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Natural sounds such as vocalizations often have covarying acoustic attributes, resulting in redundancy in neural coding. The efficient
coding hypothesis proposes that sensory systems are able to detect such covariation and adapt to reduce redundancy, leading to more
efficient neural coding. Recent psychoacoustic studies have shown the auditory system can rapidly adapt to efficiently encode two
covarying dimensions as a single dimension, following passive exposure to sounds in which temporal and spectral attributes covaried in
a correlated fashion. However, these studies observed a cost to this adaptation, which was a loss of sensitivity to the orthogonal dimen-
sion. Herewe explore the neural basis of this psychophysical phenomenon by recording single-unit responses from the primary auditory
cortex in awake ferrets exposed passively to stimuli with two correlated attributes, similar in stimulus design to the psychoacoustic
experiments in humans. We found: (1) the signal-to-noise ratio of spike-rate coding of cortical responses driven by sounds with corre-
lated attributes remained unchanged along the exposure dimension, but was reduced along the orthogonal dimension; (2) performance
of a decoder trained with spike data to discriminate stimuli along the orthogonal dimension was equally reduced; (3) correlations
between neurons tuned to the two covarying attributes decreased after exposure; and (4) these exposure effects still occurred if sounds
were correlated along two acoustic dimensions, but varied randomly along a third dimension. These neurophysiological results are
consistent with the efficient coding hypothesis and may help deepen our understanding of how the auditory system encodes and
represents acoustic regularities and covariance.
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Introduction
Perception of natural sounds and images often relies on corre-
lated cues (Kluender et al., 2013). For example, the perception of
slopes of objects can be cued both by binocular disparity and
texture gradient (Hillis et al., 2002). In speech, many acoustic
features covary to give rise to the percept of different phonemes.
This is critical because a single acoustic feature often does not

provide reliable information to distinguish a phoneme because
they are susceptible to changes due to preceding and/or following
articulations in various ways (Kluender and Lotto, 1999; Kluen-
der andKiefte, 2006; Kluender andAlexander, 2007). By contrast,
the covariance among multiple features can reliably capture the
differences among speech sounds (Sussman et al., 1998). There-
fore, understanding how the nervous system adapts to encode the
covarying features of a stimulus is a key question in the study of
perception and communication.

Attneave (1954) and Barlow (1961) proposed the efficient
coding (EC) hypothesis, where they conjectured that spikes in
sensory systems form an efficient code to represent natural stim-
uli and that sensory processing is optimized for natural stimuli.
Consistent with EC, there is evidence that neural responses in the
auditory and visual system are indeed apparently optimized to
encode natural sounds and images (Olshausen and Field, 1997;
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Significance Statement

The efficient coding (EC) hypothesis (Attneave, 1954; Barlow, 1961) proposes that the neural code in sensory systems efficiently
encodes natural stimuli byminimizing the number of spikes to transmit a sensory signal. Results of recent psychoacoustic studies
in humans are consistent with the EC hypothesis in that, following passive exposure to stimuli with correlated attributes, the
auditory systemrapidly adapts so as tomore efficiently encode the two covaryingdimensions as a single dimension. In the current
neurophysiological experiments, using a similar stimulus design and the experimental paradigm to the psychoacoustic studies of
Stilp et al. (2010) and Stilp and Kluender (2011, 2012, 2016), we recorded responses from single neurons in the auditory cortex of
the awake ferret, showing adaptive efficient neural coding of two correlated acoustic attributes.
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Vinje and Gallant, 2000; Lewicki, 2002; Smith and Lewicki,
2006). And becausemany such stimuli have correlated attributes,
it has been proposed that sensory systems are able to actively
recalibrate coding to enhance coding efficiency (Barlow and
Földiák, 1989) and some recent experiments in the visual system
support this dynamic version of EC (Coen-Cagli et al., 2015).

To understand how EC contributes to the encoding of cova-
riant features, recent psychoacoustic studies (Stilp et al., 2010;
Stilp and Kluender, 2011, 2012, 2016) tested subjects who either
received passive exposure to, or provided continuous discrimi-
nation judgments for sets of complex sounds with covarying
spectrotemporal attributes (spectral-shapes and amplitude
attack-decay ratios). Following passive exposure, and also over
the course of active discrimination, subjects’ acuity in discrimi-
nating sounds along the correlated dimensions remained intact,
but discrimination of pairs on the orthogonal dimension was
significantly impaired when those pairs were proximal to the
principle vector of covariance. These findings suggested that ex-
perience with correlated attributes (spectral shape and attack-
decay) induced the auditory system to collapse the covarying
dimensions into a single dimension at the expense of lost sensi-
tivity to the orthogonal dimension. In the present study,we tested
whether neural responses at a single-unit level in an animal
model replicate this psychoacoustic phenomenon observed in
humans. We did so by measuring neural responses in primary
auditory cortex (A1) of awake ferrets, using the same passive
stimulus exposure paradigm as used in the original study of Stilp
et al. (2010).

The current study comprises three key experiments. In Exper-
iment 1, we measured baseline auditory cortical responses to
sounds with a correlation between two acoustic attributes, spec-
tral and temporal, which were the peak frequency of the spectral
envelope (SP) and the amplitude modulation (AM) rate. We
found that cortical responses became adapted to sounds along the
dimension of the correlated attributes. Consistentwith the results
of psychoacoustic studies, the signal-to-noise ratios (SNRs) along
this dimension remained intact, whereas those along the dimen-
sion orthogonal to it decreased. Also consistent with human be-
havioral studies (Stilp et al., 2010), the performance of a decoder
trained with spike data to discriminate stimuli along the orthog-
onal dimension was reduced after exposure. Finally, correlations
between neurons tuned to the same two attributes decreased after
exposure. A control experiment (Experiment 2) tested whether
passive exposure to stimuli varying along only a single dimen-
sion, i.e., holding other parameters constant, induced effects sim-
ilar to those for the correlation dimension in Experiment 1. The
goal of Experiment 2 was to ascertain whether the effects ob-
served in Experiment 1 could have arisen due to simple stimulus
adaptation, or whether they required covariance between the two
attributes. A final experiment (Experiment 3) tested whether the
exposure effects of the two covarying attributes observed in Ex-
periment 1 persisted in the presence of a third acoustic attribute
that varied randomly along a separate third additional acoustic
dimension (e.g., the fundamental frequency).

Materials andMethods
Subjects
Experiments used adult female ferrets (n � 4) housed with a 12 h light/
dark cycle. Two ferrets (F-1 and F-2) were used in Experiment 1. Two
ferrets (F-2 and F-3) were used in Experiment 2. Two ferrets (F-3 and
F-4) were used in Experiment 3. Ferrets used in this study were pre-
viously trained on unrelated auditory tasks (Lu et al., 2017). Neurophys-
iological recording sessions (4–8 h in duration) occurred on 2

nonconsecutive days per week. All procedures were in accord with Na-
tional Institutes of Health policy on experimental animal care and use
and conformed to a protocol approved by the Institutional Animal Care
and Use Committee of the University of Maryland.

Surgeries
To stabilize the head for electrophysiological recording, a headpost was
implanted in a surgery that occurred at least 1month before the initiation
of recordings. Animals were anesthetized with isoflurane (1–2% in oxy-
gen), and a customized stainless steel headpost was surgically implanted
on the skull under aseptic conditions. The skull over the auditory cortex
was exposed and coveredwith a thin layer ofHeraeus Kulzer Charisma (1
mm) surrounded by a thicker wall built with UV-curable Charisma (3
mm thick). After recovery from surgery, animals were gradually habitu-
ated to restraint in a customized head-fixed holder. After successful
habituation, 1–2 d before electrophysiological recording, a small crani-
otomy (1–2mmdiameter) was made above the primary auditory cortex.
At the beginning and end of each recording session, the craniotomy was
thoroughly rinsed with sterile saline. At the end of a recording session,
the craniotomy and the well were filled with topical antibiotics that were
rotated on a weekly basis (Baytril and cefazolin). The area containing the
hole was then filled with sterile vinyl polysiloxane impression material
(ExamixNDS,GCAmerica Inc.) thatmaintained a tight seal and kept the
brain protected between experiments. After recordings were completed
in the original craniotomy, adjacent 0.5mmbone sections were carefully
removed over successivemonths of neurophysiological recording so that
eventually the enlarged craniotomy (�4mmdiameter) encompassed the
entire primary auditory cortex.

