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SUMMARY

Categorical perception is a fundamental cognitive
function enabling animals to flexibly assign sounds
into behaviorally relevant categories. This study in-
vestigates the nature of acoustic category represen-
tations, their emergence in an ascending series of
ferret auditory and frontal cortical fields, and the
dynamics of this representation during passive
listening to task-relevant stimuli and during active
retrieval from memory while engaging in learned
categorization tasks. Ferrets were trained on two
auditory Go-NoGo categorization tasks to discrimi-
nate two non-compact sound categories (composed
of tones or amplitude-modulated noise). Neuronal re-
sponses became progressively more categorical in
higher cortical fields, especially during task perfor-
mance. The dynamics of the categorical responses
exhibited a cascading top-down modulation pattern
that began earliest in the frontal cortex and subse-
quently flowed downstream to the secondary audi-
tory cortex, followed by the primary auditory cortex.
In a subpopulation of neurons, categorical re-
sponses persisted even during the passive listening
condition, demonstrating memory for task cate-
gories and their enhanced categorical boundaries.

INTRODUCTION

A fundamental aspect of listening is the cognitive ability to flex-

ibly assign sensory stimuli into discrete, distinct, and behavior-

ally relevant categories that are task or context dependent,

allowing the selection of an appropriate behavioral response to

novel sensory stimuli within a known category. For example,

spoken utterances can be recognized for their meaning irrespec-

tive of the speaker’s voice (semantic or verbal categories), or

alternatively, can be associated with the voice of a specific

speaker regardless of their meaning (individual voice categories).

Utterances can also be categorized by language, accent,

emotional tone, speed of enunciation, and along many other
Current B
dimensions, allowing us to select an appropriate behavioral

response to novel utterances from diverse speakers. This study

investigates the nature of acoustic category representations for

non-compact stimulus sets [1], in an ascending series of ferret

auditory cortical fields up to frontal cortex, and specifically the

dynamics of this representation during passive listening and

active retrieval from auditory memory during task performance.

There are only a few previous neurophysiological studies on

categorical representations in the auditory system of behaving

animals [2–8] or anesthetized preparations following training

[9, 10]. In one pioneering study, gerbils were trained to categorize

frequency-modulated tones as ‘‘upward’’ or ‘‘downward’’ [2],

while cortical potentials were recorded during task performance.

As gerbils acquired the categorization rule, their neural activity

patterns changed from initially reflecting stimulus acoustic prop-

erties to categorical membership. Similar categorical responses

were observed during phoneme categorization in the primate

ventral prefrontal cortex (vPFC) [3] and in the anterolateral belt

area of the superior temporal gyrus [4–6]. Monkeys were trained

tomake a ‘‘same or different’’ judgment based on sequential pre-

sentation of two speech sounds (‘‘bad’’ versus ‘‘dad’’). At a

behavioral level, monkeys perceived the range of morphed stim-

uli in a categorical fashion [3, 4], consistent with many earlier an-

imal and human studies of such perceptual boundaries. Neurons

in the auditory belt cortex exhibited categorical sensitivity de-

pending on their morphology [4–6]. Responses in the primary

auditory cortex (A1) also showed modulation during the perfor-

mance of another auditory categorization task [7]. A recent study,

utilizing 2-photon imaging in layers II and III of mouse auditory

cortex [8], demonstrated dynamic task-driven modulation of sin-

gle neurons and population response profiles that enhanced re-

sponses at the boundary between two trained tones during the

performance of a tone discrimination task.

In comparison with the auditory system, there have beenmany

behavioral neurophysiological studies of sensory categories in

the visual system [11–19]. In a recent study [18], monkeys were

trained to categorize the same set of moving, colored stimuli

either into ‘‘up’’ versus ‘‘down’’ categories (when cued to attend

to direction of motion) or into red versus green categories (when

cued to attend to color of the moving dots). One of the main

findings of this study was the discovery of a cross-current dy-

namic flow of categorical information in opposite directions,

comprising a sequence of a transient, rapid, and bottom-up
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sweep of sensory activity, followed by a reverse current of top-

down categorical information flow.

The current study of categorization in the ferret auditory cortex

confirms several aspects of these previous experimental results

in the monkey visual cortex as outlined in the Results and Dis-

cussion, although it differs in some fundamental ways in our

experimental approach. For instance, while monkeys were

trained on a visual 2AFC task, the ferrets were trained on two

different Go-NoGo negative reinforcement auditory categoriza-

tion tasks [20]. We explored responses in the primary and sec-

ondary auditory cortex and frontal areas that parallel aspects

of the ascending visual pathways in monkeys. The stimuli

comprised relatively simple tones and amplitude-modulated

(AM) noise that allowed us to dissect the sensory-to-category

transformation and change in stimulus representations from their

acoustic features (veridical representation) to task categories

(categorical representation). A key feature of our experiments

was the comparison of responses during passive listening with

responses during task performance, which revealed task-

dependent modulation.

RESULTS

Two ferrets were each trained over a period of 6 months on two

different auditory categorization tasks. In both tasks, a trial con-

sisted of the presentation of a single stimulus. The animals

learned to lick the waterspout for water reward if the stimulus

was a member of the Go Category, or to refrain from licking to

a stimulus in the NoGo category (Figures 1A and 1B). Both ani-

mals successfully learned to categorize tone frequencies in

one task (tone task) and learned to categorize amplitude modu-

lation (AM) rates of a noise stimulus in the other task (AM task)

(Figure S1A). Stimulus parameters (frequencies and rates) were

organized such that there were three acoustic zones for the stim-

uli in each task [20, 21]. Since the two zones of Go stimuli brack-

eted the NoGo zone (Figure 1B), this allowed us to compare the

responses to a disjunctive set of stimuli that belonged to the

same Go behavioral category yet differed substantially along

their feature dimension. Animals learned the tasks with a set of

6 stimuli and were able to generalize their performance to novel

stimuli [20] (Figure S1B). Physiological recordings commenced

after the animals attained criterion performance levels as

detailed in STARMethods. Animals displayed stable task perfor-

mance during the physiological recording sessions with an

average discrimination rate (DR) of 55.2 for the tone task and

50.8 for the AM task (left panels in Figure 1C) and demonstrated

clear behavioral boundaries along the trained feature dimensions

(middle and right panels in Figure 1C).

Multiple single units were isolated with four simultaneously in-

serted independently moveable electrodes in each session. Re-

cordings were made over a period of 12–18 months from A1 and

dPEG, uniformly covering all the tonotopically identified areas of

these fields (Figure S2B). In each recording, responses were

characterized in terms of their tuning curves (characteristic fre-

quency [CF] and bandwidth) and spectrotemporal receptive

fields (STRFs). Based on the tonotopicmaps derived from our re-

cordings, it is very likely that the great majority of our recording

sites in dPEG were in the anterior area PPF, with only a few

recording sites in the more posterior PSF [22, 23]. However,
1650 Current Biology 30, 1649–1663, May 4, 2020
because no functional differences have yet been observed be-

tween the secondary areas PPF and PSF [24], we broadly refer

to the location of our pooled recordings in PPF and PSF as

dPEG. We also recorded from the dorsolateral frontal cortex

(dlFC) during the performance of the same tasks. At the conclu-

sion of all recording sessions (128 sessions in ferret Guava and

95 sessions in ferret Gong), we placed HRP markers or made

iron deposits (four sites shown in Figure S2A) for subsequent his-

tological examination of the recorded areas to confirm their loca-

tion based on neuroanatomical features (see STAR Methods).

Post-mortem examination of brain sections revealed the exact

locations of the markers, and these were used to confirm the

relative position of all recording penetrations. The neuroanatom-

ical locations of the two HRP deposits in auditory cortex were

confirmed in A1 and dPEG, based on the ferret brain atlas [25]

(sites 3 and 4 in Figure S2C) and the associated neurophysiolog-

ically defined tonotopic map (Figure S2B). The two recording

sites with iron deposits in dlFC were identified in post-mortem

histology to be in the rostral part of the anterior sigma gyrus

(ASG) (sites 1 and 2 in Figure S2C). Based on the ferret atlas

[25], both sites were located in the premotor cortex (PMC). We

are using the dlFC nomenclature here to be consistent with the

terminology used in earlier studies [26–28].

