Current Biology

Dynamics and Hierarchical Encoding of Non-
compact Acoustic Categories in Auditory and Frontal
Cortex

Highlights

e Enhanced categorical representations in higher auditory

areas during behavior

e Distinct sensory and categorical information flows during

categorization tasks

e Separate neuronal groups with intrinsic versus task-induced

categorical responses

e Similar dynamics in different categorization tasks with

distinct acoustic features

uuuuuuu

Yin et al., 2020, Current Biology 30, 1649-1663
May 4, 2020 Published by Elsevier Inc.
https://doi.org/10.1016/j.cub.2020.02.047

Authors

Pingbo Yin, Dana L. Strait,
Susanne Radtke-Schuller,
Jonathan B. Fritz, Shihab A. Shamma

Correspondence
pyin@umd.edu

In Brief

Yin et al. show neuronal responses
become progressively more categorical
in higher auditory and frontal cortical
areas during passive listening in trained
ferrets, and more so during engagement
in categorization tasks. The dynamics of
categorical responses exhibit a
cascading top-down modulation pattern
opposite to the rapid bottom-up sensory
flow.

Cell


mailto:pyin@umd.edu
https://doi.org/10.1016/j.cub.2020.02.047
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cub.2020.02.047&domain=pdf

Current Biology

Dynamics and Hierarchical Encoding
of Non-compact Acoustic Categories
in Auditory and Frontal Cortex

Pingbo Yin,»** Dana L. Strait,’ Susanne Radtke-Schuller,’ Jonathan B. Fritz,-?> and Shihab A. Shamma'-®

Institute for Systems Research, Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA
2Center for Neural Science, New York University, New York, NY 10003, USA

3Department of Cognitive Studies, Laboratoire des Systémes Perceptifs, Ecole Normale Supérieure, 75005 PSL Paris, France

4Lead Contact
*Correspondence: pyin@umd.edu
https://doi.org/10.1016/j.cub.2020.02.047

SUMMARY

Categorical perception is a fundamental cognitive
function enabling animals to flexibly assign sounds
into behaviorally relevant categories. This study in-
vestigates the nature of acoustic category represen-
tations, their emergence in an ascending series of
ferret auditory and frontal cortical fields, and the
dynamics of this representation during passive
listening to task-relevant stimuli and during active
retrieval from memory while engaging in learned
categorization tasks. Ferrets were trained on two
auditory Go-NoGo categorization tasks to discrimi-
nate two non-compact sound categories (composed
of tones or amplitude-modulated noise). Neuronal re-
sponses became progressively more categorical in
higher cortical fields, especially during task perfor-
mance. The dynamics of the categorical responses
exhibited a cascading top-down modulation pattern
that began earliest in the frontal cortex and subse-
quently flowed downstream to the secondary audi-
tory cortex, followed by the primary auditory cortex.
In a subpopulation of neurons, categorical re-
sponses persisted even during the passive listening
condition, demonstrating memory for task cate-
gories and their enhanced categorical boundaries.

INTRODUCTION

A fundamental aspect of listening is the cognitive ability to flex-
ibly assign sensory stimuli into discrete, distinct, and behavior-
ally relevant categories that are task or context dependent,
allowing the selection of an appropriate behavioral response to
novel sensory stimuli within a known category. For example,
spoken utterances can be recognized for their meaning irrespec-
tive of the speaker’s voice (semantic or verbal categories), or
alternatively, can be associated with the voice of a specific
speaker regardless of their meaning (individual voice categories).
Utterances can also be categorized by language, accent,
emotional tone, speed of enunciation, and along many other
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dimensions, allowing us to select an appropriate behavioral
response to novel utterances from diverse speakers. This study
investigates the nature of acoustic category representations for
non-compact stimulus sets [1], in an ascending series of ferret
auditory cortical fields up to frontal cortex, and specifically the
dynamics of this representation during passive listening and
active retrieval from auditory memory during task performance.

There are only a few previous neurophysiological studies on
categorical representations in the auditory system of behaving
animals [2-8] or anesthetized preparations following training
[9, 10]. In one pioneering study, gerbils were trained to categorize
frequency-modulated tones as “upward” or “downward” [2],
while cortical potentials were recorded during task performance.
As gerbils acquired the categorization rule, their neural activity
patterns changed from initially reflecting stimulus acoustic prop-
erties to categorical membership. Similar categorical responses
were observed during phoneme categorization in the primate
ventral prefrontal cortex (vVPFC) [3] and in the anterolateral belt
area of the superior temporal gyrus [4-6]. Monkeys were trained
to make a “same or different” judgment based on sequential pre-
sentation of two speech sounds (“bad” versus “dad”). At a
behavioral level, monkeys perceived the range of morphed stim-
uli in a categorical fashion [3, 4], consistent with many earlier an-
imal and human studies of such perceptual boundaries. Neurons
in the auditory belt cortex exhibited categorical sensitivity de-
pending on their morphology [4-6]. Responses in the primary
auditory cortex (A1) also showed modulation during the perfor-
mance of another auditory categorization task [7]. A recent study,
utilizing 2-photon imaging in layers Il and lll of mouse auditory
cortex [8], demonstrated dynamic task-driven modulation of sin-
gle neurons and population response profiles that enhanced re-
sponses at the boundary between two trained tones during the
performance of a tone discrimination task.

In comparison with the auditory system, there have been many
behavioral neurophysiological studies of sensory categories in
the visual system [11-19]. In a recent study [18], monkeys were
trained to categorize the same set of moving, colored stimuli
either into “up” versus “down” categories (when cued to attend
to direction of motion) or into red versus green categories (when
cued to attend to color of the moving dots). One of the main
findings of this study was the discovery of a cross-current dy-
namic flow of categorical information in opposite directions,
comprising a sequence of a transient, rapid, and bottom-up
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sweep of sensory activity, followed by a reverse current of top-
down categorical information flow.

The current study of categorization in the ferret auditory cortex
confirms several aspects of these previous experimental results
in the monkey visual cortex as outlined in the Results and Dis-
cussion, although it differs in some fundamental ways in our
experimental approach. For instance, while monkeys were
trained on a visual 2AFC task, the ferrets were trained on two
different Go-NoGo negative reinforcement auditory categoriza-
tion tasks [20]. We explored responses in the primary and sec-
ondary auditory cortex and frontal areas that parallel aspects
of the ascending visual pathways in monkeys. The stimuli
comprised relatively simple tones and amplitude-modulated
(AM) noise that allowed us to dissect the sensory-to-category
transformation and change in stimulus representations from their
acoustic features (veridical representation) to task categories
(categorical representation). A key feature of our experiments
was the comparison of responses during passive listening with
responses during task performance, which revealed task-
dependent modulation.

RESULTS

Two ferrets were each trained over a period of 6 months on two
different auditory categorization tasks. In both tasks, a trial con-
sisted of the presentation of a single stimulus. The animals
learned to lick the waterspout for water reward if the stimulus
was a member of the Go Category, or to refrain from licking to
a stimulus in the NoGo category (Figures 1A and 1B). Both ani-
mals successfully learned to categorize tone frequencies in
one task (tone task) and learned to categorize amplitude modu-
lation (AM) rates of a noise stimulus in the other task (AM task)
(Figure S1A). Stimulus parameters (frequencies and rates) were
organized such that there were three acoustic zones for the stim-
uli in each task [20, 21]. Since the two zones of Go stimuli brack-
eted the NoGo zone (Figure 1B), this allowed us to compare the
responses to a disjunctive set of stimuli that belonged to the
same Go behavioral category yet differed substantially along
their feature dimension. Animals learned the tasks with a set of
6 stimuli and were able to generalize their performance to novel
stimuli [20] (Figure S1B). Physiological recordings commenced
after the animals attained criterion performance levels as
detailed in STAR Methods. Animals displayed stable task perfor-
mance during the physiological recording sessions with an
average discrimination rate (DR) of 55.2 for the tone task and
50.8 for the AM task (left panels in Figure 1C) and demonstrated
clear behavioral boundaries along the trained feature dimensions
(middle and right panels in Figure 1C).

