
0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.3008713, IEEE
Transactions on Automatic Control

1

Distributed Big-Data Optimization
via Block-wise Gradient Tracking

Ivano Notarnicola∗, Member, IEEE, Ying Sun∗, Gesualdo Scutari, Senior Member, IEEE,
Giuseppe Notarstefano, Member, IEEE

Abstract—We study distributed big-data nonconvex optimiza-
tion in multi-agent networks. We consider the (constrained)
minimization of the sum of a smooth (possibly) nonconvex
function, i.e., the agents’ sum-utility, plus a convex (possibly)
nonsmooth regularizer. Our interest is on big-data problems
in which there is a large number of variables to optimize. If
treated by means of standard distributed optimization algo-
rithms, these large-scale problems may be intractable due to the
prohibitive local computation and communication burden at each
node. We propose a novel distributed solution method where,
at each iteration, agents update in an uncoordinated fashion
only one block of the entire decision vector. To deal with the
nonconvexity of the cost function, the novel scheme hinges on
Successive Convex Approximation (SCA) techniques combined
with a novel block-wise perturbed push-sum consensus protocol,
which is instrumental to perform local block-averaging opera-
tions and tracking of gradient averages. Asymptotic convergence
to stationary solutions of the nonconvex problem is established.
Finally, numerical results show the effectiveness of the proposed
algorithm and highlight how the block dimension impacts on the
communication overhead and practical convergence speed.

I. INTRODUCTION

Many modern control, estimation and learning applications
lead to large-scale optimization problems, i.e., problems with
a huge number of variables to optimize. These problems are
often referred to as big-data, and call for the design of tailored
algorithms. In this paper we consider distributed (nonconvex)
big-data optimization. That is, we aim at solving large-scale
optimization problems over networks in a distributed way
by addressing the following two challenges: (i) optimizing
over (or even computing the gradient with respect to) all the
variables can be too costly, and (ii) broadcasting to neighbors
the entire solution estimate would incur an unaffordable com-
munication overhead. The literature on parallel and distributed
methods is abundant; however, we are not aware of any work
that can deal with both challenges (i) and (ii) over networks,
as detailed next.

∗These authors equally contributed and are in alphabetic order.
Preliminary short versions of this paper have appeared as [1], [2].
The work of Notarnicola and Notarstefano has received funding from the

European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No 638992 -
OPT4SMART). The work of Sun and Scutari has been supported by the
USA National Science Foundation under Grants CIF 1564044, CIF 1719205,
CMMI 1832688; and in part by the Army Research Office under Grant
W911NF1810238.

Notarnicola and Notarstefano are with the Department of Electrical, Elec-
tronic and Information Engineering, University of Bologna, Bologna, Italy,
{ivano.notarnicola,giuseppe.notarstefano}@unibo.it

Sun and Scutari are with the School of Industrial Engineering, Purdue Uni-
versity, West-Lafayette, IN, USA, {sun578,gscutari}@purdue.edu.

A. Related Works

We organize the relevant literature in two main groups: cen-
tralized and parallel algorithms for large-scale optimization;
and distributed algorithms applicable to multi-agent networks
(with no specific topology).
Parallel algorithms. Parallel Block-Coordinate-Descent
(BCD) methods are well-established methods in optimization;
more recently, they have been proven to be particularly
effective in solving very large-scale (mainly convex)
optimization problems arising, e.g., from data-intensive
applications. Examples include [3] for convex, smooth
functions, and [4], [5] for composite optimization; a detailed
overview of BCD methods can be found in [6], [7]. Parallel
solution methods based on Successive Convex Approximation
(SCA) techniques have been proposed in [8] to deal with
nonconvex problems; see [9] for a recent research tutorial on
the subject. In [10] block coordinate-descent and stochastic-
gradient methods have been combined to optimize big-data,
sum-of-utilities (cost) functions. These algorithms, however,
are not implementable in a (fully) distributed setting; they
are instead designed to be run on ad-hoc computational
architectures, e.g., shared-memory systems or star networks.
Distributed multi-agent algorithms. The literature on dis-
tributed methods for multi-agent optimization is vast. Here, we
discuss only primal-based algorithms, as they are more closely
related to the approach proposed in this paper. Distributed sub-
gradient methods have been proposed in the early works [11],
[12], to solve convex, problems over undirected graphs. The
extension to nonconvex costs has been developed in [13]. The
generalization to (time-varying) digraphs was studied in [14]
and [15] for convex and nonconvex objectives, respectively;
these schemes combine distributed (sub-)gradient with push-
sum consensus [16] updates. A Nesterov acceleration of the
mentioned approach applied to convex, smooth problems has
been proposed in [17] with a convergence rate analysis. Local,
private constraints are handled in [18] and [19], where dis-
tributed methods based on a random projection (asynchronous)
subgradient and a proximal minimization are proposed respec-
tively. All these methods need to use a diminishing step-size to
converge to an exact, consensual solution, thus converging at a
sub-linear rate. On the other hand, with a constant (sufficiently
small) step-size, they can be faster, but they would converge
only to a neighborhood of the solution set.

Primal-based distributed methods that converge to an exact
consensual solution using fixed step-sizes are available in the
literature; they can be roughly grouped as i) [20], [21]; ii)
[22]–[24], iii) [9], [25]–[30]; and iv) [31]–[34]. While substan-

Authorized licensed use limited to: Purdue University. Downloaded on September 01,2020 at 15:20:29 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.3008713, IEEE
Transactions on Automatic Control

2

tially different, these schemes build on the idea of correcting
the decentralized gradient- (or Newton-) related direction to
cancel the steady state error in it. More specifically, in [20]
and its proximal variant [21], the gradient direction is corrected
using iterate and gradient information of the last two iterations.
In [22]–[24], the novel idea of distributively estimating a
Newton-Raphson direction by means of suitable average con-
sensus ratios has been introduced. In [35] the same approach
has been extended to deal with directed, asynchronous net-
works with lossy communications. The third and fourth class
of works is based on the idea of gradient tracking: each agent
updates its own local variables along a surrogate direction that
tracks the gradient of the sum-utility (which is not locally
available). This idea was proposed independently in [25], [26]
for constrained nonsmooth nonconvex problems, and in [27],
[30] for strongly convex, unconstrained, smooth, optimization.
The works [9], [28], [29] extended the algorithms to (possibly)
time-varying digraphs (still in the nonconvex setting of [25],
[26]). A convergence rate analysis of the scheme [27] was later
developed in [31], [32], [36], [37], with [31], [36] considering
time-varying (directed) graphs. Another scheme, still based on
the idea of gradient tracking, has been recently proposed in
[34]. All the above methods are based on the optimization and
communication at each iteration of the entire set of variables
of every agents (or some related quantities of the same size).

First attempts to block-wise distributed optimization have
been proposed in [38]–[40] for a structured, partitioned op-
timization set-up in which the cost function of each agent
depends on its (block) variables and those of its neighbors.
In [41] a distributed stochastic gradient method has been pro-
posed whereby agents optimize at each iteration only a subset
of their variables (still communicating the entire vector).

B. Major Contributions

We propose a distributed algorithm over networks for, possi-
bly nonconvex, big-data optimization problems, that explicitly
accounts for challenges (i) and (ii). To cope with these two
challenges, we propose a distributed scheme in which, at every
iteration, each agent optimizes over and communicates only
one block of the local solution estimate (and of auxiliary vec-
tors) rather than all the components. Blocks are selected in an
uncoordinated fashion by means of an “essentially cyclic rule”.
Such a rule states that all blocks must be selected within a
finite number of iterations, thus guaranteeing all of them to be
persistently updated during the algorithmic evolution. Specif-
ically, inspired to the two optimization algorithms NEXT
(in-Network succEssive conveX approximaTion) [25], [26]
and SONATA (distributed Successive cONvex Approximation
algorithm over Time-varying digrAphs) [28], [29], not suitable
for big-data problems, we propose a block-iterative two-
step (optimization and averaging) procedure, named BLOCK-
SONATA. Each agent solves a (small) local optimization
problem, depending only on the selected block, with cost
function being a strongly convex surrogate of the nonconvex
sum-cost function, whose gradient is a local estimate of the
total gradient of the (smooth part of the) sum-cost function.
The (block-wise) optimization step is combined with a twofold

block-wise perturbed averaging scheme on the local solution
estimate and on the local estimate of the total gradient. This
scheme guarantees both the asymptotic agreement of the
local solution estimates and the tracking of total gradient.
We remark that this novel block-wise perturbed averaging
protocol extends a (static) block averaging protocol proposed
for an abstract message passing model in [42], and is thus of
independent interest for other distributed computation tasks. It
can be used by agents of a network to reach consensus or track
the average of local signals by exchanging with neighboring
agents only one block of their local vector. For the proposed
distributed optimization algorithm we prove that: local solution
estimates are asymptotically consensual to their (weighted)
average, and any limit point of the average sequence is a
stationary solution of the optimization problem. The algorithm
analysis has two key distinctive features. First, a proper
convergence analysis of the block-wise perturbed averaging
scheme is developed based on suitable block-induced time-
varying digraphs. Second, errors due to inexact block-wise
minimizations and to uncoordinated block updates are properly
handled to show that a suitably designed merit function
decreases along the algorithmic evolution.

The rest of the paper is organized as follows. In Section II
we present the problem set-up. In Section III we introduce
a block-wise perturbed consensus scheme that will act as
a building block for our distributed big-data optimization
algorithm presented in Section IV, along with its convergence
properties. In Section V we provide numerical computations to
test our algorithm. Finally, the convergence analysis is deferred
to the appendix.

II. DISTRIBUTED BIG-DATA OPTIMIZATION SET-UP

We consider a multi-agent system composed of N agents,
aiming at cooperatively solving the following composite (pos-
sibly) nonconvex large-scale optimization problem

min
x

U(x) ,
N∑
i=1

fi(x) +

B∑
`=1

r`(x`)

subj. to x` ∈ K`, ` ∈ {1, . . . , B},
(1)

where x is the vector of optimization variables, partitioned in
B blocks as

x , [x>1 , . . . ,x
>
B]>,

with x` ∈ Rd, ` ∈ {1, . . . , B}; fi : RdB → R is the cost
function of agent i, assumed to be smooth but (possibly)
nonconvex; r` : Rd → R, ` ∈ {1, . . . , B}, is a convex
(possibly) nonsmooth function; and K`, ` ∈ {1, . . . , B}, is
a closed convex set; we denote by K , K1 × · · · × KB the
feasible set of (1). The nonsmooth terms r` are usually used to
promote some extra structure in the solution, such as (group)
sparsity. We study (1) under the following assumption.

Assumption II.1 (On the Optimization Problem).
(i) Each K` 6= ∅ is closed and convex;

(ii) Each fi : RdB → R is C1 on (an open set containing) K;
(iii) Each ∇fi is globally Li-Lipschitz continuous and

bounded on K;

Authorized licensed use limited to: Purdue University. Downloaded on September 01,2020 at 15:20:29 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.3008713, IEEE
Transactions on Automatic Control

3

(iv) Each r` : Rd → R is convex (possibly nonsmooth) on K`,
with bounded subgradients on K`;

(v) U is coercive on K, i.e., limx∈K,‖x‖→∞ U(x) =∞. �

The above assumptions are quite standard and satisfied by
many practical problems; see, e.g., [8]. Here, we only remark
that we do not assume any convexity of fi. In the following, we
also make the blanket assumption that each agent i knows only
its own cost function fi, the regularizers r` and the feasible
set K, but not the other agents’ functions.

On the communication network: The communication among
agents is modeled as a fixed, directed graph G =
({1, . . . , N}, E), where E ⊆ {1, . . . , N} × {1, . . . , N} is
the set of edges. The edge (i, j) ∈ E models the fact that
agent i can send a message to agent j. We denote by Ni
the set of in-neighbors of node i in the fixed graph G, i.e.,
Ni , {j ∈ {1, . . . , N} | (j, i) ∈ E}. We assume that E
contains self-loops and, thus, Ni contains {i} itself. We use
the following assumption.

Assumption II.2. The digraph G is strongly connected. �

Algorithmic Desiderata: Our goal is to solve problem (1) in
a distributed fashion, leveraging local communications among
neighboring agents. As a major departure from current liter-
ature on distributed optimization, here we focus on big-data
instances of (1) in which the vector of variables x is composed
by a huge number of components (B is very large). In such
problems, minimizing the sum-utility with respect to all the
components of x, or even computing the gradient or evaluating
the value of a single function fi, can require substantial
computational efforts. Moreover, exchanging an estimate of
the entire local decision variables x over the network (like
current distributed schemes do) is not efficient or even feasible,
due to the excessive communication overhead. We design next
the first scheme able to deal with such challenges.

III. BLOCK-WISE PERTURBED PUSH-SUM CONSENSUS

In this section we design a building block of our distributed
optimization algorithm, namely a block-wise perturbed push-
sum consensus algorithm. We first devise the “unperturbed”
instance of the scheme, suitable to solve the average consensus
problem over digraphs via block-wise communication. Then,
we introduce the general perturbed version of the scheme,
which allows agents to solve more general tasks, such as track-
ing the average of given (time-varying) agents’ signals. This
scheme will then be employed in the block-wise averaging
parts of our distributed optimization presented in Section IV.

