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Abstract Humans engagement in music rests on underlying elements such as the listeners’
cultural background and interest in music. These factors modulate how listeners anticipate musical
events, a process inducing instantaneous neural responses as the music confronts these
expectations. Measuring such neural correlates would represent a direct window into high-level
brain processing. Here we recorded cortical signals as participants listened to Bach melodies. We
assessed the relative contributions of acoustic versus melodic components of the music to the
neural signal. Melodic features included information on pitch progressions and their tempo, which
were extracted from a predictive model of musical structure based on Markov chains. We related
the music to brain activity with temporal response functions demonstrating, for the first time,
distinct cortical encoding of pitch and note-onset expectations during naturalistic music listening.
This encoding was most pronounced at response latencies up to 350 ms, and in both planum
temporale and Heschl’s gyrus.

Introduction

Experiencing music as a listener, performer, or a composer is an active process that engages percep-
tual and cognitive faculties, endowing the experience with memories and emotion (Koelsch, 2014).
Through this active auditory engagement, humans analyze and comprehend complex musical scenes
by invoking the cultural norms of music, segregating sound mixtures, and marshaling expectations
and anticipation (Huron, 2006). However, this process rests on the ‘structural knowledge’ that listen-
ers acquire and encode through frequent exposure to music in their daily lives. Ultimately, this
knowledge is thought to shape listeners’ expectations and to determine what constitutes a ‘familiar’
musical style that they are likely to understand and appreciate (Morrison et al., 2008;
Hannon et al., 2012; Pearce, 2018). There is convincing evidence that musical structures can be
learnt through the passive exposure of music in everyday life (Bigand and Poulin-Charronnat, 2006;
Rohrmeier et al., 2011), a phenomenon that was included in several models musical learning. The
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connectionist model from Tillman and colleagues, which simulated implicit learning of pitch struc-
tures occurring in Western music, was shown to successfully predict behavioral and neurophysiologi-
cal results on music perception (Tillmann et al., 2000). Further developments led to models that
accurately reflect listeners’ expectations on each upcoming note by considering both the listener’s
musical background (long-term model) and proximal knowledge (short-term model) (Pearce, 2005;
Huron, 2006).

A similar learning process has been demonstrated in many domains of human learning (e.g., lan-
guage; Saffran et al., 1997, Toro et al., 2005; Finn et al., 2014), as well as in animals that must
learn their species-specific songs and vocalizations (Woolley, 2012). Theoretically, this is often con-
ceptualized as learning the statistical regularities of the sensory environment (Romberg and Saffran,
2010; Erickson and Thiessen, 2015; Bretan et al., 2017, Skerritt-Davis and Elhilali, 2018) so as to
predict upcoming events, in a process referred to as ’statistical learning’. Supporting evidence is
that failed predictions due to deviations in the sensory sequence produce measurable brain activa-
tions that have been associated with the detection and strength of these irregularities, that is predic-
tion error (Vuust et al., 2012; Clark, 2013; Moldwin et al., 2017, Omigie et al., 2019; Quiroga-
Martinez et al., 2019b; Quiroga-Martinez et al., 2019a), and with learning (Storkel and Rogers,
2000; Attaheri et al., 2015; Qi et al., 2017).

Decades of research have established that listeners have strong and well-defined musical expect-
ations (Schmuckler, 1989; Cuddy and Lunney, 1995; Margulis, 2005; Morgan et al., 2019) which
depend on a person’s musical culture (Carlsen, 1981; Kessler et al., 1984; Krumhansl et al., 2000;
Eerola et al., 2009). Neurophysiology studies demonstrated that violation of music expectations
elicits consistent event-related potentials (ERPs), such as the mismatch negativity (MMN) or the early
right-anterior negativity (ERAN), which typically emerges between 100 and 250 ms after the onset of
the violation (Koelsch, 2009; Vuust et al., 2012). Such brain responses have been measured for a
range of violations of auditory regularities, including out-of-key notes embedded in chords (e.g.
Neapolitan sixth in Koelsch et al., 2000), unlikely chords (e.g. double dominant in Koelsch et al.,
2007), and single tones (Miranda and Ullman, 2007; Omigie et al., 2013; Omigie et al., 2019).
These physiological markers enabled researchers to investigate the encoding of music expectations
during development (Koelsch et al., 2003) as well as the impact of attention (Loui et al., 2005),
short-term context (Koelsch and Jentschke, 2008), and musical experience (Koelsch et al., 2002)
on music perception.

ERP studies (Besson and Macar, 1987; Paller et al., 1992, Miranda and Ullman, 2007;
Pearce et al., 2010b; Carrus et al., 2013) often limit the range of expectations’ violations strength
that are tested to severe violations because of the need for repeated stimulus presentations. One
issue with this approach is that notes eliciting strong violations could be considered by the listener
as production mistakes (e.g., a pianist playing the wrong note), thus the corresponding cortical cor-
relates may characterise only a limited aspect of the neural underpinnings of melodic perception. In
fact, music sequences induce a wide range of violation strengths (Pearce and Wiggins, 2012)
because the (valid) sequential events are not all equally likely (and hence not equally predictable),
whether we consider note or chord sequences (Temperley, 2008) in both classical music
(Rohrmeier and Cross, 2008) or more popular music genres (Temperley and Clercq, 2013). Here,
we study the brain responses to continuous naturalistic musical stimuli, thus allowing us to explore
the full range of expectations’ strengths. This study seeks to determine whether the neural response
reflects this range of strengths by regressing the musical information with it.

Music is a complex, multi-layered signal that have structures allowing predictions of a variety of
properties. One layer concerns the notes sequences forming melodies, which is a key structural
aspect of music across musical styles (Reck, 1997) and cultures (Eerola, 2003; Pearce and Wiggins,
2006). Pearce et al. designed a framework based on variable-order Markov models that learns statis-
tics describing the temporal sequences in melodic sequences at various time-scales (IDyOM,;
Pearce, 2005; Pearce and Wiggins, 2006). This framework attempts to optimally predict the next
note in a melodic sequence by combining predictions based on 1) long-term statistics learnt from a
large corpus of western music and 2) short-term statistics from the previous notes of the current
musical stream. In turn, this provides us with likelihood values for each note in a melody that have
been shown to tightly mirror listeners’ expectations (Pearce, 2005).

Here, we regressed these estimates with electrophysiological data to investigate the impact of
expectations on auditory perception and cortical processing. We recorded scalp
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electroencephalography (EEG; 20 subjects; about 1 hr and 15 min of data) signals and invasive elec-
trocorticography (ECoG; three patients; about 25 min of data each) signals as participants listened
to monophonic piano music from Bach that was generated from MIDI scores (see
Materials and methods). According to the predictive coding theory (Friston and Kiebel, 2009;
Clark, 2013), cortical signals partly reflect the mismatch between a participant’s prediction and the
actual sensory input. If this is the case, less expected musical notes should produce relatively stron-
ger cortical responses. We expected individuals with musical expertise to internally generate predic-
tions on a next note that more closely relate the ones of a specialized statistical model than non-
musicians. We tested this hypothesis on our EEG dataset, which was recorded from both non-musi-
cians and expert pianists, and investigated specific details of the cortical response using our ECoG
dataset.