Multiple single units were isolated with four simultaneously in-
serted independently moveable electrodes in each session. Re-
cordings were made over a period of 12-18 months from A1 and
dPEG, uniformly covering all the tonotopically identified areas of
these fields (Figure S2B). In each recording, responses were
characterized in terms of their tuning curves (characteristic fre-
quency [CF] and bandwidth) and spectrotemporal receptive
fields (STRFs). Based on the tonotopic maps derived from our re-
cordings, it is very likely that the great majority of our recording
sites in dPEG were in the anterior area PPF, with only a few
recording sites in the more posterior PSF [22, 23]. However,
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because no functional differences have yet been observed be-
tween the secondary areas PPF and PSF [24], we broadly refer
to the location of our pooled recordings in PPF and PSF as
dPEG. We also recorded from the dorsolateral frontal cortex
(dIFC) during the performance of the same tasks. At the conclu-
sion of all recording sessions (128 sessions in ferret Guava and
95 sessions in ferret Gong), we placed HRP markers or made
iron deposits (four sites shown in Figure S2A) for subsequent his-
tological examination of the recorded areas to confirm their loca-
tion based on neuroanatomical features (see STAR Methods).
Post-mortem examination of brain sections revealed the exact
locations of the markers, and these were used to confirm the
relative position of all recording penetrations. The neuroanatom-
ical locations of the two HRP deposits in auditory cortex were
confirmed in A1 and dPEG, based on the ferret brain atlas [25]
(sites 3 and 4 in Figure S2C) and the associated neurophysiolog-
ically defined tonotopic map (Figure S2B). The two recording
sites with iron deposits in dIFC were identified in post-mortem
histology to be in the rostral part of the anterior sigma gyrus
(ASG) (sites 1 and 2 in Figure S2C). Based on the ferret atlas
[25], both sites were located in the premotor cortex (PMC). We
are using the dIFC nomenclature here to be consistent with the
terminology used in earlier studies [26-28].

Single-Unit and Neuron Population Responses Show
Enhanced Categorical Contrast during Behavior

In this report, we analyzed the responses of 1,269 isolated single
units with auditory responses (recorded from two ferrets), all of
which showed activation to some of the acoustic task stimuli in
a passive or active experimental epoch. Of this total, 1,140 neu-
rons were tested in the tone task (346 in A1 [181,165 cells from
each animal], 430 in dPEG [233,197], and 364 in dIFC
[228,136]), and 571 neurons were tested in the AM task (149 in
A1[91,58], 192 in dPEG [95,97], and 230 in dIFC [191,39]). In gen-
eral, response contrast between Go and NoGo stimuli was less
modulated by task performance in A1, compared to response
contrast between Go and NoGo in dPEG and dIFC (Figure 3A).
This is illustrated by two examples of single-unit responses
from each of these three areas, shown for the tone task (Figures
2A-2F) and AM task (Figures 2G-2L) stimuli. In all panels of this
figure, two key stimulus properties are highlighted: (1) cate-
gory—i.e., Go versus NoGo (by color: green versus red); and
(2) behavioral state—passive listening (dashed curves in left
and right plots) versus task-engaged active listening (solid
curves in middle plots).

For tonal stimuli (Figures 2A-2F), the passive responses in A1
and dPEG (dashed curves) reflected the unit’s frequency tuning
curve (Figures 2M and 2N). Neurons from auditory cortex (Fig-
ures 2A-2D) showed clear responses to tonal stimuli and in these
examples were tuned within the NoGo range (Figure 2M). In
contrast, there were often no responses to tonal stimuli in dIFC
in the passive condition (Figures 2E and 2F), and, when present,
responses were not tuned. However, during task performance,
responses (solid curves) increased for NoGo stimuli (red) relative
to the Go responses (green), thus enhancing the contrast be-
tween responses to the two categories. This contrast enhance-
ment in favor of the NoGo responses became progressively
more pronounced in dPEG and dIFC, as was reported earlier
[26, 27]. The same pattern of contrast enhancement was found
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Figure 1. Task Design and Categorical Performance during Physiological Recording Sessions

(A) Go/NoGo conditioned avoidance behavioral paradigm. A trial was started by initiating water flow (~1.2 mL/min) to a water spout. The ferret could freely lick
water from the waterspout. An auditory stimulus was presented 1.5 s after the onset of water flow. Animals learned to continue licking (for a Go trial stimulus) or to
briefly refrain (for 400 ms) from licking (for a NoGo trial stimulus). A NoGo stimulus (middle-range tones or AM noise; see Figure 1B) was followed by a shock
window that began 0.1 s after stimulus offset and lasted for 0.4 s. Animals learned to withhold licking of the waterspout during the shock window in order to avoid a
mild electric shock on the tongue (when in the free-run training box) or on the tail (when head-restrained in the head-fixed holder) after a NoGo stimulus. False
alarms (cessation of licking of the waterspout following a Go stimulus) resulted in a variable 5- to 10-s timeout penalty, applied at the end of the trial. Trials ended
2.0 s after sound offset by turning off water flow. Following the completion of one trial, the ferret had to cease licking the waterspout for at least 1.0 s in order to
initiate the next trial.

(B) The 9-stimulus set for tone task and AM task during neurophysiological recordings. The acoustic stimuli were partitioned into three ranges along the frequency
or AM rate axis.

(C) Task performance during neurophysiological recording (sessions were combined across animals). Left: behavioral performance is quantified by discrimination
rate (DR) measure. The distributions of discrimination rate (DR) during performance of the tone task or AM task in all neurophysiological sessions are shown with
the mean of DR indicated by a vertical dashed line and standard deviation of the DR indicated by a horizontal bar. Middle: the task performance is described
by the behavioral response probability across stimulus parameters (tone frequency or AM rate). The performance data were pooled from all behavioral sessions
from the two animals during neurophysiological recordings in auditory cortical areas (A1 and dPEG). The psychometric functions (dashed) obtained by sigmoid
fitting of the behavioral response versus stimulus parameters around the boundaries between low and middle and the middle and high ranges. Right: the
discrimination between adjacent stimuli along the feature dimensions obtained based on the distributions of behavioral responses to each stimulus. The resulting
discrimination function exhibited peaks between category boundaries (the purple bar) along the training feature dimensions.

See also Figure S1.

for the AM task, especially in dPEG (Figures 21 and 2J) and dIFC
(Figures 2K and 2L).

We next examined how the entire population of cells in each of
the 3 cortical regions (A1, dPEG, dIFC) represented the contrast
between NoGo and Go responses, and how this contrast evolved
over time during passive listening and task performance. Fig-
ure 3A shows that the population contrast function (defined as
NoGo-Go population responses) for both tasks broadly resem-
bled the response patterns already described for the single-unit
examples (Figure 2). Specifically, the population contrast rapidly
and significantly increased during task performance compared to

the population contrast in the passive listening context (solid
versus dashed curves), especially in the higher cortical regions
(dPEG and dIFC). The contrast enhancement during behavior in
favor of the NoGo stimuli (Figure 3A) can be traced to changes
in the overall tuning function of the population responses as illus-
trated in Figure 3B. Initially the pre-passive responses are barely
“tuned” to the NoGo stimuli (dashed lines are all fairly flat). How-
ever, during task performance (solid curves), the population
response to the two categories diverge, becoming relatively
enhanced for the NoGo tones and AM rates but in strikingly
different ways in the three cortical areas (see Figures S3A and
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Figure 2. Examples of Single-Unit Responses during Passive Listening and Task Performance

(A-N) The examples illustrate single-neuron PSTH responses to task stimuli during passive listening and behavior in the task-performance context, when animals
were engaged in either the tone task (A-F) or AM task (G-L). The green and red lines are population averages of spiking responses for trials grouped by stimulus
behavioral meaning (either Go or NoGo). The shaded areas around the lines indicate the standard error of the responses. The responses to NoGo stimuli changed
during behavior in all example neurons. The responses were enhanced at all levels in the tone task (A-F) and in most of the neurons in the AM task but were slightly
suppressed in A1 cells during behavior (G and H). The bottom panels are the frequency response curves (M) and the modulation transfer functions (N) of the
example neurons from auditory field (A1 and dPEG), which were computed from onset response to tones or the averaged sustained response to AM noises.

S3B for details). Go responses in A1 are suppressed during the
task (blue downward arrows), whereas in dPEG and dIFC the
NoGo responses increase significantly compared to the Go re-
sponses (red upward arrows). These changes during task perfor-
mance enhance the difference between the responses to the two
categories of stimuliand hence lead to the formation of prominent
and distinct categorical responses and hence provide a neural
substrate for categorical decision-making and behavioral choice.