A. Block-wise Push-sum Average Consensus

Consider a system of N agents aiming at reaching con-
sensus on the average of given initial values. Let the com-
munication network be modeled as a digraph G satisfying
Assumption II.2. To solve this problem, one can leverage
the popular push-sum (consensus) algorithm [16]. However,
differently from this scheme in which agents need to exchange
their entire local estimates at each iteration, here we consider
a block-wise communication protocol. Specifically, at every

iteration t each agent i updates its entire (average estimate)
vector zt(i,:) ∈ RdB , but it sends to out-neighbors one block
only1. As customary in push-sum schemes, each agent i
maintains also an additional variable in order to reach average
consensus over directed graphs. In our scheme, an auxiliary
variable is assigned to each block ` and we collect them in a
single vector φ(i,:) ∈ RB .

We denote by `ti ∈ {1, . . . , B} the index of the block that
agent i chooses (according to a proper rule) to update and
broadcasts to its out-neighbors at iteration t; and by zt(i,`ti)

∈
Rd such a block. To update zt(i,:), agent i runs a push-sum
consensus on each block ` of zt(i,:) separately, using only the
information received from its in-neighbors that sent block ` at
time t (if any). The same block-wise protocol is used for the
auxiliary variable φt(i,:).

Since no coordination is assumed among agents in selecting
their blocks, different agents will likely select blocks with
different indices, i.e., `ti 6= `tj , with i 6= j. This induces a block-
dependent communication graph, one for each block index `,
which is, in general, a subgraph of G. In this subgraph, agent
j is an in-neighbor of agent i at time t if j ∈ Ni and `tj = `,
i.e., agent j sent its block ` to i at time t. This suggests the
definition of block-dependent neighbor sets. For each agent
i ∈ {1, . . . , N} and each block ` ∈ {1, . . . , B}, define

N t
i,` , {j ∈ Ni | `tj = `} ∪ {i} ⊆ Ni,

which includes, besides agent i, only the in-neighbors of
agent i in G that sent (i.e., updated) block ` at time t.
Consistently, we denote by Gt` , ({1, . . . , N}, Et`) the time-
varying subgraph of G associated to block ` at iteration t. Its
edge set is Et` , {(j, i) ∈ E | j ∈ N t

i,`, i ∈ {1, . . . , N}}.
Note that each (time-varying) digraph Gt` is induced by the

block selection rules (independently) adopted by the agents,
so that the connectivity properties of all digraphs are coupled;
this interplay will be discussed shortly (cf. Assumption III.2
and Proposition III.3).

The following table “Block-wise Push-sum Average Con-
sensus” formally introduces the algorithm from the perspective
of agent i only. The algorithm consists of applying the push-
sum consensus protocol in a block-wise fashion over the time-
varying subgraphs Gt` introduced above. As in the existing
consensus protocols, atij` in (2) are nonnegative weights to
be properly chosen. We let At

` , [atij`]
N
i,j=1 be the weight-

matrix matching Gt` (cf. Assumption III.1). Each agent i ∈
{1, . . . , N} initializes its local variables as φ0(i,`) = 1 and
z0(i,`) an arbitrary value in Rd for all ` ∈ {1, . . . , B}.

Convergence of the Block-wise Push-sum Average Consen-
sus depends on the choice of the weight matrices as well as
the block-selection rules employed by the agents (which affect
the connectivity properties of each digraph sequence {Gt`}t≥0,
` ∈ {1, . . . , B}). Sufficient conditions on these parameters
guaranteeing convergence are discussed next.

On the choice of At
`: We make the following assumption on

each At
`, which is standard for the push-sum algorithm.

1We use the semicolon in the subscript of a vector to denote the vector
stacking column-wise all its blocks.

Authorized licensed use limited to: Purdue University. Downloaded on September 01,2020 at 15:20:29 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.3008713, IEEE
Transactions on Automatic Control

4

Block-wise Push-sum Average Consensus
Select `ti ∈ {1, . . . , B}
For each j ∈ Ni receive φt(j,`tj) and zt(j,`tj)
For each ` ∈ {1, . . . , B} compute

φt+1
(i,`) =

∑
j∈N ti,`

atij` φ
t
(j,`)

zt+1
(i,`) =

∑
j∈N ti,`

atij` φ
t
(j,`)

φt+1
(i,`)

zt(j,`)

(2)

Assumption III.1. Given the sequence of graphs {Gt`}t≥0, ` ∈
{1, . . . , B} and t ≥ 0, each matrix At

` satisfies the following:
(a) atij` ≥ κ > 0, if (j, i) ∈ E t` ; and atij` = 0, if (j, i) /∈ E t` ;
(b) it is column stochastic, that is, 1>At

` = 1>. �

A natural question is whether a matrix At
` satisfying As-

sumption III.1 can be build by the agents using only local
information. Next, we propose a simple procedure to locally
build a valid At

`. As the underlying communication digraph is
static and strongly connected (cf. Assumption II.2), we assume
that a column stochastic matrix Ã matching G is available, i.e.,
ãij > 0 if (j, i) ∈ E and ãij = 0 otherwise; and 1>Ã = 1>.
To construct At

` in a distributed way, we start noticing that
at iteration t, an agent j either sends a block ` to all its out-
neighbors in G, ` = `tj , or to none, ` 6= `tj . Thus, let us focus on
the j-th column of At

`, denoted by At
`(:, j). If agent j does

not send block ` at iteration t, ` 6= `tj , all the components
of At

`(:, j) will be zero except for atjj`. Thus, for the j-th
column to be stochastic, it must be 1>At

`(:, j) = atjj` = 1
(i.e., At

`(:, j) is the j-th vector of the canonical basis). This is
a legitimate choice since j ∈ N t

j,` by definition. Vice versa, if
j sends block `, all its out-neighbors in G will receive it and,
thus, column At

`(:, j) has the same nonzero entries as column
Ã(:, j) of Ã. Since Ã is column stochastic, one can set
At
`(:, j) = Ã(: j). Note that, since Ã is assumed to be locally

known, each agent can construct its own weights satisfying
the above rule without requiring any additional coordination
with other agents. In summary, for each i ∈ {1, . . . , N} and
` ∈ {1, . . . , B}, weights atij` can be chosen as

atij` ,


ãij , if j ∈ Ni and ` = `tj ,

1, if j = i and ` 6= `ti,

0, otherwise.
(3)

On the choice of the block selection rule: To guarantee con-
vergence of the Block-wise Push-sum Average Consensus over
time-varying digraphs, it is well known that some long-term
connectivity property is required on the digraph sequence [16].
Here, we use T -strong connectivity: for each ` ∈ {1, . . . , B},
the time-varying digraphs {Gt`} are T -strongly connected, i.e.,
the union digraph

⋃T−1
h=0 G

t+h
` is strongly connected ∀ t ≥ 0.

The T -strong connectivity requirement imposes a condition
on the way the blocks are selected. Note that Gt` is a subgraph
of G such that if agent i selects (sends) block ` at time t,
then the edges in E leaving node i are also present in Et` .
Hence, since G is strongly connected (cf. Assumption II.2), the

following general essentially cyclic rule is enough to guarantee
that each {Gt`} is T -strongly connected.

Assumption III.2 (Block Selection Rule). For each agent i ∈
{1, . . . , N} there exists a (finite) constant Ti > 0 such that

Ti−1⋃
h=0

{`t+hi } = {1, . . . , B}, for all t ≥ 0. �

Note that the above rule does not impose any coordina-
tion among the agents; they select their own block inde-
pendently. Therefore, at a given iteration t, different agents
may update different blocks. Moreover, some blocks can be
updated more often than others. On the other hand, such a
rule guarantees that, within a finite time window of length
T ≤ maxi∈{1,...,N} Ti, all the blocks have been updated at
least once by all agents. This is sufficient to ensure that Gt` is
T -strongly connected, as formally stated next.

Proposition III.3. Under Assumption II.2 and III.2, there
exits a 0 < T ≤ maxi∈{1,...,N} Ti, such that, for each
` ∈ {1, . . . , B}, the union digraph

⋃T−1
h=0 G

t+h
` is strongly

connected, for all t ≥ 0.

Proof. For each block `, the set of out-neighbors of each agent
i in

⋃T−1
h=0 G

t+h
` equals the set of the out-neighbors of agent

i in G due to Assumption III.2. Hence, by Assumption II.2,⋃T−1
h=0 G

t+h
` is strongly connected.

B. Block-wise Perturbed Push-sum

We can now generalize the Block-wise Push-sum Average
Consensus introducing in the agents’ local updates a local
block-wise, time-varying (deterministic) perturbation, denoted
by εt(i,`). Later in this subsection we will specify a perturbation
to perform signal tracking, while in the following section
proper perturbations will be devised to design the proposed
distributed optimization algorithm. The block-wise perturbed
push-sum can be obtained by replacing the update (2) with the
following perturbed version

φt+1
(i,`) =

∑
j∈N ti,`

atij` φ
t
(j,`),

zt+1
(i,`) =

∑
j∈N ti,`

atij` φ
t
(j,`)

φt+1
(i,`)

(
zt(j,`) + εt(j,`)

)
,

(4)

for all ` ∈ {1, . . . , B}, where εt(j,`) ∈ Rd are suitable
perturbations that agents inject in their update. This scheme
is a building block of proposed block-wise distributed opti-
mization algorithm that will be introduced in the next section.
Convergence of the block-wise perturbed push-sum algorithm
is stated in the following proposition.

Proposition III.4. Consider the block-wise perturbed push-
sum consensus (4), with weight matrix At

` defined according
to (3). Then, under Assumptions II.2 and III.2, for all i ∈
{1, . . . , N}, it holds∥∥∥zt(i,:) − 1

N

N∑
j=1

zt(j,:)

∥∥∥ ≤ B∑
`=1

∥∥∥zt(i,`) − 1

N

N∑
j=1

zt(j,`)

∥∥∥

Authorized licensed use limited to: Purdue University. Downloaded on September 01,2020 at 15:20:29 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.3008713, IEEE
Transactions on Automatic Control

5

≤ c1(ρ)t + c2

B∑
`=1

t∑
h=1

(ρ)t−h
N∑
j=1

‖εh(j,`)‖1,

for some ρ ∈ (0, 1) and positive constants c1 and c2. �

The proof of the proposition can be obtained by the proof of
[14, Lemma 1], which we report in Appendix as Lemma A.3,
in vector form, as a preliminary result needed for our analysis.
As a corollary (with no proof), the previous result states that
if the perturbations εt(i,`) are vanishing, i.e, limt→∞ ‖εt(i,`)‖ =
0, for all ` ∈ {1, . . . , B} and i ∈ {1, . . . , N}, it holds
limt→∞

∥∥∥zt(i,:) − 1
N

∑N
j=1 zt(j,:)

∥∥∥ = 0, for all i ∈ {1, . . . , N}.
Clearly, for εt(i,`) = 0 for all t ≥ 0, ` ∈ {1, . . . , B} and
i ∈ {1, . . . , N}, the block-wise perturbed push-sum reduces
to the Block-wise Push-sum Average Consensus.

Several tasks can be accomplished by suitably choosing the
perturbation εt(i,`) in (4). As a case study, in the following
we show how to choose the perturbation, in a block-wise
fashion, in order to track the average of time-varying signals
over graphs. The resulting block-wise tracking scheme will be
part of the proposed distributed optimization algorithm.

Block-wise average signal tracking. Consider the problem of
tracking the average of N time-varying signals over a graph
G, [43], [44]. Specifically, assume each agent i has access
to a time-varying signal, say {uti}t∈N, with each uti ∈ RdB ,
and aims at tracking the average signal ūt , (1/N) ·

∑N
i=1 uti

by exchanging information over the network. Existing tracking
schemes, e.g. ones used in distributed optimization algorithms
[24]–[34], [36], [37], require the acquisition and communi-
cation at each iteration of the entire signal uti, which might
be too costly in a big-data setting. To cope with the curse
of dimensionality, we can leverage the block-wise perturbed
push-sum consensus algorithm: to track distributedly ūt, one
can show that it is sufficient to set εt(i,`) in (4) to

εt(i,`) =
1

φt(i,`)

(
ut+1
i,` − uti,`

)
, (5)

where uti,` denotes the `-th block of uti.
While the tracking scheme (4)–(5) unlocks block-

communications over networks, it requires, at each iteration,
to potentially perform (5) for all the blocks ` ∈ {1, . . . , B},
i.e. the evaluation (acquisition) of the entire signal uti. When
the cost of acquiring uti is non-negligible, e.g., uti can be
the gradient of a function with respect to a large number of
variables, it is advisable to modify the protocol so that, at each
iteration, only one block of uti is used. To this end, we propose
to replace uti with a surrogate local variable, denoted by ûti,
initialized as û0

i = u0
i . At each iteration t, agent i acquires

only a block of uti, say the `ti-th block, and updates ûti as

ûti,` =

uti,`, if ` = `ti,

ût−1i,` , if ` 6= `ti,

where, as in (5), ûti,` denotes the `-th block of ûti. That is,
the vector ûti collects agent i’s most recent information on uti.

The modified block-tracking scheme then reads

φt+1
(i,`) =

∑
j∈N ti,`

atij` φ
t
(j,`),

zt+1
(i,`) =

∑
j∈N ti,`

atij`

φt+1
(i,`)

(
φt(j,`)z

t
(j,`) + (ût+1

j,` − ûtj,`)
)
.