Electrophysiological recording
Electrophysiological recordings were made in a double-walled sound-
proof room (IAC). The awake animal was placed in a horizontal, Lexan
tube, and the implanted headpost was used to stabilize and fix the head in
position, relative to a stereotaxic frame. Recordings were conducted in
the A1 of both left and right hemispheres over a period of 3–6 months.
For each recording, 4–8 tungsten microelectrodes (2–3M�; FHC) were
introduced through the craniotomies and controlled by independently
moveable drives (Electrode Positioning System, Alpha-Omega). Raw
neural activity traces were amplified, filtered, and digitally acquired by a
data acquisition system (AlphaLab, Alpha-Omega). Multiunit neuronal
activity (including all spikes that rose above a threshold level of 3.5 SD of
baseline noise)wasmonitored online. In addition, single unitswere iden-
tified online using Alpha-Omega spike waveform profiling to isolate and
to monitor single neuron responses. Bandpass noise (0.2 s, 1 octave) and
pure tone (0.2 s duration) stimuli were presented to search for responsive
sites. Because of evidence that neurons in supragranular layers (II–III) of
A1 show greater plasticity than neurons in deeper layers (Francis et al.,
2018), most of the recording depths in this study were within 100–400
�mof the cortical surface, and electrodes were advanced only to themost
superficial position where single-unit responses to bandpass noise and
tones were found. Once clear, stable auditory responses were obtained,
the experimental stimuli were presented. All stimulus amplitudes were
presented at 65 dB sound pressure level from a speaker placed 1 m in
front of the animal. After recordings were completed, single units were
isolated again by off-line customized spike-sorting software, involved
three steps: (1) we extracted three principal components from the spike
waveform from each recording channel. (2) We used the k means clus-
tering approach to split multiunit spikes into single-unit clusters and
then created the spike templates from the center of each single unit
cluster. (3) A template-matching algorithm was used to assigned spikes
into each spike template (Meska-PCA, NSL). Single units were con-
firmed by interspike interval histogram (no more than 2% spike in the 1
ms bin) and consistency of spike waveforms.

Auditory stimuli and experimental design
In each of the three sets of experiments that were performed, animals
were exposed to a generated set of acoustic stimuli, that differed in fun-
damental ways in each experiment. In Experiment 1, two acoustic attri-
butes were correlated (peak frequency of the SP and AM). In this
experiment, we explored the effects of this correlation on the coding of
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the stimuli in A1. In contrast, Experiment 2 was a control experiment, in
which only one acoustic attribute was varied to test whether simple ad-
aptation in A1 could explain the results obtained in Experiment 1. Ex-
periment 3 was also a control experiment, in which we presented
stimuli with the same correlated acoustic attributes used in Experi-
ment 1, but now we explored the effects (or lack thereof) of adding a
new, third independently varying (uncorrelated) attribute to the
acoustic stimuli, on the effects observed in Experiment 1. Thus, in
Experiment 3, all stimuli were characterized by three acoustic attri-
butes, two of which were correlated, and one of which was not. We
tested whether the presence of an uncorrelated acoustic attribute
would change the effects of exposure to stimuli with two correlated
acoustic attributes, as observed in Experiment 1.

Experiment 1
Stimuli and optimal stimulus design. In each recording session, we gener-
ated a new “optimal” stimulus matrix with two manipulated attributes:
AM rate and peak frequency of the SP. All stimuli were harmonic com-
plexes with an initially flat spectrummodulated/filtered by the two attri-
butes. Exposure stimuli were generated with orthogonal correlations
between attributes. AM and SPwere either positively correlated (increas-
ing rate with increasing peak frequency; Fig. 1A, represented by red dots
in C) or negatively-correlated (increasing rate with decreasing peak fre-
quency; Fig. 1C, blue dots). “Test” stimuli were generated with all com-
binations of the two attributes, so that they were uniformly distributed in
the 2-dimensional space of the two parameters (Fig. 1C, black dots).

To design an optimal stimulus matrix for a given recording site, it was
first necessary to evaluate the frequency response profile of the site. Thus,
at the beginning of each recording session, several neurons were isolated;
best frequencies (BFs) measured; and, median BFs estimated. Once fre-
quency tuningwasmeasured, tone-complexes ranging across�3 octaves
around themedian BF (Fig. 1B) were created. Nineteen frequencies were
defined as SP peaks with equal (1/3 octave) steps across this range, and 19
triangular SP filter shapes were designed (Fig. 1A, 3 examples are shown
in the second column).
NineteenAMrateswere set at equal log steps from5 to 120Hz (Fig. 1A,

first column). In each recording session, the fundamental frequency ( f0)
of the harmonic complexwas randomly selected froma range of 200–500
Hz following the criterion that f0must be 0.1 octave lower than the lowest
peak frequency of spectral functions (Fig. 1B, bottom, green dashed line).
Roving f0 across sessions minimized the effects of frequency-specific
influences (e.g., peak harmonic relative to the peak of spectral envelope)
and the possibility of retaining a memory of previous stimulus sets, be-
cause each stimulus set was session-unique. Stimuli were 500 ms dura-
tionwith 5ms cosine onset and offset ramps, and sampled at 40 kHz. Test
stimuli included 25 stimuli selected from the combination of the steps 2,
6, 10, 14, and 18 from both two dimensions forming a 5 � 5 matrix
uniformly sampled from the 19 � 19 exposure matrix. Finally, because
all exposure stimuli were located along diagonals of the stimulus matrix,
additional eight test stimuli were selected along these twodiagonals of the
stimulus matrix at steps 4, 8, 12, and 16.
Passive stimulus exposure and testing procedure. As mentioned in the

previous section, in Experiment 1, two ferrets were first tested with the
full stimulus matrix shown in Figure 1C to measure neurons’ tuning
properties before stimulus exposure. This was followed by exposure to 80
repetitions of 19 stimuli along one diagonal (either red dots or blue dots).
Next, a first post-exposure test included all 33 stimuli in the full matrix
(as in the Pre-exposure test) tomeasure the effects of passive exposure to
the 19 stimuli with correlated attributes. Because of uncertainty regard-
ing the duration of persistence of exposure effects, we repeated the
Exposure/Post-exposure sequence. In summary, the complete sequence
protocol for stimulus presentations is shown in Figure 1D: (1) pre-
exposure test stimuli, including the 33 testing stimuli [(5 � 5) � 8] were
presented 20 times each with 1 s silence (ISI) between sounds, all over a
period of 16.5min. (2) First passive exposure session: 19 exposure stimuli
were presented 80 times each with 0.25 s ISI over a period of 19 min. (3)
Post-exposure test using the same 33 stimuli of the Pre-exposure testwith
10 repetitions over a period of 8.25 min. (4) A second exposure session
(over a period of 9.5 min) was conducted immediately afterward, using

the same 19 stimuli (as in Step 2) repeated 40 times to reassess the effects
of the first exposure combined with the second exposure. (5) A final
(second) post-exposure test, using the same 33 stimuli of the Pre-
exposure test, repeated 10 times over a period of 8.25min. Data collected
from the two Post-exposure tests (Steps 3,5) were pooled together for
comparisonwith the Pre-exposure test (1). In both the Pre-exposure and
Post-exposure tests and two exposure sessions, all stimuli were presented
in a randomly-shuffled order.

Experiment 2
A possible confound that we considered is that the effects observed in
Experiment 1 could simply have arisen from adaptation to repetitive
sounds. As a control, twomore ferretswere tested (Experiment 2)with 19
sounds during the Passive exposure phase, which in this experiment,
varied along only a single dimension (either AM or SP, balanced across
recordings). The parameter of the other dimension (the orthogonal di-
mension) was held constant in a given recording session (Fig. 1E), but
was different across sessions. Testing stimuli in Experiment 2 included a
5 � 5 stimulus matrix as in Experiment 1. However, in contrast with the
stimuli used in Experiment 1, in Experiment 2 the additional eight testing
stimuli were sampled from a single row or column of the stimuli (rather
than along the diagonals) at the step 4, 8, 12, and 16 to generate a total of
33 test stimuli. The basic sequence, test procedures, and ISIwere the same
as in Experiment 1, with the key difference being that in Experiment 2,
exposure stimuli were now along the vertical or horizontal direction,
rather than along diagonal direction (Experiment 1). By comparing the
results of Experiments 1 and 2, we could assess the specific effects of the
two correlated attributes.