Single-Unit and Neuron Population Responses Show
Enhanced Categorical Contrast during Behavior
In this report, we analyzed the responses of 1,269 isolated single

units with auditory responses (recorded from two ferrets), all of

which showed activation to some of the acoustic task stimuli in

a passive or active experimental epoch. Of this total, 1,140 neu-

rons were tested in the tone task (346 in A1 [181,165 cells from

each animal], 430 in dPEG [233,197], and 364 in dlFC

[228,136]), and 571 neurons were tested in the AM task (149 in

A1 [91,58], 192 in dPEG [95,97], and 230 in dlFC [191,39]). In gen-

eral, response contrast between Go and NoGo stimuli was less

modulated by task performance in A1, compared to response

contrast between Go and NoGo in dPEG and dlFC (Figure 3A).

This is illustrated by two examples of single-unit responses

from each of these three areas, shown for the tone task (Figures

2A–2F) and AM task (Figures 2G–2L) stimuli. In all panels of this

figure, two key stimulus properties are highlighted: (1) cate-

gory—i.e., Go versus NoGo (by color: green versus red); and

(2) behavioral state—passive listening (dashed curves in left

and right plots) versus task-engaged active listening (solid

curves in middle plots).

For tonal stimuli (Figures 2A–2F), the passive responses in A1

and dPEG (dashed curves) reflected the unit’s frequency tuning

curve (Figures 2M and 2N). Neurons from auditory cortex (Fig-

ures 2A–2D) showed clear responses to tonal stimuli and in these

examples were tuned within the NoGo range (Figure 2M). In

contrast, there were often no responses to tonal stimuli in dlFC

in the passive condition (Figures 2E and 2F), and, when present,

responses were not tuned. However, during task performance,

responses (solid curves) increased for NoGo stimuli (red) relative

to the Go responses (green), thus enhancing the contrast be-

tween responses to the two categories. This contrast enhance-

ment in favor of the NoGo responses became progressively

more pronounced in dPEG and dlFC, as was reported earlier

[26, 27]. The same pattern of contrast enhancement was found



Figure 1. Task Design and Categorical Performance during Physiological Recording Sessions

(A) Go/NoGo conditioned avoidance behavioral paradigm. A trial was started by initiating water flow (�1.2 mL/min) to a water spout. The ferret could freely lick

water from the waterspout. An auditory stimulus was presented 1.5 s after the onset of water flow. Animals learned to continue licking (for a Go trial stimulus) or to

briefly refrain (for 400 ms) from licking (for a NoGo trial stimulus). A NoGo stimulus (middle-range tones or AM noise; see Figure 1B) was followed by a shock

window that began 0.1 s after stimulus offset and lasted for 0.4 s. Animals learned towithhold licking of thewaterspout during the shockwindow in order to avoid a

mild electric shock on the tongue (when in the free-run training box) or on the tail (when head-restrained in the head-fixed holder) after a NoGo stimulus. False

alarms (cessation of licking of the waterspout following a Go stimulus) resulted in a variable 5- to 10-s timeout penalty, applied at the end of the trial. Trials ended

2.0 s after sound offset by turning off water flow. Following the completion of one trial, the ferret had to cease licking the waterspout for at least 1.0 s in order to

initiate the next trial.

(B) The 9-stimulus set for tone task and AM task during neurophysiological recordings. The acoustic stimuli were partitioned into three ranges along the frequency

or AM rate axis.

(C) Task performance during neurophysiological recording (sessions were combined across animals). Left: behavioral performance is quantified by discrimination

rate (DR) measure. The distributions of discrimination rate (DR) during performance of the tone task or AM task in all neurophysiological sessions are shown with

the mean of DR indicated by a vertical dashed line and standard deviation of the DR indicated by a horizontal bar. Middle: the task performance is described

by the behavioral response probability across stimulus parameters (tone frequency or AM rate). The performance data were pooled from all behavioral sessions

from the two animals during neurophysiological recordings in auditory cortical areas (A1 and dPEG). The psychometric functions (dashed) obtained by sigmoid

fitting of the behavioral response versus stimulus parameters around the boundaries between low and middle and the middle and high ranges. Right: the

discrimination between adjacent stimuli along the feature dimensions obtained based on the distributions of behavioral responses to each stimulus. The resulting

discrimination function exhibited peaks between category boundaries (the purple bar) along the training feature dimensions.

See also Figure S1.
for the AM task, especially in dPEG (Figures 2I and 2J) and dlFC

(Figures 2K and 2L).

We next examined how the entire population of cells in each of

the 3 cortical regions (A1, dPEG, dlFC) represented the contrast

betweenNoGo andGo responses, and how this contrast evolved

over time during passive listening and task performance. Fig-

ure 3A shows that the population contrast function (defined as

NoGo-Go population responses) for both tasks broadly resem-

bled the response patterns already described for the single-unit

examples (Figure 2). Specifically, the population contrast rapidly

andsignificantly increasedduring taskperformancecompared to
the population contrast in the passive listening context (solid

versus dashed curves), especially in the higher cortical regions

(dPEG and dlFC). The contrast enhancement during behavior in

favor of the NoGo stimuli (Figure 3A) can be traced to changes

in the overall tuning function of the population responses as illus-

trated in Figure 3B. Initially the pre-passive responses are barely

‘‘tuned’’ to the NoGo stimuli (dashed lines are all fairly flat). How-

ever, during task performance (solid curves), the population

response to the two categories diverge, becoming relatively

enhanced for the NoGo tones and AM rates but in strikingly

different ways in the three cortical areas (see Figures S3A and
Current Biology 30, 1649–1663, May 4, 2020 1651



Figure 2. Examples of Single-Unit Responses during Passive Listening and Task Performance

(A–N) The examples illustrate single-neuron PSTH responses to task stimuli during passive listening and behavior in the task-performance context, when animals

were engaged in either the tone task (A–F) or AM task (G–L). The green and red lines are population averages of spiking responses for trials grouped by stimulus

behavioral meaning (either Go or NoGo). The shaded areas around the lines indicate the standard error of the responses. The responses to NoGo stimuli changed

during behavior in all example neurons. The responses were enhanced at all levels in the tone task (A–F) and inmost of the neurons in the AM task but were slightly

suppressed in A1 cells during behavior (G and H). The bottom panels are the frequency response curves (M) and the modulation transfer functions (N) of the

example neurons from auditory field (A1 and dPEG), which were computed from onset response to tones or the averaged sustained response to AM noises.
S3B for details). Go responses in A1 are suppressed during the

task (blue downward arrows), whereas in dPEG and dlFC the

NoGo responses increase significantly compared to the Go re-

sponses (red upward arrows). These changes during task perfor-

mance enhance the difference between the responses to the two

categories of stimuli andhence lead to the formationof prominent

and distinct categorical responses and hence provide a neural

substrate for categorical decision-making andbehavioral choice.

Distinct Temporal Dynamics for Bottom-Up (Sensory)
and Top-Down (Categorical) Information Flows during
Behavior
The key conceptual hypothesis underlying our analysis is that the

emergence of categorical representations implies that neuronal
1652 Current Biology 30, 1649–1663, May 4, 2020
responses in higher cortical areas become progressively more

discriminative for stimuli across categories and less so for stimuli

within a category, mirroring at a neuronal level the behavioral re-

sponses characteristic of category perception (Figure 1C). To

test this hypothesis directly, following from Freedman and col-

leagues [12, 14], we defined two contrasting measures that

capture these categorical versus the sensory aspects of

neuronal responses. The first measure is the categorical index

(CI), which is based on trial-by-trial responses and reflects the

degree to which a response is driven by categorical versus sen-

sory information (see STARMethods for details). CI values range

from 0.5 to �0.5; positive values indicate that the response is

driven by categorical information, whereas negative values indi-

cate the responses is driven by sensory information. The CI is



Figure 3. Single-Unit Population PSTHs Illustrate the Enhanced Contrast between the Go and NoGoCategorical Responses during Behavior

(A) Averaged PSTHs of the response contrast between NoGo and Go-sounds in neuron populations in A1, dPEG, and dlFC during different task conditions. As

already indicated in the example neurons in Figure 2, responses increased for the NoGo stimuli during active task performance (solid lines) compared to pre-task

passive listening conditions (dashed lines), especially in dPEG and dlFC. Significance of the difference between the two conditionswas assessed by theWilcoxon

signed-rank test between the two categories in each PSTH bin (p < 0.05 in three consecutive bins). The presence of statistically significant differences between

responses in active and passive conditions is indicated by the gray dashed lines above the PSTHs. Average spontaneous activity before stimulus presentation

was subtracted from all PSTHs.