IV. BLOCK-SONATA DISTRIBUTED ALGORITHM

In this section we introduce our distributed big-data opti-
mization algorithm (cf. Section IV-A) along with its conver-
gence properties (cf. Section IV-B). Some extensions of the
basic scheme are discussed in Section IV-C.

A. Algorithm Description

The proposed distributed algorithm takes inspiration from
two existing optimization algorithms, namely: NEXT (in-
Network succEssive conveX approximaTion) [25], [26] and
SONATA (distributed Successive cONvex Approximation al-
gorithm over Time-varying digrAphs) [28], [29]. These algo-
rithms combine successive convex approximation techniques
with a distributed gradient tracking mechanism to solve con-
vex and nonconvex optimization problems over time-varying
(di)graphs. Specifically, they consist of a two-step procedure
in which each agent: (i) solves a local strongly convex ap-
proximation of the target optimization problem, and (ii) runs
a twofold averaging scheme to reach consensus among the
local solution estimates and to “track” the average of the
gradient of agents’ cost functions (the smooth part). As all
the other existing schemes, they are not designed to solve big-
data optimization problems over networks: they require that, at
every iteration, agents solve a huge-scale optimization problem
and communicate their entire solution estimate to neighbors.

We propose a distributed algorithm, named BLOCK-
SONATA, based on a block-wise execution of steps (i)
and (ii) above. It copes with big-data optimization problems
by unlocking for the first time block-wise optimization and
communications. While the intuitive idea behind this block ex-
tension might look simple, we will show that the convergence
analysis of BLOCK-SONATA is quite challenging. Indeed it
calls for new techniques to deal with local inexact (block-wise)
optimization and communications, the latter inducing block-
dependent time-varying digraphs in the consensus updates.

BLOCK-SONATA reads as follows. Each agent maintains
a local solution estimate xt(i,:) ∈ RdB of problem (1),
with the same block structure as the optimization variable
x, with xt(i,`) ∈ Rd being its `-th block-component. All
these estimates are iteratively updated with the goal of being
asymptotically consensual to a stationary solution of problem
(1). Agents also update a local auxiliary variable yt(i,:) ∈ RdB

that is meant to track 1
N

∑N
j=1∇fj(xt(j,:)) (which is not

known locally by the agents), i.e., to get, for any agent i,
limt→∞ ‖yt(i,:) −

1
N

∑N
j=1∇fj(xt(j,:))‖ = 0. The update of

the x- and y-variables is described next.
Block-wise local optimization step. At iteration t, every
agent i selects a block `ti ∈ {1, . . . , B} according to an
essentially cyclic rule satisfying Assumption III.2. As for the

Authorized licensed use limited to: Purdue University. Downloaded on September 01,2020 at 15:20:29 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.3008713, IEEE
Transactions on Automatic Control

6

optimization step, agent i computes a descent direction with
respect to the selected block (only) by solving a strongly
convex approximation of problem (1) (based on its current
solution and gradient estimates, respectively xt(i,:) and yt(i,`ti)

).
Specifically, it solves

x̃t(i,`ti)
= argmin

x`t
i
∈K`t

i

f̂i,`ti
(
x`ti ; x

t
(i,:),y

t
(i,`ti)

)
+ r`ti(x`ti),

with

f̂i,`ti
(
x`ti ; x

t
(i,:),y

t
(i,`ti)

)
= f̃i,`ti(x`ti ; x

t
(i,:))

+ (Nyt(i,`ti)
−∇`tifi(x

t
(i,:)))

>(x`ti−xt(i,`ti)
),

where f̃i,`ti(x`ti ; x
t
(i,:)) is a strongly convex approximation of

fi satisfying the following assumption.

Assumption IV.1 (On the surrogate functions). Given prob-
lem (1) under Assumption II.1, each surrogate function f̃i,` :
K` ×K → R is chosen so that

(i) f̃i,`(•; x) is uniformly strongly convex with constant τi >
0 on K`;

(ii) ∇f̃i,`(x`; x) = ∇`fi(x), for all x ∈ K;
(iii) ∇f̃i,`(x`; •) is uniformly Lipschitz continuous on K;
where ∇f̃i,` denotes the partial gradient of f̃i,` with respect
to its first argument. �

Several choices for f̃i,` are possible; we refer the in-
terested reader to [1], [2], [8], [26], [29] for more details
and examples. We point out that each strongly convex func-
tion f̂i,`

(
x`; x

t
(i,:),y

t
(i,`)

)
satisfies∇f̂i,`

(
xt(i,`); x

t
(i,:),y

t
(i,`)

)
=

Nyti,`, thus it asymptotically encodes first order information
of
∑
i fi, namely

∑N
i=1∇fi(xt(i,:)). As a clarifying example,

one can consider the simplest first order approximation of fi
given by its linearization about the current iterate xt(i,:),

f̂i,`
(
x`; x

t
(i,:),y

t
(i,`)

)
=(Nyt(i,`))

>(x`−xt(i,`))+τi‖x`−xt(i,`)‖
2.

Given x̃t(i,`ti)
, agent i computes and broadcasts to its neigh-

bors the feasible point xt(i,`ti)
+ γt∆xt(i,`ti)

, with ∆xt(i,`ti)
=

x̃t(i,`ti)
−xt(i,`ti)

being a local feasible descent direction and γt

a step-size.
Block-wise averaging and gradient tracking step. As for the
consensus steps, agent i collects all the updated blocks from its
neighbors and runs two instances of the block-wise perturbed
push-sum consensus scheme, described in Section III (Cf.
eq. (4)). The first one is meant to make the local solution
estimates, xt(i,:), consensual toward their average; the second,
involving a local gradient estimate yt(i,:), serves as a tracking
scheme for the gradient signal

∑N
i=1∇fi(xt(i,:)).

The BLOCK-SONATA distributed algorithm is summarized
(from the perspective of node i) in the next table.

Remark IV.2. We would like to stress that agents send only
one block per iteration. Hence, each “for” loop over ` [cf. (8)–
(10)] consists of at most |Ni| non-trivial consensus steps.
Thus, each agent i receives exactly |Ni|(2d + 1) updated
quantities per iteration. Moreover, due to the presence of the
weights atij`, each non-trivial consensus step requires to sum
at most |Ni| terms over all the blocks. �

BLOCK-SONATA
Initialization: x0

(i,:) ∈ K arbitrary and y0
(i,:) = ∇fi(x0

(i,:))

Local Optimization:
Select `ti ∈ {1, . . . , B} and compute

x̃t(i,`ti)
= argmin

x`t
i
∈K`t

i

f̂i,`ti
(
x`ti ; x

t
(i,:),y

t
(i,`ti)

)
+ r`ti(x`ti) (6)

∆xt(i,`) =

{
x̃t(i,`ti)

− xt(i,`ti)
, if ` = `ti,

0, otherwise.
(7)

Averaging and Gradient Tracking:
For each j ∈ Ni receive φt(j,`tj) and xt(j,`tj)

+ γt∆xt(j,`tj)
.

For each ` ∈ {1, . . . , B} compute

φt+1
(i,`) =

∑
j∈N ti,`

atij` φ
t
(j,`) (8)

xt+1
(i,`) =

∑
j∈N ti,`

atij` φ
t
(j,`)

φt+1
(i,`)

(
xt(j,`) + γt∆xt(j,`)

)
(9)

For each j ∈ Ni receive
(
φt(j,`tj)

yt(j,`tj)
+∇`tjfj

(
xt+1
(j,:)

)
−

∇`tjfj
(
xt(j,:)

))
For each ` ∈ {1, . . . , B} compute

yt+1
(i,`) =

∑
j∈N ti,`

atij`

φt+1
(i,`)

(
φt(j,`)y

t
(j,`)+∇`fj

(
xt+1
(j,:)

)
−∇`fj

(
xt(j,:)

))
.

(10)

B. Algorithm Convergence

We now provide the main convergence result of BLOCK-
SONATA. We first introduce the following assumption on the
step-size sequence {γt}t≥0 [cf. (9)].

Assumption IV.3 (On the step-size). The sequence {γt}t≥0,
with each 0 < γt ≤ 1, satisfies: (i) γt+1 ≤ γt, for all t ≥ 0;

and (ii)
∞∑
t=0

γt =∞ and
∞∑
t=0

(γt)2 <∞. �

The above conditions are standard and satisfied by most
practical diminishing step-size rules. For example, the fol-
lowing rule, proposed in [8], satisfies Assumption IV.3 and
has been found very effective in our experiments: γt+1 =
γt(1− µγt), with γ0 ∈ (0, 1] and µ ∈ (0, 1/γ0).

We are now in the position to state the main convergence
result, as given below.

Theorem IV.4. Let {(xt(i,:))
N
i=1}t≥0 be the sequences gen-

erated by BLOCK-SONATA and consider their weighted
average

s̄t =
1

N

(N∑
i=1

φt(i,`)x
t
(i,`)

)B
`=1

.

Suppose that Assumptions II.1, II.2, III.1, III.2, IV.1 and IV.3
are satisfied; then the following statements hold true:

(i) consensus: ‖xt(i,:) − s̄
t‖ → 0 as t → ∞, for all i ∈

{1, . . . , N};

Authorized licensed use limited to: Purdue University. Downloaded on September 01,2020 at 15:20:29 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.3008713, IEEE
Transactions on Automatic Control

7

(ii) convergence: {s̄t}t≥0 is bounded and every of its limit
points is a stationary solution of problem (1).

Proof. See the Appendix.

Theorem IV.4 states two results. First, a consensus is asymp-
totically achieved among the local estimates xt(i,:) over all the
blocks. Second, the weighted average estimate s̄t converges
to the set S of stationary solutions of problem (1).

C. Alternative Formulations and Generalizations

In this subsection, we discuss some extensions and gen-
eralizations of the basic BLOCK-SONATA. First, we start
describing a special instance for an unconstrained version of
problem (1) with all r` = 0. If one chooses the simplest
surrogate in (6), namely the linearization of fi about the
current iterate, then BLOCK-SONATA reads

φt+1
(i,`) =

∑
j∈N ti,`

atij` φ
t
(j,`)

xt+1
(i,`) =

∑
j∈N ti,`

atij` φ
t
(j,`)

φt+1
(i,`)

(
xt(j,`) − γ

tyt(j,`)

)

yt+1
(i,`) =

∑
j∈N ti,`

atij`

φt+1
(i,`)

(
φt(j,`) yt(j)+∇`fj(x

t+1
(j,:))−∇`fj(x

t
(j,:))

)
,

which is a block-wise implementation of distributed algorithms
based on a gradient tracking scheme as, e.g., [26], [29]–[34].
Combine-Then-Adapt Averaging. The block-wise consensus
and tracking updates as in (9) and (10) are performed in the so-
called Adapt-Then-Combine (ATC) fashion. We remark that
they can be also performed adopting the other scheme used
in the literature, namely the so-called Combine-Then-Adapt
(CTA) way [45]. The CTA form of the averaging and gradient
tracking step of BLOCK-SONATA reads

xt+1
(i,`) =

∑
j∈N ti,`

atij`φ
t
(j,`)

φt+1
(i,`)

xt(j,`) + γtφt(i,`)∆xt(i,`)

yt+1
(i,`) =

∑
j∈N ti,`

atij` φ
t
(j,`)

φt+1
(i,`)

yt(j,`) +
∇`fi

(
xt+1
(i,:)

)
−∇`fi

(
xt(i,:)

)
φt+1
(i,`)

.

Following the same steps of the proof and with minor changes
of the absolute constants, one can show that Theorem IV.4 also
applies to the CTA form of BLOCK-SONATA, which thus
converges under the same condition of its ATC counterpart.
Block-Wise Gradient Computation. In order to perform (10)
(and also its CTA counterpart), agent i needs to compute the
entire gradient ∇fi(xt+1

(i,:)) [recall from (3) that aii` > 0, for
all `]. This potential drawback can be overcome considering a
slightly different version of BLOCK-SONATA in which ∇`fi
is replaced by an auxiliary variable ĝ(i,`), which is iteratively
updated as

ĝt+1
(i,`) =

{
∇`tifi

(
xt+1
(i,:)

)
, if ` = `ti,

ĝt(i,`), otherwise.

Thus, step (10) must be replaced by

yt+1
(i,`) =

∑
j∈N ti,`

atij`φ
t
(j,`)

φt+1
(i,`)

yt(j,`) +
ĝt+1
(i,`) − ĝt(i,`)

φt+1
(i,`)

.