Our stimuli were regular musical streams, rather than artificially-constructed repeated patterns
such as those usually utilized for the induction and detection of mismatched negativity (MMN)
responses (Garrido et al., 2009; Clark, 2013; Fishman, 2014; Lecaignard et al., 2015;
Southwell and Chait, 2018). Musical streams are imbued with melodic events that routinely violates
listeners’ expectation to some degree (Pearce and Wiggins, 2012; Salimpoor et al., 2015). Here
we sought to test the hypothesis that the listeners’ expectation violations produce cortical responses
that change with the degree of the violations and that are measurable with EEG during naturalistic
music listening. To establish the contribution of expectations (Figure 1A) to the neural responses,
we used multivariate ridge regression (Figure 1B) to quantify how well the acoustic (A) factors (e.g.,
signal envelope and its derivative) and melodic expectation or surprise (M) factors (e.g., pitch and
onset-timing) can predict the EEG and ECoG responses to music (Crosse et al., 2016). Since the
prediction quality is considered to be an estimate of how strongly a stimulus property is encoded in
the EEG data (Di Liberto et al., 2015; Di Liberto et al., 2019; Brodbeck et al., 2018b;
Somers et al., 2019; Verschueren et al., 2019), and since cortical signals are assumed to be modu-
lated by the various A and M factors above, we consequently expected the combination of both the
acoustic and surprise features to predict the neural responses better than either set of features alone
(Figure 1C). Validating these hypotheses would therefore provide physiological support for the
melodic expectations generated according to the statistical learning model.

This work presents novel insights into the precise spatio-temporal dynamics of the integration of
melodic expectations and sensory input during naturalistic musical listening. In turn, our results pro-
vide evidence of the neurophysiological validity of predictive statistical models of music structure.
Crucially, we found distinct encoding of different melodic expectation features, (such as pitch and
note onset) to the cortical responses to music.

Results

Neural data were recorded from twenty healthy EEG participants and three ECoG epilepsy patients
as they listened to monophonic excerpts of music from Bach sonatas and partitas that were synthe-
sized with piano sound. The melodic expectation of each note was estimated from the musical score
of the stimulus with IDyOM, the model for predictive statistical modelling of musical structure. Spe-
cifically, given a musical piece at time t;, the model estimates the likelihood of having a note with a
particular pitch at time tp given short-term information for t < to and long-term information from a
large corpus of Western music. Based on these estimates we calculated four measures (referred to
as melodic features M, see Materials and methods for details) that capture distinct aspects of expec-
tation and surprise at each new note within a melody: entropy of pitch (H), entropy of onset-time
(Ho), surprise of pitch (Sy), and surprise of onset-time (S,). The first two measures refer to the Shan-
non entropy at a particular position in a melody, before the musical note is observed. Intuitively, the
entropy indicates the amount of uncertainty represented by the distribution of pitch and onset-time
for the next note, where the most uncertain scenario is when all possible notes have equal likelihood
and the least uncertain scenario is when the next note is known. The latter two measures refer to the
inverse probability of occurrence of a particular note pitch or onset-time, with smaller values for
more predictable transitions (see Materials and methods).
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Figure 1. System identification framework for isolating neural correlates of melodic expectations. (A) Music score
of a segment of auditory stimulus, with its corresponding features (from bottom to top): acoustic envelope (Env),
half-way rectified first derivative of the envelope (Env'), and the four melodic expectation features: entropy of
note-onset (Ho) and pitch (H,), surprise of note-onset (S,) and pitch (Sp). (B) Regularized linear regression models
were fit to optimally describe the mapping from stimulus features (Env in the example) to each EEG and ECoG
channel. This approach, called the Temporal Response Function (TRF), allows us to investigate the spatio-temporal
dynamics of the linear model by studying the regression weights for different EEG and ECoG channels and time-
latencies. (C) TRFs were used to predict EEG and ECoG signals on unseen data by using only acoustic features (A)
and a combination of acoustic and melodic expectation features (AM). We hypothesised that cortical signals
encode melodic expectations, therefore we expected larger EEG and ECoG predictions for the combined feature-
set AM.

Melodic expectation encoding in low-rate cortical signals

In all of the analyses and results below, we focused on the EEG and ECoG responses in the low-rate
bands between 1 and 8 Hz, filtering out the remainder of the bands (see Materials and methods;
note that inclusion of rates down to 0.1 Hz and up to 30 Hz did not alter any of the results that fol-
low). Because of potential interactions between the responses to the succession of notes (which
would complicate the interpretation of the ERPs time-locked to note onsets), we began by utilizing a
linear modelling framework known as the temporal response function (TRF) (Ding and Simon,
2012a; Crosse et al., 2016) as depicted in Figure 1B. This approach 1) explicitly dissociates the
effects of expectations from those due to changes in the acoustic envelope on the neural responses
to music and 2) allows us to investigate neural responses to rapidly presented stimuli by accounting
for the dependence among the sequences of input notes. Specifically, TRFs were derived by using
ridge regression between suitably parameterized stimuli and their neural responses. These were
then used to predict unseen EEG data (with leave-one-out cross-validation) based on either the
acoustic properties alone (A predictions) or a combination of acoustics and melodic expectation
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features (AM predictions). The predictive models included time-lagged versions of the stimulus
accounting for delays between the stimulus and corresponding neural response. The time-lag win-
dow was limited to [0, 350] ms as longer latencies had little impact on the predictive power of the
TRF model (see Figure 2—figure supplement 1 and Materials and methods).

In Figure 2 we illustrate the average (Figure 2A) and individual (Figure 2B) EEG prediction corre-
lations for all subjects using either the A features alone (envelope and its derivative) or combined
with the melodic expectation features, AM. The A correlations were significantly positive (p<0.05,
permutation test) for all subjects but one (S20), confirming that neural responses to monophonic
music track the stimulus envelopes (henceforth ‘envelope tracking’). Crucially, AM correlations were
significantly larger than A, implying that melodic expectations explained EEG variance that was not
captured by acoustic information alone. Specifically, the average EEG prediction correlation over all
electrodes was significantly larger for AM than for A both at the group level (rap >ra: permutation
test, p<107%, d = 1.64; Figure 2A) and at the individual-subject level (16 out of 20 subjects, permu-
tation test, p<0.05; Figure 2B), and this difference was even larger when computed from selected
single electrodes (e.g., Cz channel: d = 1.80). This supports the hypothesis that melodic expectation
is directly reflected in the EEG responses to music.
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Figure 2. Low-rate (1-8 Hz) cortical signals reflect melodic expectations. Scalp EEG data were recorded while
participants listened to monophonic music. Forward ridge regression models were fit to assess what features of
the stimulus were encoded in the low-rate EEG signal. The link between music features and EEG was assessed by
using these models to predict unseen EEG data. (A) Prediction correlations were greatest when the stimulus was
described by a combination of acoustic information (A: envelope Env, and its half-way rectified first derivative Env’)
and melodic expectations (M: Sp, S, He, Ho). This effect of expectations was significant on the average prediction
correlation across all 64 EEG electrodes (*p<1O’6). The error bars indicate the SEM across participants. (B) The
enhancement due to melodic expectations emerged at the individual subject level. The gray bars indicate the
predictive enhancement due to melodic expectation. Error bars indicate the SEM over trials (***p<0.001, **p<0.01,
*p<0.05, permutation test). (C) Predictive enhancement due to melodic expectations (AM-A; y-axis) increased with
the length of the local context (in bars; x-axis) used to estimate the expectation of each note (ANOVA: *p=0.0003).
The boxplot shows the 25th and 75th percentiles, with the whiskers extending to the most extreme data-points
that were not considered outliers. Circles indicate outliers. (D) The effect of melodic expectations (ray-ra) emerged
bilaterally on the same scalp areas that showed also envelope tracking. (E) Ridge regression weights for TRFam.
Red and blue colors indicate positive and negative TRF components respectively.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. The latency of the effect of melodic expectations on the low-rate EEG data (1-8 Hz) was
assessed by measuring the loss in EEG prediction correlation when a given time-latency window is removed from
the TRF fit.
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While these results indicate that AM is a better descriptor of the signal than A, it should also be
noted that TRFanm has higher dimensionality than TRF4. Correlations are measured on unseen data,
and thus should be immune to overfitting, nonetheless to verify that the better predictions for AM
are not due simply to the higher degrees of freedom afforded by the addition of more M compo-
nents, we assessed the performance of our TRFay model using less elaborate M functions that nev-
ertheless maintained the TRFay with the same dimensionality and value distributions. Specifically,
we built melodic expectation estimates by relying on progressively smaller amount of local context
(or short-term memory) (Figure 2C), with M based on 1, 2, 4, 8, 16, and 32 musical bars, as opposed
to the unbounded (‘x’) estimates in our predictions of Figure 2A. In each of these cases, fitted TRFs
of the same dimensionality performed better as the memory increased (Figure 2C; ANOVA: F
(4.6,101.1) = 4.52, p=0.0003), indicating that the contribution of melodic expectation estimates to
the prediction accuracy was not due to increased TRF dimensionality per se.