Distinct Temporal Dynamics for Bottom-Up (Sensory)
and Top-Down (Categorical) Information Flows during
Behavior

The key conceptual hypothesis underlying our analysis is that the
emergence of categorical representations implies that neuronal
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responses in higher cortical areas become progressively more
discriminative for stimuli across categories and less so for stimuli
within a category, mirroring at a neuronal level the behavioral re-
sponses characteristic of category perception (Figure 1C). To
test this hypothesis directly, following from Freedman and col-
leagues [12, 14], we defined two contrasting measures that
capture these categorical versus the sensory aspects of
neuronal responses. The first measure is the categorical index
(CI), which is based on trial-by-trial responses and reflects the
degree to which a response is driven by categorical versus sen-
sory information (see STAR Methods for details). Cl values range
from 0.5 to —0.5; positive values indicate that the response is
driven by categorical information, whereas negative values indi-
cate the responses is driven by sensory information. The Cl is
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Figure 3. Single-Unit Population PSTHs lllustrate the Enhanced Contrast between the Go and NoGo Categorical Responses during Behavior
(A) Averaged PSTHSs of the response contrast between NoGo and Go-sounds in neuron populations in A1, dPEG, and dIFC during different task conditions. As
already indicated in the example neurons in Figure 2, responses increased for the NoGo stimuli during active task performance (solid lines) compared to pre-task
passive listening conditions (dashed lines), especially in dPEG and dIFC. Significance of the difference between the two conditions was assessed by the Wilcoxon
signed-rank test between the two categories in each PSTH bin (p < 0.05 in three consecutive bins). The presence of statistically significant differences between
responses in active and passive conditions is indicated by the gray dashed lines above the PSTHs. Average spontaneous activity before stimulus presentation
was subtracted from all PSTHs.

(B) Average changes between responses during the passive (dashed) and active (solid) states were evaluated from responses at each tone frequency and AM rate
in A1, dPEG, and dIFC. Stars indicate significant changes assessed by the Wilcoxon signed-rank test (‘p < 0.05, **p < 0.01, and ***p < 0.001, respectively). The
broad red and blue arrows highlight the overall direction of the response changes in different ranges (low, middle, and high). Overall, in both tone and AM tasks,
the responses enhanced the contrast between the two categories by either increasing in the Middle range (NoGo) or decreasing to both Low and High ranges (Go)
(Figure S8 depicts the detailed changes of Go and NoGo response PSTHs during task performance).

computed from the overall response evoked by stimuli in passive
listening or during task performance (Figures S3A and S3B). It is
also computed at each time bin so as to estimate its temporal dy-
namics; hence, Cl is a time function over the duration of a trial
(Figure 4A). We averaged this index across the neuronal popula-
tion in each area and during different behavioral states, which al-
lowed us to examine both the extent and dynamics of the global
categorical responses in each area as shown in Figure 4A. A sec-
ond complementary measure was defined as the sensory index
(SI), which captures the purely sensory aspects of the re-
sponses. It is the proportion of response variance explained by

individual stimuli over the total variance. Sl varies from 0 to 1.0,
where a value near 1.0 reflects a highly sensory selective
response (see STAR Methods for more details), e.g., the
response of a cell that is finely tuned to one tone. As with ClI,
S| can be computed for each unit at each time bin throughout
a trial in both passive and active conditions (Figure S4B).

All cortical regions exhibited weak categorical responses in
the pre-passive state (dashed curves of Figure 4A with Cl close
to 0). Nevertheless, some pre-passive tone responses in A1 and
dPEG were significantly categorical (Cl > 0), indicating that some
responses in the neuronal population during the passive
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(A) Plots illustrate the time course of the averaged categorical index (Cl, see Figure S4A for the further details of Cl computation) in passive (dashed) and active
(solid) task conditions, with the shading indicating the standard error at each time point. Response dynamics of the tone- and AM-task responses (top and bottom
panels) are shown in A1, dPEG, and dIFC (left to right panels in different colors). The arrow in each panel marks the categorical latency, the time following stimulus
onset at which the Cl is significantly above zero in the active state. This latency is longest in A1 and progressively decreases in the secondary auditory cortex and
frontal cortex. The abstract nature of these dynamics is highlighted by the similarity between responses in the tone and AM tasks. The vertical dashed lines in all
panels indicate either the stimulus period on/off (black lines) or the shock period on/off (red).

(B) Contrasting the categorical (Cl, the data from Figure 4A) and sensory (S, see Figure S4B) responses in the active state. Each panel contrasts the categorical
versus sensory aspects of the responses during task performance (bold versus thin lines, respectively). The Sl responses rise rapidly in all areas, but with a slightly
increasing latency from A1 to dIFC. The Cl by contrast emerges first in the dIFC, and only much later in A1. Both Cl and Sl data are scaled to their peaks.

(legend continued on next page)
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condition exhibited categorical responses prior to task perfor-
mance. However, during task performance (solid lines), the CI
increased substantially relative to the passive state. In both
tasks, task-related Cl enhancement became larger in ascending
the hierarchy from A1 toward the secondary dPEG areas and to
the dIFC (left to right panels of Figure 4A).

An interesting feature of the development of these categorical
responses is the dynamics of their rise during the active state.
Specifically, the arrows in each panel mark the time (relative to
stimulus onset) when Cl became significantly >0. For both the
tone task and AM task, this “categorical latency” was longest
in the primary region (A1) and shortened gradually toward the
higher areas of the dPEG and dIFC. This dynamic feature of
the categorical responses is highlighted in Figure 4B where we
plot in each panel the categorical versus sensory aspects of
the responses (Cl versus Sl) curves (for comparison, both curves
were scaled to the peak value). The Sl (sensory) bottom-up re-
sponses exhibited the basic familiar pattern of short latency in
primary sensory cortex (A1) that increased slightly in higher areas
(dPEG and to dIFC) (see Figure S4B for detailed Sl information).
In contrast, the Cl showed more gradual dynamics and the
opposite trend, exhibiting shortest latencies in higher areas
and longer latencies in the primary cortical sensory area. This
pattern of dynamics suggests a bidirectional temporal informa-
tion flow that is remarkably similar across these two very
different tasks and stimuli. This point is emphasized in Figure 4C
where we plot the Sl and CI response latencies (x axis) during
task performance, as a function of their hierarchical cortical
origin (A1, dPEG, dIFC). In both tasks, the shortest latencies
appear in A1, the origin of the bottom-up sensory flow of infor-
mation (SI, blue arrowheads) from A1 toward the dIFC (all in a
few tens of milliseconds), and then the top-down “reverse”
flow of categorical (Cl, red arrowheads) information toward the
dPEG and back to A1 (occurring over a period of hundreds of mil-
liseconds). These opposite temporal dynamics of information
flow during categorization tasks are considered in more detail
in the Discussion.

Categorical Response Patterns Distinguish Two
Neuronal Populations with Intrinsic versus Task-
Induced Categorical Responses

Itis evident from Figure 4A (dashed lines) that there is a neuronal
population, particularly in A1 and dPEG, that exhibited categor-
ical responses in the passive state in the trained animals. To
explore the characteristics of this population and its implications
for the formation and encoding of categorical perception in audi-
tory cortex, we first segregated the cells in each cortical area into
two groups based on an averaged Cl computed during the pre-
passive state (Classive) USING the onset responses to the task
stimuli (0-250 ms in the tone task and 0-375 ms in the AM

task), rather than using the spiking waveform width [5] (see Fig-
ure S7). We examined the Cl dynamics separately for each of
these two groups of cells as shown in Figure 5A. In the first group
(left panels), referred to as “intrinsically categorical cells,” it
exhibited categorical responses in the passive condition
(Clpassive > 0). The CI from this neuron group increased further
during the task, and with the same rapid form and short latencies
as seen in the passive state, and it maintained this high value
well beyond the behavioral response window. The remaining
cells (right panels) formed a “task-induced categorical group,”
which had no categorical responses in the passive state (Clyzs-
sive = < 0) but exhibited a slow buildup of ClI in the active state
with the staggered latencies seen earlier in the whole population
(Figure 4A). The proportions of these two populations within
each of the lower cortical regions were roughly similar (Fig-
ure S5A). However, unlike A1 and dPEG, few dIFC neurons
were intrinsically categorical, and most displayed weak or no
passive responses with Cl,assive Near 0. Hence, most dIFC
neurons were characterized by “task-induced” categorical
responses. The similar pattern was also evident in neuron pop-
ulations when animals engaged in the AM task (bottom row of
panels in Figure 5).

We further explored whether there are any response charac-
teristics that might explain the origin of these two cell groups.
To do so, we examined for each cell in A1 and dPEG the relation-
ship between its Cl and two basic properties (relevant mostly for
the tone task): (1) the best frequency (BF) and (2) the bandwidth
as quantified by the Sl of the cell. To clarify this link, we simulated
neuronal population responses that had a range of BFs and Sls
and measured the resulting Cl responses in a tone-task para-
digm (simulation details in STAR Methods). The results are
plotted in Figure 5B, where each dot represents a simulated
cell, placed at its BF (x axis) and Sl (y axis), and its Cl is indicated
by its color. It is evident that narrowly tuned cells near the center
of the NoGo range exhibit categorical responses (red dots)
because they respond only to tones within this category. Note
also that the CI of very broadly tuned cells (low Sls) are green
since they are broadly tuned and hence mix responses from
both tone categories.