Experiment 3
In Experiment 3, modeled on the earlier psychoacoustic study of Stilp
and Kluender (2011), we tested, in recordings from two ferrets, whether
the exposure effects caused by covariation in stimuli with two acoustic
dimensions (as observed in Experiment 1) would be sustained in the
presence of substantial variation in new stimuli with a third acoustic
dimension that introduced widely varying physical acoustic properties.
Here, we introduced this variation by varying f0 from trial to trial. As in
Experiment 1, 19 AM and SP combinations were selected, in which the
two dimensions were either positively or negatively correlated. In addi-
tion, 35 f0 parameters were generated in 2% increments between the two
nearest steps. The fundamental frequency range was restricted by the
criteria that the lowest f0 had to be 1.5 octaves higher than themaximum
AM rate, and the highest f0 had to be 0.1 octave lower than the lowest
spectral peak selected for the SP dimension. A 2-dimensional matrix of
665 (19 � 35) stimuli with 19 AM/SP combinations as one dimension
and 35 f0s as the second dimension was created as the exposure stimulus
set (Fig. 1F, red vertical rectangle). Note that this matrix effectively cre-
ated acoustic stimuli with three distinct attributes (i.e., AM rate, SP, and
frequency). For testing, we randomly selected one f0 of the 35 f0 values in
each recording. Then, testing stimuli were created based on the selected
f0 in the exact same way as in Experiment 1 (Fig. 1F, black horizontal
rectangular). Thus, the exposure stimuli in Experiment 3 existed in a
2-dimensional space that was orthogonal to the space of testing stimuli.
Pre-exposure and Post-exposure test procedures were the same as in
Experiment 1. Note that in Experiment 1, all 19 AM/SP combinations in
passive exposure were presented 120 times. To ensure approximately
equal covariance exposure, all 665 exposure stimuli in the first passive
exposure session of Experiment 3 were presented three times (Fig. 1G).
Then, as in the procedure in Experiment 1, the 665 stimuli were pre-
sented onemore time in a secondpassive exposure session (140 repeats of
19 AM/SP combinations in total, but with different f0s).

Data analysis of single-unit responses (spike rate)
As indicated in the section of electrophysiological recordings, we isolated
single units off-line from our recordings, and all the data analysis was
conducted on isolated single neurons from A1 (Fig. 1H ). For each trial,
we measured spike rate in a 650 ms response window (a window that
began 50 ms after stimulus onset, and continued throughout the rest of
the 500 ms stimulus until 200 ms after stimulus offset) and the spike rate
in a baseline window (200 ms before stimulus onset). The response am-
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Figure1. A, Schematic illustration of howstimuliwere generated. Amplitude envelopeswith different AMmodulation rateswere generated (left column). Spectral envelopeswith different peak
frequencies were generated (middle column). Sounds were generated by combining the two acoustic attributes (right column). B, Illustration of how stimuli parameters were chosen. Black
horizontal lines indicate harmonic components consisting of the basic structure of a stimulus. The center of the harmonic tone was chosen around the BF of recorded neurons (red arrow). The blue
triangle represented one of the 19 spectral envelopes used to generate stimuli. The limit of the peak frequencies was indicated by the two horizontal black dashed lines. The range of the harmonic
structure was 6 octaves. The limits of the lowest harmonic component ( f0) and highest component were indicated by the green dashed line, at least 0.1 octave away from the limits of the peak
frequencies. C, Testing stimulus space in Experiment 1. Notice that, in one-half of the recordings, 19 exposure stimuli had positively correlated attributes and thuswere lined upwith those red dots.
In this case, the orthogonal dimensionwas indicated by blue dots. In the other half of the recordings, the opposite was true: the exposure dimensionwas lined upwith blue dots and the orthogonal
dimension was lined upwith red dots. These two types of exposure were shuffled across recordings in a balanced design.D, Schematic illustration of exposure and testing procedure in Experiment
1. Black arrows indicate the testing session; red arrows indicate the exposure sessions. The matrix of black dots on top of the black arrow represents 33 test stimuli. Red dots on top of red arrows
represent 19 exposure stimuli. E, Testing stimulus space in Experiment 2. In one-half of the recordings, sounds with constant AM and varying SP (lined up with red dots) were exposure sounds,
whereas thosewith constant SP and varying AM (lined upwith blue dots) were on the orthogonal dimension. In the other half of recordings, the opposite was true. Two types of exposurewere also
shuffled in a balanced design. F, Testing stimuli space in Experiment 3. The red parallelogram indicates exposure sounds, which had perfect positive or negative correlation between AMand SP, and
varied f0. The black parallelogramwith dashed lines indicates testing sounds, in which only one f0was randomly chosen for testing in each recording. The structure of the testing space is the same
as in Experiment 1, indicated on the right by the blue arrow.G, Exposure and testing procedure in Experiment 3. Black arrows indicate the testing sessions; red arrows indicate the exposure sessions.
The total stimuli number in exposure was approximately the same as that in Experiment 1 (2280 in Experiment 1; 2660 in Experiment 3).H, An example of an isolated single-unit. Spike waveforms
(left) for the neuronwere consistent across thewhole recording session. Histograms of interspike intervals (right)were used to verify isolation quality. I, Illustration of how SNRs of spike rate coding
for the exposed dimension and the orthogonal dimension were calculated. The bell-shaped curves illustrate the possible spike rate variation within the group, the sum of which across all groups
yielded the “Sum of Squares (SS) within”. The distance between the centers of the bell curves indicated the variance between the groups, explained by stimulus differences along the given
dimension. The sum of all such variance yielded the “SS between”. Then SNRwas calculated from SSwithin and SS between as shown in the equation on the right. MS, Mean of Squares; df, Degree
of freedom.
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plitude was defined as the spike rate in the response window minus the
baseline spike rate, and was averaged over 20 repetitions. Any trials with
response amplitude less than or �5 standard deviation (SD) frommean
amplitude were excluded from the analysis. Response amplitudes in the
Pre-exposure test and Post-exposure test were calculated separately. Tri-
als from two Post-exposure tests (3, 5) were combined for analysis. Base-
line spike rates were compared across all three test sessions. Units with
significant changes between baseline measures were excluded from fur-
ther analysis.
Quantification of SNR in spike-rate coding. We used three neuronal

response measures and explored how each of these measures of neural
activity was affected by stimulus exposure in each of the three experi-
ments. The first measure is the SNR of spike rate coding, defined as the
ratio of the response variance to stimuli along one acoustic dimension, to
the overall variance within each stimulus group (Fig. 1I ). The calculation
procedure resembled a two-way analysis of variance (ANOVA) (Privit-
era, 2017), in which stimulus levels along the exposure (correlated) di-
mension and the orthogonal (uncorrelated) dimension were treated as
two independent variables, and the response amplitude of each stimulus
was treated as the dependent variable. The analysis of SNR was per-
formed for each neuron.
The same SNR analysis was conducted for data from both the Pre-

exposure test and the Post-exposure tests, and differences in SNRs
(change in SNRs) before and after exposureweremeasured. SNR changes
due to exposurewere analyzed separately for exposure dimension and for
orthogonal dimension. In addition, SNRs themselves were compared
between the Pre-exposure test and the Post-exposure test. Because the
distribution of SNRs did not fully satisfy criteria for parametric tests, the
Wilcoxon test (a nonparametric version of paired t test) was performed
to compare SNRs before and after exposure.
Discrimination performance by the neural decoder. To compare results