Remark IV.5. The auxiliary mechanism of ĝ imposes that, at
each iteration t of BLOCK-SONATA, each agent i computes
two components of the same gradient, ∇fi(xt(i,:)), rather than
one. This twofold computation can be avoided by using a slight
modification of the scheme in which the block index is selected
after the optimization step, see [2] for further details. �

V. NUMERICAL STUDY:
APPLICATION TO SPARSE REGRESSION

In this section we apply BLOCK-SONATA to the distributed
sparse regression problem. Consider a network of N agents
taking linear measurements of a sparse signal x0 ∈ Rm, with
measurement matrix Di ∈ Rni×m. The observation taken by
agent i can be expressed as bi = Dix0 + ni, where ni ∈ Rni
accounts for the measurement noise. The estimation of the
underlying signal x0 is obtained solving the following problem

min
x∈K

N∑
i=1

‖Dix− bi‖22︸ ︷︷ ︸
fi(x)

+ r(x), (11)

where x ∈ Rm; K is the box constraint set K , [kL, kU]m,
with kL ≤ kU ; and r : Rm → R is a difference-of-convex
(DC) sparsity-promoting regularizer, given by

r(x) , λ ·
m∑
j=1

r0(xj), r0(xj) ,
log(1 + θ|xj |)

log(1 + θ)
,

where λ and θ are positive tuning parameters.
The first step to apply BLOCK-SONATA is to build a valid

surrogate f̃i,` of fi (cf. Assumption IV.1). To this end, we first
rewrite r0 as a difference-of-convex function. It is not difficult
to check that

r0(x) = η(θ) |x|︸ ︷︷ ︸
r+0 (x)

−
(
η(θ) |x| − r0(x)

)︸ ︷︷ ︸
r−0 (x)

,

where r+0 : R → R is convex non-smooth with η(θ) ,
θ/ log(1 + θ), and r−0 : R → R is convex with Lipschitz
continuous first order derivative given by

dr−0
dx

(x) = sign(x) · θ2|x|
log(1 + θ)(1 + θ|x|)

.

Denoting the coordinates associated with the `-th block as
I` ⊂ {1, . . . , B}, let us define the matrix Di,` [resp. Di,−`]
constructed by picking the columns of Di that belongs [resp.
does not belong] to I`. Then, the following is a valid surrogate
function for each agent i that satisfy Assumption IV.1. We
consider f̃i obtained as the linearization of fi and −r−0 , about
the current solution estimate, which leads to

f̃i,`(x`; x
t
(i,:)) =

(
2D>i,`(Di − bi)

)>
(x` − xt(i,`))

+
τi
2
‖x` − xt(i,`)‖

2 −
∑
k∈I`

dr−0 ((xt(i,`))k)

dx︸ ︷︷ ︸
vtik

(x` − xt(i,`))k,

Authorized licensed use limited to: Purdue University. Downloaded on September 01,2020 at 15:20:29 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.3008713, IEEE
Transactions on Automatic Control

8

where x is a scalar variable and, e.g., (xt(i,`))k denotes the
k-th scalar component of xt(i,`). Note that the minimizer of
f̃i,` can be computed in closed form, and is given by

xt+1
(i,`) = PK`

(
Sλη
τi

(
xt(i,`) −

1

τi
(2 D>i,`(Di − bi)− vti,`)

))
where vti,` , (vtik)k∈I` , Sλ(x) , sign(x) · max{|x| − λ, 0}
(operations are performed element-wise), and PK` is the
Euclidean projection onto K`.

We test our algorithm, considering the following simulation
set-up. The variable dimension m is set to be 400, K is set
to be [−10, 10]400, and the regularization parameters are set
to λ = 0.15 and θ = 7. The network is composed of N = 30
agents, communicating over an undirected graph G, obtained
using an Erdős-Rényi random model. We considered two
extreme network topologies: a densely and a poorly connected
one, which have algebraic connectivity equal to 25 and 5,
respectively. The components of the ground-truth signal x0 are
i.i.d., generated according to the Normal distribution N (0, 1).
To impose sparsity on x0, we set the smallest 80% of the
entries of x0 to zero. Each agent i has a measurement matrix
Di ∈ R300×400 with i.i.d. N (0, 1) distributed entries (with
`2-normalized rows), and the observation noise ni ∈ R300 has
entries i.i.d. distributed according to N (0, 0.5).

We compare our algorithm with the (sub)gradient-projection
algorithm proposed in [13]. Note that there is no formal proof
of convergence for such an algorithm in the nonconvex setting;
moreover it is designed for the non-block-wise case, i.e.,
B = 1. We used the following tuning for the algorithms. The
diminishing step-size is chosen as γt = γt−1(1 − µγt−1),
with γ0 = 0.3 and µ = 10−3; the proximal parameter
τi = 10 for all i. To evaluate the algorithmic performance
we used three merit functions. The first one measures the
distance from stationarity of the average of the agents’ iterates
s̄t = 1

N (
∑N
i=1 φ

t
(i,`)x

t
(i,`))

B
`=1, and is given by

J t ,

∥∥∥∥s̄t − PK(Sλη(s̄t − (N∑
i=1

∇fi(s̄t)− r(s̄t)
)))∥∥∥∥

∞
.

Note that J t is a valid merit function: it is continuous and
it is zero if and only if the s̄t is a stationary solution of
problem (11). The other two merit functions quantify the
consensus disagreement at each iteration among the solution
estimates and the trackers. They are defined as

Dt , max
i∈{1,...,N}

‖xt(i,:) − s̄
t‖,

Rt , max
i∈{1,...,N}

‖yt(i,:) − σ̄
t‖,

where the average s̄t is defined as before, while the average
tracker is σ̄t = 1

N (
∑N
i=1 φ

t
(i,`)y

t
(i,`))

B
`=1.

The performance of BLOCK-SONATA for different choices
of the block dimension B are reported in Figure 1. To fairly
compare the algorithms run for different block sizes, we
plot J t, Dt and Rt versus the average agents’ “message
exchanges”, defined as t/B, where t is the iteration counter
used in the algorithm description. The figures show that
stationarity, consensus and correct tracking have been achieved

0 100 200 300 400
10−4

10−3

10−2

10−1

100

101

102

of message exchanges t/B

J
t
,
D

t
,
R

t

2 blocks

10 blocks

40 blocks

D-Grad

Jt

Dt

Rt

Figure 1. Optimality measurement Jt (solid), consensus error Dt (dotted)
and tracking error Rt (dashed) versus the number of message exchange for
several choices of the number of blocks B.

by BLOCK-SONATA within 200 message exchanges while
the plain gradient scheme [13] is much slower.
Let tend be the completion time up to a tolerance 10−3, i.e.,
the iteration counter of the distributed algorithm such that
J tend < 10−3. Fig. 2 shows the normalized completion time
tend/B versus the number of blocks B. It highlights how
the communication cost reduces by increasing the number of
blocks. Notice that for B = 1 BLOCK-SONATA reduces to
SONATA (cf. [28], [29], hence Fig. 2 shows also how the
proposed scheme compares with the state of the art for non-
big-data problems.

1 2 4 10 20 40
180

200

220

240

260

280

of blocks B

t e
n
d
/
B

(t
o
le
ra
n
ce

1
0
−
3
) Alg. Conn.= 5

Alg. Conn.= 25

Figure 2. Completion time required to obtain Jt < 10−3 versus the
number of blocks B for two network topologies having different algebraic
connectivity.

VI. CONCLUSIONS

In this paper we proposed a novel block-iterative distributed
scheme for nonconvex, big-data optimization problems over
networks. That is, we addressed large-scale optimization prob-
lems in which the dimension of the decision vector is huge
via a distributed algorithm (over network) in which each agent
optimizes over and communicates one block only of the entire

Authorized licensed use limited to: Purdue University. Downloaded on September 01,2020 at 15:20:29 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.3008713, IEEE
Transactions on Automatic Control

9

decision vector. Specifically, at each iteration, agents solve
a local optimization problem involving only one block of
the decision vector The optimization step is combined with
a novel block-wise perturbed consensus protocol based on
the communication to neighboring agents of one block only.
We proved that agents achieve consensus to their (weighted)
average, and that any limit point of the average sequence
is a stationary solution of the optimization problem. Finally,
we provided numerical results corroborating our theoretical
findings and highlighting the impact of the block dimension on
algorithm performance. Future research directions include the
extensions of the design of distributed big-data optimization
methods under more general network scenarios, including
delays, noise or packet losses.

APPENDIX

To study convergence of BLOCK-SONATA, it is conve-
nient to introduce some auxiliary variables, namely: st(i,:) ,

(st(i,`))
B
`=1 and σt(i,:) , (σt(i,`))

B
`=1, for all i ∈ {1, . . . , N}.

Steps (8), (9), and (10) in BLOCK-SONATA can be then
rewritten as: for all ` ∈ {1, . . . , B} and i ∈ {1, . . . , N},

φt+1
(i,`) =

∑
j∈Ni

atij` φ
t
(j,`), (12)

st+1
(i,`) =

∑
j∈Ni

atij`

(
st(j,`) + γtφt(j,`)∆xt(j,`)

)
, (13)

xt+1
(i,`) =

st+1
(i,`)

φt+1
(i,`)

, (14)

σt+1
(i,`) =

∑
j∈Ni

atij`

(
σt(j,`)+∇`fj

(
xt+1
(j,:)

)
−∇`fj

(
xt(j,:)

))
, (15)

yt+1
(i,`) =

σt+1
(i,`)

φt+1
(i,`)

, (16)

with each σ0
(i,:) , ∇fi(x

0
(i,:)).

Averaging (13) and (15) over i ∈ {1, . . . , N} and using
the column stochasticity of each At

`, yields the following
dynamics for the block-averages: for each ` ∈ {1, . . . , B},

s̄t+1
` = s̄t` + γt

1

N

N∑
i=1

φt(i,`)∆xt(i,`), (17)

σ̄t+1
` = σ̄t` +

1

N

N∑
i=1

(
∇`fi(xt+1

(i,:))−∇`fi(x
t
(i,:))

)
, (18)

where s̄t` , (1/N) ·
∑N
i=1 st(i,`) and σ̄t` , (1/N) ·

∑N
i=1 σ

t
(i,`).

We also define s̄t , (s̄t`)
B
`=1 and σ̄t , (σ̄t`)

B
`=1. To prove

Theorem IV.4, it is sufficient to show that: (i) all the local
copies xt(i,:) converge to s̄t; and (ii) every limit point of
{s̄t}t≥0 is a stationary solution of problem (1).

Notice that given a linear dynamical system in the form (17),
one can always write

s̄t+θt` = s̄t` +
t+θt−1∑
h=t

uh`

for every integer θt ∈ [0, T], where we used the short-
hand uh` = γh 1

N

∑N
i=1 φ

h
(i,`)∆xh(i,`). Thus, if the input uh`

is vanishing, i.e., limh→∞ ‖uh` ‖ = 0, there holds

lim
t→∞

‖s̄t+θt` − s̄t`‖ ≤ lim
t→∞

t+θt−1∑
h=t

‖uh` ‖

≤ lim
t→∞

t+T−1∑
h=t

‖uh` ‖ = 0.

(19)

Structure of the proof: The proof is organized as follows. In
Section A, we introduce some preliminary results that will
be used in the rest of the sections, namely: (i) a formal
description of the perturbed push-sum algorithm along with
its convergence properties; and (ii) a list of key properties of
a best-response map x̃t and related quantities. Theorem IV.4(i)
is proven in Section B, where convergence of the consensus
updates (14) and tracking mechanism (16) is studied. More
specifically, first we prove that limt→∞ ‖xt(i,:) − s̄

t‖ = 0,
for all i ∈ {1, . . . , N} (cf. Proposition B.9), showing thus
asymptotic consensus of the local estimates xt(i,:); and, second,
limt→∞ ‖yt(i,:) − σ̄

t‖ = 0, for all i ∈ {1, . . . , N} (cf. Propo-
sition B.10), which together with

σ̄t =
1

N

N∑
i=1

∇fi(xt(i,:)), ∀t ≥ 0, (20)

proves that each yt(i,:) tracks asymptotically the average of the
cost function gradients. In Section C, we study the descent
properties of a suitably defined Lyapunov-like function along
the trajectory {(xt(i,:))

N
i=1, s̄

t}t≥0. This result is instrumental
to show (subsequence) convergence of {s̄t}t≥0 to stationary
solutions of problem (1) [in the sense of Theorem IV.4(ii)],
which is proven in Section D.

A. Technical preliminaries

1) Perturbed push-sum consensus: Consider a network of
N agents communicating, at each time slot t, over the graph
Gt , ({1, . . . , N}, Et). The vector form of the perturbed push-
sum protocol introduced in [14] reads: for all t ≥ 0,

ψt+1
i =

∑
j∈N ti

atijψ
t
j

ηt+1
i =

∑
j∈N ti

atij(η
t
j + εtj)

zt+1
i =

ηt+1
i

ψt+1
i

,

(21)

where ψi ∈ R, ηi ∈ Rn, zi ∈ Rn are agent i’s local variables,
with ψ0

i = 1, and {εti}t≥0 is a given perturbation sequence
(known by agent i only). The graph Gt and weight matrix
At , (aij)

N
i,j=1 satisfy the following assumptions.

Assumption A.1. The graph sequence {Gt}t≥0 is strongly
connected, i.e., there exists an integer T > 0 such that
the union digraph

⋃T−1
h=0 Gt+h , ({1, . . . , N},∪T−1h=0 Et+h) is

strongly connected for all t ≥ 0. �

Assumption A.2. Each weight matrix At matches graph Gt,
that is, it satisfies
(1) atij = 0, if (j, i) /∈ E t; and atij ≥ κ > 0, if (j, i) ∈ E t;

Authorized licensed use limited to: Purdue University. Downloaded on September 01,2020 at 15:20:29 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.3008713, IEEE
Transactions on Automatic Control

10

(2) atii ≥ κ > 0, for all i ∈ {1, . . . , N};
(3) At is column stochastic, i.e., 1>At = 1>. �

The convergence properties of the (scalar version of the)
perturbed push-sum protocol have been studied in [14,
Lemma 1], as summarized below [for the vector case (21)].