Figure 5C illustrates the resulting measured distribution of re-
sponses in A1 and dPEG, which exhibits a reasonable corre-
spondence to the simulated results of Figure 5B. Hence, we
conclude that, at least in a proportion of cells, with narrow band-
widths and appropriate BFs, their responses can appear rather
“categorical” even before the task begins, because the task
categories are a partition of a natural continuum of frequency.
However, it is also evident in further analysis of the population re-
sponses, that during task performance, many cells become
tuned to the categorical stimuli of the tasks (see details in Figures
S5B and S5C for the changes of Cl during active state) and

(C) Categorical (thick lines) versus sensory (thin lines) information flow is revealed by the latency of the Cl versus Sl in the two tasks (tone task in black and AM task
in gray lines). The hypothetical flow of information is indicated by the direction of arrows along the trajectory of each task. The bottom arrow indicates the time
from stimulus onset to accumulate significant category or sensory information (see text for details).

(D) A schematic of the dynamic flow of sensory and categorical information. The encoding of categorical information during their formation and retrieval is
schematized by the two directional flows: a feedforward bottom-up interlayer sensory pathways (symbolized by the gray arrow on the left) from A1, to dPEG, and
eventually to dIFC (through a series of intermediate fields, dashed arrows) whose activation is strongest during task performance. This pathway undergoes long-
term modifications that reflect task categories. The reverse feedback top-down flow only occurs during task performance and propagates categorical information

to earlier cortical areas, eventually modifying their feedforward connectivity.
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Figure 5. Cl Dynamics in Two Distinct Neuronal Populations Grouped According to Their Cls during Passive Listening and the Simulated Cat-
egorical Responses

(A) Dynamics of the categorical responses in the two cell populations (see also Figure S5A) segregated according to their average passive categorical responses
(Clpassive) to tone (0- to 250-ms onset period)/AM (0- to 375-ms onset period) task stimuli: intrinsically categorical neurons have Clp.ssive > O (I€ft panels) and task-
induced categorical neurons with Clyassive < O (right panels). During task engagement, the group of intrinsically categorical cells exhibit rapid buildup of cate-
gorical responses that resemble their passive counterparts but are stronger and last much longer over the response period. In comparison, the second group
exhibits slowly rising Cl in the active state, with staggered latency similar to Figure 4A (see text for more details). The similar dynamics shown in performing the
tone task and AM task indicate a general processing of categorical formation/representation across involved feature dimension.

(B) Simulating the relationship between Cl of a cell and its two response properties: best frequency (BF) and bandwidth parameterized by the sensory index Sl of
the neuron. Scatterplot depicts a large simulated neuronal population where each cell is depicted as a dot placed according to its BF and Sl (x and y axes) and
whose color reflects its Cl computed from its simulated responses: red (blue) dots are highly (least) categorical. Cells with BFs in the middle frequency range
(NoGo) and with intermediate to narrow bandwidths likely have a high CI (red). The opposite occurs for (blue) cells near the boundaries; these are broadly tuned

cells (low Sls) that are also non-categorical (green).

(legend continued on next page)
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exhibit highly enhanced representations of the stimuli at the cat-
egorical boundaries.

Population Analysis Reveals How Categorical Edges Are
Enhanced during Category Formation

To gain a global view of the population representation of the cat-
egories and to compute distance metrics among the categorical
responses, we utilized principal-component analysis (PCA) to
represent the data efficiently in a reduced dimensional space
(e.g., Figure S6). We first extracted randomly drawn trial re-
sponses from the total available for each stimulus in each cortical
area and rearranged them to form the 3D matrix (trial x time-bin
X neurons as in Figure S6A) and then applied the PCA over this
matrix. The resulting PCs can then be utilized to gain a different
perspective on the responses by projecting and displaying the
responses of all units to the 9 tones during the pre-passive,
active, and post-passive epochs (e.g., response trajectories
generated from the 3 PC projections in Figure S6B for dPEG
responses).

Using projections of all responses onto these PCs, we quanti-
fied in Figure 6A the pairwise distances for all tones (left) and AM
noises (right) in all task epochs. For ideal categorical responses,
we would expect a blocked distribution in which all responses to
tones or AM noises within a category would be similar, while
those across categories would be far apart. Such a blocked
response is evident in the matrices of Figure 6A (in both passive
and active states) but becomes especially clear during task
performance (middle row of panels). These results are further
summarized by the bar plots accumulating (average) distances
between categories versus within categories (BC versus WGC;
Figure 6B). Categorical enhancement during behavior is evident
by the significant increases in BC (enhanced relative height of
red to blue bars); by contrast, WC remained relatively unchanged
during behavior. Thus, categorical formation is mostly driven by
the increased divergence across categorical boundaries (BC)
and not by the convergence within a category (WC).

Finally, a classic signature of categorical formation is the
sharpened transitions across the categorical boundaries, as re-
vealed in Figure 6C by the pairwise distances between re-
sponses to adjacent stimuli during passive (dashed) and active
(solid) states. Distances are relatively large near the category
edges, even in the passive state (especially for the tone task)
indicating the presence of permanent (category-sensitive)
changes that likely reflect the extended period (months) of
training. The edge effects, however, become even more pro-
nounced during task performance (solid relative to dashed lines),
as summarized by the bar plots below, which illustrate that dis-
tances across categories (black bars) increase substantially rela-
tive to within category changes (gray bars) creating a boundary
that is similar to the behavioral boundary shown earlier in Fig-
ure 1C. All these and other categorical effects were more clearly
seen during the tone task than during the AM task (see also Fig-
ure S6C), likely reflecting the better behavioral performance on

the tone task AM task (Figure 1C). For instance, the representa-
tion of the upper rate edge in the AM tasks is weak, mirroring the
animals’ poorer performance near this boundary (Figure 1C).

Categorical Information Becomes Hierarchically More
Abstract across the Two Independently Trained Tasks

In many of recordings, we were able to gather responses in both
tasks when the animal performed both tasks sequentially, thus
allowing us to examine whether categorical responses in both
tasks are abstracted, becoming jointly encoded in a population
of cells that essentially transcended the sensory aspects of the
stimuli and emphasized instead their decision-related categori-
cal labels. Figure 7 summarizes the findings from such (jointly
characterized) cells in each of the three cortical regions: A1
(125), dPEG (163), dIFC (154). First, we computed and (scatter)
plotted in Figure 7A the average Cl of each unit in passive and
active behavioral contexts for the two tasks over the sustained
portion of the response.

In the passive state (Figure 7A, top panels), there were compa-
rable numbers of cells in each of these four groups. However,
during the active state, dIFC responses changed substantially,
almost all becoming categorical (142/154), with the majority be-
ing of the joint kind (82/142 red). Remarkably, the situation in A1
and dPEG was different in that the proportion of cells with shared
categorical responses remained comparable to each of the task-
specific Cls and stayed roughly unchanged between the passive
and active states, suggesting that the basic character of the pas-
sive categorical responses in auditory cortex is consistent with
the responses in the active state.

Given the large changes in the proportion of joint responses in
the dIFC, and the staggered latencies of the Cl responses
observed earlier (Figure 4A), we wondered whether the joint ClI
responses A1 and dPEG might also exhibit these dynamics
(which were obscured by the averaging of the Cl responses in
Figure 7A). This indeed was the case, as shown in Figure 7B,
which displays the instantaneous proportion of joint cells (i.e.,
cells that exhibited joint categorical responses to the tone and
AM tasks) near stimulus onset, during its sustained portion,
and late portion. Compared to the passive state (dashed), the
percentage of joint responses during the active state (solid lines)
increases toward the end of the stimulus in all areas (p = 0.0194,
2.0931 x 1075, 7.262 x 10~ '3 for A1, dPEG, and dIFC, respec-
tively) and more substantial in the dIFC (p = 2.921 x 1078 and
1.843 x 10~ for the onset and sustained periods) by binomial
test. These results are indicative of the progressively more ab-
stract categorical responses, i.e., joint and independent of task
specific stimuli, in ascending to higher levels of the cortical
hierarchy.