of neural data and previous psychoacoustic experiments in humans
(Stilp et al., 2010), we trained a decoder to discriminate stimuli along the
exposed dimension and the orthogonal dimension, based on amaximum
likelihood estimation (MLE) method (Geman and Hwang, 1982). This
approach has two advantages over other approaches: (1) it allows a de-
coder to learn to discriminate stimuli from very limited trials of training
(n � 10); (2) it does not require the decoder to be trained for multiple
epochs, whereas other methods usually require hundreds of epochs of
training. The decoder was trained independently for each neuron for
Pre-tests before and Post-tests after exposure. In each test, two stimuli
(Stimulus 1 and Stimulus 2) on adjacent positions along the exposed
dimension or the orthogonal dimension were chosen (see Fig. 4A). Their
identities were decoded based on the spike rate for each neuron, mea-
sured in the same way as for the SNR calculation. First, responses to two
adjacent stimuli were separated evenly into training and testing sets, 10
trials of training and 10 trials of testing for a 20 trial recording of re-
sponses to each stimulus. Second, a Bayesian approach was performed to
solve the two-class classification problem in the testing set based on the
statistics of the training set. Specifically, a Bayesian approach solves the
maximum a posteriori probability problem (Geman and Hwang, 1982)
as follows:

max
�

p	��x
 � max
�

p	�, x


p	 x


� max
�
�p	 x�� � 0
 p	� � 0


p	 x

,
p	 x�� � 1
 p	� � 1


p	 x
 � , (1)

where� � �0,1� is the stimulus identity (Stimulus 1 as 0 and Stimulus 2 as
1), and x is the spike number. This approach finds the � that maximize a
posteriori probability p(� x). Because the probability was drawn from
training data, which contain the same number of trials for Stimulus 1 and

Stimulus 2, p	� � 0
 � p	� � 1
 �
1

2
. Therefore, Equation 1

becomes:

max
�

p	��x
 � max
���0,1�

p	 x�� 
, (2)

which is also known as the MLE equation. In practice, a probability
histogram was extracted for p(x �) from the training set for each stimu-
lus, and the center of each histogram bin was recorded. A classification
decoder was then computed by assigning the class number with a larger
conditional probability to each bin.When a testing sample was fed to the
decoder, it was assigned the stimulus number of the bin it fell into.
Accuracy of discrimination was calculated based on the performance of
the decoder.
Accuracy of discrimination of all stimulus pairs along the exposure

dimension and orthogonal dimension were averaged separately for each
neuron. Analyses were performed in the same way for each neuron
before and after exposure. Wilcoxon tests were used to compare the
accuracy of discrimination along each dimension obtained before and
after exposure.
Correlation of tuning in simultaneously recorded neurons. Finally, the

third response measure used in this analysis was the correlation coeffi-
cient between the tuning functions to the AM and SP parameters. We
measured the correlation coefficient for either the same neuron or for
neuron pairs recorded simultaneously [neuron pairs were distinct neu-
rons recorded simultaneously either from adjacent electrodes or separate
single units (based on waveform and tuning) recorded from the same
electrode]. For analysis of correlation in the same neuron, the tuning
functions to AM and SP were calculated based on the averaged response
at each AM/SP level. The correlation between the two functions was then
calculated (with Spearman correlation) for each neuron, and for each
Pre-exposure and Post-exposure test. Next, we computed the differences
in correlation coefficients obtained from all neurons before and after
exposure. Finally, correlation coefficients from recordings with different
stimulus exposures, e.g., positively versus negatively correlated, were
computed and compared with each other. Because the population of
correlation coefficients was not normally distributed, the Mann–Whit-
neyU test (a nonparametric version of two-sample t test), which provides
a more conservative evaluation than a traditional t test, was used for the
positive/negative comparison. To analyze correlations between AM and
SP from different simultaneously recorded neurons, we first paired neu-
rons recorded simultaneously in each session, one forAMandone for SP.
Then, the correlation between AM and SP functions was calculated for
the neuron pairs and averaged across all pairs. The differences between
correlation coefficients before and after exposure were compared be-
tween recordings with exposure to positively and negatively correlated
stimuli.

Results
Experiment 1: effects of exposure to stimuli with two
correlated acoustic attributes
In the first experiment, we examined the effects of exposure to
stimuli with two correlated acoustic attributes on single-unit
neuronal responses in A1. We first describe the results of expo-
sure on (1) changes in the tuning properties of the neurons with
respect to theAMandSPparameters of the exposure stimulus set,
then examine (2) changes in coding quality, i.e., SNR, and (3)
changes in the discrimination accuracy of the neuronal responses
using a MLE decoder, and finally (4) describe the changes in
inter-neuronal correlations between simultaneously recorded
neurons after stimulus exposure. These multiple measured
changes reveal the effects of stimulus exposure on neural coding
of correlated features, in a manner consistent with the EC hy-
pothesis and previous psychoacoustic studies (Stilp et al., 2010;
Stilp and Kluender, 2012, 2016).

Effect of stimulus exposure on neuronal tuning properties
As described in detail in Materials andMethods, we first exposed
ferrets to a set of covarying acoustic stimuli optimized based on
the neurons’ BF and then recorded post-exposure changes in
responses from single neurons (n � 65) in the A1 of two ferrets.
Our first questionwaswhether theremight be a nonspecific effect
following exposure on the overall responsiveness (firing rate) of
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A1 neurons. To answer this question, we compared the response
amplitude averaged across all stimuli before and after exposure.
We did not observe any significant changes in overall response
amplitude after exposure (Wilcoxon test: z � 
0.8332, p �
0.404) and hence concluded that there were no nonspecific
changes in neuronal responsiveness (firing rate) following
exposure.

Second, we tested the key question of whether there was a
selective adaptation effect in A1 neuronal responses that was spe-
cifically related to the exposed stimuli, by separately examining
responses to two groups of stimuli, e.g., the acoustic stimuli to
which the ferrets had been exposed compared with the stimuli to
which they had not been exposed. Specifically, when we con-
trasted responses to “exposure” stimuli (Fig. 2A, 13 combina-
tions within the diagonal green rectangle) versus the responses to
non-exposure stimuli (Fig. 2A, 12 combinations within blue tri-
angles), we found a clear effect of selective adaptation: responses
to the exposure stimuli (both positively or negatively correlated)
significantly decreased in the post-exposure tests (Wilcoxon test:
z� 
2.6, p� 0.001; Fig. 2B, left-histogram,C, left-box), whereas
responses to non-exposure stimuli significantly increased (Wil-
coxon test: z � 
2.4, p � 0.016; Fig. 2B, right-histogram, C,
right-box).

This result is consistent with previous findings by Dragoi et al.
(2000), where adaptation was also shown to cause lateral shifts in
neuronal tuning functions, thus significantly modifying them, as
illustrated by the surface plot of response amplitudes to each test
stimulus in Figure 2D. Note that the tuningmap from recordings
with negative correlated exposure was flipped so that the expo-
sure dimension from two types of exposure (positive and nega-
tive) could be aligned and the results from the two types of

exposure could be pooled. Thus, our results showed that the
exposure specifically modified the tuning properties of neurons,
by suppressing responses to exposed stimuli and increasing re-
sponses to non-exposed stimuli.

Effect of exposure on the coding quality (SNR)
We also analyzed the effect of stimulus exposure on the SNR of
each neuron. Early psychoacoustic studies (Stilp et al., 2010) had
shown that, after passive exposure to sounds with correlated
properties, the auditory system captured the covariance of the
two acoustic attributes and treated them as a single perceptual
dimensionwhile simultaneously losing discriminability along the
orthogonal dimension. Therefore, we hypothesized that this ef-
fect would be manifested at a neuronal level, and would cause a
reduction in the SNR of spike rate coding along the orthogonal
dimension after exposure to the correlated stimuli.