Despite the significant positive effects of melodic expectation on prediction correlations, we
found no differences between the corresponding EEG topographical distributions for A, AM, or their
difference AM-A (D'SSA‘AM = 0017, p=033, DlSSA,AM-A = 0214, p=061, DlSSAM,AM-A = 0197,
p=0.57; Figure 2D). By contrast, melodic expectations induced new long temporal latencies in the
linear regression weights of the TRFam model (Figure 2E), which were mostly centered around 200
ms compared to the 50 ms latency of the acoustic TRFA Env component (p<0.05, FDR correction;
Figure 2—figure supplement 1).

Melodic expectations modulate auditory responses in higher cortical
areas

Since melodic expectations reflect regularities within a musical tone sequence at multiple time-scales
that depend on the extent of knowledge and exposure of the subject listening to them, we hypothe-
sized that neural signals correlated with the melodic properties of the music would be generated at
higher hierarchical cortical levels than those strictly due to the acoustics (Sammler et al., 2013;
Bianco et al., 2016; Nourski et al., 2018). EEG lacks the spatial resolution needed to test this
hypothesis, but the test was possible in spatially localized ECoG recordings from three patients who
had electrodes over the early primary auditory areas in the anterior transverse temporal gyrus, also
called Heschl Gyrus (HG; patients 1 and 3), the belt regions along planum temporale (PT) and the
superior temporal gyrus (STG), as well as the supra-marginal gyrus (SMG) in the parietal lobe (see
Supplementary file 1 for details on the channel locations and Videos 1-3 and Supplementary files
2-4 for a 3D view of the electrode placement). Although those regions are functionally heteroge-
neous, our choice of anatomical division was
motivated by both previous work indicating HG
as the locus responsible for primary auditory
processing (Moerel et al., 2014; Nourski, 2017),
PT as an intermediary stage (Griffiths and War-
ren, 2002), and STG as a region involved the
processing of high-level speech properties
(Chang et al., 2010; Mesgarani et al., 2014).
Both anatomical and functional studies mea-
sured a gradient change from the primary audi-
tory processing in HG to the nonprimary areas in
the lateral STG, and suggested a nonprimary
role of PT (Griffiths and Warren, 2002;
Hickok and Saberi, 2012), which is here consid-
ered as a higher cortical area. The inferior frontal
gyrus (IFG) was expected to reflect melodic
expectations as well, however we only had lim-
ited coverage in that cortical area. The subjects

Video 1. Video showing the ECoG electrode

. i ; placement in 3D for each of the three participants.
listened to the same monophonic music posindicate ECoG channels. Red dots indicate
described earlier for the EEG experiments. channels that were responsive to the music input. The

We first identified 21/241, 25/200, and 33/ corresponding interactive Matlab 3D plots were also
285 electrodes in Patients 1, 2, and three respec-  uploaded.
tively that exhibited reliable auditory responses https://elifesciences.org/articles/517844#video
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Video 2. Video showing the ECoG electrode Video 3. Video showing the ECoG electrode
placement in 3D for each of the three participants. placement in 3D for each of the three participants.
Dots indicate ECoG channels. Red dots indicate Dots indicate ECoG channels. Red dots indicate
channels that were responsive to the music input. The channels that were responsive to the music input. The
corresponding interactive Matlab 3D plots were also corresponding interactive Matlab 3D plots were also
uploaded. uploaded.
https://elifesciences.org/articles/51784#video2 https://elifesciences.org/articles/51784#video3

(stronger responses to monophonic music than to silence: Cohen’s d > 0.5; Figures 3C and 4C) in
the form of either low-rate (1-8 Hz) local field potentials (similar bands to those in EEG analyses
above), or power in the high-y (70-150 Hz) field potentials which are thought to reflect local neuro-
nal activity (Miller et al., 2007; see Materials and methods for details). A similar TRF analysis was
conducted to identify responses that were sensitive to melodic expectations (Figure 3A and Fig-
ure 3—figure supplement 1). Envelope tracking was significant (permutation test on the ECoG pre-
diction correlations over trials, p<0.05) in STG, PT, and HG channels. The predictive enhancement
due to melodic expectations was small but significant (p<0.01, FDR-corrected) on several electrodes
in PT in all patients, on one electrode in the transverse temporal sulcus (TTS), but not on the three
HG electrodes in Patient 1, and was also significant on five bilateral HG electrodes in Patient 3. A
Wilcoxon rank sum test indicated that the effect of expectations AM-A is larger in PT than HG
(p=0.011; all electrodes in the two cortical areas from Patients 1 and 3 were combined, while Patient
two was excluded as there was no coverage in HG). Similar effects as in PT were also measured in
right parietal cortical areas (SMG and the postcentral gyrus) for Patient two but not for Patient 3. In
addition, the effect of expectations seen in STG, PT, and HG was right lateralized in Patient 3
(p=0.038), while envelope tracking did not show a hemispheric bias (p=0.85).

Figure 3B depicts the TRFay weights for selected electrodes in SMG, PT, TTS, and HG. The
TRFam weights for ECoG exhibited low-rate temporal patterns very similar to those measured with
EEG. Specifically, strong correlations were found with the TRF sy measured with EEG at Cz (r = 0.60,
0.50, and 0.45 in left PT, TTS, and HG respectively — 2, e6, and €9 from Patient 1; r = 0.61 and 0.80
in right PT and SMG - e4 and e10 from Patient two respectively). Overall, the TRF analysis of the
ECoG recordings demonstrates that low-rate cortical responses to music encode melodic expecta-
tions. The strong similarities between ECoG responses and the EEG template obtained by averaging
data from twenty participants (both musicians and non-musicians) suggests the possibility that the
EEG melodic expectation results originate from temporal regions between PT and HG, and or parie-
tal regions such as SMG. However, more direct evidence (with within-subject comparisons or source
localization) are required to more confidently pinpoint the cortical origins of the EEG results.

ECoG recordings also allowed us to investigate more directly the link between local neuronal
activity and melodic expectations, since these signals are available in the instantaneous power of the
high-y field potentials (Crone et al., 2001, Edwards et al., 2009, Ray et al., 2008;
Steinschneider et al., 2008). Again, TRF analysis was used in Figure 4 (and in Figure 4—figure sup-
plement 1) to disentangle the contributions of envelope tracking and melodic expectations. As
before, left HG (in Patients 1 and 3), left TTS (Patient 1), bilateral STG (Patients 2 and 3), bilateral PT
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Figure 3. Low-rate (1-8 Hz) cortical signals in bilateral temporal cortex reflect melodic expectations.
Electrocorticography (ECoG) data were recorded from three epilepsy patients undergoing brain surgery. Magnetic
resonance imaging was used to localise the ECoG electrodes. Electrodes with stronger low-rate or high-y (70-150
Hz) responses to monophonic music than to silence were selected (Cohen'’s d > 0.5). (A) ECoG prediction
correlations for individual electrodes for A and AM. Electrodes within each group, as indicated by the gray square
brackets, were sorted from lateral to medial cortical sites. The gray bars indicate the predictive enhancement due
to melodic expectation (ran-ra). Error bars indicate the SEM over trials (*p<0.01, FDR-corrected permutation test).
(B) TRF weights for selected electrodes. For Patient 1, PT and TTS electrodes (e1-e5 and eé respectively) exhibited
large effects of musical expectations, while HG electrodes (e7-e9) had strong envelope tracking (A) but showed
smaller effects of expectations that did not reach statistical significance. Patient two showed also strong envelope
tracking and a significant effect of melodic expectations in the right temporal and parietal lobes (for example, the
PT electrode e4 and the SMG electrode e10 respectively). (C) Low-rate (1-8 Hz) ECoG segments time-locked to
note onsets were selected and compared with segments corresponding to silence. Colors in the first brain plot of
each patient indicate the effect-size of the note vs. silence comparison (Cohen'’s d > 0.5). The second brain plot
shows the EEG prediction correlations when using acoustic features only (A). The third brain plot depicts the
increase in EEG predictions when including melodic expectation features (AM-A).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Bilateral electrocorticography (ECoG) results for Patient 3.