DISCUSSION

Responses of the auditory cortex are known to reflect many as-
pects of acoustic perception, ranging from the representation of

(C) Distribution derived from actual passive responses to tone-task stimuli in the three cortical regions. A1 and dPEG are generally responsive during passive state
and have moderate to fine tuning, whereas passive dIFC responses are usually weak or not present at all, and hence its Cls are near zero with few exceptions (see
text and STAR Methods for more details). The stars above the graphs indicate significant positive Cl (p < 0.05 in three consecutive bins with one-sample one-
tailed t test). See Figures S5B and S5C for more detailed changes of the Cl during task engagement in relation to the neurons’ tuning properties and also Figure S7

for populations grouped by spike waveform width.
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Figure 6. Population Analysis Demonstrates the Enhancement of Categorical Boundaries during Category Formation
(A) Heatmaps display the pairwise averaged Euclidean distance matrix during pre-passive, active, and post-passive tone-task (left) and AM-task (right)

conditions.

(B) Bar plots (top panels) summarize the averaged Euclidian distance between sound pairs falling within (WC) and across (BC) the behavioral categories in all task
conditions (color coded). The distances in all plots are computed from the first 3 PCA components over the neuron populations. (All significance measures are

based on the Wilcoxon rank-sum test: *p < 0.05, **p < 0.01, **p < 0.001).

(C) Plots illustrate the categorical boundaries computed from the Euclidean distance between each neighboring stimulus pairs in the pre-passive (dashed) and
active (solid) states. The bars in the plots display the averaged difference of the distances between the two states (Active-Passive), and the highlighted bars
(black) mark the changes of the distance at the pairs across the boundaries of the behavioral Go and NoGo categories that become more sharply defined during
the active state and are progressively better defined from A1 to dPEG, to the dIFC, especially during performing the tone task (left).

See also Figure S6.

the sensory attributes of a complex sound such as its pitch,
timbre, and location [29], to the rapid plasticity due to engage-
ment of cognitive functions during task performance such as
memory retrieval [30-33], decision making [33-35], and
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categorical perception [4, 8, 36]. The present study focused on
the emergence and retrieval of categorical representations of
diverse acoustic stimuli along multiple levels of the auditory
cortical hierarchy during passive listening and during
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Figure 7. Category Information Becomes Progressively More General across the Two Independently Trained Tasks in Higher Cortical Areas

Neurons tested in both the tone task and AM task, in all three cortical areas.

(A) Scatterplot illustrates the correspondence between the categorical responses in each cell (represented by the dots) to both tasks: Cls from tone task
(abscissa) and the Cls from the AM task (ordinate). The Cl measurements were based on the sustained response (250-750 ms) evoked by stimuli in the pre-
passive or active states. The p value in the panels are indicates the likelihood of observed joint Cl >0 form a binomial test.

(B) Dynamics of the joint categorical responses. The proportion of cells becoming jointly categorical increases significantly during task performance, but as with
the dynamics of the categorical responses in the task-induced categorical cells (Figure 5), the increase becomes evident near the onset of the stimuli in dIFC, but
only later in dPEG (sustained: 250-750 ms) and A1 (late: 750-850 ms). The stars above the lines indicate the significance levels from binomial test at corre-

sponding condition: *p < 0.05, **p < 0.01, and ***p < 0.001, respectively.

performance of two different Go-NoGo categorization tasks. Our
results demonstrate that in trained ferrets: (1) single-unit and
population responses become progressively more categorical
as one moves up the hierarchy of auditory cortical fields from
the primary to the frontal cortex. (2) The categorical response be-
comes significantly enhanced during task performance, espe-
cially in the higher areas. (3) However, in a sub-population of cells
in the auditory cortical areas, categorical responses persist even
in the (passive) non-task condition, thus exhibiting a state-inde-
pendent long-term memory for task categories in trained ferrets.
(4) Auditory categories are delineated by enhanced boundaries
that match their perceptual properties, especially during task
performance in higher cortical stages. (5) The observed bi-direc-
tional and temporally staggered flow of information is in

remarkable agreement with the earlier finding in the primate vi-
sual system [18]. This pattern of dynamics persists in both audi-
tory categorization tasks, emphasizing the global and abstract
nature of this cognitive function and top-down flow of category
information during task performance.

While auditory categorization has previously been described
in neurophysiological studies in avian, rodent, and primate cor-
tex[2,4,5,9, 10, 37-39], they differed from our approach in using
either global (epidural) population cortical response measures
and/or more complex stimuli (speech or FM sweeps) with acous-
tic features whose parametric representations are uncertain in
the areas studied, which in turn complicated the task of dissect-
ing how the categories formed and how category boundaries
were enhanced during task performance. A recent 2-photon
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imaging study of auditory cortex [8] demonstrated dynamic
enhancement of compact category boundaries during engage-
ment in a tone category discrimination task but was limited in
temporal resolution and spatial analysis of information flow in
the auditory cortical network.

As noted earlier, previous observations on the neural basis of
categorization that are most comparable to our present study
arose from pioneering experiments on visual categorization
that explored responses in a hierarchy of primate visual cortical
areas and higher areas in parietal and frontal cortices [11, 14, 15,
17-19, 40, 41]. However, our study of auditory categorization dif-
fers from this body of work in several ways and sheds light on
new aspects of the cognitive function of categorization. For
example, our behavioral tasks involve dual categorical engage-
ments with two completely different stimulus sets (tones and
AM noise). The categories are non-contiguous or non-compact
in that they included stimuli that are non-neighboring along the
frequency or AM-rate axis. We also describe differences in the
details of the representation at different cortical levels, with cat-
egories already formed in A1, becoming more apparent in dPEG,
and clearest in dIFC, especially during task engagement. We
confirmed earlier reports that some of the category-selective re-
sponses in dIFC were observed only when category distinctions
were task relevant but not during passive exposure to the same
stimuli [17, 26]. However, by contrasting the responses during
behavioral tasks versus passive listening, we demonstrate a
long-term representation (memory) for the dual categories that
is present even during passive listening in a sub-population of
intrinsically categorical neurons and also a more malleable,
task-induced representation in another sub-population that ex-
hibits dynamic categorical responses only during task engage-
ment, with staggered, increasing latencies toward the earlier
processing levels.

Categorical Representations Are Enhanced during
Behavior

In our experiments, we observed that categorical responses are
enhanced during task performance, beginning in the earliest
cortical regions. For both the tone and AM noise tasks, the re-
sponses of the two categories diverge, while the diverse (and
non-contiguous) stimuli within a category coalesce by
converging into a similar pattern that ultimately represents the
category label rather than the acoustic properties of the stimuli.
An extreme example is the strong dIFC response during task per-
formance to the NoGo tones and AM noise regardless of their
frequencies or rates, while all Go stimuli elicit little or no re-
sponses (Figure 3B). This pattern of NoGo enhancement and/or
Go suppression emerges gradually in A1 and builds up in the
dPEG (arrows in Figure 3B). This specific pattern of enhance-
ment and/or suppression between the two categories in our
tasks likely reflects the Go/NoGo structure of our task design.
If the two categories were associated with similar behavioral
response outcomes, as in a positive reinforcement 2AFC task,
we speculate that they would have driven mutually exclusive
neuronal populations with similar responses.

Curiously, while the neuronal representation of the two cate-
gories within a single task became almost completely segre-
gated at the level of the dIFC, single-unit responses nevertheless
often encoded multiple categories across both of the two
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independent auditory tasks, consistent with our previous results
showing multimodal joint representation across auditory and vi-
sual tasks in frontal cortex [25] and previous reports of “multi-
tasking” neurons in frontal and parietal cortex responses during
visual categorization tasks in primate [42, 43]. In the current
study, this finding is clearly illustrated in our data in Figure 7A
by the large number of dIFC neurons that jointly categorized
the NoGo stimuli in the tone task and the AM task. Such joint en-
coding was evident in the stages of dPEG or A1 only during late
period of responses (Figure 7B), which might reflect the top-
down modulation from dIFC and/or other higher cortical regions.

Cortical Dynamics of Categorical Responses

Another key property associated with categorical responses
concerns their dynamics. Thus, while response onsets to task
stimuli were rapid (Figures 2 and 4B) and followed the expected
increase in latency toward higher cortical regions (from about
20 ms latency in A1, to 50 ms in dIFC), their categorical nature
as quantified by the CI exhibited far more complex dynamics
and a reverse order staggered latency during both tasks (Figures
4A and 4B). In both tasks, the buildup was quite rapid in dIFC,
reaching its peak level within 50-200 ms following stimulus
onset. In dPEG, the buildup was far slower, taking over 200-
500 ms, while it did not begin to increase substantially until
much later in A1, increasing only after the end of the stimulus.
This pattern of response dynamics that occurred in both condi-
tioned avoidance Go-NoGo auditory tasks in the auditory system
of a carnivore is remarkably similar to that described in perfor-
mance of positive reinforcement 2AFC visual tasks in the primate
visual system [14, 18, 19], a correspondence that highlights the
fundamental nature of this phenomenon being evident in
different animal models, sensory modalities, cortical regions,
and experimental paradigms and demonstrates a remarkable
generality of the basic principles of categorical processing.