Lemma A.3. Consider the perturbed push-sum protocol (21)
under Assumptions A.1 and A.2. Then, the following hold:
(1) For all t ≥ 0 and some ρ ∈ (0, 1), c1, c2 > 0,∥∥∥zt+1
i − 1

N

N∑
j=1

(ηtj + εtj)
∥∥∥≤c1(ρ)t + c2

t∑
h=1

(ρ)t−h
N∑
i=1

‖εhi ‖1;

(22)

(2) If the perturbations are vanishing, i.e., lim
t→∞

‖εti‖ = 0,

i ∈ {1, . . . , N}, then

lim
t→∞

∥∥∥zt+1
i − 1

N

N∑
j=1

(ηtj + εtj)
∥∥∥ = 0;

(3) The sequence {ψti}t≥0 satisfies

inf
t≥0

(
min

i∈{1,...,N}
ψti

)
, δ > 0. �

Note that, since At is column stochastic, we have η̄t+1 ,
1
N

∑N
j=1 η

t+1
j = 1

N

∑N
j=1(ηtj+ε

t
j). Therefore, the bound (22)

can be written also as∥∥∥zt+1
i − η̄t+1

∥∥∥ ≤ c1(ρ)t + c2
t∑

h=1

(ρ)t−h
N∑
i=1

‖εhi ‖1. (23)

2) Properties of the best-response map x̃t: In this subsec-
tion, we introduce some intermediate results dealing with key
properties of a best-response map x̃t and related quantities. For
notational simplicity, we state the results in a more abstract
form, omitting time and agent index dependencies.

Consider the following optimization problem

x̃ , argmin
x∈K

h(x) + r(x) (24)

where K is a closed convex set and h (resp. r) is a C1
(resp. convex, possibly nonsmooth) function on (an open set
containing) K. Given some w ∈ K, let us also introduce the
function ĥ(•; w,∇h(w)) : K → K (the explicit dependence
of ĥ from w and ∇h(w) is immaterial for our discussion). We
assume that ĥ(•; w,∇h(w)) satisfies the following conditions:
(1) ĥ(•; w,∇h(w)) is C1 (on an open set containing K) and

τ -strongly convex on K;
(2) ∇ĥ(w; w,∇h(w)) = ∇h(w);
(3) ∇wĥ(x; w,∇h(w)) is uniformly Lipschitz continuous

for all x ∈ K.
The function ĥ(•; w,∇h(w)) should be considered as a
strongly convex approximation of h having the same gradient
of h at w. Given ĥ(•; w,∇h(w)), we can finally introduce
the following optimization problem

x̂(w) = argmin
x∈K

ĥ(x; w,∇h(w)) + r(x), (25)

which can be considered as a convex approximation of (24).
The following results establish some key properties of the

best-response maps x̃ and x̂.

Lemma A.4. Consider problem (24) under the further as-
sumption that h is τ -strongly convex. Then, for all v ∈ K, the
following hold:

(i) ‖x̃− v‖ ≤ 1

τ
‖∇h(v)‖+

1

τ
‖∇̃r(x̃)‖;

(ii) ∇h(v)>(x̃− v) ≤ −τ‖x̃− v‖2 − (r(x̃)− r(v)).

Proof. The proof follows readily from the first order optimal-
ity conditions of (24) and the convexity of r.

Proposition A.5 ([8, Prop. 8]). The best-response map
K3w 7−→ x̂(w) defined in (25) satisfies
(1) x̂(•) is Lipschitz continuous on K;
(2) The set of the fixed-points of x̂(•) coincides with the set

of stationary solutions of problem (24); therefore x̂(•)
has a fixed point. �

We can now customize the above results to our setting. Con-
sider the best-response x̃t(i,`) in (7); applying Lemma A.4(ii)
we readily obtain the following.

Lemma A.6. The best-response x̃t(i,`) defined in (7) satisfies(
yt(i,`)

)>
∆xt(i,`) ≤ −τi‖∆xt(i,`)‖

2 −
(
r`(x̃

t
(i,`))− r`(x

t
(i,`))

)
,

(26)

for all ` ∈ {1, . . . , B}. �

Finally, consider the best-response map K3w 7−→
x̂(i,`)(w), defined as

x̂(i,`)

(
w
)
, argmin

x`∈K`
f̂i,`

(
x`; w,

1

N

N∑
i=1

∇`fi(w)
)

+ r`(x`).

(27)
Clearly (27) is an instance of (25). It follows readily from
Proposition A.5 that x̂(i,`)(•) enjoys the following properties.

Lemma A.7. The best-response x̂(i,`)(•) defined in (27)
satisfies:
(1) x̂(i,`)(•) is L̂i,`-Lipschitz continuous on K;
(2) The set of the fixed-points of x̂(i,:)(•) ,

(
x̂(i,`)(•)

)B
`=1

coincides with the set of stationary solutions of prob-
lem (1). �

B. Convergence of Consensus and Tracking

In this subsection we prove that i) the local estimates xt(i,:)
reach asymptotic consensus (cf. Proposition B.9); and ii) all
yt(i,:) are asymptotically consensual while tracking the average
of the gradients, namely 1

N

∑N
i=1∇fi(xt(:,i)) (cf. Proposi-

tion B.10). Note that Proposition B.9 also proves statement
(i) of Theorem IV.4.

1) Achieving consensus: We begin observing that, for
each ` ∈ {1, . . . , B}, the block-wise x-update of BLOCK-
SONATA [cf. (12)–(14)] is an instance of the perturbed push-
sum algorithm (21), with εti , γtφt(i,`)∆xt(i,`) and n = d.
By Lemma A.3(2), it follows that convergence of each xt(i,`)
to the average s̄t` can be readily proven showing that each
∆xt(i,`) is uniformly bounded. In fact, this together with γt ↓ 0

and φt(i,`) ≤ N , for all i ∈ {1, . . . , N} and t ≥ 0, yields

Authorized licensed use limited to: Purdue University. Downloaded on September 01,2020 at 15:20:29 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.3008713, IEEE
Transactions on Automatic Control

11

limt→∞ ‖εti‖ = 0 (cf. Proposition B.9). The following lemma
proves that each ∆xt(i,`) is uniformly bounded.

Lemma B.8. Consider problem (1) under Assumption II.1,
II.2, III.1, IV.1, IV.3. Let {(φt(i,:))

N
i=1}t≥0, {(xt(i,:))

N
i=1}t≥0 and

{(yt(i,:))
N
i=1}t≥0 be generated by BLOCK-SONATA. Then, for

all ` ∈ {1, . . . , B} and i ∈ {1, . . . , N}, the following holds:

sup
t≥0

∥∥∥yt(i,`) − σ̄t`∥∥∥ < C1, (28)

and
sup
t≥0

∥∥∥∆xt(i,`)

∥∥∥ < C2, (29)

where C1 and C2 are some positive, finite scalars.

Proof. We prove (28). Note that the gradient tracking in (12),
(15) and (16) is an instance of the perturbed push-sum
algorithm (21), with εti , ∇`fi

(
xt+1
(i,:)

)
−∇`fi

(
xt(i,:)

)
. By

Lemma A.3 (cf. eq. (23)), we have∥∥∥yt(i,`) − σ̄t`∥∥∥
≤ c1(ρ)t−1 +

t−1∑
h=1

(ρ)t−1−h
N∑
i=1

∥∥∥∇`fi(xh+1
(i,:))−∇`fi(xh(i,:))

∥∥∥
1

≤ c1(ρ)t−1 + (2N
√
dMF)

t−1∑
h=1

(ρ)t−1−h,

where MF ,
∑N
i=1Mfi and Mfi denotes the bound for ∇fi

[cf. Assumption II.1(iii)]. The above inequality proves (28).
We prove now (29). Consider the case ` = `ti [for ` 6= `ti,
∆xt(i,`) = 0, trivially implying (29)]. Invoking Lemma A.4(i),
with the following identifications: x̃ = x̃t(i,`), h(•) =

f̂i,`ti(•; x
t
(i,:),y

t
(i,`ti)

), r(•) = r`ti(•), and K = K`ti , yields∥∥∥∆xt(i,`ti)

∥∥∥ ≤ N

τi

∥∥∥yt(i,`ti)∥∥∥+
Br
τi
,

where we used the fact that i) ∇f̂i,`ti(x
t
(i,`ti)

; xt(i,:),y
t
(i,`ti)

) =

Nyt(i,`ti)
(cf. Assumption IV.1(ii)); and ii) ‖∇̃r`ti(x

t
(i,`ti)

)‖ ≤
Br [cf. Assumption II.1(iv)]. By adding and subtracting σ̄t(i,`ti)
in ‖yt(i,`ti)‖ and using triangle inequality we can bound
‖∆xt(i,`ti)

‖ as

‖∆xt(i,`ti)
‖ ≤ N

τi

∥∥∥yt(i,`ti) − σ̄t(i,`ti)∥∥∥+
N

τi

∥∥∥σ̄t(i,`ti)∥∥∥+
Br
τi
.

(a)

≤ N

τi

B∑̀
=1

∥∥∥yt(i,`) − σ̄t(i,`)∥∥∥
+

1

τi

∥∥∥ N∑
i=1

∇`tifi(x
t
(i,:))

∥∥∥+
Br
τi

(b)

≤ N

τi

B∑̀
=1

∥∥∥yt(i,`) − σ̄t(i,`)∥∥∥+
N

τi
·MF +

Br
τi

(c)

≤ N

τi
·B · C1 +

N

τi
·MF +

Br
τi
, C2 <∞,

where in (a) we used (20); (b) follows from the boundedness
of∇fi [cf. Assumption II.1(iii)]; and (c) comes from (28).

We are now ready to characterize the dynamics of the
consensus error, as given below.

Proposition B.9. Consider problem (1) under Assump-
tions II.1, II.2, III.1, IV.1, IV.3. Let {(xt(i,:))

N
i=1}t≥0 and

{(st(i,:))
N
i=1}t≥0 be generated by BLOCK-SONATA. Then, the

decision variables xt(i,:) are asymptotically consensual to s̄t:

lim
t→∞

‖xt(i,:) − s̄
t‖ = 0, (30)

for all i ∈ {1, . . . , N}. Furthermore, the following hold:
∞∑
t=0

γt‖xt(i,:) − s̄
t‖ <∞, (31)

∞∑
t=0
‖xt(i,:) − s̄

t‖2 <∞. (32)

Proof. It is sufficient to prove (30)–(32) for each block `.
Notice that the evolution of xt(:,`) [(12)–(14)] follows the

dynamics of the perturbed push-sum algorithm (21), under the
following identification: n = d, ψti , φt(i,`), η

t
i , st(i,`), zti ,

xt(i,`), and εti,` , γ
tφt(i,`)∆xt(i,`). By Lemma B.8 [cf. (29)] and

γt ↓ 0, we infer limt→∞ ε
t
i,` = γtφt(i,`)∆xt(i,`) = 0. Invoking

Lemma A.3(2), we conclude limt→∞ ‖xt(i,`)− s̄
t
`‖ = 0, which

proves (30). We prove now (31). Using again the aforemen-
tioned connection with the perturbed push-sum algorithm (21),
we can invoke Lemma A.3(1) [cf. (23)] and write

∞∑
t=0

γt+1‖xt+1
` − s̄t+1

` ‖

≤
∞∑
t=0

γt+1
(
c1 (ρ)t+ c2

t∑
h=1

(ρ)t−hγh‖∆xt(:,`)‖1
)

(a)

≤
∞∑
t=0

γt+1
(
c1 (ρ)t + c3

t∑
h=1

(ρ)t−hγh
) (b)
< ∞,

(33)

for some finite, positive scalars c1, c2, and c3, where (a)
follows from the boundedness of ‖∆xt(:,:)‖1 [cf. Lemma B.8];
and (b) is due to [12, Lemma 7].

Finally, to prove (32), we use the same bound of ‖xt+1
` −

s̄t+1
` ‖ as in (33), and write
∞∑
t=0
‖xt+1

` − s̄t+1
` ‖2

≤
∞∑
t=0

(
c21(ρ)2t + c23

t∑
h=0

t∑
s=0

γhγs(ρ)t−h(ρ)t−s

+ 2c1c3
t∑

h=0

γh(ρ)t−h(ρ)t
) (a)
< ∞,

where (a) follows from [26, Lemma 7].

2) Asymptotic tracking: We conclude this section studying
the dynamics of the gradient tracking scheme.

Proposition B.10. Consider problem (1) under Assump-
tions II.1, II.2, III.1, IV.1, IV.3. Let {(yt(i,:))

N
i=1}t≥0 be the se-

quence generated by BLOCK-SONATA. Then, yt(i,:) tracks the
average of the gradients

∑N
j=1∇`fj(xt(j,:)) asymptotically:

lim
t→∞

∥∥∥yt(i,:) − 1

N

N∑
j=1

∇fj(xt(j,:))
∥∥∥ = 0, (34)

for all i ∈ {1, . . . , N}. Furthermore, the following holds:
∞∑
t=0

γt
∥∥∥yt(i,:) − 1

N

N∑
j=1

∇fj(xt(j,:))
∥∥∥ <∞. (35)

Authorized licensed use limited to: Purdue University. Downloaded on September 01,2020 at 15:20:29 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.3008713, IEEE
Transactions on Automatic Control

12

Proof. It is sufficient to prove (34) and (35) for each block
`. Notice that the gradient tracking scheme given by (12),
(15) and (16) is an instance of the perturbed push-sum
consensus (21), with the identifications: n = d, ψti , φt(i,`),
ηti , σ

t
(i,`), zti , yt(i,`), and εti,` , ∇`fi(x

t+1
(i,:))−∇`fi(x

t
(i,:)).