(Patients 1, 2, and 3), and right SMG (Patient two but not Patient 3) electrodes exhibited substantial
envelope tracking. By contrast, the effect of expectations (Ar = rap rA) was largest in PT, TTS, and in
HG electrodes close to the junction between PT and HG, with a predictive enhancement up to ~50%
(e.g., Aree = 0.09 in Patient 1, which corresponds to a prediction enhancement ram,cs/ra,c6 of 149%),
in contrast to an enhancement of only 6% in the HG electrode with strongest envelope tracking (e9).
Similar patterns emerged for Patient 3, with a predictive enhancement up to ~20% in PT and an
enhancement of only 5% in the HG electrode with strongest envelope tracking (e9; but with stronger
effects in other HG electrodes with weaker envelope tracking). Also, the temporal latencies in the
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Figure 4. High-y neural signals in bilateral temporal cortex reflect melodic expectations. Electrodes with stronger
low-rate (1-8 Hz) or high-y (70-150 Hz) responses to monophonic music than to silence were selected (Cohen'’s

d > 0.5). (A) ECoG prediction correlations for individual electrodes for A and AM. Electrodes within each group, as
indicated by the gray square brackets, were sorted from lateral to medial cortical sites. The gray bars indicate the
predictive enhancement due to melodic expectation (ram-ra). Error bars indicate the SEM over trials (*p<0.01,
FDR-corrected permutation test). (B) Normalised TRF weights for selected electrodes (same electrodes as for
Figure 3). For Patient 1, the HG electrode €9 showed the strongest envelope tracking and small effect of melodic
expectations, while e6 in TTS exhibited the largest effect of expectations (Arg > Arg, p=1 8e 4, d=238). For
Patient 2, both e4 (PT) and e10 (SMG) electrodes showed strong envelope tracking and a significant effect of
melodic expectations. (C) High-y (70-150 Hz) ECoG segments time-locked to note onsets were selected and
compared with segments corresponding to silence. Colors in the first brain plot of each patient indicate the effect-
size of the note vs. silence comparison (Cohen’s d > 0.5). The second brain plot shows the EEG prediction
correlations when using acoustic features only (A). The third brain plot depicts the increase in EEG predictions
when including melodic expectation features (AM-A).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Bilateral electrocorticography (ECoG) results for Patient 3.

TRF weights (Figure 4B) were rather different from what was previously seen for low-rate EEG and
ECoG signals. In fact, the TRFA weights corresponding to the acoustic features exhibited sharp,
short-latency dynamics while those of the melodic expectation features (TRFanm) pointed to more
temporally extended and strong neural responses.

Explicit encoding of melodic expectations in the evoked-responses

So far, melodic effects were extracted in terms of the temporally extended analysis of the TRF, and
indirectly validated through assessment of prediction accuracy. A more direct measure of these
effects is possible by examining whether event-related potentials (ERPs) time-locked to note onsets
are specifically modulated by melodic expectations, that is beyond what is expected from the
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acoustic features of the stimuli. For instance, here we specifically demonstrate that the cortical
responses evoked by tones of identical envelope can produce significantly different responses that
are modulated proportionately to the melodic values of the tones. To do so, we selected notes with
equal acoustic envelopes corresponding to the median peak envelope amplitude (25% of all notes),
but had large disparity in their surprise values S, according to the IDyOM model, namely the top
20% and bottom 20% (Figure 5, purple and pink respectively). As illustrated in Figure 5, the two
groups (purple and pink curves) had identical average signal envelopes (Figure 5A), but displayed
significantly disparate EEG responses (Figure 5B), with significantly larger responses to the notes
with the high pitch surprise (purple >pink; p<0.05 at the N1 and P2 peaks, permutation test;

Average note envelope EEG
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Figure 5. Event-related potentials (ERP) analysis. (A) Notes with equal peak envelope were selected (median
envelope amplitude across all notes with a tolerance of £5%). Together, the selected elements were 25% of all
notes. Notes were grouped according to the corresponding pitch surprise values (Sg). The figure shows the
average sound envelope for the 20% notes with lowest and highest surprise values. Shaded areas indicate the 95%
confidence interval. (B) Low-rate EEG signals time-locked to note-onset were selected for high and low S values.
ERPs for channel Cz are shown on the left. Shaded areas indicate the 95% confidence interval (across subjects).
Stars indicate significant differences between ERPs for high and low surprise for a given note onset-EEG latency
(permutation test, p<0.05, FDR-corrected). The right panel shows the total ERP power for the latencies from 0 to
200 ms (*p<0.001, permutation test). Error-bars indicate the SEM across subjects. (C) ERPs for high-y ECoG data
from left TTS and HG (Patient 1). Stars indicate significant differences between ERPs for high and low surprise for a
given note onset-EEG latency (permutation test, p<0.05, FDR-corrected). Shaded areas indicate the 95%
confidence interval (across individual trials, that is responses to single notes).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Event-related potentials (ERP) analysis.

Di Liberto et al. eLife 2020;9:€51784. DOI: https://doi.org/10.7554/eLife.51784 10 of 26


https://doi.org/10.7554/eLife.51784

LI FE Neuroscience

p=0.001 on the power of the average ERP across all channels for latencies between 0 and 200 ms).
A similar effect emerged for H, and H,, (average power ERP within 0-200 ms, high surprise >low sur-
prise with p=0.0425 and p=0.006 for H, and H, respectively; not shown), while no effect was mea-
sured for S, (p=0.8764). Note that the ERPs showed large responses at pre-stimulus latencies
(before zero latency). This is due to the temporal regularities that are intrinsic in music, which results
in large average envelope before the note of interest (see Figure 5A). In fact, limiting the ERP calcu-
lation to musical events with preceding inter-note-interval longer than 200 ms eliminated such pre-
stimulus responses from the ERPs (not shown). However, this selection procedure reduced the num-
ber of EEG epochs, and thus our choice to include short inter-note-interval in the analysis in
Figure 5.

Similar analyses for both low-rate and high-y ECoG data revealed that ERP responses in TTS elec-
trodes to musical notes with equal envelopes were modulated in proportion to the S, (Figure 5C)
stats; see Figure 5—figure supplement 1). This effect of melodic surprise was absent in the elec-
trode with strongest envelope tracking €9 in Patient 1 (in the left HG; Figure 5C). These results are
consistent with previous findings on melodic expectations (Omigie et al., 2013, Omigie et al.,
2019) and in line with the hypothesis that higher stimulus expectation can reduce auditory responses
(Todorovic et al., 2011; Todorovic and de Lange, 2012). Furthermore, this result complements the
TRF analysis by confirming that the effect of melodic expectations on the cortical responses can be
disentangled from changes in the amplitude of the stimulus envelope. It should be emphasized,
however, that compared to the TRF approach, this analysis may in many cases suffer from the poten-
tial of interactions between the responses to the sequence of notes, for example if the internote
interval is shorter than the duration of the neural response of interest. It also cannot isolate among
the interactions and modulations due to the various melodic expectation features. Nevertheless, the
validity of these results is confirmed by the parallel TRF findings in Figures 2—4, that the encoding of
melodic expectations in the cortical responses is different from responses due to stimulus acoustics.