To test this hypothesis, we calculated the SNR for each neu-
ron, with stimulus levels along the exposure dimension and the
orthogonal dimension as two independent variables (Fig. 3A).
Data from exposure to positively- and negatively-correlated
properties were combined in this analysis. The results confirmed
the prediction that the SNRon the exposure dimension remained
unchanged (Wilcoxon test: z � 
1.1, p � 0.268), whereas it
significantly decreased along the orthogonal dimension (Wil-
coxon test: z � 
2.0, p � 0.042). Figure 3B illustrates this result
with a histogram of the normalized SNR changes (divided by the
sumof the pre- and post-SNRs). On the exposure dimension (left
histogram), SNR changes were symmetrically distributed around
zero, whereas along the orthogonal dimension they were signifi-
cantly biased to the negative side (right histogram). This pattern
is also demonstrated in Figure 3C, boxplots. Furthermore, as

Figure2. A, Schematic illustrationof stimuli used in the tuning analysis in Experiment 1. Stimuliwithin thegreendiagonal rectangle indicated exposure stimuli (5 stimuli directly on thediagonal,
and 8 nearby). Spike rates of these 13 composite stimuli were averaged and compared between tests before and after exposure. Stimuli within the two blue triangleswere non-exposure stimuli (far
from the exposure stimuli), fromwhich the spike rates were averaged for comparison between tests before and after exposure. B, Histograms of spike rate changes after exposure in Experiment 1
(left, exposure stimuli; right, non-exposure stimuli). The reddashed line indicates zero change. Thedistributionof spike rate changes for exposure stimuliwas significantlybiased to thenegative side,
whereas the distribution for non-exposure stimuli was biased to the positive side. The green arrow indicates the mean (also indicated on the top of the histogram) for each distribution. C, Boxplot
of spike rate changes after exposure in Experiment 1 (left, exposure and nearby stimuli; right, non-exposed stimuli). The red line in the middle and the notch indicated the median and its 95%
confidence interval. The bottom and top edges of the box indicate the 25th and 75th percentiles. Thewhiskers indicate the range. Red crosses indicate possible outliers. The star on the top indicates
that the distribution was significantly different from zero. The red arrow on the side indicates the direction of significant changes. Exp ( p� 0.001); non-Exp ( p� 0.016). Spike rates significantly
decreased for the exposure stimuli and significantly increased for non-exposure stimuli.D, Surface plot of the 2-dimensional tuningmap in Experiment 1: before exposure (left), and after exposure
(middle). The unit of AM and SPwas the step used to create the stimulusmatrix. The differences between the twomapswere taken (post
 pre) and showed on the right. The dark blue area in the
plot on the right indicates reduced responses along the diagonal along the exposed dimension. The changes in the tuning map were consistent with quantification shown in B.
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Figure3. A, Schematic illustrationof thecalculationofSNRalongtheexposed(left)andtheorthogonaldimension(right). The5�5matrixofdots represents the33stimuli tested.Each lineconnectedwith
dots indicates stimuli to be treated as one single group (one level on the exposure or orthogonal dimension). The variance between stimuli was compared between lines (groups). The red arrow indicates the
direction of the exposure dimension; blue arrow indicates the direction of the orthogonal dimension. B, Histograms of SNR changes in Experiment 1. SNRs for the exposure dimension were symmetrically
distributed around zero (left, reddashed line indicates 0). SNRs for the orthogonal dimensionwere significantly reduced (right). Thegreenarrow indicates themean (also indicatedon the topof histogram) for
each distribution. The SNR change (post
 pre) was taken for each neuron and the difference was normalized by dividing by the mean of the two values. Normalization was only applied for display, while
statistical analysis was done without normalization. C, Boxplot of SNR changes in Experiment 1. SNRs for the orthogonal dimension were significantly reduced (right). The star on the top indicated that the
distributionwas significantly different fromzero (*p�0.042). The red line in themiddle and thenotch indicated themedianand its 95%confidence interval. Thebottomand topedgesof thebox indicate the
25th and 75th percentiles. The whiskers indicate the range. The red arrow on the side indicates the direction of significant changes. D, Histogram of changes in variance (in spike rates) between stimuli in
Experiment1.Only thehistogramonthe right (fororthogonal stimuli)wassignificantlybiasedto thenegativeside, resembling theplot forSNRchanges (above).E, Boxplotof changes invariance (in spike rates)
betweenstimuli inExperiment1.Variancebetweenstimuli fororthogonaldimensionwassignificantly reduced(right). Theasteriskonthetop indicatedthat thedistributionwassignificantlydifferent fromzero
(*p�0.035).F, Schematic illustrationof the subgroup selection, indicatedby thebluebox, for the tests of SNRchanges in Experiment1. The5�5matrix of dots represents the33 stimuli tested. The stimulus
groupontheleftwaslocatedatthecornerofthetestspace,whereasthestimulusgroupontherightwaslocatedonthediagonal lineofthetestingspace.G,BoxplotshowedtheeffectofexposureonSNRchanges
ontheorthogonaldimension ineachsubgroup illustratedonthetop.*p�0.001forall. (E). Theeffectwasmost strongwhentest stimuliwere locatedonthediagonal line (Group4, right),becausestimuliwere
distributedwith the longestdistancealong theorthogonaldimension.H, Schematic illustrationof the subgroupselectionalong theorthogonaldimension, indicatedby theblackboxes for stimuli at theendsof
the (orthogonal) diagonal and the green box for stimuli close to the center of the (orthogonal) diagonal. I, Boxplot illustrates that only SNRs from stimuli close to the center of the diagonal exhibit significant
differences.*p� 0.005. J, Histograms of normalized SNR changes for AM (left) and SP (right) in Experiment 1. Therewasno significant change for eitherdimension. SNRchangeswereall symmetricallydistributed
aroundzeroinbothplots.Themeanforeachdistributionisindicatedbothonthetopoftheplotandbythegreenarrow.K,BoxplotofnormalizedSNRchangesforAM(left)andSP(right)inExperiment1.Therewasnosignificant
changeforeitherdimension.L,BoxplotshowsthedynamicsofSNRchangesalongtheorthogonaldimension.ThePre-exposuretestandthePost-exposureweresplitintofourtestblocks.ThecomparisonbetweenBlock1and
Block2(left)showedconsistencyofSNRsobtainedwithinthePre-exposuretest.ThecomparisonbetweenBlock2andBlock3(Middle)showedsignificantSNRsdifferencesbetweenthetwotestsessionsduetothefirstexposure
session.Blocks3and4wereseparatedbythesecondexposuresession(shorterexposure).Comparisonbetweenthetwoblocks(right)showedanonsignificanttrendofreductionoftheeffectofexposure.*p�0.035.
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predicted, there were no significant SNR changes for the interac-
tion between the exposure and orthogonal dimensions (Wil-
coxon test: z � 
0.1, p � 0.909). In summary, the pattern of
neuronal adaptation is consistent with the findings of the psy-
choacoustic studies (Stilp et al., 2010).

Although these results clearly demonstrated SNR changes af-
ter stimulus exposure, they nevertheless raised a question about
the origin of these SNR changes. Because SNR is a ratio of two
variances (within/between stimuli), it was not immediately clear
what exactly caused the SNR changes, i.e., which of the two vari-
ances dominated the overall change in SNR. By conducting a
further analysis in which we examined the two variances sepa-
rately, we found that the SNR changes in the orthogonal dimen-
sion were due to reduced variance between responses to stimuli
along the diagonal (Fig. 3D,E; Wilcoxon test: z � 
2.1, p �
0.035), whereas variancewithin each stimulus remained the same
after exposure (Wilcoxon test: z � 
1.2, p � 0.243).

Therefore, the SNR reduction was primarily due to a reduced
signal representation on the orthogonal axis (i.e., diminished re-
sponse differences between stimuli), rather than because of
changes in noise level (i.e., the variance of responses within each
stimulus). The size of this SNR decrease depended upon the
number of stimuli distributed along the orthogonal dimension.
Because stimuli located in the middle of the diagonal could be
influenced bymore stimuli along the orthogonal dimension than
those located near the corners (Fig. 3F), we conjectured that
stronger effects would be seen in the middle of the diagonal. To
test this conjecture, we calculated and compared SNRs before and
after exposure for four separate groups of stimuli, that were de-
fined by their distance to the diagonal. We also averaged the SNR
changes from stimuli that were symmetrically placed on either
side of the diagonal. As predicted (Fig. 3G) the effects of exposure
along the orthogonal dimension peaked at the diagonal (Wil-
coxon test: z � 
4.6, p � 0.001), becoming weaker toward the
corners (Wilcoxon test: z � 
1.8, p � 0.078).