Therefore, (34) follows readily from Lemma A.3(2) and (20),
once we have shown limt→∞ ‖εti,`‖ = 0, as proven next.

Since each ∇`fi is Lipschitz continuous [cf. Assump-
tion IV.1(iii)], it suffices to prove limt→∞ ‖xt+1

(i,:)−xt(i,:)
∥∥ = 0.

We have:

∥∥∥xt+1
(i,:) − xt(i,:)

∥∥∥ (a)

≤
∥∥∥xt+1

(i,:) − s̄
t+1
∥∥∥+

∥∥∥xt(i,:) − s̄t∥∥∥
+

1

N

B∑̀
=1

N∑
i=1

∥∥∥γtφt(i,`)∆xt(i,`)

∥∥∥
(b)

≤
∥∥∥xt+1

(i,:) − s̄
t+1
∥∥∥+

∥∥∥xt(i,:) − s̄t∥∥∥
+ γt

B∑̀
=1

N∑
i=1

∥∥∥∆xt(i,`)

∥∥∥ ,
(36)

where in (a) we used (17) while (b) follows from φt(i,`) ≤ N .
The desired result, limt→∞ ‖xt+1

(i,:)−xt(i,:)
∥∥ = 0, follows read-

ily from (36), Proposition B.9 [cf. eq. (30)], Lemma B.8(2),
and γt ↓ 0 [cf. Assumption IV.3].

We prove now (35). Invoking Lemma A.3(2), we can write

∞∑
t=0

γt+1
∥∥∥yt+1

(i,`)−
1

N

N∑
j=1

∇`fj(xt+1
(j,:))

∥∥∥
=
∞∑
t=0

γt+1
∥∥∥yt+1

(i,`)−σ̄
t+1
`

∥∥∥
≤
∞∑
t=0

γt+1
(
c1(ρ)t

+ c2
t∑

h=1

(ρ)t−h
N∑
i=1

∥∥∥∇`fi(xh+1
(i,:))−∇`fi(xh(i,:))

∥∥∥)
≤
∞∑
t=0

γt+1
(
c1(ρ)t + c4

t∑
h=1

(ρ)t−h
N∑
i=1

∥∥xh+1
(i,:) − xh(i,:)

∥∥)
(36)
≤ c1

∞∑
t=0

γt+1(ρ)t + c4
∞∑
t=0

γt+1
t∑

h=1

(ρ)t−h
N∑
i=1

‖xh+1
(i,:) − s̄

h+1
∥∥

+ c4
∞∑
t=0

γt+1
t∑

h=1

(ρ)t−h
N∑
i=1

‖xh(i,:) − s̄
h
∥∥

+ c5
∞∑
t=0

γt+1
t∑

h=1

(ρ)t−hγh
(a)
< ∞,

for some positive, finite scalars c4 and c5, where (a) follows
from [26, Lemma 7].

C. Lyapunov Function and its Descent Property

We begin introducing the following lemma that is instru-
mental for the rest of the proof.

Lemma C.11. Consider problem (1) under Assumptions II.1,
II.2, III.1, IV.1, IV.3; and let {φt(i,:)}t≥0 and {xt(i,:)}t≥0 be

the sequences generated by BLOCK-SONATA. Then, for all
` ∈ {1, . . . , B}, it holds

N∑
i=1

φt+1
(i,`) r`(x

t+1
(i,`))−

N∑
i=1

φt(i,`) r`(x
t
(i,`))

≤ γt 1

N

N∑
i=1

φt(i,`)

(
r`(x̃

t
(i,`))− r`(x

t
(i,`))

)
.

Proof. The proof follows readily from the convexity of r` and
the column stochasticity of At

`.

We are now ready to introduce our Lyapunov-like function:
given s̄t`, (xt(i,`))

N
i=1, and (φt(i,`))

N
i=1, define (we omit the de-

pendence on the algorithm variables for notational simplicity)

V t ,
N∑
i=1

fi(s̄
t+1) +

B∑̀
=1

N∑
i=1

φt(i,`) r`(x
t
(i,`)).

The descent properties of the above function along the trajec-
tory of the algorithm are studied in the following proposition.

Proposition C.12. Consider problem (1), under Assump-
tions II.1, II.2, III.1, IV.1, IV.3; and let {(φt(i,:))

N
i=1}t≥0,

{s̄t}t≥0, and {(xt(i,:))
N
i=1}t≥0 be the sequences generated by

BLOCK-SONATA. Then {V t}t≥0 satisfies:

V t+1 ≤ V t − c7
B∑̀
=1

N∑
i=1

γt‖∆xt(i,`)‖
2 + P t, (37)

with
∑∞
t=0 P

t <∞, where P t is defined as

P t , c8 γ
t
B∑̀
=1

N∑
i=1

∥∥∥ 1

N

N∑
j=1

∇`fj(s̄t)− yt(i,`)

∥∥∥+ c6 (γt)2,

and c6, c7, and c8 are some positive, finite scalars.

Proof. Applying the descent lemma to (17), with L =∑N
i=1 Li, yields

N∑
i=1

fi(s̄
t+1)

≤
N∑
i=1

fi(s̄
t) +

(N∑
j=1

∇fj(s̄t)
)>(

s̄t+1−s̄t
)

+
L

2
‖s̄t+1−s̄t‖2

≤
N∑
i=1

fi(s̄
t) +

B∑̀
=1

(N∑
j=1

∇`fj(s̄t)
)>(γt

N

N∑
i=1

φt(i,`)∆xt(i,`)

)
+
L

2

B∑̀
=1

∥∥∥ 1

N
γt

N∑
i=1

φt(i,`) ∆xt(i,`)

∥∥∥2
(a)

≤
N∑
i=1

fi(s̄
t) + γt

B∑̀
=1

N∑
i=1

φt(i,`)
(
yt(i,`)

)>
∆xt(i,`)

+ γt
B∑̀
=1

N∑
i=1

φt(i,`)

(1

N

N∑
j=1

∇`fj(s̄t)− yt(i,`)

)>
∆xt(i,`)

+ (γt)2
L

2

B∑̀
=1

N∑
i=1

φt(i,`)

N
‖∆xt(i,`)‖

2,

(b)

≤
N∑
i=1

fi(s̄
t)− γth

B∑̀
=1

N∑
i=1

φt(i,`)‖∆xt(i,`)‖
2

− γt
B∑̀
=1

N∑
i=1

φt(i,`)
(
r`(x̃

t
(i,`))− r`(x

t
(i,`))

)
+ γt

B∑̀
=1

N∑
i=1

φt(i,`)

∥∥∥ 1

N

N∑
j=1

∇`fj(s̄t)− yt(i,`)

∥∥∥ ∥∥∥∆xt(i,`)

∥∥∥
Authorized licensed use limited to: Purdue University. Downloaded on September 01,2020 at 15:20:29 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.3008713, IEEE
Transactions on Automatic Control

13

+ c6(γt)2,

where in (a) we added and subtracted γt
∑N
i=1∑B

`=1 φ
t
(i,`)(y

t
(i,`))

>∆xt(i,`); and in (b) we used Lemma A.6
[cf. (26)], Lemma B.8 [cf. (29)], we defined τ = mini τi, and
c6 is some positive, finite scalar.

Combining now the above chain of inequalities with
Lemma C.11 and using Lemma A.3(3), we can write

V t+1 ≤ V t − c7 γt
B∑̀
=1

N∑
i=1

‖∆xt(i,`)‖
2

+ c8γ
t
B∑̀
=1

N∑
i=1

∥∥∥ 1

N

N∑
j=1

∇`fj(s̄t)− yt(i,`)

∥∥∥+ c6 (γt)2︸ ︷︷ ︸
P t

,

where c7, and c8 are some positive, finite scalars.
To conclude the proof, we show next that P t is summable.

Since
∑∞
t=0(γt)2 < ∞ (cf. Assumption IV.3), it is sufficient

to prove that the first term of P t is summable, as shown below:

lim
k→∞

k∑
t=0

γt
B∑̀
=1

N∑
i=1

∥∥∥ 1

N

N∑
j=1

∇`fj(s̄t)− yt(i,`)

∥∥∥
(a)

≤ lim
k→∞

k∑
t=0

γt
B∑̀
=1

N∑
i=1

∥∥∥ 1

N

N∑
j=1

∇`fj(xt(j,:))− yt(i,`)

∥∥∥
+ c9 lim

k→∞

k∑
t=0

γt
B∑̀
=1

N∑
i=1

∥∥xt(i,:) − s̄t∥∥ (b)
< ∞,

where in (a) we used the Lipschitz continuity of ∇fi; (b)
follows from Prop. B.9 and B.10 with c9 positive scalar.

D. Asymptotic Convergence of {s̄t}t≥0
Since U is coercive and

∑∞
t=0 P

t < ∞, (37) implies that
i) {V t}≥0 is convergent; and ii) and {s̄t}t≥0 is bounded.
Therefore, it must be

∞∑
t=0

N∑
i=1

B∑̀
=1

γt‖∆xt(i,`)‖
2 <∞. (38)

Recall that agents select their blocks to update according
to an essential cyclic rule [cf. Assumption III.2]. This means
that in any time window [t, t+ T − 1], with T > 0 defined in
Proposition III.3, any agent i selects all of its blocks at least
once. Denote by t + sti(`) the last time agent i selects block
` in the time window [t, t + T − 1]; notice that such a sti(`)
is always well-defined and sti(`) ∈ [0, T − 1]. Finally, let

∆t ,
N∑
i=1

B∑̀
=1

‖∆x
t+sti(`)

(i,`) ‖. (39)

The above quantity will play a key role to prove (subsequence)
convergence of {s̄t}t≥0. We organize the rest of the proof in
the following steps:
• Step 1: We prove limt→∞∆t = 0, by showing that,

first, liminft→∞∆t = 0 [Step 1(a)], and, second,
limsupt→∞∆t = 0 [Step 1(b)];

• Step 2: Using results in Step 1, we prove that every limit
point of {s̄t}t≥0 is a stationary solution of problem (1).

Step 1(a) – liminft→∞∆t = 0. For all t ≥ T − 1, we have

T ·
t∑

h=0

B∑̀
=1

N∑
i=1

γh‖∆xh(i,`)‖
2

≥
t−T+1∑
h=0

T−1∑
s=0

B∑̀
=1

N∑
i=1

γh+s‖∆xh+s(i,`)‖
2

(a)

≥
t−T+1∑
h=0

γh+T−1
T−1∑
s=0

B∑̀
=1

N∑
i=1

‖∆xh+s(i,`)‖
2,

(40)

where (a) follows from Assumption IV.3(i). Using (38) and∑∞
t=0 γ

t =∞, we deduce

liminf
t→∞

T−1∑
s=0

B∑̀
=1

N∑
i=1

‖∆xt+s(i,`)‖ = 0,

which leads to

0 = liminf
t→∞

B∑̀
=1

N∑
i=1

T−1∑
s=0
‖∆xt+s(i,`)‖ ≥ liminf

t→∞
∆t.

Step 1(b) – limsupt→∞∆t = 0. We begin stating the follow-
ing lemma, which proves that the best-response maps x̃(i,`ti)

[cf. (6)] and x̂(i,`ti)
[cf. (27)], are asymptotically consistent

along the trajectory of the algorithm.

Lemma D.13. In the setting of BLOCK-SONATA, the best-
response maps x̂(i,`ti)

and x̃t(i,`ti)
satisfy

lim
t→∞

∥∥∥x̂(i,`ti)

(
xt(i,:)

)
− x̃t(i,`ti)

∥∥∥ = 0, ∀ i ∈ {1, . . . , N}. (41)

Proof. We use the shorthand x̂t(i,`ti)
for x̂(i,`ti)

(
xt(i,:)

)
. Invok-

ing the optimality conditions of x̂(i,`ti)
(xt(i,:)) and x̃t(i,`ti)

yields(
x̃t(i,`ti)

− x̂t(i,`ti)
)>×(

∇`ti f̂i,`ti
(
x̂t(i,`ti)

; xt(i,:),
1
N

N∑
j=1

∇`tifj(x
t
(i,:))

)
+ ∇̃r`ti

(
x̂t(i,`ti)

))
≥ 0,

(42)

and(
x̂t(i,`ti)

− x̃t(i,`ti)
)>×(

∇`ti f̂i,`ti(x̃
t
(i,`ti)

; xt(i,:),y
t
(i,`ti)

) + ∇̃r`ti
(
x̃t(i,`ti)

))
≥ 0.