Pitch and onset-time induce distinct musical expectations

So far, we have parameterized melodic expectations in terms of surprise and entropy features, each
for pitch and note-onsets. Surprise and entropy were expected to interact as they convey comple-
mentary information (Cheung et al., 2019; Gold et al., 2019). Entropy provides information on the
uncertainty of the prediction of the next note before observing the event, thus it describes the over-
all probability distribution. Surprise depends on that same distribution but is specific to the observed
event. For this reason, we expected the responses to entropy and surprise to be dissociable in their
temporal dynamics. This hypothesis was tested in our EEG data by measuring the contrast in the
TRFam weights for surprise versus entropy (Figure 6A, top; weights were averaged as follows:
(Sp+So)/2 vs. (Ho+H)/2). The results showed that responses with latencies up to 350 ms were signifi-
cantly dominated by both surprise and entropy in alternation (p<0.05, permutation test, FDR-
corrected).

A second analysis was conducted to test the relative contribution of pitch and onset-time expect-
ations to the TRFaym model. As previous studies suggested a dissociation between pitch and sound
onset processing (Schénwiesner and Zatorre, 2008; Coffey et al., 2017), we expected similar dif-
ferences in the processing of their expectations in early auditory cortical regions. We tested for such
a dissociation in our EEG data by measuring the contrast in the TRFaym weights for pitch versus onset
time (Figure 6A, bottom; (Sp+Hp)/2 vs. (So+H.)/2). Note-onset dominant responses emerged only
up to 200 ms, while pitch dominant responses persisted for much longer latencies up to 400 ms. The
latency differences for pitch and note-onset TRFs suggests a certain level of dissociation between
pitch and onset-time expectations.

Our results indicate that brain responses to music are modulated by melodic expectations, an
effect that was explicitly accounted for by including M in the TRF mapping, and are in line with the
hypothesis that more surprising notes elicit larger auditory responses (Todorovic et al., 2011,
Todorovic and de Lange, 2012; Chennu et al., 2013; Auksztulewicz and Friston, 2016). Accord-
ingly, musical pieces with higher mean surprise values were expected to elicit EEG and ECoG
responses with higher SNR, thus producing larger prediction correlation scores. To test this hypothe-
sis, we calculated the mean scores for each expectation feature (Figure 6B) and measured their cor-
relation with the envelope tracking (Figure 6—figure supplement 1). Significant Spearman
correlations were measured between the average S, of a piece and the neural signal prediction
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Figure 6. Distinct cortical encoding of pitch and note onset-time during naturalistic music listening. (A) Contrasts
at each EEG channel of the TRF weights for surprise vs. entropy (top) and pitch vs. onset-time (bottom) in TRFam.
Colors indicate significant differences (p<0.05, permutation test, FDR-corrected) (B) Average surprise and entropy
of note-onsets (S, and H,) and of pitch (S, and Hy) for each musical piece. Musical pieces were sorted based on
So, where lower average S, indicates musical pieces with more predictable tempo. (C) Cortical tracking of music
changes with overall surprise of note onset-time within a musical piece. Single-trial EEG prediction result (average
across all channels) for musicians (N, = 10) and non-musicians (N, = 10). Trials were sorted as in panel B. (D)
Single-trial ECoG prediction correlations for the surgery Patient one for two electrodes of interest.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Scatter plots indicating the correlation between EEG prediction correlation using the
acoustic regressors A for each musical piece and the average expectation score (Sp, Hp, So, or Ho) for all notes of
the corresponding piece.

correlations for EEG (r = 0.98, p<0.001 for non-musicians; r = 0.96, p<0.001 for musicians;
Figure 6C) and high-y ECoG data (r = 0.88, p=0.002 for e6 in the left TTS of Patient 1; r = 0.88,
p=0.002 for €9 in the left HG of Patient 1; Figure 6D). These effects were specific to onset-time sur-
prise. In fact, Spearman correlations of comparable magnitude emerged with -H,, while no signifi-
cant correlations were measured for S, and H, for these pieces (Figure 6B, Figure 4—figure
supplement 1). Figure 6C and D also illustrates the prediction correlations for AM,,, showing that
small (nearly zero) envelope tracking due to small average S, does not hamper the encoding of pitch
expectations on the same ECoG electrode (see Figure 6D left), thus further highlighting the dissoci-
ation of processes underlying expectation of pitch and onset-time.

Effect of musical expertise on the encoding of melodic expectations

We were also able to shed light on the effect of musical expertise on the encoding of melodic
expectations. Specifically, by design, half of the EEG participants had no musical training, while the
others were expert pianists that studied for at least ten years (Figure 2). In Figure 7A we show a
comparison between the two EEG groups. A cluster statistics indicated that melodic expectation
was larger for musicians than non-musicians for frontal EEG channels (Figure 7B; see Di Liberto
et al. in press, for comparisons that are specific to music envelope tracking). Note that subjective
reporting indicated no significant effect of musical training on the familiarity with the musical pieces
(see Materials and methods).

Discussion
Musical perception is strongly influenced by expectations (Bar et al., 2006; Huron, 2006;
Kok et al., 2012; Pearce, 2018; Henin et al., 2019). Violation of these expectations elicits distinct
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Figure 7. Effect of musical expertise on the low-rate encoding of melodic expectations. (A) EEG prediction
correlations (average across all scalp channels) for musicians and non-musicians (*p<10’5). The error bars indicate
the SEM across participants. (B) EEG prediction correlations for individual scalp electrodes (red color indicates
stronger prediction correlations) for A, AM, and AM-A. A cluster statistics found a stronger effect of melodic
expectations for musicians.

neural signatures that may underlie the emotional and intellectual engagement with music
(Zatorre and Salimpoor, 2013; Cheung et al., 2019; Gold et al., 2019). Here, we exploited such
neural signatures of melodic expectations during listening to Bach monophonic pieces to demon-
strate that cortical responses encode explicitly subtle changes in note predictability during naturalis-
tic music listening. In doing so, we 1) demonstrated a novel methodology to assess the cortical
encoding of melodic expectations that is effective at the individual subject level with non-invasive
EEG signals recorded during passive music listening, 2) provided detailed insights into the spatial
selectivity and temporal properties of that encoding in ECoG recordings, and 3) physiologically eval-
uated the statistical learning framework of melodic expectation, exemplified by models such as
IDyOM (Pearce, 2005).

Our findings have several implications for current theories and understanding of sensory percep-
tion in general, and musical cognition in particular. First, we show that the neural responses are con-
sistent with the statistical learning theoretical frameworks in that response dynamics are
proportional to the predictability of several signal attributes, including pitch and onset-timing. For
musical sequences, additional attributes, such as timbre, loudness, and complex patterns of harmony
are likely to be relevant, although we did not investigate them here. These properties may all con-
tribute in tandem to music perception, or sometimes in a dissociated manner, as we demonstrated
for the relative contribution of pitch and onset-timing (see also Coffey et al., 2017). Second,
melodic expectations attributes are encoded in both low-rate and high-y responses of higher cortical
regions (e.g., bilateral PT in humans). The effect of expectations extended to the junction between
the PT with HG (TTS) and to neighbouring electrodes in HG, an early auditory cortical area that
favors the accurate representation of the acoustic properties of the music. In addition, neural signals
in some SMG electrodes showed similar encoding of melodic entropy and surprise, a result that well
aligns with previous findings suggesting a role of the left SMG in short-term pitch memory
(Vines et al., 2006; Schaal et al., 2015; Schaal et al., 2017). Third, we have demonstrated a meth-
odology to objectively assess the cortical encoding of melodic expectations using non-invasive neu-
ral recordings and passive listening of ecologically valid stimuli. This finding combined with recent
evidence on the precise link between pleasure of music listening and the particular combinations of
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surprise and entropy of the stimuli (Cheung et al., 2019; Gold et al., 2019) opens new avenues for
investigation of the neurophysiological bases of music perception and its link with emotions
(Salimpoor et al., 2009; Salimpoor et al., 2013; Shany et al., 2019).