(B) Average changes between responses during the passive (dashed) and active (solid) states were evaluated from responses at each tone frequency and AM rate

in A1, dPEG, and dlFC. Stars indicate significant changes assessed by the Wilcoxon signed-rank test (*p < 0.05, **p < 0.01, and ***p < 0.001, respectively). The

broad red and blue arrows highlight the overall direction of the response changes in different ranges (low, middle, and high). Overall, in both tone and AM tasks,

the responses enhanced the contrast between the two categories by either increasing in theMiddle range (NoGo) or decreasing to both Low andHigh ranges (Go)

(Figure S3 depicts the detailed changes of Go and NoGo response PSTHs during task performance).
computed from the overall response evoked by stimuli in passive

listening or during task performance (Figures S3A and S3B). It is

also computed at each time bin so as to estimate its temporal dy-

namics; hence, CI is a time function over the duration of a trial

(Figure 4A). We averaged this index across the neuronal popula-

tion in each area and during different behavioral states, which al-

lowed us to examine both the extent and dynamics of the global

categorical responses in each area as shown in Figure 4A. A sec-

ond complementary measure was defined as the sensory index

(SI), which captures the purely sensory aspects of the re-

sponses. It is the proportion of response variance explained by
individual stimuli over the total variance. SI varies from 0 to 1.0,

where a value near 1.0 reflects a highly sensory selective

response (see STAR Methods for more details), e.g., the

response of a cell that is finely tuned to one tone. As with CI,

SI can be computed for each unit at each time bin throughout

a trial in both passive and active conditions (Figure S4B).

All cortical regions exhibited weak categorical responses in

the pre-passive state (dashed curves of Figure 4A with CI close

to 0). Nevertheless, some pre-passive tone responses in A1 and

dPEGwere significantly categorical (CI > 0), indicating that some

responses in the neuronal population during the passive
Current Biology 30, 1649–1663, May 4, 2020 1653



Figure 4. Population Responses Illustrate the Different Temporal Dynamics of the Bottom-Up (Sensory) and Top-Down (Category) Informa-

tion Flow during Behavior in the Three Cortical Areas (A1, dPEG, and dlFC)

(A) Plots illustrate the time course of the averaged categorical index (CI, see Figure S4A for the further details of CI computation) in passive (dashed) and active

(solid) task conditions, with the shading indicating the standard error at each time point. Response dynamics of the tone- and AM-task responses (top and bottom

panels) are shown in A1, dPEG, and dlFC (left to right panels in different colors). The arrow in each panel marks the categorical latency, the time following stimulus

onset at which the CI is significantly above zero in the active state. This latency is longest in A1 and progressively decreases in the secondary auditory cortex and

frontal cortex. The abstract nature of these dynamics is highlighted by the similarity between responses in the tone and AM tasks. The vertical dashed lines in all

panels indicate either the stimulus period on/off (black lines) or the shock period on/off (red).

(B) Contrasting the categorical (CI, the data from Figure 4A) and sensory (SI, see Figure S4B) responses in the active state. Each panel contrasts the categorical

versus sensory aspects of the responses during task performance (bold versus thin lines, respectively). The SI responses rise rapidly in all areas, but with a slightly

increasing latency from A1 to dlFC. The CI by contrast emerges first in the dlFC, and only much later in A1. Both CI and SI data are scaled to their peaks.

(legend continued on next page)
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condition exhibited categorical responses prior to task perfor-

mance. However, during task performance (solid lines), the CI

increased substantially relative to the passive state. In both

tasks, task-related CI enhancement became larger in ascending

the hierarchy from A1 toward the secondary dPEG areas and to

the dlFC (left to right panels of Figure 4A).

An interesting feature of the development of these categorical

responses is the dynamics of their rise during the active state.

Specifically, the arrows in each panel mark the time (relative to

stimulus onset) when CI became significantly >0. For both the

tone task and AM task, this ‘‘categorical latency’’ was longest

in the primary region (A1) and shortened gradually toward the

higher areas of the dPEG and dlFC. This dynamic feature of

the categorical responses is highlighted in Figure 4B where we

plot in each panel the categorical versus sensory aspects of

the responses (CI versus SI) curves (for comparison, both curves

were scaled to the peak value). The SI (sensory) bottom-up re-

sponses exhibited the basic familiar pattern of short latency in

primary sensory cortex (A1) that increased slightly in higher areas

(dPEG and to dlFC) (see Figure S4B for detailed SI information).

In contrast, the CI showed more gradual dynamics and the

opposite trend, exhibiting shortest latencies in higher areas

and longer latencies in the primary cortical sensory area. This

pattern of dynamics suggests a bidirectional temporal informa-

tion flow that is remarkably similar across these two very

different tasks and stimuli. This point is emphasized in Figure 4C

where we plot the SI and CI response latencies (x axis) during

task performance, as a function of their hierarchical cortical

origin (A1, dPEG, dlFC). In both tasks, the shortest latencies

appear in A1, the origin of the bottom-up sensory flow of infor-

mation (SI, blue arrowheads) from A1 toward the dlFC (all in a

few tens of milliseconds), and then the top-down ‘‘reverse’’

flow of categorical (CI, red arrowheads) information toward the

dPEG and back to A1 (occurring over a period of hundreds ofmil-

liseconds). These opposite temporal dynamics of information

flow during categorization tasks are considered in more detail

in the Discussion.

Categorical Response Patterns Distinguish Two
Neuronal Populations with Intrinsic versus Task-
Induced Categorical Responses
It is evident from Figure 4A (dashed lines) that there is a neuronal

population, particularly in A1 and dPEG, that exhibited categor-

ical responses in the passive state in the trained animals. To

explore the characteristics of this population and its implications

for the formation and encoding of categorical perception in audi-

tory cortex, we first segregated the cells in each cortical area into

two groups based on an averaged CI computed during the pre-

passive state (CIpassive) using the onset responses to the task

stimuli (0–250 ms in the tone task and 0–375 ms in the AM
(C) Categorical (thick lines) versus sensory (thin lines) information flow is revealed b

in gray lines). The hypothetical flow of information is indicated by the direction of

from stimulus onset to accumulate significant category or sensory information (s

(D) A schematic of the dynamic flow of sensory and categorical information. T

schematized by the two directional flows: a feedforward bottom-up interlayer sen

eventually to dlFC (through a series of intermediate fields, dashed arrows) whose

termmodifications that reflect task categories. The reverse feedback top-down flo

to earlier cortical areas, eventually modifying their feedforward connectivity.
task), rather than using the spiking waveform width [5] (see Fig-

ure S7). We examined the CI dynamics separately for each of

these two groups of cells as shown in Figure 5A. In the first group

(left panels), referred to as ‘‘intrinsically categorical cells,’’ it

exhibited categorical responses in the passive condition

(CIpassive > 0). The CI from this neuron group increased further

during the task, andwith the same rapid form and short latencies

as seen in the passive state, and it maintained this high value

well beyond the behavioral response window. The remaining

cells (right panels) formed a ‘‘task-induced categorical group,’’

which had no categorical responses in the passive state (CIpas-

sive = < 0) but exhibited a slow buildup of CI in the active state

with the staggered latencies seen earlier in the whole population

(Figure 4A). The proportions of these two populations within

each of the lower cortical regions were roughly similar (Fig-

ure S5A). However, unlike A1 and dPEG, few dlFC neurons

were intrinsically categorical, and most displayed weak or no

passive responses with CIpassive near 0. Hence, most dlFC

neurons were characterized by ‘‘task-induced’’ categorical

responses. The similar pattern was also evident in neuron pop-

ulations when animals engaged in the AM task (bottom row of

panels in Figure 5).

We further explored whether there are any response charac-

teristics that might explain the origin of these two cell groups.

To do so, we examined for each cell in A1 and dPEG the relation-

ship between its CI and two basic properties (relevant mostly for

the tone task): (1) the best frequency (BF) and (2) the bandwidth

as quantified by the SI of the cell. To clarify this link, we simulated

neuronal population responses that had a range of BFs and SIs

and measured the resulting CI responses in a tone-task para-

digm (simulation details in STAR Methods). The results are

plotted in Figure 5B, where each dot represents a simulated

cell, placed at its BF (x axis) and SI (y axis), and its CI is indicated

by its color. It is evident that narrowly tuned cells near the center

of the NoGo range exhibit categorical responses (red dots)

because they respond only to tones within this category. Note

also that the CI of very broadly tuned cells (low SIs) are green

since they are broadly tuned and hence mix responses from

both tone categories.