Dual Populations of Category Neurons

Characterizing single-unit responses to task stimuli in the
passively listening ferrets allowed us to discover additional prop-
erties of the complex dynamics of the categorical responses.
Some of the intrinsically categorical neurons may be present
before training, and we suggest that additional intrinsically cate-
gorical neurons are recruited and may reflect long-term learning
due to extensive training on the two tasks. Task engagement,
however, induced enhanced Cls in both subpopulations but
with a striking difference in dynamics (Figures 5 and S5A) that
was only possible to dissociate because of our reliance on sin-
gle-unit recordings. Thus, in the intrinsically categorical cells,
response onsets during performance were rapid throughout all
cortical regions. By contrast, the additional task-induced cate-
gorical responses exhibited a staggered buildup over hundreds
of milliseconds. During task engagement, a new slower
response component emerged in all cells but was especially
evident in the task-induced categorical subpopulation. These
two components were also evident in the visual responses (Fig-
ure 2c in Siegel et al., 2015 [18]), but their dissociation into sepa-
rate populations was not possible because of the multiunit
nature of the recordings in their study. We conjecture that these
two cell populations and their dynamics reflect, on the one hand,
permanent learning that shapes the sensory selectivity of cortical



cells along the bottom-up pathway, and on the other hand, a top-
down feedback that becomes effective only during task perfor-
mance (Figure 4D). We note that the existence of two neuronal
populations with different categorical response selectivity was
previously conjectured to be associated with cells of narrow
versus broad spikes, putatively corresponding to interneurons
versus pyramidal cells [5, 44, 45]. However, we did not observe
such a segregation of spike waveforms in our data (Figure S7).

Finally, PCA of neuronal population activity (Figure 6) provided
a geometric visualization and quantification of the passive and
active categorical responses in terms of a distance metric that
confirmed the results garnered from the single-unit and aver-
aged responses. The PCA, however, also revealed a key indica-
tor of categorical perception in the neuronal responses, namely,
the sharpened categorical boundaries, which were evident in the
passive and active states, and show increased prominence in
ascending levels of the cortical hierarchy from A1 to dIFC (Fig-
ures 6B and 6C).

Speculative Model of Category Formation

We offer a speculative view of the gradual formation of categor-
ical perception upon repeated task engagement (initial acquisi-
tion and subsequent reinforcement training) depicted in Fig-
ure 4D that gives a schematic of the hierarchically organized
cortical areas from primary to frontal cortex that resembles the
typical structure of multi-layered neural network models of sen-
sory systems [46, 47] and studies of the computational principles
underlying visual categorization [47-50].

We conjecture that initially (e.g., in naive animals), all re-
sponses to the Go and NoGo stimuli recruit different popula-
tions of cells in the early cortical fields (A1) according to their
passive (pre-existing) sensory selectivity. A small subset of
these cells may already behave “categorically” in our Go/
NoGo tone task by virtue of their BF and narrow tuning. These
pre-existing (intrinsically) categorical cells therefore form the
nucleus for the initial buildup of the NoGo (and suppression
of the Go) categorical responses. During task performance,
these cells provide the fast “feedforward” categorical input to
the higher areas up to dIFC, which is responsive to NoGo stim-
uli only during engagement [26]. The dIFC activation in turn
supplies a positive “feedback” signal that back-propagates
to the lower areas, and we hypothesize that timing-related plas-
ticity, arising from the two task-related activations, reinforces
and gradually enhances the categorical nature of the feedfor-
ward pathway (Figure 4D). It is therefore evident why this stag-
gered feedback is critical for the buildup of the categorical
responses, especially in the broadly tuned, categorically
malleable cells, which may gradually become more categorical
over the time course of training as they change their input
selectivity. By contrast, the intrinsically categorical neurons in
the auditory cortex already exhibit large Cl responses in their
rapid feedforward activations and hence are not modulated
further to the same degree by the feedback influences. To
encode more complex categories, multiple, task dependent,
selective sensory features will have to be recruited [51, 52]. In
addition to timing-related plasticity, an elegant cortical circuit
model suggests that reward learning mediated by plastic top-
down feedback is also likely to play a role in the emergence
of category tuning from initially untuned neurons [53].

To test all these speculations in the ferret model system, it
would be ideal to monitor chronically the responses in all of the
cortical regions along this auditory pathway to the dIFC from
A1, to dPEG, and in the two other intervening cortical areas of
the VPr (rostral ventroposterior field) and PSSC (pseudosylvian
sulcal cortex) [23, 27] during category learning while animals
are trained from the task-naive state to task proficiency. More-
over, to fully understand the development and representation
auditory categories, it would also be valuable to monitor subcor-
tical areas such as the striatum that have been shown to play an
important role in auditory category formation [54]. However, with
available stable, chronic recording techniques [55] it is now
possible to delineate the learning-induced changes in neural rep-
resentation, in the interaction of feedforward and feedback re-
sponses and their dynamics of information flow as categorical
responses gradually emerge during auditory category learning.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Ferret (Mustela putorius) Marshall Farm https://www.marshallferrets.com/
Software and Algorithms

MATLAB 2010-2015 Mathworks https://www.mathworks.com/
Adobe illustrator CS4.0 & 2019 Adobe Systems https://www.adobe.com/

LEAD CONTACT AND MATERIALS AVAILABILITY

This study did not generate new unique reagents. Further information and requests for resources and reagents should be directed to
and fulfilled by the Lead Contact, Pingbo Yin (pyin@umd.edu) or Shihab Shamma (sas@isr.umd.edu)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
Two adult female ferrets (Mustela putorius, Marshall Farms, North Rose, NY), each weighting 600-900 g, began training at one year of
age. During behavioral training and physiological recording, the animals were placed on a water-control protocol in which they had
restricted access to water during the week except as reward during behavior or as liquid supplements (if the animals did not drink
sufficiently during the behavioral sessions), and received ad libitum water freely over weekends. Animal health was monitored on a
daily basis to avoid dehydration and weight loss (animals were maintained above 80% of ad libitum weight). Ferrets were housed in
pairs or trios in facilities accredited by the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC), and
were maintained on a 12-hr light-dark artificial light cycle.

All animal experimental procedures were conducted in accordance with the National Institutes of Health’s Guide for the Care and
Use of Laboratory Animals, and were approved by the Institutional Animal Care and Use Committee (IACUC) of the University of
Maryland.

METHOD DETAILS

Experimental apparatus

Ferrets were trained in a custom-built transparent Lucite testing box (18 cm width X 34 cm depth X 20 cm height), placed within a
single-walled, sound attenuated chamber (IAC). A lick-sensitive waterspout (2.5 cm X 3.7 cm) stood 12.5 cm above the floor in front
of the testing box, and animals could easily lick from the waterspout to obtain water through a small opening in the front wall of the
box. The waterspout was connected to a computer-controlled water pump (MasterFlex L/S, Cole-Parmer), and also to a custom-built
interface box that converted the licks into a TTL digital signal feed to a computer. A loudspeaker (Manger, Germany) was positioned
40 cm in front of the testing box for sound delivery during behavioral training, and the animal’s behavior was streamed with a video
camera, displayed graphically trial-by-trial and continuously monitored on a computer screen.

Behavioral Tasks

Animals were trained on two different classification tasks using a conditioned avoidance paradigm [30], categorizing either tone-fre-
quencies (Tone-task), or rates of amplitude-modulated noise (AM-task). Stimuli and tasks were previously described in detail [20] in a
previous version of the task in which an appetitive paradigm was used. In both tasks, animals started with a set of 6 stimuli, which
were divided into three zones along the relevant feature axis. Each zone was assigned the desired behavioral meaning (one Middle
NoGo-zone and two flanking Go-zones). The frequencies of the set of 6 tones were set at 100, 280, 784, 2195, 6147, 17210 Hz with
equal spacing in logarithmic scale. The 6 stimuli in the AM-task consisted of white noise modulated at six rates: 4, 15, 26, 37, 48, and
59 Hz. Animals were trained for one session a day (100-200 trials), after 1-2 days of habituation in the testing box in which they learned
to lick on the waterspout for water.