This work builds upon previous ERP findings on tone repetitions (Todorovic et al., 2011) and sim-
ple note sequences (Omigie et al., 2013, Omigie et al., 2019), but circumvents one of the main
issues tied to the ERP approach, namely that it does not allow in general to isolate responses to con-
tinuous or rapidly presented stimuli. While such limitation may be overcome for stimuli with particu-
lar statistics, such as speech (Khalighinejad et al., 2017), the temporal regularities inherent in music
hamper the ability to dissociate the late ERP components in response to a note from the early
responses to subsequent ones. Instead, the TRF framework is more resistant to this issue as it
assumes that the transformation of a stimulus into the corresponding brain responses can be cap-
tured by a linear time-invariant system. Although the human brain is neither linear nor time-invariant,
these assumptions can be reasonable in certain cases, and this approach was shown to be effective
in previous studies with stimuli that were either discrete and rapidly presented, or continuous
(Lalor et al., 2006; Ding and Simon, 2012b; Di Liberto et al., 2015; Crosse et al., 2016;
Fiedler et al., 2017, Brodbeck et al., 2018a; Broderick et al., 2018; Vanthornhout et al., 2018,
Wong et al.,, 2018). Using this approach, we have demonstrated how information on melodic
expectations, as well as levels and fidelity of envelope tracking, can be extracted from both EEG
and ECoG recordings. There is ample evidence that melodic expectations of various origins modu-
late responses to stimulus acoustics, possibly increasing the magnitude of those responses according
to the degree of violation of the expectations. Such a modulation was captured by our multivariate
TRF analysis in Figure 2E, which emerged as a positive expectation component at latencies between
150 and 250 ms, the same latencies corresponding to ERP components elicited by musical violations
such as the ERAN (Koelsch et al., 2002). The present findings go beyond previous work by investi-
gating the encoding of melodic expectations in valid sequences with high temporal (EEG and ECoG)
and spatial (ECoG) resolution. However, similar to ERP analyses, the TRF approach is most effective
in capturing signals that are precisely time-locked to note onset. Therefore, further studies with dif-
ferent methodologies are required to assess melodic expectation encoding on cortical sites with low
or no time-locked responses to musical notes, where the TRF methodology was less effective.
Despite this limitation, the TRF approach allowed us to extract objective indices of melodic expecta-
tions encoding that were derived by both explicit (AM-M; Figures 2, 3, 4 and 7) and implicit (A-
only; Figure 6) analyses.

Furthermore, since subjects’ expectations modulate musical responses differently depending on
their cultural experience and musical exposure, it is expected that musical expertise may significantly
enhance these modulations and hence reveal stronger encoding of melodic expectations. The evi-
dence we present in this study (Figure 7) is in line with this view and, although preliminary, the find-
ing is consistent with previous neuroimaging results showing effects of musical training on the brain
responses to music in both children and adults (e.g. Jentschke and Koelsch, 2009; Oechslin et al.,
2013). The results in Figure 7 leave open a key question: Do musicians in general encode melodic
expectations better (more strongly or accurately), or is the estimate of the IDyOM model more in
tune with that of musicians’ predictions than non-musicians’? Our results also suggest the possibility
of a right hemispheric bias in the processing of melodic expectations, and the separate analysis of
low-rate and high-y neural signals seems crucial to investigate such an effect (Figure 7B, Figure 3—
figure supplement 1, and Figure 4—figure supplement 1). Other possibilities need to be con-
trolled for in future studies with larger sample sizes and more types of stimuli, for example whether
the experiment may have been more engaging for musically trained participants, which would
explain their stronger envelope tracking! It will also be important to assess the effect of musical
expertise on the optimal amount of memory for estimating melodic expectations.

The present study demonstrates that rich predictive models can be combined with neural record-
ings to disentangle the processing of distinct properties of complex sensory inputs. Previous work
demonstrated that this approach is effective in other domains, such as in the study of natural speech
perception, where neural responses at the level of acoustics, phonemes, phonotactics, and semantics
were measured (Di Liberto et al., 2015; Di Liberto et al., 2019; Brodbeck et al., 2018c;
Broderick et al., 2018). The ability to investigate multiple domains with a same framework may con-
tribute to the search for fundamental shared neural mechanisms (Patel, 2003; Fitch and Martins,
2014). For instance, the hypothesis of shared resources between language and music has been
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supported by evidence of overlapping brain responses for processing music and language structures
(Maess et al., 2001). However, it is unclear whether these effects reflect domain-specific computa-
tions or domain-general functions such as working memory or cognitive control (Rogalsky et al.,
2011; Fitch and Martins, 2014), or what properties in the stimuli provide the most parsimonious
comparison across these domains (Heffner and Slevec, 2015). Indeed, there is a fundamental differ-
ence in the use of predictions in the two domains. In speech, expectations are important to success-
fully understand the meaning of a sentence (e.g., phonemic restoration, priming; Leonard et al.,
2016; Norris et al., 2016), especially in noisy, multi-talker environments (McGettigan et al., 2012;
StrauB3 et al., 2013). In music, expectations may have a stronger link to emotions and musical
engagement (Dunsby, 2014; Salimpoor et al., 2015).

Our results on melodic expectations exhibited spatio-temporal patterns that are different from
those for the typical ERPs for syntactic and semantic violations in the case of natural speech percep-
tion, (N400, P600; for example Osterhout and Holcomb, 1995; Kutas and Federmeier, 2011;
Borovsky et al., 2012). Furthermore, previous work on phonotactic- and semantic-level expectations
that used system identification methods as in the present study (Brodbeck et al., 2018c;
Broderick et al., 2018; Di Liberto et al., 2019) exhibited strong TRF centro-parietal components at
latencies around 300-500 ms, which were absent in the responses to melodic surprise and entropy.
Instead, our findings align nicely with previous results for syntax surprisal responses based on recur-
rent neural network models of language structure (Hale et al., 2018). This calls for further investiga-
tions with explicit within-subject comparisons, with the present findings providing a key starting
point to tackle these questions. One factor that may be crucial in this investigation is the ability to
exploit different expectation models to disentangle different contributors to expectations, such as
statistical learning rule-based processing (Morgan et al., 2019). In fact, although statistical learning
(IDyOM) was shown to have a prominent role on melodic expectations based on behavioral data, an
independent contribution of a rule-like music-theoretically motivated approach was found (Temper-
ley Probabilistic Model of Melody Perception; Temperley, 2008). In this sense, it is possible that the
melodic expectation signals presented here only partly represent music responses.

This study presented novel detailed insights on the impact of melodic expectations on the neural
processes underlying music perception and informed us on the physiological validity of models of
melodic expectations based on Markov chains. In the process, we introduced the first solution to
investigate the neural underpinnings of music perception in ecologically-valid listening conditions.
As a result, this work constitutes a platform where research in cognitive neuroscience and musicol-
ogy meet and can inform each other.

Materials and methods

EEG data acquisition and preprocessing

Twenty healthy subjects (10 male, aged between 23 and 42, M = 29) participated in the EEG experi-
ment. Ten of them were highly trained musicians with a degree in music and at least ten years of
experience, while the other participants had no musical background. Each subject reported no his-
tory of hearing impairment or neurological disorder, provided written informed consent, and was
paid for their participation. The study was undertaken in accordance with the Declaration of Helsinki
and was approved by the CERES committee of Paris Descartes University (CERES 2013-11). The
experiment was carried out in a single session for each participant. EEG data were recorded from 64
electrode positions, digitized at 512 Hz using a BioSemi Active Two system. Audio stimuli were pre-
sented at a sampling rate of 44,100 Hz using Sennheiser HD650 headphones and Presentation soft-
ware (http://www.neurobs.com). Testing was carried out at Ecole Normale Supérieure, in a dark
room, and subjects were instructed to maintain visual fixation on a crosshair centered on the screen,
and to minimize motor activities while music was presented. A preliminary analysis was conducted
on part of this EEG dataset in a separate study that compared EEG tracking in musicians and non-
musicians (Di Liberto et al., 2020).