In human psychoacoustic studies (Stilp and Kluender, 2016),
the effect of exposure on discrimination also changed along the
orthogonal dimension compared with discrimination along the
exposed dimension. Therefore, we further calculated SNRs for
two separate groups of stimuli along the orthogonal dimension
that located at different distances from the center of the diagonal
(Fig. 3H). SNR from stimuli that were symmetrically placed on
either side of the centerwere averaged together. SNR from stimuli
in the two groups were compared with the averaged SNRs from
the exposure dimension, as in the comparison by Stilp and

Kluender (2016). Similar to earlier psychoacoustic results, the
effects of exposure along the orthogonal dimension peaked for
stimuli close to the center (Fig. 3I, green box; Wilcoxon test: z �

2.8, p � 0.005), becoming weaker toward the two ends of the
diagonal (Fig. 3I, black boxes; Wilcoxon test: z � 
0.15, p �
0.878), although we did not find a reversal at the end of the
orthogonal diagonal as by Stilp and Kluender (2016).

In further analysis, we also measured the SNR changes sepa-
rately for stimuli along the pure AM and SP single dimensions.
The results revealed no significant changes along either axis (Fig.
3 J,K;Wilcoxon test: z� 
0.11, p� 0.914 for AM, andWilcoxon
test: z � 
1.19, p � 0.235 for SP), with no significant changes in
interactions between them (Wilcoxon test: z� 
0.2, p� 0.847).
This was also consistent with earlier psychophysical results (Stilp
and Kluender, 2012, 2016).

Finally, we examined the dynamics of SNR changes by split-
ting the two test sessions into four blocks. SNRs were calculated
in the first 10 trials and last 10 trials in the Pre-exposure test (Test
1) and Post-exposure test (Test 2). We did not find significant
changes in SNR along the orthogonal dimension within Test 1
(Blocks 1 and 2: Fig. 3L, left boxplot;Wilcoxon test: z� 
0.8, p�
0.427). Consistent, with results in Figure 3C, SNRs along the
orthogonal dimension decreased significantly between the two
tests (Block 2 vs Block 3; Fig. 3L, middle boxplot; Wilcoxon test:
z � 
2.1, p � 0.035). Finally, we compared SNRs along the
orthogonal dimension within Test 2 (Block 3 vs Block 4), which
was separated by the second exposure that was only half the
length of the first exposure. We found a nonsignificant trend of a
reduced SNR in the last test block (Fig. 3L, right, boxplot; Wil-
coxon test: z � 1.7, p � 0.078).

Performance of the decoder decreased for stimuli along the
orthogonal dimension
We next examined whether there was any change in discrim-
inability by the decoder trained with spike data to discriminate
stimuli along the exposed dimension or those along the orthog-
onal dimension (see Materials andMethods). This decoder anal-
ysis allowed us to compare the effects of exposure in the neural
data with the effects in previous experiments in human subjects
(Stilp et al., 2010). We expected that the performance of the
decoder would decrease for stimuli along the orthogonal dimen-
sion after exposure due to reduced SNR in spike rate coding. The
decoder was trained to discriminate the adjacent stimuli along
each dimension (Fig. 4A), mimicking the task of human subjects
(Stilp et al., 2010).

Figure 4. A, Schematic illustration of the stimuli discriminated by a decoder trainedwith spike data in Experiment 1. Red dots indicate exposure stimuli; blue dots indicate orthogonal stimuli.B,
Histograms of accuracy changes by the decoder trainedwith spike data in Experiment 1. The decoderwas trained to discriminate stimuli along the exposed dimension or those along the orthogonal
dimension. The red dashed line indicates zero. The green arrow indicates the mean. The accuracy of discrimination for stimuli along the orthogonal dimension reduced in 65% of neurons (right),
whereas the distribution of accuracy changes for the exposed dimensionwas almost symmetrically centered at zero (left). C, The boxplot of accuracy changes in Experiment 1. Accuracy significantly
reduced for orthogonal stimuli, but not for exposed stimuli. The star on the top indicates that the distributionwas significantly different from zero. The red line in themiddle and the notch indicated
the median and its 95% confidence interval. The bottom and top edges of the box indicate the 25th and 75th percentiles. The whiskers indicate the range. The red arrow on the side indicates the
direction of significant changes. *p� 0.008.
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We found that, consistent with the measurements of SNR
described, the discriminability along the orthogonal dimension
was significantly reduced. As shown in the histogramof Figure 4B
(right), 65% of neurons showed decreased accuracy along the
orthogonal axis (Wilcoxon test: z � 
2.65, p � 0.008). By con-
trast, as shown in the histogram of Figure 4B (left), only 46% of
neurons exhibited decreased accuracy along the exposed dimen-
sion (Wilcoxon test: z � 
0.70, p � 0.487). Thus, these results
from the decoder analysis are also consistent with the results of
the psychoacoustic experiments with human subjects (Stilp et al.,
2010).

Decorrelated tuning functions between neurons
Continuing our investigation of the neural effects of stimulus
exposure in Experiment 1, we also examined the effects of stim-
ulus exposure at the A1 neuronal population level. We reasoned
that if two neurons were tuned to two different sound attributes
(e.g., AM or SP), then if these two sound attributes became cor-
related, one neuron’s responses would become predictable from
the responses of the other, making one neuron’s responses re-
dundant. Efficient coding theory predicts that as stimulus param-
eters become correlated, tuning functions of different neurons
should become less alike (or decorrelated) so as to reduce re-
sponse correlations (and predictability) and increase coding effi-
ciency (Barlow and Földiák, 1989). To test this conjecture, we
calculated tuning functions along the AM and SP dimensions
separately for each unit.We then paired simultaneously recorded
neurons, and calculated the correlation coefficient between the
AM tuning function in one neuron and the SP tuning in the other
(Fig. 5A), both for the Pre-exposure and Post-exposure tests, and
finally computed the difference in the correlations before and
after exposure.

Because correlations estimated from different neuron pairs in
each recording were not independent, we averaged changes in
correlation coefficients from all simultaneously recorded neuron
pairs for statistical analysis. We hypothesized that exposure to
positively correlated attributes would lead to a decreased corre-
lation coefficient, whereas exposure to negatively correlated at-
tributes would lead to an increased correlation coefficient,
because of decorrelation of initially negatively correlated tuning
functions. The results of this analysis are plotted in a cumulative
frequency distribution (Fig. 5B). After exposure to positively cor-
related attributes, the majority of recordings (8/11) exhibited re-
duced correlations between AM and SP (Fig. 5B, blue trace),
whereas after exposure to negatively correlated attributes, 7/10
recordings exhibited positive correlation changes (Fig. 5B, red
trace), indicating a significant contrast between the two groups
(Mann–Whitney U test, p � 0.018). Figure 5C summarizes the
results in a boxplot. Note that the opposite direction of changes
after exposure to negatively-correlated attributes and positively-
correlated attributes actually reflects the same basic effect: tuning
functions along the AM and SP dimensions in different neurons
became decorrelated, or more dissimilar, after exposure. As a
control, we also computed the correlations between the AM-
tuning function and SP-tuning functionswithin the same neuron
for positively- and negatively-correlated exposures (Fig. 5D). The
results of this control analysis showed no significant difference in
the correlations between the two types of exposure (Fig. 5E,F;
Mann–Whitney U test, p � 0.674).

The neural response changes we described following stimulus
exposure in Experiment 1 strongly support Barlow’s hypothesis
that neural tuning to correlated properties becomes decorrelated
in a population of A1 neurons after sufficient exposure to the

covariance, even in the passively listening animal. A closely re-
lated phenomenon is that the tuning functions of the recorded
neuron shifted away from the exposed stimuli so that, at
the population level, responses to exposed stimuli decreased,
whereas responses to stimuli far away from exposed stimuli in-
creased (Fig. 2). To understand whether the two phenomena are
related, we simulated the effect of tuning shifts on correlation
between neurons in a computational model of a population of
neurons (N � 200) that are arbitrarily and uniformly tuned to a
2-dimensional of stimulus matrix (100 AM steps� 100 SP steps)
similar to the test-stimuli matrix in our experiments. Details of a
specific implementation are shown in Figure 5G. By assuming
that the effect of exposure is to move each neuron’s tuning func-
tion away from the parameters of the exposure stimulus (Fig. 5G,
red dots) along the orthogonal direction (green and blue arrows),
one can recreate the effects of both decorrelations (Fig. 5H) and
tuning function shifts (Fig. 5I). Therefore, it is very likely that the
tuning shift along the orthogonal dimension contributes to the
decorrelation between neurons. As a conclusion, both our exper-
imental results and the results of our computational model sup-
port the hypothesis that tuning to correlated properties becomes
decorrelated between neurons after exposure to the covariant
features.