(43)

Adding the two inequalities (42) and (43) and using the strong
convexity of f̃i(•; xt(i,:)) as well as the convexity of r`ti , yields∥∥∥x̃t(i,`ti) − x̂t(i,`ti)

∥∥∥ ≤ 1

τi

∥∥∥ 1

N

N∑
j=1

∇`tifj(x
t
(i,:))− yt(i,`ti)

∥∥∥
≤ 1

τi

∥∥∥ 1

N

N∑
j=1

∇`tifj(x
t
(i,:))−

1

N

N∑
j=1

∇`tifj(x
t
(j,:))

∥∥∥
+

1

τi

∥∥∥ 1

N

N∑
j=1

∇`tifj(x
t
(j,:))− yt(i,`ti)

∥∥∥
≤ 1

τiN

N∑
j=1

Lj

∥∥∥xt(i,:) − xt(j,:)

∥∥∥
+

1

τi

∥∥∥ 1

N

N∑
j=1

∇`tifj(x
t
(j,:))− yt(i,`ti)

∥∥∥
≤ 1

τiN

N∑
j=1

Lj

(∥∥∥xt(i,:) − s̄t‖+ ‖s̄t − xt(j,:)

∥∥∥)

Authorized licensed use limited to: Purdue University. Downloaded on September 01,2020 at 15:20:29 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.3008713, IEEE
Transactions on Automatic Control

14

+
1

τi

∥∥∥ 1

N

N∑
j=1

∇`tifj(x
t
(j,:))− yt(i,`ti)

∥∥∥.
Finally, by noticing that

limsup
t→∞

∥∥∥ 1

N

N∑
i=1

∇`tifi(x
t
(i,:))− yt(i,`ti)

∥∥∥
≤ limsup

t→∞

B∑̀
=1

∥∥∥ 1

N

N∑
i=1

∇`fi(xt(i,:))− yt(i,`)

∥∥∥,
and invoking Propositions B.9 and B.10, we obtain the desired
result limsupt→∞

∥∥x̂(i,`ti)
− x̃t(i,`ti)

∥∥ = 0.

Now we prove by contradiction that limsupt→∞∆t = 0.
Suppose limsupt→∞∆t > 0. Since liminft→∞∆t = 0, there
exists a δ > 0 such that ∆t < δ for infinitely many t and also
∆t > 2δ for infinitely many t. Therefore, one can always find
an infinite set of indices, say T , having the following property:
for any t ∈ T , there exists an integer θt > t such that

∆t ≤ δ, ∆θt ≥ 2δ,

δ < ∆h < 2δ, t < h < θt.
(44)

Therefore, for all t ∈ T , we have

δ ≤∆θt −∆t

=
N∑
i=1

B∑̀
=1

(∥∥∥x̃θt+sθti (`)

(i,`) − x
θt+s

θt
i (`)

(i,`)

∥∥∥−∥∥∥x̃t+sti(`)(i,`) − x
t+sti(`)

(i,`)

∥∥∥)
≤

N∑
i=1

B∑̀
=1

(∥∥∥x̃θt+sθti (`)

(i,`) − x̃
t+sti(`)

(i,`)

∥∥∥+
∥∥∥xθt+sθti (`)

(i,`) − x
t+sti(`)

(i,`)

∥∥∥)
≤

N∑
i=1

B∑̀
=1

(∥∥∥x̃θt+sθti (`)

(i,`) − x̂(i,`)(x
θt+s

θt
i (`)

(i,:))
∥∥∥

+
∥∥∥x̂(i,`)(x

θt+s
θt
i (`)

(i,:))− x̂(i,`)(x
t+sti(`)

(i,:))
∥∥∥

+
∥∥∥x̂(i,`)(x

t+sti(`)

(i,:))− x̃
t+sti(`)

(i,`)

∥∥∥
+
∥∥∥xθt+sθti (`)

(i,`) − x
t+sti(`)

(i,`)

∥∥∥)
≤ (1 + L̂)

N∑
i=1

B∑̀
=1

∥∥∥xθt+sθti (`)

(i,:) − x
t+sti(`)

(i,:)

∥∥∥+ et1,

(45)

where in the last inequality, we used the Lipschitz continuity
of x̂(i,`)(•) [cf. Lemma. A.7], with L̂ , maxi max` L̂i,`, and

et1 ,
N∑
i=1

B∑̀
=1

(∥∥∥x̂(i,`)(x
θt+s

θt
i (`)

(i,:))− x̃
θt+s

θt
i (`)

(i,`)

∥∥∥
+
∥∥∥x̂(i,`)(x

t+sti(`)

(i,:))− x̃
t+sti(`)

(i,`)

∥∥∥). (46)

Adding and subtracting s̄θt+s
θt
i (`) and s̄t+s

t
i(`) in the first

term of the last inequality in (45), and introducing

et2 , (1 + L̂)
N∑
i=1

B∑̀
=1

(∥∥∥xθt+sθti (`)

(i,:) −s̄θt+s
θt
i (`)

∥∥∥
+
∥∥∥s̄t+sti(`)−x

t+sti(`)

(i,:)

∥∥∥), (47)

we can write:

δ ≤ (1 + L̂)
N∑
i=1

B∑̀
=1

∥∥∥s̄θt+sθti (`) − s̄t+sti(`)
∥∥∥+ et1 + et2. (48)

Since θt + sθti (`) is the last time at which block ` has been
updated by agent i in [θt, θt + T − 1] and θt > t, it must
hold: θt + sθti (`) ≥ t + sti(`), for all t ∈ T . We assume,
without loss of generality, that θt + sθti (`) > t+ sti(`), for all
i ∈ {1, . . . , N} and ` ∈ {1, . . . , B}. Hence, all the intervals
[t + sti(`), θt + sθti (`)] are nonempty. Using (17) to bound
‖s̄θt+s

θt
i (`) − s̄t+sti(`)‖ in (48), we can write

δ ≤ c10
N∑
i=1

B∑̀
=1

B∑
`′=1

θt+s
θt
i (`)−1∑

h=t+sti(`)

N∑
j=1

γh‖∆xh(j,`′)‖+ et1 + et2

≤ c11
θt+T−1∑
h=t

N∑
j=1

B∑̀
=1

γh‖∆xh(j,`)‖+ et1 + et2

= c11
θt+T−1∑
h=t

N∑
i=1

γh‖∆xh
(i,`hi)
‖+ et1 + et2,

for some positive, finite scalars c10 and c11, where the last
equality follows from the fact that, at time t, agent i optimizes
only block `ti, implying ‖∆xt(i,`)‖ = 0, for all ` 6= `ti.

Note that, for each i ∈ {1, . . . , N}, t + T − 1 is the last
time agent i selects block `t+T−1i in the interval [t, t+T −1].
Therefore, for all i ∈ {1, . . . , N},∥∥∥∆xt+T−1

(i,`t+T−1
i)

∥∥∥ =
∥∥∥∆x

t+sti(`
t+T−1
i)

(i,`t+T−1
i)

∥∥∥ (39)
≤ ∆t.

Hence, we can write

δ ≤ c12
(t+T−1∑

h=t

γh
N∑
i=1

‖∆xh
(i,`hi)
‖+

θt+T−1∑
h=t+T

γh∆h−T+1
)

+ et1 + et2

= c12
θt∑

h=t+1

γh+T−1∆h + et1 + et2 + et3,

for some positive, finite scalar c12, where we set

et3 , c12
t+T−1∑
h=t

γh
N∑
i=1

‖∆xh
(i,`hi)
‖. (49)

Since ∆h > δ, for h ∈ [t+ 1, θt] [cf. (44)], we have

δ≤ c12
θt∑

h=t+1

γh+T−1
N∑
i=1

B∑̀
=1

‖∆x
h+shi (`)

(i,`) ‖+ et1 + et2 + et3

≤ c11
δ

θt∑
h=t+1

γh+T−1
(
N∑
i=1

B∑̀
=1

∥∥∥∆x
h+shi (`)

(i,`)

∥∥∥)2+et1+et2+et3

≤ c13
θt∑

h=t+1

γh+T−1
N∑
i=1

B∑̀
=1

‖∆x
h+shi (`)

(i,`) ‖2+et1+et2+et3

≤ c13
θt∑

h=t+1

γh+T−1
T−1∑
s=0

N∑
i=1

B∑̀
=1

‖∆xh+s(i,`)‖
2+et1+et2+et3,

(50)

for some positive, finite scalar c13. Using now Proposition B.9,
Lemma D.13, and (38), we infer that et1, et2, and et3 [defined
in (46), (47), and (49), respectively] are asymptotically van-
ishing, that is, et1, e

t
2, e

t
3 −→
t→∞

0. Furthermore, since [due to
(38) and (40)]

∞∑
h=0

γh+T−1
T−1∑
s=0

B∑̀
=1

N∑
i=1

‖∆xh+s(i,`)‖
2 <∞,

Authorized licensed use limited to: Purdue University. Downloaded on September 01,2020 at 15:20:29 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.3008713, IEEE
Transactions on Automatic Control

15

it must be

lim
t→∞

θt∑
h=t+1

γh+T−1
T−1∑
s=0

N∑
i=1

B∑̀
=1

‖∆xh+s(i,`)‖
2 = 0.

Therefore there must exist a sufficient large t̄ ∈ T such that

c13
θt∑

h=t+1

γh+T−1
T−1∑
s=0

N∑
i=1

B∑̀
=1

‖∆xh+s(i,`)‖
2 + et1 + et2 + et3 ≤

δ

2

for all t ≥ t̄, which contradicts (50). Thus, it must be
limsupt→∞∆t = 0, and hence

lim
t→∞

N∑
i=1

B∑̀
=1

‖∆x
t+sti(`)

(i,`) ‖ = 0. (51)

Step 2 – Every limit point of {s̄t}t≥0 is stationary for
(1). Let s̄∞ be a limit point of {s̄t}t≥0; note that such a
point exists, because {s̄t}t≥0 is bounded (cf. Section D). By
Lemma A.7, s̄∞ is a stationary solution of problem (1), if

lim
t→∞

∥∥x̂(i,:)

(
s̄t
)
− s̄t

∥∥ = 0, (52)

for all i ∈ {1, . . . , N}. To prove (52), we first bound
‖x̂(i,:)

(
s̄t
)
− s̄t‖ as follows

∥∥x̂(i,:)

(
s̄t
)
− s̄t

∥∥≤ B∑̀
=1

(∥∥∥x̂(i,`)

(
s̄t
)
− x̂(i,`)

(
s̄t+s

t
i(`)
)∥∥∥

+
∥∥∥x̂(i,`)

(
s̄t+s

t
i(`)
)
− s̄t+s

t
i(`)

`

∥∥∥
+
∥∥∥s̄t+sti(`)` − s̄t`

∥∥∥)
(a)

≤
B∑̀
=1

(∥∥∥x̂(i,`)

(
s̄t+s

t
i(`)
)
− s̄t+s

t
i(`)

`

∥∥∥
+ (1 + L̂)

∥∥∥s̄t+sti(`) − s̄t∥∥∥)
≤

B∑̀
=1

(∥∥∥x̂(i,`)

(
s̄t+s

t
i(`)
)
− x̂(i,`)

(
x
t+sti(`)

(i,:)

)∥∥∥
+
∥∥∥x̂(i,`)

(
x
t+sti(`)

(i,:)

)
− x̃

t+sti(`)

(i,`)

∥∥∥
+
∥∥∥∆x

t+sti(`)

(i,`)

∥∥∥
+
∥∥∥xt+sti(`)(i,`) − s̄t+s

t
i(`)

`

∥∥∥
+ (1 + L̂)

∥∥∥s̄t+sti(`) − s̄t∥∥∥)
(b)

≤
B∑̀
=1

(∥∥∥x̂(i,`)

(
x
t+sti(`)

(i,:)

)
− x̃

t+sti(`)

(i,`)

∥∥∥
+
∥∥∥∆x

t+sti(`)

(i,`)

∥∥∥
+ (1 + L̂)

∥∥∥xt+sti(`)(i,:) − s̄t+s
t
i(`)
∥∥∥

+ (1 + L̂)
∥∥∥s̄t+sti(`) − s̄t∥∥∥)

where in (a) and (b) we used the Lipschitz continuity of
x̂(i,`)(•). We show next that the four terms on the RHS of
the above inequality are all asymptotically vanishing, which
proves (52). Invoking Proposition B.9 [cf. (30)], we have

lim
t→∞

∥∥∥xt+sti(`)(i,`) − s̄t+s
t
i(`)

`

∥∥∥ = 0,

for all ` ∈ {1, . . . , B} and i ∈ {1, . . . , N}. By definition of
t+sti(`), there exists some T ⊆ N+, with |T | =∞, such that

lim
t→∞

∥∥∥x̂(i,`)

(
x
t+sti(`)

(i,:)

)
− x̃

t+sti(`)

(i,`)

∥∥∥
= lim
T 3t→∞

∥∥∥x̂(i,`ti)

(
xt(i,:)

)
− x̃t(i,`ti)

∥∥∥ (41)
= 0,

for all ` ∈ {1, . . . , B} and i ∈ {1, . . . , N}. Using (51), we
have limt→∞ ‖∆x

t+sti(`)

(i,`) ‖ = 0, which, together to (19), yields

limt→∞

∥∥∥s̄t+sti(`) − s̄t∥∥∥ = 0, for all ` ∈ {1, . . . , B} and i ∈
{1, . . . ,N}, completing the proof.