Neural data were analysed offline using MATLAB software (The Mathworks Inc). EEG signals were
digitally filtered between 1 and 8 Hz using a Butterworth zero-phase filter (low- and high-pass filters
both with order two and implemented with the function filtfilt), and down-sampled to 64 Hz. Results
were also reproduced with high-pass filters down to 0.1 Hz and low-pass filters up to 30 Hz. EEG
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channels with a variance exceeding three times that of the surrounding ones were replaced by an
estimate calculated using spherical spline interpolation. All channels were then re-referenced to the
average of the two mastoid channels with the goal of maximising the EEG responses to the auditory
stimuli (Luck, 2005).

ECoG data acquisition and preprocessing

We recorded cortical activity from three adult human patients (one male) implanted with stereotactic
EEG electrodes at the Northwell Health University Hospital as part of their clinical evaluation for epi-
lepsy surgery. The research protocol was approved and monitored by the institutional review board
at the Feinstein Institute for Medical Research (07-125), and written informed consent of the patients
was obtained before surgery. The first patient (P1) was a highly trained musician with about twenty
years of experience; the second patient (P2) had no musical background; and the third patient (P3)
studied clarinet for 8 years while in secondary school and had not played for 25 years. As a part of
their clinical diagnosis of epileptic focus, P1 was implanted with a total of 241 electrodes in the left
hemisphere, P2 with 200 electrodes in the right hemisphere, and P3 with 285 electrodes in both left
and right hemispheres. Patients had self-reported normal hearing. Electrocorticography signals with
sampling rate of 3000 Hz were recorded with a multichannel amplifier connected to a digital signal
processor (Tucker-Davis Technologies). All data were montaged again to common average reference
(Crone et al., 2001).

Channel positions were mapped to brain anatomy using registration of the postimplantation com-
puted tomography (CT) to the preimplantation MRI via the postoperative MRI (Groppe et al.,
2017). The CT was first coregistered with the postimplantation structural MRI and, subsequently,
with the preimplantation MRI. The coregistration was performed by means of the automated proce-
dure FSL's FLIRT (Mehta and Klein, 2010). Channels were assigned to anatomical areas according
to the Destrieux atlas (Destrieux et al., 2010) and confirmed by expert inspection blinded to the
results of this study.

Neural responses were transformed using Hilbert transform to extract the high-y band (70-150
Hz) for analysis (Edwards et al., 2009). This signal is known to correlate with neural spiking activity
(Ray et al., 2008; Steinschneider et al., 2008) and was shown to reliably reflect auditory responses
(Kubanek et al., 2013; Mesgarani et al., 2014). Secondly, low-rate responses were extracted from
the raw unfiltered data by digitally filtering between 1 and 8 Hz using a Butterworth zero-phase filter
(low- and high-pass filters both with order two and implemented with the function filtfilt). Both high-
v and low-rate signals were then down-sampled to 100 Hz.

Music-responsive sites (i.e. with significant electrical potentials time-locked to note onset) were
determined by comparing portion of ECoG responses to music with signals recorded during the
pre-stimulus silence. 25 chunks of data, each with duration 200 ms, were selected for each of the
two conditions and Cohen's d effect-size was calculated to quantify the effect of a monophonic
music stimulus on the ECoG data. Electrodes with d > 0.5 (medium effect-size) were marked as
music-responsive (21, 25, and 34 electrodes for patients 1, 2, and three respectively).

Stimuli and procedure

Monophonic MIDI versions of ten musical pieces from Bach’s monodic instrumental corpus were par-
titioned into short snippets of approximately 150 s. The selected melodies were originally extracted
from violin (partita BWV 1001, presto; BWV 1002, allemande; BWV 1004, allemande and gigue; BWV
1006, loure and gavotte) and flute (partita BWV1013 allemande, corrente, sarabande, and bourrée
angloise) scores and were synthesised by using piano sounds with MuseScore two software (Muse-
Score BVBA), each played with a fixed rate (between 47 and 140 bpm). This was done in order to
reduce familiarity for the expert pianist participants while enhancing their neural response by using
their preferred instrument timbre (Pantev et al., 2001). Each 150 s piece, corresponding to an EEG/
ECoG trial, was presented three times throughout the experiment, adding up to 30 trials that were
presented in a random order. At the end of each trial, participants were asked to report on their
familiarity to the piece (from 1: unknown; to 7: know the piece very well). This rating could take into
account both their familiarity with the piece at its first occurrence in the experiment, as well as the
build-up of familiarity across repetitions. Behavioural results confirmed that participants reported
repeated pieces as more familiar (paired t-test on the average familiarity ratings for all participants
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across repetitions: rep, > reps, p=6.9x107%; reps > rep,, p=0.003, Bonferroni correction). No signifi-
cant difference emerged between musicians and non-musicians on this account (two-sample t-test,
p=0.07, 0.16, 0.19 for repetitions 1, 2, and three respectively). EEG participants undertook the entire
experiment (30 trials: ten stimuli repeated three times), ECoG patients were presented with 10 trials
(ten stimuli, played with random order).

IDyOM

The Information Dynamics of Music model (IDyOM; Pearce, 2005) is a framework based on variable-
order hidden Markov models. Given a note sequence of a melody, the probability distribution over
every possible note continuation is estimated for every n-gram context up to a given length k (model
order). The distributions for the various orders were combined according to an entropy-based
weighting function (IDyOM; Pearce, 2005), Section 6.2). Here, we used an unbounded implementa-
tion of IDyOM that builds n-grams using contexts up to the size of each musical piece. In addition,
predictions were the result of a combination of long- and short-term models (LTM and STM respec-
tively), which yields better estimates than either LTM or STM alone. The LTM was the result of a pre-
training on a large corpus of Western music that did not include the stimuli presented during the
EEG experiment, thus simulating the statistical knowledge of a listener that was implicitly acquired
after a life-time of exposure to music. The STM, on the other hand, is constructed online for each
individual musical piece that was used in the EEG experiment.

Our choice of IDyOM was motivated by the empirical support that Markov model-based frame-
works received as a model of human melodic expectation (Pearce and Wiggins, 2006;
Pearce et al., 2010a; Omigie et al., 2013, Quiroga-Martinez et al., 2019a). Specifically, among
other evidence, previous work has indicated that it predicts human ratings of uncertainty during
music listening (Hansen and Pearce, 2014; Moldwin et al., 2017; Bianco et al., 2020).

Music features

In the present study, we have assessed the coupling between the EEG data and various properties
of the musical stimuli. Of course, this required the extraction of such properties from the stimulus
data in the first place. First, we defined a set of descriptors summarizing low-level acoustic proper-
ties of the music stimuli (A). Since the specific set of stimuli was monophonic, broadband envelope
and fundamental frequency (fy) of each note fully characterize the sound acoustics. However, only
the envelope descriptor was used in the present study as the frequency information did not explain
additional EEG variance. The broadband amplitude envelope was extracted from the acoustic wave-
form using the Hilbert transform (Figure 1A). In addition, A included the half-way rectified first-deriv-
ative of the envelope, which was shown to contribute to the stimulus-EEG mapping when using
linear system identification methods (Daube et al., 2019).