Figure 5C illustrates the resulting measured distribution of re-

sponses in A1 and dPEG, which exhibits a reasonable corre-

spondence to the simulated results of Figure 5B. Hence, we

conclude that, at least in a proportion of cells, with narrow band-

widths and appropriate BFs, their responses can appear rather

‘‘categorical’’ even before the task begins, because the task

categories are a partition of a natural continuum of frequency.

However, it is also evident in further analysis of the population re-

sponses, that during task performance, many cells become

tuned to the categorical stimuli of the tasks (see details in Figures

S5B and S5C for the changes of CI during active state) and
y the latency of the CI versus SI in the two tasks (tone task in black and AM task

arrows along the trajectory of each task. The bottom arrow indicates the time

ee text for details).

he encoding of categorical information during their formation and retrieval is

sory pathways (symbolized by the gray arrow on the left) from A1, to dPEG, and

activation is strongest during task performance. This pathway undergoes long-

w only occurs during task performance and propagates categorical information

Current Biology 30, 1649–1663, May 4, 2020 1655



Figure 5. CI Dynamics in TwoDistinct Neuronal PopulationsGrouped According to Their CIs during Passive Listening and the SimulatedCat-

egorical Responses

(A) Dynamics of the categorical responses in the two cell populations (see also Figure S5A) segregated according to their average passive categorical responses

(CIpassive) to tone (0- to 250-ms onset period)/AM (0- to 375-ms onset period) task stimuli: intrinsically categorical neurons have CIpassive > 0 (left panels) and task-

induced categorical neurons with CIpassive % 0 (right panels). During task engagement, the group of intrinsically categorical cells exhibit rapid buildup of cate-

gorical responses that resemble their passive counterparts but are stronger and last much longer over the response period. In comparison, the second group

exhibits slowly rising CI in the active state, with staggered latency similar to Figure 4A (see text for more details). The similar dynamics shown in performing the

tone task and AM task indicate a general processing of categorical formation/representation across involved feature dimension.

(B) Simulating the relationship between CI of a cell and its two response properties: best frequency (BF) and bandwidth parameterized by the sensory index SI of

the neuron. Scatterplot depicts a large simulated neuronal population where each cell is depicted as a dot placed according to its BF and SI (x and y axes) and

whose color reflects its CI computed from its simulated responses: red (blue) dots are highly (least) categorical. Cells with BFs in the middle frequency range

(NoGo) and with intermediate to narrow bandwidths likely have a high CI (red). The opposite occurs for (blue) cells near the boundaries; these are broadly tuned

cells (low SIs) that are also non-categorical (green).

(legend continued on next page)
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exhibit highly enhanced representations of the stimuli at the cat-

egorical boundaries.

Population Analysis Reveals HowCategorical Edges Are
Enhanced during Category Formation
To gain a global view of the population representation of the cat-

egories and to compute distance metrics among the categorical

responses, we utilized principal-component analysis (PCA) to

represent the data efficiently in a reduced dimensional space

(e.g., Figure S6). We first extracted randomly drawn trial re-

sponses from the total available for each stimulus in each cortical

area and rearranged them to form the 3D matrix (trial3 time-bin

3 neurons as in Figure S6A) and then applied the PCA over this

matrix. The resulting PCs can then be utilized to gain a different

perspective on the responses by projecting and displaying the

responses of all units to the 9 tones during the pre-passive,

active, and post-passive epochs (e.g., response trajectories

generated from the 3 PC projections in Figure S6B for dPEG

responses).

Using projections of all responses onto these PCs, we quanti-

fied in Figure 6A the pairwise distances for all tones (left) and AM

noises (right) in all task epochs. For ideal categorical responses,

we would expect a blocked distribution in which all responses to

tones or AM noises within a category would be similar, while

those across categories would be far apart. Such a blocked

response is evident in the matrices of Figure 6A (in both passive

and active states) but becomes especially clear during task

performance (middle row of panels). These results are further

summarized by the bar plots accumulating (average) distances

between categories versus within categories (BC versus WC;

Figure 6B). Categorical enhancement during behavior is evident

by the significant increases in BC (enhanced relative height of

red to blue bars); by contrast, WC remained relatively unchanged

during behavior. Thus, categorical formation is mostly driven by

the increased divergence across categorical boundaries (BC)

and not by the convergence within a category (WC).

Finally, a classic signature of categorical formation is the

sharpened transitions across the categorical boundaries, as re-

vealed in Figure 6C by the pairwise distances between re-

sponses to adjacent stimuli during passive (dashed) and active

(solid) states. Distances are relatively large near the category

edges, even in the passive state (especially for the tone task)

indicating the presence of permanent (category-sensitive)

changes that likely reflect the extended period (months) of

training. The edge effects, however, become even more pro-

nounced during task performance (solid relative to dashed lines),

as summarized by the bar plots below, which illustrate that dis-

tances across categories (black bars) increase substantially rela-

tive to within category changes (gray bars) creating a boundary

that is similar to the behavioral boundary shown earlier in Fig-

ure 1C. All these and other categorical effects were more clearly

seen during the tone task than during the AM task (see also Fig-

ure S6C), likely reflecting the better behavioral performance on
(C) Distribution derived from actual passive responses to tone-task stimuli in the th

and havemoderate to fine tuning, whereas passive dlFC responses are usually we

text and STAR Methods for more details). The stars above the graphs indicate s

tailed t test). See Figures S5B and S5C formore detailed changes of the CI during t

for populations grouped by spike waveform width.
the tone task AM task (Figure 1C). For instance, the representa-

tion of the upper rate edge in the AM tasks is weak, mirroring the

animals’ poorer performance near this boundary (Figure 1C).

Categorical Information Becomes Hierarchically More
Abstract across the Two Independently Trained Tasks
In many of recordings, we were able to gather responses in both

tasks when the animal performed both tasks sequentially, thus

allowing us to examine whether categorical responses in both

tasks are abstracted, becoming jointly encoded in a population

of cells that essentially transcended the sensory aspects of the

stimuli and emphasized instead their decision-related categori-

cal labels. Figure 7 summarizes the findings from such (jointly

characterized) cells in each of the three cortical regions: A1

(125), dPEG (163), dlFC (154). First, we computed and (scatter)

plotted in Figure 7A the average CI of each unit in passive and

active behavioral contexts for the two tasks over the sustained

portion of the response.

In the passive state (Figure 7A, top panels), there were compa-

rable numbers of cells in each of these four groups. However,

during the active state, dlFC responses changed substantially,

almost all becoming categorical (142/154), with the majority be-

ing of the joint kind (82/142 red). Remarkably, the situation in A1

and dPEGwas different in that the proportion of cells with shared

categorical responses remained comparable to each of the task-

specific CIs and stayed roughly unchanged between the passive

and active states, suggesting that the basic character of the pas-

sive categorical responses in auditory cortex is consistent with

the responses in the active state.

Given the large changes in the proportion of joint responses in

the dlFC, and the staggered latencies of the CI responses

observed earlier (Figure 4A), we wondered whether the joint CI

responses A1 and dPEG might also exhibit these dynamics

(which were obscured by the averaging of the CI responses in

Figure 7A). This indeed was the case, as shown in Figure 7B,

which displays the instantaneous proportion of joint cells (i.e.,

cells that exhibited joint categorical responses to the tone and

AM tasks) near stimulus onset, during its sustained portion,

and late portion. Compared to the passive state (dashed), the

percentage of joint responses during the active state (solid lines)

increases toward the end of the stimulus in all areas (p = 0.0194,

2.0931 3 10�5, 7.262 3 10�13 for A1, dPEG, and dlFC, respec-

tively) and more substantial in the dlFC (p = 2.921 3 10�8 and

1.843 3 10�14 for the onset and sustained periods) by binomial

test. These results are indicative of the progressively more ab-

stract categorical responses, i.e., joint and independent of task

specific stimuli, in ascending to higher levels of the cortical

hierarchy.