Experiment 2: the effects of exposure to stimuli on a single
feature dimension
In this control experiment, we sought to determine whether ex-
posure to a covariance of two properties was necessary to cause
the adaptation patterns described in Experiment 1, and whether
the effects observed in Experiment 1might have also arisen in the
absence of any attribute covariance, but instead simply as the
result of adaptation to variance along a single acoustic dimen-
sion. To answer this question, we recorded from single-units in
A1 (n� 56) in two ferrets as they were exposed to stimuli varying
along one dimension only, either AM or SP (Fig. 1E). We com-
pared the neural responses from Experiment 2 with those from
Experiment 1, focusing on a careful comparison of the four mea-
surements (adaptation, SNR, decoder performance, and correla-
tion in tuning functions between neurons) obtained in the two
experiments. In the absence of stimulus covariance in the expo-
sure stimuli presented in Experiment 2, the EC hypothesis sug-
gested that the SNR changes along the exposure versus the
orthogonal dimension, observed in Experiment 1, would not
occur.

At first, we found that the adaptation and tuning effects re-
sembled those of Experiment 1 in that responses to the exposure
stimuli (Fig. 6A, red dots) were indeed significantly reduced
(Wilcoxon test: z � 
2.3, p � 0.022) compared with the in-
creased response to the non-exposed stimuli (Fig. 6A, blue dots;
Wilcoxon test: z � 
2.5, p � 0.015), as illustrated by the histo-
grams and boxplots in Figure 6, B and C. Thus, we conclude that
exposure to sounds varying along one dimension did cause an
adaptation effect similar to that observed in Experiment 1 (Fig.
2B,C). However, unlike Experiment 1, comparing the SNR
changes along the exposure versus the orthogonal dimensions
(Fig. 6D) revealed no significant changes in coding quality, as
summarized by the histograms of Figure 6, E and F (Wilcoxon
test: z � 
0.1, p � 0.940 for exposure responses; Wilcoxon test:
z� 
0.25, p� 0.800 for the orthogonal dimension). There were
also no significant changes in the variance between stimuli in
either dimension (Fig. 6G; Wilcoxon test: z � 0.27, p � 0.786 for
the exposed dimension, and Wilcoxon test: z � 0.96, p � 0.966
for the orthogonal dimension). Therefore, it is evident that the
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Figure5. A, Schematic illustration of the calculation of correlation between different neurons in Experiment 1. AM tuning and SP tuningwere calculated from the responses to the 2-dimensional
stimuli space. On the top, each line connectedwith dots indicated one level of SP to be averaged (across different AM levels) to create the tuning curve for SP (red bell shape curve). In this curve, the
vertical axis indicates different SP levels. The horizontal axis indicates the amplitude of averaged responses. On the bottom, each line connected with dots indicated one level of AM to be averaged
(across different SP levels) to create the tuning curve for AM (black bell shape curve). In this curve, the horizontal axis indicates different AM levels. The vertical axis indicates the amplitude of
averaged responses. The two tuning curveswere calculated from twodifferent simultaneously recordedneurons: Neuron 1 (red) andNeuron 2 (blue). Then, correlation between the red and the blue
tuning curve was computed. Finally, the difference in correlation coefficient obtained before and after exposure was derived. B, Cumulative frequency distribution (left) and the boxplot (right) of
tuning correlation changes cross neurons in Experiment 1. The y-axis of the cumulative frequency plot shows the percentage of the total sample lower than (or equal to) an associate value on the
x-axis. The vertical black dashed line indicates zero. The blue trace shows correlation changes after exposure to positively correlated attributes. The horizontal black dashed line on the left of the blue
trace indicates that correlation changes were negative in 72% (8 of 11) recordings after exposure to positively correlated attributes. The red trace shows correlation changes after exposure to
negatively correlated attributes. The horizontal black dashed line on the right indicates that only 30% (3 of 10) of red trace was on the negative side. C, Boxplot of tuning correlation changes across
neurons in Experiment 1. The bracket and the asterisk indicate that the two distributions were significantly different from each other. The red line in themiddle and the notch indicated themedian
and its 95% confidence interval. The bottom and top edges of the box indicate the 25th and 75th percentiles. The whiskers indicate the range. The red arrow on the side indicates the direction of
significant changes. *p� 0.018.D, Schematic illustration of the tuning correlation calculation for the same neuron in Experiment 1. On the top, each line connectedwith dots indicated one level of
SP to be averaged (across different AM levels) to create the tuning curve for SP (red bell shape curve). In this curve, the vertical axis indicates different SP levels. The horizontal axis indicates the
amplitudeof averaged responses.On thebottom,each line connectedwithdots indicatedone level ofAMtobeaveraged (acrossdifferent SP levels) to create the tuning curve forAM(Blackbell shape curve). In
this curve, the horizontal axis indicates different AM levels. The vertical axis indicates the amplitude of averaged responses. The two tuning curves were calculated from the same neuron. Then, correlation
between the redand theblue tuning curvewas computed.At last, difference in correlation coefficient obtainedbefore andafter exposurewas taken.E, Cumulative frequencydistribution (left) and theboxplot
(right) of tuning correlation changes for the same neuron in Experiment 1: therewas no significant change in tuning correlation either for positively correlated exposure (blue trace) or for negative correlated
exposure(redtrace).F,Boxplotof tuningcorrelationchanges for thesameneurons inExperiment1.G, Illustrationofhypothesis thatexposuretocorrelatedattributespushesneuron’s tuningfunctionawayfrom
the exposure stimuli along the orthogonal direction. The blue and green dots illustrate the best tuning position of two hypothetical neurons in the stimulusmatrix. The arrows indicate the direction of tuning
changes.H, Resultsofmodeling. Cumulative frequencydistributionof tuningcorrelationchanges in200simulatedneurons. Consistentwith results, correlation significantlydecreased (Figure legendcontinues.)
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SNR effects observed in Experiment 1 were dependent on expo-
sure to stimuli with correlated attributes.

To verify that the SNR results in Experiment 2 were consistent
with discriminability of stimuli, we also measured the effects of
single-dimension exposures on the performance of the decoder
trained with neural data. As in Experiment 1, a decoder was

trained to discriminate stimuli along the exposed dimension or
stimuli along the orthogonal dimension. In this condition, there
was no significant change in decoder performance, either on the
exposure dimension (Wilcoxon test: z� 
0.15, p� 0.881) or on
the orthogonal dimension (Wilcoxon test: z � 
0.3, p � 0.764),
as shown in Figure 6, H and I. Comparing the results of Experi-
ments 1 and 2, we conclude that exposure to correlated stimuli is
necessary to elicit changes in discriminability. Finally, we also
analyzed changes in the correlation between the tuning curves in
the neural responses in Experiment 2 (Fig. 6J). Data from AM
andSP exposureswere separately analyzed and compared, andno
significantly different correlational changes were observed be-
tween the two types of exposure (Fig. 6K; Mann–WhitneyU test,
p � 0.268).

4

(Figure legend continued.) after exposure to positively correlated attributes (red trace) and
significantly increased after exposure to negatively correlated attributes (blue trace), resem-
bling results shown in B. I, Results of modeling. Surface plot of the 2-dimensional tuning map
obtained from 200 simulated neurons: before exposure (left) and after exposure (middle). The
differences between the two maps were taken (post
 pre) and are shown on the right. The
overall pattern of change was consistent with our results in Figure 2D.