REFERENCES

[1] I. Notarnicola, Y. Sun, G. Scutari, and G. Notarstefano, “Distributed
big-data optimization via block-iterative convexification and averaging,”
in IEEE Conf. on Decision and Control (CDC), 2017, pp. 2281–2288.

[2] ——, “Distributed big-data optimization via block communications,”
in IEEE Intern. Conf. on Comput. Advances in Multi-Sensor Adaptive
Process. (CAMSAP), 2017, pp. 557–561.

[3] Y. Nesterov, “Efficiency of coordinate descent methods on huge-scale
optimization problems,” SIAM J. on Optimization, vol. 22, no. 2, pp.
341–362, 2012.

[4] P. Richtárik and M. Takáč, “Parallel coordinate descent methods for big
data optimization,” Mathematical Programming, pp. 1–52, 2012.

[5] I. Necoara and D. Clipici, “Parallel random coordinate descent method
for composite minimization: Convergence analysis and error bounds,”
SIAM J. on Optimization, vol. 26, no. 1, pp. 197–226, 2016.

[6] S. J. Wright, “Coordinate descent algorithms,” Mathematical Program-
ming, vol. 151, no. 1, pp. 3–34, 2015.

[7] H.-J. M. Shi, S. Tu, Y. Xu, and W. Yin, “A primer on coordinate descent
algorithms,” arXiv preprint arXiv:1610.00040, 2016.

[8] F. Facchinei, G. Scutari, and S. Sagratella, “Parallel selective algorithms
for nonconvex big data optimization,” IEEE Trans. on Signal Process.,
vol. 63, no. 7, pp. 1874–1889, 2015.

[9] G. Scutari and Y. Sun, “Parallel and distributed successive convex
approximation methods for big-data optimization,” in Multi-Agent Op-
timization, F. Facchinei and J.-S. Pang, Eds. Springer, C.I.M.E.
Foundation Subseries (Lecture Notes in Mathematics), 2018, pp. 1–158.

[10] A. Mokhtari, A. Koppel, and A. Ribeiro, “Doubly random parallel
stochastic methods for large scale learning,” in IEEE American Control
Conf. (ACC), 2016, pp. 4847–4852.

[11] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Trans. on Autom. Control, vol. 54, no. 1, pp.
48–61, 2009.

[12] A. Nedić, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus and
optimization in multi-agent networks,” IEEE Trans. on Autom. Control,
vol. 55, no. 4, pp. 922–938, 2010.

[13] P. Bianchi and J. Jakubowicz, “Convergence of a multi-agent projected
stochastic gradient algorithm for non-convex optimization,” IEEE Trans.
on Autom. Control, vol. 58, no. 2, pp. 391–405, 2013.

[14] A. Nedić and A. Olshevsky, “Distributed optimization over time-varying
directed graphs,” IEEE Trans. on Autom. Control, vol. 60, no. 3, pp.
601–615, 2015.

[15] T. Tatarenko and B. Touri, “Non-convex distributed optimization,” IEEE
Trans. on Autom. Control, vol. 62, no. 8, pp. 3744–3757, 2017.

[16] F. Bénézit, V. Blondel, P. Thiran, J. Tsitsiklis, and M. Vetterli, “Weighted
gossip: Distributed averaging using non-doubly stochastic matrices,” in
IEEE Intern. Symposium on Information Theory (ISIT), 2010, pp. 1753–
1757.

[17] D. Jakovetić, J. Xavier, and J. M. Moura, “Fast distributed gradient
methods,” IEEE Trans. on Autom. Control, vol. 59, no. 5, pp. 1131–
1146, 2014.

[18] S. Lee and A. Nedić, “Asynchronous gossip-based random projection
algorithms over networks,” IEEE Trans. on Autom. Control, vol. 61,
no. 4, pp. 953–968, 2016.

[19] K. Margellos, A. Falsone, S. Garatti, and M. Prandini, “Distributed con-
strained optimization and consensus in uncertain networks via proximal
minimization,” IEEE Trans. on Autom. Control, vol. 63, no. 5, pp. 1372–
1387, 2018.

[20] W. Shi, Q. Ling, G. Wu, and W. Yin, “Extra: An exact first-order
algorithm for decentralized consensus optimization,” SIAM J. on Op-
timization, vol. 25, no. 2, pp. 944–966, 2015.

Authorized licensed use limited to: Purdue University. Downloaded on September 01,2020 at 15:20:29 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.3008713, IEEE
Transactions on Automatic Control

16

[21] ——, “A proximal gradient algorithm for decentralized composite opti-
mization,” IEEE Trans. on Signal Process., vol. 63, no. 22, pp. 6013–
6023, 2015.

[22] F. Zanella, D. Varagnolo, A. Cenedese, G. Pillonetto, and L. Schenato,
“Newton-Raphson consensus for distributed convex optimization,” in
IEEE Conf. on Decision and Control and European Control Conf. (CDC-
ECC), 2011, pp. 5917–5922.

[23] ——, “Asynchronous Newton-Raphson consensus for distributed convex
optimization,” in 3rd IFAC Workshop on Distributed Estimation and
Control in Networked Systems, 2012.

[24] D. Varagnolo, F. Zanella, A. Cenedese, G. Pillonetto, and L. Schenato,
“Newton-Raphson consensus for distributed convex optimization,” IEEE
Trans. on Autom. Control, vol. 61, no. 4, pp. 994–1009, 2016.

[25] P. Di Lorenzo and G. Scutari, “Distributed nonconvex optimization over
networks,” in IEEE Intern. Conf. on Comput. Advances in Multi-Sensor
Adaptive Process. (CAMSAP), 2015, pp. 229–232.

[26] ——, “NEXT: In-network nonconvex optimization,” IEEE Trans. on
Signal and Information Process. over Networks, vol. 2, no. 2, pp. 120–
136, 2016.

[27] J. Xu, S. Zhu, Y. C. Soh, and L. Xie, “Augmented distributed gradient
methods for multi-agent optimization under uncoordinated constant
stepsizes,” in IEEE Conf. on Decision and Control (CDC), 2015, pp.
2055–2060.

[28] Y. Sun, G. Scutari, and D. Palomar, “Distributed nonconvex multiagent
optimization over time-varying networks,” in IEEE Asilomar Conf. on
Signals, Systems, and Computers, 2016, pp. 788–794.

[29] Y. Sun and G. Scutari, “Distributed nonconvex optimization for sparse
representation,” in IEEE Intern. Conf. on Speech and Signal Process.
(ICASSP), 2017, pp. 4044–4048.

[30] J. Xu, S. Zhu, Y. C. Soh, and L. Xie, “Convergence of asynchronous
distributed gradient methods over stochastic networks,” IEEE Trans. on
Autom. Control, vol. 63, no. 2, pp. 434–448, 2018.

[31] A. Nedić, A. Olshevsky, and W. Shi, “Achieving geometric convergence
for distributed optimization over time-varying graphs,” SIAM J. on
Optimization, vol. 27, no. 4, pp. 2597–2633, 2017.

[32] G. Qu and N. Li, “Harnessing smoothness to accelerate distributed
optimization,” IEEE Trans. on Control of Network Systems, vol. PP,
no. 99, pp. 1–14, 2017.

[33] C. Xi, R. Xin, and U. A. Khan, “ADD-OPT: Accelerated distributed
directed optimization,” IEEE Trans. on Autom. Control, vol. 63, no. 5,
pp. 1329–1339, 2018.

[34] R. Xin and U. A. Khan, “A linear algorithm for optimization over
directed graphs with geometric convergence,” IEEE Control Systems
Letters, vol. 2, no. 3, pp. 325–330, 2018.

[35] N. Bof, R. Carli, G. Notarstefano, L. Schenato, and D. Varagnolo,
“Multiagent Newton-Raphson optimization over lossy networks,” IEEE
Trans. on Autom. Control, vol. 64, no. 7, pp. 2983–2990, 2019.

[36] A. Nedić, A. Olshevsky, and W. Shi, “A geometrically convergent
method for distributed optimization over time-varying graphs,” in IEEE
Conf. on Decision and Control (CDC), 2016, pp. 1023–1029.

[37] G. Qu and N. Li, “Harnessing smoothness to accelerate distributed
optimization,” in IEEE Conf. on Decision and Control (CDC), 2016,
pp. 159–166.

[38] R. Carli and G. Notarstefano, “Distributed partition-based optimization
via dual decomposition,” in IEEE Conf. on Decision and Control (CDC),
2013, pp. 2979–2984.

[39] I. Notarnicola and G. Notarstefano, “A randomized primal distributed
algorithm for partitioned and big-data non-convex optimization,” in
IEEE Conf. on Decision and Control (CDC), 2016, pp. 153–158.

[40] I. Notarnicola, R. Carli, and G. Notarstefano, “Distributed partitioned
big-data optimization via asynchronous dual decomposition,” IEEE
Trans. on Control of Network Sys., vol. 5, no. 4, pp. 1910–1919, 2018.

[41] C. Wang, Y. Zhang, B. Ying, and A. H. Sayed, “Coordinate-descent
diffusion learning by networked agents,” IEEE Trans. on Signal Process.,
vol. 66, no. 2, pp. 352–367, 2016.

[42] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
Trans. on Autom. Control, vol. 31, no. 9, pp. 803–812, 1986.

[43] M. Zhu and S. Martı́nez, “Discrete-time dynamic average consensus,”
Automatica, vol. 46, no. 2, pp. 322–329, 2010.

[44] S. S. Kia, B. Van Scoy, J. Cortés, R. A. Freeman, K. M. Lynch, and
S. Martı́nez, “Tutorial on dynamic average consensus: The problem,
its applications, and the algorithms,” IEEE Control Systems Magazine,
vol. 39, no. 3, pp. 40–72, 2019.

[45] A. H. Sayed, “Adaptation, learning, and optimization over networks,”
Foundations and Trends in Machine Learning, vol. 7, no. 4-5, pp. 311–
801, 2014.

Ivano Notarnicola (S’16-M’19) is a Postdoctoral
Researcher at University of Bologna, Bologna, Italy.
He received the Laurea degree “summa cum laude”
in Computer Engineering from the Università del
Salento, Lecce, in 2014 and the Ph.D. degree
“summa cum laude” in Engineering of Complex
Systems from the same university in 2018. He was a
visiting student at the University of Stuttgart in 2014
and a visiting scholar at Purdue University in 2017.
His research interests include distributed methods for
optimization, control and machine learning.

Ying Sun received the B.E. degree in electronic in-
formation from the Huazhong University of Science
and Technology, Wuhan, China, in 2011, and the
Ph.D. degree from the Department of Electronic and
Computer Engineering at the Hong Kong University
of Science and Technology, Hong Kong, in 2016.
She is currently a postdoctoral researcher with the
School of Industrial Engineering, Purdue University.
Her research interests include optimization algo-
rithms, statistical signal processing, and machine
learning.

Gesualdo Scutari (S’05-M’06-SM’11) received the
Electrical Engineering and Ph.D. degrees (both with
honors) from the University of Rome “La Sapienza,”
Rome, Italy, in 2001 and 2005, respectively. He is
the Thomas and Jane Schmidt Rising Star Associate
Professor with the School of Industrial Engineering,
Purdue University, West Lafayette, IN, USA; and
he is the scientific director for the area of Big-
Data Analytics at the Cyber Center and the thrust
leader for Optimization at the CRISP Center at
Purdue University. He had previously held several

research appointments, namely, at the University of California at Berkeley,
Berkeley, CA, USA; Hong Kong University of Science and Technology,
Hong Kong; and University of Illinois at Urbana-Champaign, Urbana, IL,
USA. His research interests include continuous and distributed optimization,
equilibrium programming, and their applications to signal processing and
machine learning. He is a Senior Area Editor of the IEEE Transactions On
Signal Processing and an Associate Editor of the SIAM J. on Optimization;
He served on the IEEE Signal Processing Society Technical Committee on
Signal Processing for Communications (SPCOM). Among others, he was the
recipient of the 2006 Best Student Paper Award at the IEEE ICASSP 2006,
the 2013 NSF CAREER Award, and the 2015 IEEE Signal Processing Society
Young Author Best Paper Award.

Giuseppe Notarstefano (M’11) is a Professor in
the Department of Electrical, Electronic, and In-
formation Engineering G. Marconi at Alma Mater
Studiorum Università di Bologna. He was Associate
Professor (June ‘16 - June ‘18) and previously
Assistant Professor, Ricercatore, (Feb. ‘07 - May
‘16) at the Università del Salento, Lecce, Italy. He
received the Laurea degree “summa cum laude” in
Electronics Engineering from the Università di Pisa
in 2003 and the Ph.D. degree in Automation and
Operation Research from the Università di Padova

in 2007. He has been visiting scholar at the University of Stuttgart, University
of California Santa Barbara and University of Colorado Boulder. His research
interests include distributed optimization, cooperative control in complex
networks, applied nonlinear optimal control, and trajectory optimization and
maneuvering of aerial and car vehicles. He serves as an Associate Editor
for IEEE Transactions on Automatic Control, IEEE Transactions on Control
Systems Technology and IEEE Control Systems Letters. He has been part of
the Conference Editorial Board of IEEE Control Systems Society and EUCA.
He is recipient of an ERC Starting Grant 2014.

Authorized licensed use limited to: Purdue University. Downloaded on September 01,2020 at 15:20:29 UTC from IEEE Xplore. Restrictions apply.