DISCUSSION

Responses of the auditory cortex are known to reflect many as-

pects of acoustic perception, ranging from the representation of
ree cortical regions. A1 and dPEG are generally responsive during passive state

ak or not present at all, and hence its CIs are near zero with few exceptions (see

ignificant positive CI (p < 0.05 in three consecutive bins with one-sample one-

ask engagement in relation to the neurons’ tuning properties and also Figure S7
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Figure 6. Population Analysis Demonstrates the Enhancement of Categorical Boundaries during Category Formation

(A) Heatmaps display the pairwise averaged Euclidean distance matrix during pre-passive, active, and post-passive tone-task (left) and AM-task (right)

conditions.

(B) Bar plots (top panels) summarize the averaged Euclidian distance between sound pairs falling within (WC) and across (BC) the behavioral categories in all task

conditions (color coded). The distances in all plots are computed from the first 3 PCA components over the neuron populations. (All significance measures are

based on the Wilcoxon rank-sum test: *p < 0.05, **p < 0.01, ***p < 0.001).

(C) Plots illustrate the categorical boundaries computed from the Euclidean distance between each neighboring stimulus pairs in the pre-passive (dashed) and

active (solid) states. The bars in the plots display the averaged difference of the distances between the two states (Active-Passive), and the highlighted bars

(black) mark the changes of the distance at the pairs across the boundaries of the behavioral Go and NoGo categories that become more sharply defined during

the active state and are progressively better defined from A1 to dPEG, to the dlFC, especially during performing the tone task (left).

See also Figure S6.
the sensory attributes of a complex sound such as its pitch,

timbre, and location [29], to the rapid plasticity due to engage-

ment of cognitive functions during task performance such as

memory retrieval [30–33], decision making [33–35], and
1658 Current Biology 30, 1649–1663, May 4, 2020
categorical perception [4, 8, 36]. The present study focused on

the emergence and retrieval of categorical representations of

diverse acoustic stimuli along multiple levels of the auditory

cortical hierarchy during passive listening and during



Figure 7. Category Information Becomes Progressively More General across the Two Independently Trained Tasks in Higher Cortical Areas

Neurons tested in both the tone task and AM task, in all three cortical areas.

(A) Scatterplot illustrates the correspondence between the categorical responses in each cell (represented by the dots) to both tasks: CIs from tone task

(abscissa) and the CIs from the AM task (ordinate). The CI measurements were based on the sustained response (250–750 ms) evoked by stimuli in the pre-

passive or active states. The p value in the panels are indicates the likelihood of observed joint CI >0 form a binomial test.

(B) Dynamics of the joint categorical responses. The proportion of cells becoming jointly categorical increases significantly during task performance, but as with

the dynamics of the categorical responses in the task-induced categorical cells (Figure 5), the increase becomes evident near the onset of the stimuli in dlFC, but

only later in dPEG (sustained: 250–750 ms) and A1 (late: 750–850 ms). The stars above the lines indicate the significance levels from binomial test at corre-

sponding condition: *p < 0.05, **p < 0.01, and ***p < 0.001, respectively.
performance of two different Go-NoGo categorization tasks. Our

results demonstrate that in trained ferrets: (1) single-unit and

population responses become progressively more categorical

as one moves up the hierarchy of auditory cortical fields from

the primary to the frontal cortex. (2) The categorical response be-

comes significantly enhanced during task performance, espe-

cially in the higher areas. (3) However, in a sub-population of cells

in the auditory cortical areas, categorical responses persist even

in the (passive) non-task condition, thus exhibiting a state-inde-

pendent long-termmemory for task categories in trained ferrets.

(4) Auditory categories are delineated by enhanced boundaries

that match their perceptual properties, especially during task

performance in higher cortical stages. (5) The observed bi-direc-

tional and temporally staggered flow of information is in
remarkable agreement with the earlier finding in the primate vi-

sual system [18]. This pattern of dynamics persists in both audi-

tory categorization tasks, emphasizing the global and abstract

nature of this cognitive function and top-down flow of category

information during task performance.

While auditory categorization has previously been described

in neurophysiological studies in avian, rodent, and primate cor-

tex [2, 4, 5, 9, 10, 37–39], they differed from our approach in using

either global (epidural) population cortical response measures

and/or more complex stimuli (speech or FM sweeps) with acous-

tic features whose parametric representations are uncertain in

the areas studied, which in turn complicated the task of dissect-

ing how the categories formed and how category boundaries

were enhanced during task performance. A recent 2-photon
Current Biology 30, 1649–1663, May 4, 2020 1659



imaging study of auditory cortex [8] demonstrated dynamic

enhancement of compact category boundaries during engage-

ment in a tone category discrimination task but was limited in

temporal resolution and spatial analysis of information flow in

the auditory cortical network.

As noted earlier, previous observations on the neural basis of

categorization that are most comparable to our present study

arose from pioneering experiments on visual categorization

that explored responses in a hierarchy of primate visual cortical

areas and higher areas in parietal and frontal cortices [11, 14, 15,

17–19, 40, 41]. However, our study of auditory categorization dif-

fers from this body of work in several ways and sheds light on

new aspects of the cognitive function of categorization. For

example, our behavioral tasks involve dual categorical engage-

ments with two completely different stimulus sets (tones and

AM noise). The categories are non-contiguous or non-compact

in that they included stimuli that are non-neighboring along the

frequency or AM-rate axis. We also describe differences in the

details of the representation at different cortical levels, with cat-

egories already formed in A1, becoming more apparent in dPEG,

and clearest in dlFC, especially during task engagement. We

confirmed earlier reports that some of the category-selective re-

sponses in dlFC were observed only when category distinctions

were task relevant but not during passive exposure to the same

stimuli [17, 26]. However, by contrasting the responses during

behavioral tasks versus passive listening, we demonstrate a

long-term representation (memory) for the dual categories that

is present even during passive listening in a sub-population of

intrinsically categorical neurons and also a more malleable,

task-induced representation in another sub-population that ex-

hibits dynamic categorical responses only during task engage-

ment, with staggered, increasing latencies toward the earlier

processing levels.

Categorical Representations Are Enhanced during
Behavior
In our experiments, we observed that categorical responses are

enhanced during task performance, beginning in the earliest

cortical regions. For both the tone and AM noise tasks, the re-

sponses of the two categories diverge, while the diverse (and

non-contiguous) stimuli within a category coalesce by

converging into a similar pattern that ultimately represents the

category label rather than the acoustic properties of the stimuli.

An extreme example is the strong dlFC response during task per-

formance to the NoGo tones and AM noise regardless of their

frequencies or rates, while all Go stimuli elicit little or no re-

sponses (Figure 3B). This pattern of NoGo enhancement and/or

Go suppression emerges gradually in A1 and builds up in the

dPEG (arrows in Figure 3B). This specific pattern of enhance-

ment and/or suppression between the two categories in our

tasks likely reflects the Go/NoGo structure of our task design.

If the two categories were associated with similar behavioral

response outcomes, as in a positive reinforcement 2AFC task,

we speculate that they would have driven mutually exclusive

neuronal populations with similar responses.

Curiously, while the neuronal representation of the two cate-

gories within a single task became almost completely segre-

gated at the level of the dlFC, single-unit responses nevertheless

often encoded multiple categories across both of the two
1660 Current Biology 30, 1649–1663, May 4, 2020
independent auditory tasks, consistent with our previous results

showing multimodal joint representation across auditory and vi-

sual tasks in frontal cortex [25] and previous reports of ‘‘multi-

tasking’’ neurons in frontal and parietal cortex responses during

visual categorization tasks in primate [42, 43]. In the current

study, this finding is clearly illustrated in our data in Figure 7A

by the large number of dlFC neurons that jointly categorized

the NoGo stimuli in the tone task and the AM task. Such joint en-

coding was evident in the stages of dPEG or A1 only during late

period of responses (Figure 7B), which might reflect the top-

down modulation from dlFC and/or other higher cortical regions.

Cortical Dynamics of Categorical Responses
Another key property associated with categorical responses

concerns their dynamics. Thus, while response onsets to task

stimuli were rapid (Figures 2 and 4B) and followed the expected

increase in latency toward higher cortical regions (from about

20 ms latency in A1, to 50 ms in dlFC), their categorical nature

as quantified by the CI exhibited far more complex dynamics

and a reverse order staggered latency during both tasks (Figures

4A and 4B). In both tasks, the buildup was quite rapid in dlFC,

reaching its peak level within 50–200 ms following stimulus

onset. In dPEG, the buildup was far slower, taking over 200–

500 ms, while it did not begin to increase substantially until

much later in A1, increasing only after the end of the stimulus.

