear rates for bolus feeds is

calculated in Table A1.

Table A1. Approximations of γ̇a in Bolus Feeds over 20 min every 2 h.

Tube Inner Diameter (mm) Infant Weight (g) Feed Volume (mL kg−1 day−1) γ̇a (s−1)

0.5 1000 100 565.9

0.5 1000 200 1131.8

0.5 1500 100 848.8

0.5 1500 200 1697.7

3.0 1000 100 2.6

3.0 1000 200 5.2

3.0 1500 100 3.9

3.0 1500 200 7.9
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