In order to investigate the cortical processing of melodic expectations, we estimated melodic sur-
prise and entropy for each individual note of a given musical piece by using IDyOM. Given a note e;,
a note sequence e, that immediately precedes that note, and an alphabet E describing the possi-
ble pitch or note-onset values for the note, melodic surprise S(e;le; ;—1) refers to the inverse proba-
bility of occurrence of a particular note at a given position in the melody. In other words, this
surprise indicates the degree to which a note appearing in a given context in a melody is unex-
pected, or information content (Pearce et al., 2010b; MacKay and Mac, 2003):

S(eiley.io1) =logg——— .
( | ! l) gzP(€i|€1.,i71)

The second feature that was extrapolated from IDyOM is the entropy in a given melodic context.
This measure was defined as the Shannon entropy (Shannon, 1948) computed by averaging the sur-
prise over all possible continuations of the note sequence, as described by E:

H(ey 1) = Zp(é’\eluiq)S(€|€1..i71) .

ecE

Inverse probability and entropy are complementary in that the first indicates the level of expect-
edness of a note, while the second clarifies whether an unexpected note occurred in a context that
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was more or less uncertain, thus corresponding to a weaker or stronger note sequence violation
respectively.

IDyOM simulates implicit melodic learning by estimating the probability distribution of each
upcoming note. This model can operate on multiple viewpoints, meaning that it can capture the dis-
tributions of various properties of music. Here, we focused on two such properties that are consid-
ered the most relevant to describe a melody: the pitch and the onset time of a note. IDyOM
generates predictions of upcoming musical events based on what is learned, allowing the estimation
of surprise and entropy values for the properties of interest. This provided us with four features
describing the prediction of an upcoming note: surprise of pitch (S;), entropy of pitch (Hy), surprise
of onset time (S,), and entropy of onset time (H,). Each of these features was encoded into time-
series by using their values to modulate the amplitude of a note-onset vector that is vectors of zeros
marking with value one all note onsets, with length matching that of the corresponding musical
piece and with the same sampling frequency as the EEG (or ECoG) data. The matrix composed of
the four resulting vectors is referred to as melodic expectations feature-set (M).

In order to assess and quantify the contribution of melodic expectations to the music-EEG map-
ping, the main analyses were conducted on A and the concatenation of A and M (AM). The rationale
is that the inclusion of M will improve the fitting score if the EEG responses to music are modulated
by melodic expectations that is if M describes dynamics of the EEG signal that are not redundant
with A (Figure 1C).

Control analysis

The concatenation of acoustic and melodic expectation features AM constitutes a richer representa-
tion of a musical piece than A or M alone, and we hypothesized that it would be a better descriptor
of the neural responses to music. However, it is also true that AM has more dimensions than A,
which could be a confounding factor when comparing their coupling with the neural signal. In order
to factor out dimensionality from this comparison, we have built stimulus descriptors with the same
dimensionality as AM that carry the same acoustic information but less meaningful melodic expecta-
tion values, the hypothesis being that such descriptors would be less coupled with the neural signal.
Such vectors were obtained by degrading the STM model by imposing memory restrictions on the
local musical piece, while leaving untouched the LTM model, which represents the participants’ prior
knowledge on Western music. The memory restrictions on the STM model were introduced by sub-
dividing each musical piece in chunks of exponentially longer lengths (1, 2, 4, 8, 16, and 32 musical
bars) and then calculating the melodic expectations in each chunk separately. Similar results were
obtained by reducing the model order k. However, the model order restricts the memory in terms of
number of notes, while the first approach works in the musical bar dimension, which we considered
more relevant and comparable across musical pieces.

The same analysis was conducted by using a stimulus descriptor consisting of the concatenation
of A with the M descriptor after randomly shuffling the surprise and entropy values in time (but by
preserving the note onset times; AMgp,), providing us with a feature-set with the same dimensional-
ity and surprise- and entropy-values distributions of AM that contains A but not M information and
that was outperformed by AM (ram > ra: permutation test, p<10’6, d=1.31).

Computational model and data analysis

A system identification technique was used to compute the channel-specific music-EEG mapping.
This method, here referred to as the temporal response function (TRF; Lalor et al., 2009,
Ding et al., 2014), uses a regularized linear regression (Crosse et al., 2016) to estimate a filter that
optimally describes how the brain transforms a set of stimulus features into the corresponding neural
response (forward model; Figure 1B). Leave-one-out cross-validation (across trials) was used to
assess how well the TRF models could predict unseen data while controlling for overfitting. The qual-
ity of a prediction was quantified by calculating Pearson’s correlation between the preprocessed
recorded signals and the corresponding predictions at each scalp electrode.

The interaction between stimulus and recorded brain responses is not instantaneous, in fact a
sound stimulus at time t, affects the brain signals for a certain time-window [t;, t;+t..], with t; >0
and t,;, >0. The TRF takes this into account by including multiple time-lags between stimulus and
neural signal, providing us with model weights that can be interpreted in both space (scalp
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topographies) and time (music-EEG latencies). First, a time-lag window of —150-750 ms was used to
fit the TRF models. The temporal dynamics of the music responses were inferred from the TRF
model weights, as shown in Figures 2E, 3B and 4B. We then performed the EEG prediction analysis
by restricting the TRF model fit to the window [0350] ms, thus reducing the dimensionality of the
data and the risk for overfitting. This time-lag window was identified by means of a backward elimi-
nation procedure that quantified the relevance of the various stimulus-EEG latencies to the TRF map-
ping (Figure 2—figure supplement 1).

Backward elimination is a method to perform feature selection on multivariate data (Guyon and
Elisseeff, 2003) (only the first iteration of this approach was run for computational reasons). In our
context, the relevance of a feature (where feature includes both stimulus properties and time-lags) is
quantified as the loss in EEG prediction correlation due to its exclusion from the TRF model. Specifi-
cally, TRF were fit for the time-lag window —150 and 750 ms after excluding a 50 ms window of
time-lags [t;t+50] ms. Then, the loss was calculated as r oss = r.150,750] = 11-150,750] \ [titi+50]- Ulti-
mately, this allowed us also to isolate the temporal dynamics of the effect of melodic surprise AM-A.
Note that this procedure is similar to a single-lag analysis (O’Sullivan et al., 2015; Das et al., 2016),
with the difference that latencies capturing information that is redundant with other lags will not pro-
duce a large r poss, which is a useful property when the goal is to minimise the time-latency window.
The results of this analysis are presented in Figure 2—figure supplement 1, where only significant
rioss values are reported (p<0.05, Bonferroni corrected permutation test with N = 10000).

ERP analysis

To obtain time-locked neural responses to each note, the neural data were segmented and aligned
according to note onset. Notes were grouped into high and low surprise by selecting the ones with
the highest and lowest 20% S, values respectively. Among these epochs, we selected neural seg-
ments corresponding to notes with equal acoustic envelopes that is the 25% of notes with peak
envelope amplitude closest to the median value (Figure 5A). ERPs and average acoustic envelopes
were calculated by averaging the time-aligned neural data over each surprise group. Significant dif-
ferences in the ERP traces between the two groups were calculated by means of an FDR-corrected
permutation test. Figure 5 shows the EEG result for channel Cz and the ECoG result for two
selected electrodes. ERP power was calculated in the responsive latency window from 0 to 200 ms.
ERP magnitude, which is often reported in uV, is indicated in arbitrary units (a.u.) here to avoid mis-
leading the readers into comparing the absolute values of data from different recording modalities
(EEG and ECoGQ).

Statistical analysis
Statistical analyses were performed using two-tailed permutation tests for pair-wise comparisons.
Correction for multiple comparisons was applied where necessary via the false discovery rate (FDR)
approach. One-way ANOVA was used to assess when testing the significance of an effect over multi-
ple (>2) groups (e.g., memory size in Figure 2C). The values reported use the convention F(df, dfe..
o). Greenhouse-Geisser corrections was applied when the assumption of sphericity was not met (as
indicated by a significant Mauchly’s test). Cohen’s d was used as a measure of effect size.
Topographical dissimilarity scores were calculated according to Murray et al. (2008):

DISS = \/2x(1—7r)

where r is the correlation between two topographical distributions of interest. Significance was
assessed by means of a one-sided p-values based on a randomization test with 100 permutations.
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