This pattern of response dynamics that occurred in both condi-

tioned avoidanceGo-NoGo auditory tasks in the auditory system

of a carnivore is remarkably similar to that described in perfor-

mance of positive reinforcement 2AFC visual tasks in the primate

visual system [14, 18, 19], a correspondence that highlights the

fundamental nature of this phenomenon being evident in

different animal models, sensory modalities, cortical regions,

and experimental paradigms and demonstrates a remarkable

generality of the basic principles of categorical processing.

Dual Populations of Category Neurons
Characterizing single-unit responses to task stimuli in the

passively listening ferrets allowed us to discover additional prop-

erties of the complex dynamics of the categorical responses.

Some of the intrinsically categorical neurons may be present

before training, and we suggest that additional intrinsically cate-

gorical neurons are recruited and may reflect long-term learning

due to extensive training on the two tasks. Task engagement,

however, induced enhanced CIs in both subpopulations but

with a striking difference in dynamics (Figures 5 and S5A) that

was only possible to dissociate because of our reliance on sin-

gle-unit recordings. Thus, in the intrinsically categorical cells,

response onsets during performance were rapid throughout all

cortical regions. By contrast, the additional task-induced cate-

gorical responses exhibited a staggered buildup over hundreds

of milliseconds. During task engagement, a new slower

response component emerged in all cells but was especially

evident in the task-induced categorical subpopulation. These

two components were also evident in the visual responses (Fig-

ure 2c in Siegel et al., 2015 [18]), but their dissociation into sepa-

rate populations was not possible because of the multiunit

nature of the recordings in their study. We conjecture that these

two cell populations and their dynamics reflect, on the one hand,

permanent learning that shapes the sensory selectivity of cortical



cells along the bottom-up pathway, and on the other hand, a top-

down feedback that becomes effective only during task perfor-

mance (Figure 4D). We note that the existence of two neuronal

populations with different categorical response selectivity was

previously conjectured to be associated with cells of narrow

versus broad spikes, putatively corresponding to interneurons

versus pyramidal cells [5, 44, 45]. However, we did not observe

such a segregation of spike waveforms in our data (Figure S7).

Finally, PCA of neuronal population activity (Figure 6) provided

a geometric visualization and quantification of the passive and

active categorical responses in terms of a distance metric that

confirmed the results garnered from the single-unit and aver-

aged responses. The PCA, however, also revealed a key indica-

tor of categorical perception in the neuronal responses, namely,

the sharpened categorical boundaries, which were evident in the

passive and active states, and show increased prominence in

ascending levels of the cortical hierarchy from A1 to dlFC (Fig-

ures 6B and 6C).

Speculative Model of Category Formation
We offer a speculative view of the gradual formation of categor-

ical perception upon repeated task engagement (initial acquisi-

tion and subsequent reinforcement training) depicted in Fig-

ure 4D that gives a schematic of the hierarchically organized

cortical areas from primary to frontal cortex that resembles the

typical structure of multi-layered neural network models of sen-

sory systems [46, 47] and studies of the computational principles

underlying visual categorization [47–50].

We conjecture that initially (e.g., in naive animals), all re-

sponses to the Go and NoGo stimuli recruit different popula-

tions of cells in the early cortical fields (A1) according to their

passive (pre-existing) sensory selectivity. A small subset of

these cells may already behave ‘‘categorically’’ in our Go/

NoGo tone task by virtue of their BF and narrow tuning. These

pre-existing (intrinsically) categorical cells therefore form the

nucleus for the initial buildup of the NoGo (and suppression

of the Go) categorical responses. During task performance,

these cells provide the fast ‘‘feedforward’’ categorical input to

the higher areas up to dlFC, which is responsive to NoGo stim-

uli only during engagement [26]. The dlFC activation in turn

supplies a positive ‘‘feedback’’ signal that back-propagates

to the lower areas, and we hypothesize that timing-related plas-

ticity, arising from the two task-related activations, reinforces

and gradually enhances the categorical nature of the feedfor-

ward pathway (Figure 4D). It is therefore evident why this stag-

gered feedback is critical for the buildup of the categorical

responses, especially in the broadly tuned, categorically

malleable cells, which may gradually become more categorical

over the time course of training as they change their input

selectivity. By contrast, the intrinsically categorical neurons in

the auditory cortex already exhibit large CI responses in their

rapid feedforward activations and hence are not modulated

further to the same degree by the feedback influences. To

encode more complex categories, multiple, task dependent,

selective sensory features will have to be recruited [51, 52]. In

addition to timing-related plasticity, an elegant cortical circuit

model suggests that reward learning mediated by plastic top-

down feedback is also likely to play a role in the emergence

of category tuning from initially untuned neurons [53].
To test all these speculations in the ferret model system, it

would be ideal to monitor chronically the responses in all of the

cortical regions along this auditory pathway to the dlFC from

A1, to dPEG, and in the two other intervening cortical areas of

the VPr (rostral ventroposterior field) and PSSC (pseudosylvian

sulcal cortex) [23, 27] during category learning while animals

are trained from the task-naive state to task proficiency. More-

over, to fully understand the development and representation

auditory categories, it would also be valuable to monitor subcor-

tical areas such as the striatum that have been shown to play an

important role in auditory category formation [54]. However, with

available stable, chronic recording techniques [55] it is now

possible to delineate the learning-induced changes in neural rep-

resentation, in the interaction of feedforward and feedback re-

sponses and their dynamics of information flow as categorical

responses gradually emerge during auditory category learning.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
Two adult female ferrets (Mustela putorius, Marshall Farms, North Rose, NY), each weighting 600-900 g, began training at one year of

age. During behavioral training and physiological recording, the animals were placed on a water-control protocol in which they had

restricted access to water during the week except as reward during behavior or as liquid supplements (if the animals did not drink

sufficiently during the behavioral sessions), and received ad libitum water freely over weekends. Animal health was monitored on a

daily basis to avoid dehydration and weight loss (animals were maintained above 80% of ad libitum weight). Ferrets were housed in

pairs or trios in facilities accredited by the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC), and

were maintained on a 12-hr light-dark artificial light cycle.

All animal experimental procedures were conducted in accordance with the National Institutes of Health’s Guide for the Care and

Use of Laboratory Animals, and were approved by the Institutional Animal Care and Use Committee (IACUC) of the University of

Maryland.

METHOD DETAILS

Experimental apparatus
Ferrets were trained in a custom-built transparent Lucite testing box (18 cm width X 34 cm depth X 20 cm height), placed within a

single-walled, sound attenuated chamber (IAC). A lick-sensitive waterspout (2.5 cm X 3.7 cm) stood 12.5 cm above the floor in front

of the testing box, and animals could easily lick from the waterspout to obtain water through a small opening in the front wall of the

box. Thewaterspout was connected to a computer-controlled water pump (MasterFlex L/S, Cole-Parmer), and also to a custom-built

interface box that converted the licks into a TTL digital signal feed to a computer. A loudspeaker (Manger, Germany) was positioned

40 cm in front of the testing box for sound delivery during behavioral training, and the animal’s behavior was streamed with a video

camera, displayed graphically trial-by-trial and continuously monitored on a computer screen.

Behavioral Tasks
Animals were trained on two different classification tasks using a conditioned avoidance paradigm [30], categorizing either tone-fre-

quencies (Tone-task), or rates of amplitude-modulated noise (AM-task). Stimuli and tasks were previously described in detail [20] in a

previous version of the task in which an appetitive paradigm was used. In both tasks, animals started with a set of 6 stimuli, which

were divided into three zones along the relevant feature axis. Each zone was assigned the desired behavioral meaning (one Middle

NoGo-zone and two flanking Go-zones). The frequencies of the set of 6 tones were set at 100, 280, 784, 2195, 6147, 17210 Hz with

equal spacing in logarithmic scale. The 6 stimuli in the AM-task consisted of white noise modulated at six rates: 4, 15, 26, 37, 48, and

59Hz. Animals were trained for one session a day (100-200 trials), after 1-2 days of habituation in the testing box in which they learned

to lick on the waterspout for water.