A typical trial started by turning on the water pump (at a flow rate of ~1.2 ml/min) upon which the animals began licking the water-
spout for water. A sound (0.75 s duration) was presented 1.5 s after water flow commenced. Ferrets learned to stop licking the water-
spout (Hit) when a NoGo sound was presented in order to avoid a mild tongue shock (the 0.4 s shock window began 0.1 s after offset
of a NoGo sound (NoGo-trial, Figure 1A)). The animals learned to continue licking the waterspout on trials with a Go sound (Go-trial,

el Current Biology 30, 1649-1663.e1-e5, May 4, 2020


mailto:pyin@umd.edu
mailto:sas@isr.umd.edu
https://www.marshallferrets.com/
https://www.mathworks.com/
https://www.adobe.com/

Figure 1A). The trial ended 2.0 s later after sound offset by turning the water pump off (i.e., each trial was 4.25 s long). Animals learned
to stop licking the waterspout for 1.0 s in order to initiate the next trial. False alarms (in which animals incorrectly stopped licking the
waterspout in the response window during Go-trials) resulted in a 5-10 s timeout penalty, which was applied before the next trial. The
training session ended when the animal was no longer thirsty and did not lick the waterspout for 3 consecutive Go trials. Task
performance was measured using the discrimination rate (DR), which was defined as:

DR = Hit rate * (1 - False Alarm rate) « 100%.

Animals were first trained on the Tone-task to respond according to tone frequencies (discriminating frequencies in a Go zone from
frequencies in two flanking No-Go zones). The behavioral criterion was defined as the animal performing three consecutive sessions
(over 100 trials) with DR > 40.0%. After reaching this criterion, animals received an additional 1-2 weeks of training to further consol-
idate task performance.. Animals were then trained on the AM-task and learned to respond to AM rates (discriminating AM-rates in a
Go zone from AM-rates in two flanking No-Go zones). During early stages of training, an intensity cue (for NoGo sounds) was used to
help shape the animals’ response to the correct sound category. The Go sounds were presented at lower sound intensity levels than
the NoGo sounds (up to an initial 60 dB relative attenuation as indicated by the gray scale of filled markers in Figure S1A). The DR was
computed for each training session, and was used to guide the adjustment of the attenuation level applied to Go sounds. The intensity
cues were gradually removed during training. The intensity cues were not necessary for training on the AM-task, and were not used
since the animals had already learned the basic task paradigm following Tone-task training.

Headpost Implant Surgeries and Neurophysiological recordings

After reaching behavioral criterion on both tasks, a stainless steel headpost was surgically implanted on the ferret skull under aseptic
conditions while the animals were deeply anesthetized with 1%-2% isoflurane. After recovery from surgery (about 2-3 weeks), an-
imals were placed in a double-wall sound proof booth (IAC) to habituate to head restraint in a customized head-fixed holder. Animals
were then re-trained on the head-restrained version of the task, where a mild electric shock was delivered to the tail on “miss” trials.
Neurophysiological recordings were begun when animals regained a criterion level of task performance in three sequential behavioral
sessions with DR greater than 0.4 in both Tone- and AM- tasks.

To gain access to the brain for neurophysiological recording, small craniotomies (1-2 mm in diameter) were made over auditory and
frontal cortex. Recordings were conducted using 4 tungsten microelectrodes (2-5 MQ, FHC) simultaneously introduced through the
same craniotomy and controlled by independently moveable drives (Electrode Positioning System, Alpha-Omega). Raw neural ac-
tivity traces were amplified, filtered and digitally acquired by a data acquisition system (AlphalLab, Alpha-Omega). Multiunit neuronal
responses were monitored on-line (including all spikes that rose above a threshold level of 4 standard deviations of neural signals).
Single-units were isolated offline by customized spike-sorting software, based on a PCA and template-matching algorithm
(Meska-PCA, NSL).

During neurophysiological recordings in auditory cortex, a 9-stimulus set of frequencies or AM rates was used in each task (Fig-
ure 1B) instead of the 6-stimulus training set. However, the 6-stimulus set was used in most of the recordings from dIFC. There was no
difference in behavioral performance using either the 6 or 9-stimulus set.

Experimental Procedures and Stimuli

At each recording site, we first used 0.5 s random tones pips of varying frequency (spanning up to 8 octaves ranges, 4 tones/octave)
and intensity (20-70 dB range, 10 dB increments) to characterize neuronal properties such as characteristic frequency (CF), sharp-
ness of tuning (by computing Q-10 dB), and minimal response latency etc. Temporally-orthogonal ripple combinations (TORCs) were
also used to construct a neuron’s STRF (spectrotemporal receptive field). The typical behavioral neurophysiological session at each
site included at least three epochs: active task-engagement during performance of either the Tone-task or AM-task, passively
listening to the identical task stimulus set before and after task performance. In each epoch, all stimuli were repeated 10-15 times.
One or both Tone- and AM-task behavioral physiological sessions were carried out in each recording site depending on the animals’
motivation and stability of the neuronal activity.

All acoustic stimuli were ramped with 5 ms rise-fall time and presented at 60-70 dB SPL, with the exception of the tone pips. The
sounds were digitally generated using custom-made MATLAB (The MathWork, Natick, MA) functions at 40 kHz sampling rate and
were converted at 16-bit resolution through a NI-DAQ card (PCI-6052E), then amplified (MA-3, Rane) and delivered through the
free-field loudspeaker (Manger, German) located ~1.2 m in front of animals’ head. All behavioral performances were controlled
and monitored through a custom-built MATLAB GUI. All trial events and behavioral responses were recorded and stored in the com-
puter for further analysis and assessment of behavioral performance.

Localization of recording sites

In ferrets, auditory cortex is located ~13-16 mm anterior to the occipital crest, the most distinctive and most easily accessible skull
landmark [25], and ~12 mm lateral to the skull midline (Figure S2A). Initial recordings began through a small craniotomy placed above
auditory cortexA1 with these coordinates. The neuron’s characteristic frequency (CF; defined below) was measured at each elec-
trode penetration. Based on the gradient of the CFs, the existing craniotomy was further expanded in order to cover both primary
(A1) and more lateral secondary (dPEG) auditory regions. The CFs obtained from all penetrations at different stages of the craniotomy
were aligned together to form a tonotopic map for each animal (Figure S2B), referring to two landmarks, placed (in the bone cement)
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on either side of the craniotomy. The locations of A1 and dPEG were confirmed, based on their tonotopic organization [22]. The CF
gradient in A1 runs from high to low frequency in a dorsal-lateral direction, while showing a frequency reversal of the CF gradient at
the low frequency border with dPEG. Thus, the lowest CF contour line was used as the border line to divide A1 and dPEG.

Recordings in dIFC began through a small craniotomy ~25-30 mm anterior to the occipital crest, corresponding to a frontal cortex
region including the anterior part of the ASG/PMC and the most anterior dIFC area or PRG/dPFC as shown by the green shaded re-
gions in Figure S2A. The craniotomy was gradually expanded based on the response from the electrode penetrations. Locations of
the recording electrodes relative to two reference marks placed in the bone cement surrounding the craniotomy was measured for
later alignment of all electrode penetration sites in a frontal cortex craniotomy.

In order to histologically identify the recording areas, following completion of recordings, two penetration sites in each identified
cortical area were selected to make either an iron electrolytic deposit (in one animal, Gong) or by placement of a small amount of HRP
(in the second animal, Guava). The sites in auditory cortex were selected based on the tonotopic maps (Figure S2B) such that one
HRP injection was located in A1 and another in dPEG. The two selected sites in dIFC were identified by responses evoked during task
performance. The HRP deposits were made by fine glass pipette with small amounts of HRP on its tip. The iron deposits were made
by passing a small constant current through a stainless-steel electrode (5~7.5 pA for 300 s). The confirmation of injection sites in
50 um coronal brain slices of the fixed ferret brains was done by histological localization of DBA (diaminobenzidine) reaction to visu-
alize HRP, or by Prussian blue reaction to highlight the iron deposits. The dIFC sites were identified from iron deposits as shown in
Figure S2C (sections 1 and 2). The HRP sites were successfully identified in auditory cortex, and confirmed one recording site was
located in A1 (sections 4) and another in dPEG (sections 3) as shown in Figure S2C.