A typical trial started by turning on the water pump (at a flow rate of�1.2 ml/min) upon which the animals began licking the water-

spout for water. A sound (0.75 s duration) was presented 1.5 s after water flow commenced. Ferrets learned to stop licking the water-

spout (Hit) when a NoGo sound was presented in order to avoid a mild tongue shock (the 0.4 s shock window began 0.1 s after offset

of a NoGo sound (NoGo-trial, Figure 1A)). The animals learned to continue licking the waterspout on trials with a Go sound (Go-trial,
e1 Current Biology 30, 1649–1663.e1–e5, May 4, 2020
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Figure 1A). The trial ended 2.0 s later after sound offset by turning the water pump off (i.e., each trial was 4.25 s long). Animals learned

to stop licking the waterspout for 1.0 s in order to initiate the next trial. False alarms (in which animals incorrectly stopped licking the

waterspout in the response window during Go-trials) resulted in a 5-10 s timeout penalty, which was applied before the next trial. The

training session ended when the animal was no longer thirsty and did not lick the waterspout for 3 consecutive Go trials. Task

performance was measured using the discrimination rate (DR), which was defined as:

DR = Hit rate � ð1 -- False Alarm rateÞ � 100%:

Animals were first trained on the Tone-task to respond according to tone frequencies (discriminating frequencies in a Go zone from

frequencies in two flanking No-Go zones). The behavioral criterion was defined as the animal performing three consecutive sessions

(over 100 trials) with DR > 40.0%. After reaching this criterion, animals received an additional 1-2 weeks of training to further consol-

idate task performance.. Animals were then trained on the AM-task and learned to respond to AM rates (discriminating AM-rates in a

Go zone from AM-rates in two flanking No-Go zones). During early stages of training, an intensity cue (for NoGo sounds) was used to

help shape the animals’ response to the correct sound category. The Go sounds were presented at lower sound intensity levels than

the NoGo sounds (up to an initial 60 dB relative attenuation as indicated by the gray scale of filledmarkers in Figure S1A). The DRwas

computed for each training session, andwas used to guide the adjustment of the attenuation level applied toGo sounds. The intensity

cues were gradually removed during training. The intensity cues were not necessary for training on the AM-task, and were not used

since the animals had already learned the basic task paradigm following Tone-task training.

Headpost Implant Surgeries and Neurophysiological recordings
After reaching behavioral criterion on both tasks, a stainless steel headpost was surgically implanted on the ferret skull under aseptic

conditions while the animals were deeply anesthetized with 1%–2% isoflurane. After recovery from surgery (about 2-3 weeks), an-

imals were placed in a double-wall sound proof booth (IAC) to habituate to head restraint in a customized head-fixed holder. Animals

were then re-trained on the head-restrained version of the task, where a mild electric shock was delivered to the tail on ‘‘miss’’ trials.

Neurophysiological recordings were begunwhen animals regained a criterion level of task performance in three sequential behavioral

sessions with DR greater than 0.4 in both Tone- and AM- tasks.

To gain access to the brain for neurophysiological recording, small craniotomies (1-2mm in diameter) weremade over auditory and

frontal cortex. Recordings were conducted using 4 tungsten microelectrodes (2-5 MU, FHC) simultaneously introduced through the

same craniotomy and controlled by independently moveable drives (Electrode Positioning System, Alpha-Omega). Raw neural ac-

tivity traces were amplified, filtered and digitally acquired by a data acquisition system (AlphaLab, Alpha-Omega). Multiunit neuronal

responses were monitored on-line (including all spikes that rose above a threshold level of 4 standard deviations of neural signals).

Single-units were isolated offline by customized spike-sorting software, based on a PCA and template-matching algorithm

(Meska-PCA, NSL).

During neurophysiological recordings in auditory cortex, a 9-stimulus set of frequencies or AM rates was used in each task (Fig-

ure 1B) instead of the 6-stimulus training set. However, the 6-stimulus set was used inmost of the recordings fromdlFC. Therewas no

difference in behavioral performance using either the 6 or 9-stimulus set.

Experimental Procedures and Stimuli
At each recording site, we first used 0.5 s random tones pips of varying frequency (spanning up to 8 octaves ranges, 4 tones/octave)

and intensity (20-70 dB range, 10 dB increments) to characterize neuronal properties such as characteristic frequency (CF), sharp-

ness of tuning (by computing Q-10 dB), andminimal response latency etc. Temporally-orthogonal ripple combinations (TORCs) were

also used to construct a neuron’s STRF (spectrotemporal receptive field). The typical behavioral neurophysiological session at each

site included at least three epochs: active task-engagement during performance of either the Tone-task or AM-task, passively

listening to the identical task stimulus set before and after task performance. In each epoch, all stimuli were repeated 10-15 times.

One or both Tone- and AM-task behavioral physiological sessions were carried out in each recording site depending on the animals’

motivation and stability of the neuronal activity.

All acoustic stimuli were ramped with 5 ms rise-fall time and presented at 60-70 dB SPL, with the exception of the tone pips. The

sounds were digitally generated using custom-made MATLAB (The MathWork, Natick, MA) functions at 40 kHz sampling rate and

were converted at 16-bit resolution through a NI-DAQ card (PCI-6052E), then amplified (MA-3, Rane) and delivered through the

free-field loudspeaker (Manger, German) located �1.2 m in front of animals’ head. All behavioral performances were controlled

and monitored through a custom-built MATLAB GUI. All trial events and behavioral responses were recorded and stored in the com-

puter for further analysis and assessment of behavioral performance.

Localization of recording sites
In ferrets, auditory cortex is located �13-16 mm anterior to the occipital crest, the most distinctive and most easily accessible skull

landmark [25], and�12mm lateral to the skull midline (Figure S2A). Initial recordings began through a small craniotomy placed above

auditory cortexA1 with these coordinates. The neuron’s characteristic frequency (CF; defined below) was measured at each elec-

trode penetration. Based on the gradient of the CFs, the existing craniotomy was further expanded in order to cover both primary

(A1) andmore lateral secondary (dPEG) auditory regions. The CFs obtained from all penetrations at different stages of the craniotomy

were aligned together to form a tonotopic map for each animal (Figure S2B), referring to two landmarks, placed (in the bone cement)
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on either side of the craniotomy. The locations of A1 and dPEG were confirmed, based on their tonotopic organization [22]. The CF

gradient in A1 runs from high to low frequency in a dorsal-lateral direction, while showing a frequency reversal of the CF gradient at

the low frequency border with dPEG. Thus, the lowest CF contour line was used as the border line to divide A1 and dPEG.

Recordings in dlFC began through a small craniotomy�25-30 mm anterior to the occipital crest, corresponding to a frontal cortex

region including the anterior part of the ASG/PMC and the most anterior dlFC area or PRG/dPFC as shown by the green shaded re-

gions in Figure S2A. The craniotomy was gradually expanded based on the response from the electrode penetrations. Locations of

the recording electrodes relative to two reference marks placed in the bone cement surrounding the craniotomy was measured for

later alignment of all electrode penetration sites in a frontal cortex craniotomy.

In order to histologically identify the recording areas, following completion of recordings, two penetration sites in each identified

cortical area were selected tomake either an iron electrolytic deposit (in one animal, Gong) or by placement of a small amount of HRP

(in the second animal, Guava). The sites in auditory cortex were selected based on the tonotopic maps (Figure S2B) such that one

HRP injection was located in A1 and another in dPEG. The two selected sites in dlFCwere identified by responses evoked during task

performance. The HRP deposits were made by fine glass pipette with small amounts of HRP on its tip. The iron deposits were made

by passing a small constant current through a stainless-steel electrode (5�7.5 mA for 300 s). The confirmation of injection sites in

50 mm coronal brain slices of the fixed ferret brains was done by histological localization of DBA (diaminobenzidine) reaction to visu-

alize HRP, or by Prussian blue reaction to highlight the iron deposits. The dlFC sites were identified from iron deposits as shown in

Figure S2C (sections 1 and 2). The HRP sites were successfully identified in auditory cortex, and confirmed one recording site was

located in A1 (sections 4) and another in dPEG (sections 3) as shown in Figure S2C.

Data analysis
Behavioral assessment

During task performance, a behavioral response in a given trial was assessed based on the animal licking pattern in two time win-

dows: before the start of the shock time window (Figure 1A) and during the 0.4 s shock time window. In order to score a given trial,

the animals were required to lick in the timewindow before the shock window. Refraining from licking during the shock windowwas a

correct response to a NoGo sound and was defined as a hit, whereas cessation of licking during the shock window was an incorrect

response to a Go sound and was defined as a false alarm. The hit rate (HR) and false alarm rate (FR) were computed in each training

session. The basic metric used in quantify the behavioral performance based on HR and FRwas the discrimination rate (DR), defined

as: DR = HR*(1-FR). The criterion for successful behavioral performance in distinguishing Go and NoGo sounds in a given training

session was a DR > = 0.4. The criterion for task mastery was a DR > = 0.4 in three consecutive training sessions (> 100 trials per

session) in the absence of any intensity cues for targets (i.e., all stimuli were presented at equal loudness). Animals continued training

for a few weeks in order to consolidate their performance. Animals displayed a very stable behavior performance during neurophys-

iological recording in both Tone and AM-task (Figure 1C, left panels).

Computing characteristic frequency (CF)

In auditory cortex, neurons’ CF were obtained by analyzing their response to tones pips with varying frequency (spanning up to 8

octaves ranges, 4 tone/octave) and intensity (20-70 dB range, 10 dB increment). A two-dimensional response matrix (frequency x

intensity) was formed by taking the averaged evoked response to tones (for the first 100 ms after tone onset) at each frequency

and intensity level. The response matrix was first normalized, by subtracting the mean and then dividing by the standard deviation

of the baseline activity (averaged over a 100 ms window before tone onset). A 2-dimensional spline interpolation was applied to the

normalized response matrix to obtain finer resolution of frequency (1/12 octave) and intensity (1 dB). The longest iso-response con-

tour line in the frequency x intensity space was defined as the neuron’s tuning curve (TC), and the frequency corresponded to the

lowest intensity on TC was the neuron’s CF. The site CF for each penetration site was represented by taking the median value of

all isolated single units in the penetration. The site CFs were used to generate the tonotopic map, after aligning penetration site lo-

cations in the same craniotomy surface relative to the two landmarks placed around the recording region (see Figure S2B). In both

animals, from dorsal to lateral, the CF gradient runs from high to low and then mirror reverses from low to high. The primary (A1) and

secondary (dPEG) auditory cortical areas were identified based on the CF tonotopic maps.

ROC Analysis

The basic metrics used to determine whether a single-unit’s response could discriminate between individual stimulus pairs (distance)

or stimulus categories (Go versus NoGo) or behavioral choices (licking versus stop licking) were derived from signal-detection-the-

ory-based ROC analysis. To compute the ROC area, we first computed the averaged spike rate evoked in a given observation time

window in each trial. The proportion of responses to each of the paired conditions having a firing rate greater than a given criterion

level was calculated, and this measurement was repeated for criterion levels along the full range of the evoked firing rate. A neural

ROC was formed by plotting the paired probability functions, and the area under the ROC represented the neural discriminability be-

tween the paired conditions. ROC area has a value ranging from 0 to 1.0, and is symmetric around 0.5. A value at 0 or 1.0 indicated

that the ROC-based ideal observer had a perfect prediction of the paired condition and a value at 0.5 indicated chance prediction.

Several subsequent neural metrics were derived from this ROC analysis.

Categorical Index (CI)

CI is defined as: CI = BC – WC; where BC (between category) denotes averaged ROC areas computed from all selected stimulus

pairs in which one stimulus belongs to the Go and another to the NoGo category; WC (within category) denotes the averaged

ROC areas computed from all selected pairs in which the two stimuli were from the same category (either Go or NoGo). The neural
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distance between any stimulus pair was represented by the absolute value of (ROC-0.5). Therefore, CI had a range from�0.5 to 0.5.

Positive CI indicates a categorical response, while a negative CI indicates a non-categorical response. The permutation tests were

performed to evaluate the significance of the obtained CI for each neuron in each passive and active epoch.

Sensory index (SI)

SI was used to quantify a neuron’s response selectivity to stimuli, defined as the proportion of variance explained by individual stim-

ulus over the total variance:

SI = SSB=SST

Where SSB denotes the sum of squares between individual stimuli, and SST denotes the sum of squares total. SI yields a range from

0 to 1.0, a value near 1.0 if all variance could be explained by individual stimuli (for a highly selective neuron), or a value near 0.0 if not

(indicating a neuron that responds evenly to all stimuli, or has no response at all). Since a neurons’ SI is positively correlated with a

neuron’s tuning bandwidth, it was also used as an indicator of the sharpness of its response profile to the task stimulus sets. The

significance of SI value in each passive and active epoch was tested with One-way ANOVA.

Simulation of neuronal responses

Auditory responseswere simulated using a bell-shape response profile across frequencies resembling aGaussian distribution, which

was parameterized for the evoked response (R) of a neuron to a given frequency (x) as:

R =
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pBW2

p e
�ðx�BFÞ2

2BW2 + ε

Where BF is the neuron’s best frequency, BW its bandwidth, and ε denotes the state-dependent noise. The CI and SI were then

computed based on the simulated responses for different BF and BW ranges (e.g., between 0.25-5 octaves in 0.1 steps).

Population analysis

Population analysis included neurons with at least 10 repetitions for each stimulus to form a pseudo-population representation in

each cortical area and task. For each neuron, 10 trials were randomly picked from all available trials (up to 15 trials) for each stimulus

and sorted [by stimulus repetitions]. The trials from all neurons were concatenated to form a 3-dimensional population matrix ([stim-

ulus x repetition] x time bins x neurons) as illustrated in Figure S6A. The trial data were moving-averaged with a 50ms time window at

25 ms steps. The data from each neuron were corrected by subtracting their baseline activity, and then normalizing to the maximum

of the absolute responses among all recording epochs (two passive and one active). This procedure was repeated 10 times to obtain

10 population matrices. A mean population representation matrix was obtained for each area by averaging over the 10 matrices to

reduce noise. Principal component analysis (PCA) was applied over the averaged population-response matrix by treating neurons as

variables with [bins x trials] as observations (rearranged as a two-dimensional matrix: [bins x trials] x neurons). PC coefficients

(PCcoeff) were obtained by applying PCA on the data matrix from the active epoch. The PCA scores (PCsr) for individual population

matrix at each epoch and moment were computed through the product of the PCcoeff and the population data matrix at each time

moment (POPt): PCsr = POPt * PCcoeff. The dynamics of task stimulus responses were then represented in PC space by using the

first three PC’s in the passive and active task conditions (Figure S6B). Euclidean distance between pairs of task stimulus responses

was computed based on their representation in PC space.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis
The permutation test was performed to test the significance of the obtained CI for each neuron in each of passive and active epoch.

We first computed the shuffled CI (CIsh) by randomly assigned stimulus labels for trials within each pair conditions, and this proced-

ure was repeated 1000 times. The p value is the fraction of those 1000 values of CIsh that are greater than or equal to the observed CI.

The neuron is assumed to have significant more categorical driven responses than purely sensory driven response if p % 0.05, or

more sensory driven responses than purely sensory if p > = 0.95. Otherwise, the neuron was thought to be equally driven by category

and sensory or lack of response at all (which is true for most of neurons from dlFC during passively listening).

One-way ANOVA was performed to test the null hypothesis that means of response from each stimulus are equal, which use for

evaluating the significance of the obtained SI for each neurons in each passive and active conditions.

The significance of the population dynamics in CI or SI was assessed by One-sample t test to test the null hypothesis that the

means of the CI or SI from each population are no difference with their baselines in each condition (passive and active). While the

changes of the population dynamics in CI or SI or PSTH between active and passive conditions in each population were assessed

by Wilcoxon signed rank test for aero median. The tests on the dynamics were performed in 100 ms time window which began from

200ms before stimulus onset with 25ms slidingwindowbeyond 600ms beyond offset of the stimulus. The significance of the binwas

defined as p < 0.05 in three consecutive bins from the test to compensate the repeated-measure bias.

For population analysis, the differences in changes of the averaged Euclidean distance of WC and BC between passive and active

conditions were assessed byWilcoxon rank sum test to test if the changes inWC and BC come from distribution with equal medians,

or the divergence across categorical boundaries (with BC increasing) and not the convergence within a category (with no or less

changes in WC) during task performance.
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For neuron populations with two tasks, the binomial test was employed to test if the observed joint probability of positive CI in

both Tone and AM-task differs from the expected likelihood from random combination, which has chance likelihood round 0.5 3

0.5 = 0.25.

DATA AND CODE AVAILABILITY

The raw data related to the current study have not been deposited in a public repository because the complexity of the customized

data format and the amount in size. Source data and relevant MATLAB codes for generating figures in the paper are available by

reasonable request to Lead Contact, Pingbo Yin (pyin@umd.edu).
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