Data analysis

Behavioral assessment

During task performance, a behavioral response in a given trial was assessed based on the animal licking pattern in two time win-
dows: before the start of the shock time window (Figure 1A) and during the 0.4 s shock time window. In order to score a given trial,
the animals were required to lick in the time window before the shock window. Refraining from licking during the shock window was a
correct response to a NoGo sound and was defined as a hit, whereas cessation of licking during the shock window was an incorrect
response to a Go sound and was defined as a false alarm. The hit rate (HR) and false alarm rate (FR) were computed in each training
session. The basic metric used in quantify the behavioral performance based on HR and FR was the discrimination rate (DR), defined
as: DR = HR*(1-FR). The criterion for successful behavioral performance in distinguishing Go and NoGo sounds in a given training
session was a DR > = 0.4. The criterion for task mastery was a DR > = 0.4 in three consecutive training sessions (> 100 trials per
session) in the absence of any intensity cues for targets (i.e., all stimuli were presented at equal loudness). Animals continued training
for a few weeks in order to consolidate their performance. Animals displayed a very stable behavior performance during neurophys-
iological recording in both Tone and AM-task (Figure 1C, left panels).

Computing characteristic frequency (CF)

In auditory cortex, neurons’ CF were obtained by analyzing their response to tones pips with varying frequency (spanning up to 8
octaves ranges, 4 tone/octave) and intensity (20-70 dB range, 10 dB increment). A two-dimensional response matrix (frequency x
intensity) was formed by taking the averaged evoked response to tones (for the first 100 ms after tone onset) at each frequency
and intensity level. The response matrix was first normalized, by subtracting the mean and then dividing by the standard deviation
of the baseline activity (averaged over a 100 ms window before tone onset). A 2-dimensional spline interpolation was applied to the
normalized response matrix to obtain finer resolution of frequency (1/12 octave) and intensity (1 dB). The longest iso-response con-
tour line in the frequency x intensity space was defined as the neuron’s tuning curve (TC), and the frequency corresponded to the
lowest intensity on TC was the neuron’s CF. The site CF for each penetration site was represented by taking the median value of
all isolated single units in the penetration. The site CFs were used to generate the tonotopic map, after aligning penetration site lo-
cations in the same craniotomy surface relative to the two landmarks placed around the recording region (see Figure S2B). In both
animals, from dorsal to lateral, the CF gradient runs from high to low and then mirror reverses from low to high. The primary (A1) and
secondary (dPEG) auditory cortical areas were identified based on the CF tonotopic maps.

ROC Analysis

The basic metrics used to determine whether a single-unit’s response could discriminate between individual stimulus pairs (distance)
or stimulus categories (Go versus NoGo) or behavioral choices (licking versus stop licking) were derived from signal-detection-the-
ory-based ROC analysis. To compute the ROC area, we first computed the averaged spike rate evoked in a given observation time
window in each trial. The proportion of responses to each of the paired conditions having a firing rate greater than a given criterion
level was calculated, and this measurement was repeated for criterion levels along the full range of the evoked firing rate. A neural
ROC was formed by plotting the paired probability functions, and the area under the ROC represented the neural discriminability be-
tween the paired conditions. ROC area has a value ranging from 0 to 1.0, and is symmetric around 0.5. A value at 0 or 1.0 indicated
that the ROC-based ideal observer had a perfect prediction of the paired condition and a value at 0.5 indicated chance prediction.
Several subsequent neural metrics were derived from this ROC analysis.

Categorical Index (CI)

Cl is defined as: Cl = BC - WC; where BC (between category) denotes averaged ROC areas computed from all selected stimulus
pairs in which one stimulus belongs to the Go and another to the NoGo category; WC (within category) denotes the averaged
ROC areas computed from all selected pairs in which the two stimuli were from the same category (either Go or NoGo). The neural
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distance between any stimulus pair was represented by the absolute value of (ROC-0.5). Therefore, Cl had a range from —0.5 to 0.5.
Positive Cl indicates a categorical response, while a negative Cl indicates a non-categorical response. The permutation tests were
performed to evaluate the significance of the obtained CI for each neuron in each passive and active epoch.

Sensory index (SI)

Sl was used to quantify a neuron’s response selectivity to stimuli, defined as the proportion of variance explained by individual stim-
ulus over the total variance:

Sl = SSB/SST

Where SSB denotes the sum of squares between individual stimuli, and SST denotes the sum of squares total. Sl yields a range from
0to 1.0, avalue near 1.0 if all variance could be explained by individual stimuli (for a highly selective neuron), or a value near 0.0 if not
(indicating a neuron that responds evenly to all stimuli, or has no response at all). Since a neurons’ Sl is positively correlated with a
neuron’s tuning bandwidth, it was also used as an indicator of the sharpness of its response profile to the task stimulus sets. The
significance of Sl value in each passive and active epoch was tested with One-way ANOVA.
Simulation of neuronal responses
Auditory responses were simulated using a bell-shape response profile across frequencies resembling a Gaussian distribution, which
was parameterized for the evoked response (R) of a neuron to a given frequency (x) as:
1 (x=BF)®
R=—— ¢ 28W2 +¢
V2rBW?
Where BF is the neuron’s best frequency, BW its bandwidth, and € denotes the state-dependent noise. The Cl and S| were then
computed based on the simulated responses for different BF and BW ranges (e.g., between 0.25-5 octaves in 0.1 steps).
Population analysis
Population analysis included neurons with at least 10 repetitions for each stimulus to form a pseudo-population representation in
each cortical area and task. For each neuron, 10 trials were randomly picked from all available trials (up to 15 trials) for each stimulus
and sorted [by stimulus repetitions]. The trials from all neurons were concatenated to form a 3-dimensional population matrix ([stim-
ulus x repetition] x time bins x neurons) as illustrated in Figure S6A. The trial data were moving-averaged with a 50 ms time window at
25 ms steps. The data from each neuron were corrected by subtracting their baseline activity, and then normalizing to the maximum
of the absolute responses among all recording epochs (two passive and one active). This procedure was repeated 10 times to obtain
10 population matrices. A mean population representation matrix was obtained for each area by averaging over the 10 matrices to
reduce noise. Principal component analysis (PCA) was applied over the averaged population-response matrix by treating neurons as
variables with [bins x trials] as observations (rearranged as a two-dimensional matrix: [bins x trials] x neurons). PC coefficients
(PCcoeff) Were obtained by applying PCA on the data matrix from the active epoch. The PCA scores (PCsg,) for individual population
matrix at each epoch and moment were computed through the product of the PC.cs and the population data matrix at each time
moment (POPy): PCg, = POP; * PCoefr. The dynamics of task stimulus responses were then represented in PC space by using the
first three PC’s in the passive and active task conditions (Figure S6B). Euclidean distance between pairs of task stimulus responses
was computed based on their representation in PC space.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis

The permutation test was performed to test the significance of the obtained CI for each neuron in each of passive and active epoch.
We first computed the shuffled Cl (Clsh) by randomly assigned stimulus labels for trials within each pair conditions, and this proced-
ure was repeated 1000 times. The p value is the fraction of those 1000 values of Clsh that are greater than or equal to the observed CI.
The neuron is assumed to have significant more categorical driven responses than purely sensory driven response if p < 0.05, or
more sensory driven responses than purely sensory if p > = 0.95. Otherwise, the neuron was thought to be equally driven by category
and sensory or lack of response at all (which is true for most of neurons from dIFC during passively listening).

One-way ANOVA was performed to test the null hypothesis that means of response from each stimulus are equal, which use for
evaluating the significance of the obtained Sl for each neurons in each passive and active conditions.

The significance of the population dynamics in Cl or Sl was assessed by One-sample t test to test the null hypothesis that the
means of the Cl or S| from each population are no difference with their baselines in each condition (passive and active). While the
changes of the population dynamics in Cl or Sl or PSTH between active and passive conditions in each population were assessed
by Wilcoxon signed rank test for aero median. The tests on the dynamics were performed in 100 ms time window which began from
200 ms before stimulus onset with 25 ms sliding window beyond 600 ms beyond offset of the stimulus. The significance of the bin was
defined as p < 0.05 in three consecutive bins from the test to compensate the repeated-measure bias.

For population analysis, the differences in changes of the averaged Euclidean distance of WC and BC between passive and active
conditions were assessed by Wilcoxon rank sum test to test if the changes in WC and BC come from distribution with equal medians,
or the divergence across categorical boundaries (with BC increasing) and not the convergence within a category (with no or less
changes in WC) during task performance.
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For neuron populations with two tasks, the binomial test was employed to test if the observed joint probability of positive Cl in
both Tone and AM-task differs from the expected likelihood from random combination, which has chance likelihood round 0.5 x
0.5 =0.25.

DATA AND CODE AVAILABILITY
The raw data related to the current study have not been deposited in a public repository because the complexity of the customized

data format and the amount in size. Source data and relevant MATLAB codes for generating figures in the paper are available by
reasonable request to Lead Contact, Pingbo Yin (pyin@umd.edu).
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