Figure6. A, Exemplarsof stimuli used in tuninganalysis inExperiment2. Thegreen rectangle indicatesexposure stimuli, fromwhich the spike rateswereaveragedandcomparedbetween testsbeforeand
after exposure. Two blue rectangles indicate non-exposure stimuli, fromwhich the spike rates were averaged for comparison. B, Histograms of spike rate changes after exposure in Experiment 2. Spike rate
significantly decreased for the exposure stimuli (left,p�0.022) and significantly increased for non-exposure stimuli (right,p�0.015),which resembled results in Experiment 1. The reddashed line indicates
zero. The green arrow indicates the mean. C, Boxplot of spike rate changes after exposure in Experiment 2. Spike rate significantly decreased for the exposure stimuli (left) and significantly increased for
non-exposurestimuli (right).Thestaronthetopindicatesthatthedistributionwassignificantlydifferent fromzero.Theredline inthemiddleandthenotch indicatedthemedianandits95%confidence interval.
Thebottomandtopedgesof thebox indicate the25thand75thpercentiles. Thewhiskers indicate the range.Redcrosses indicatepossibleoutliers. The redarrowonthe side indicates thedirectionof significant
changes.D,Schematic illustrationofthestimuli testedinExperiment2.The5�5matrixofdotsrepresentsthe33stimuli tested.Reddots indicatedexposurestimuli thatwereonlychangedinasingledimension
(AMor SP, balanced across recordings). Red arrows indicated the exposeddimension andblue arrows indicated the orthogonal dimension.E, Histograms of normalized SNR changes in Experiment 2. Both the
distributionfor stimulialongtheexposuredimension(left)andthedistributionfor stimulialongtheorthogonaldimension(right)weresymmetricallyaroundzero,withoutanysignificantbias.Themeansof the
distributionsareindicatedbothonthetopoftheplotandbythegreenarrow.F,TheboxplotofnormalizedSNRchangesinExperiment2.ThemedianofSNRsforbothdimensionsoverlappedwithzero.Thus,there
wasnochange inSNRs ineitherdimension inExperiment2.G,Boxplotof changes invariance(inspike rates)betweenstimuli inExperiment2.H,Histogramofaccuracychangesof thedecoder trainedwithspike
data in Experiment 2. The decoderwas trained to discriminate stimuli along the exposed dimension or those along the orthogonal dimension. Contrary to the results of Experiment 1, therewas no significant
changeinaccuracyforeitherdimensioninExperiment2.I,TheboxplotofaccuracychangesinExperiment2.J,Schematic illustrationofthecalculationofcorrelationoftuningfromdifferentneuronsinExperiment
2.K, The boxplot of tuning correlation changes in Experiment 2: therewas no significant change in tuning correlation for either of the two types of exposure.
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In summary, although exposure to sounds varying along one
dimension in Experiment 2 did lead to adaptation and tuning
shifts as observed in Experiment 1, it did not lead to any signifi-
cant changes in SNR, decoder discriminability performance, or
neuronal correlation, as was elicited by exposure to stimuli with
two covarying acoustic features.

Experiment 3: coding efficiency with exposure to stimuli of
correlated features embedded in a higher-dimensional space
Here we extended Experiment 1 to explore whether the effects
induced by exposure to stimuli of two correlated features would
persist if the stimuli had an additional, but uncorrelated, third
acoustic feature (e.g., the fundamental frequency of the tone-

complex, f0) that varied randomly. Our
design of Experiment 3 parallels human
psychophysical studies by Stilp and
Kluender (2011, 2012) who also studied
the effects of an uncorrelated third acous-
tic attribute. Our neuronal results in Ex-
periment 3 are consistent with their
psychophysical results, thus demonstrat-
ing efficient coding of redundant acoustic
dimensions even in the presence of unre-
lated variability in a third feature
dimension.

In Experiment 3, we recorded neuro-
nal responses from A1 single units (n �
56) in two ferrets that were exposed to
stimuli located at the two diagonals of the
testing space (Fig. 7A), axes along which
we previously found the strongest adap-
tive effects. The results obtained strongly
resembled those of Experiment 1: (1)
SNRs decreased for the orthogonal di-
mension (Fig. 7B,C; Wilcoxon test: z �

2.3, p � 0.02), while remaining intact
along the exposure dimension (Wilcoxon
test: z � 
0.4, p � 0.677). (2) Consistent
with Experiment 1, the performance of
the decoder decreased along the orthogo-
nal dimension after stimulus exposure
(Fig. 7D,E;Wilcoxon test: z� 
2.40, p�
0.016), while remaining unchanged for
the exposure dimension (Wilcoxon test:
z � 
0.49, p � 0.625). Therefore both
SNRs and the performance of the decoder
were consistently reduced along the or-
thogonal dimension as in Experiment 1.

Finally, in Experiment 3, correlation of
tuning functions to AM and SP between
neurons decreased in 5/6 recordings fol-
lowing exposure to positive covariance
and increased (in 5/6 recordings) after ex-
posure to negative covariance (Fig. 7F,G;
Mann–Whitney U test, p � 0.032). Com-
bining data from Experiments 1 and 3,
correlations decreased in 13/17 record-
ings after exposure to positive covariance
(binomial test: p � 0.038), whereas 12/16
recordings showed increased correla-
tion after exposure to negative covari-
ance (binomial test: p � 0.025). We may
conclude, in agreement with the results

of earlier psychophysical studies (Stilp and Kluender, 2011,
2012) that exposure to sounds with an additional randomly
varying property like f0 did not affect the efficient coding of the
correlated features, consistent with the results of Experiment
1. Thus, Experiment 3 demonstrates that the auditory system
can capture covariant features even in the presence of a third,
randomly variant feature dimension.

Discussion
Experiments described here sought to explore the neural corre-
lates of efficient coding, proposed as a key principle of coding in
sensory systems. In vision, this principle is exemplified by the
McCollough effect in which the visual system, following passive

Figure7. A, Testing stimuli space in Experiment 3. The redparallelogram indicates exposure sounds,whichhadperfect positive
or negative correlationbetweenAMandSP, and varied f0s. Theblack parallelogramwithdashed lines indicates the testing sounds,
in which only one pitch was randomly chosen for testing in each recording. The structure of the testing space was the same as in
Experiment 1, indicated on the right by the blue arrow. B, Histograms of SNR changes in Experiment 3. SNRs for exposure
dimensionwere symmetrically distributedaroundzero (left, reddashed line indicates zero). ConsistentwithExperiment1, SNRs for
the orthogonal dimension were significantly reduced (right), resembling what was found in Experiment 1. The green arrow
indicates themean. C, Boxplot of normalized SNR changes in Experiment 3. The star on the top indicates that the distribution was
significantly different from zero (*p � 0.020). The red line in the middle and the notch indicated the median and its 95%
confidence interval. The bottom and top edges of the box indicate the 25th and 75th percentiles. Thewhiskers indicate the range.
Red crosses indicate possible outliers. The red arrow on the side indicates the direction of significant changes. D, Histogram of
accuracy changes for the decoder trained with spike data in Experiment 3. The decoder was trained to discriminate stimuli along
the exposed dimension or those along the orthogonal dimension. Consistent with Experiment 1, accuracy significantly decreased
for orthogonal stimuli (right), but not for exposed stimuli (left). E, Boxplot of accuracy changes in Experiment 3. *p� 0.016. F,
Cumulative frequency distribution of tuning correlation changes across neurons in Experiment 3: consistentwith Experiment 1, the
blue trace showed that correlation decreased (5 of 6) after exposure to positively correlated attributes. The red trace showed that
correlation increased (5 of 6) after exposure to negatively correlated attributes. The contrast between the two distributions was
statistically significant. G, Boxplot of changes in tuning correlation changes across neurons in Experiment 3. *p� 0.032.
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exposure to correlated properties of visual
stimuli (color and orientation), combines
them as a single property (McCollough,
1965). The physical acoustics of natural
sounds often reveal correlations between
acoustic attributes (Lutfi et al., 2011). In
auditory perception, the adaptive coding
principle has also been supported by the
results of a set of psychoacoustic experi-
ments that were the inspiration for this
study (Stilp et al., 2010; Stilp and Kluen-
der, 2011, 2012, 2016).

The adaptive effects we observed in the
neural recordings in the primary auditory
cortex of the ferret were consistent with,
and mapped readily to the results of the
psychoacoustic experiments in human
subjects showing that discrimination
along the orthogonal dimension decreased due to reduced coding
redundancy, whereas discrimination along the exposed dimen-
sion remained intact (Stilp et al., 2010). Furthermore, the
changes allowed us to explore the underlying mechanisms that
gave rise to this coding efficiency and test whether this neural
adaptation was resilient to the addition of other uncorrelated
feature dimensions. Our findings indicate that two aspects of the
adapted responses contribute to the significant increase in coding
efficiency after exposure to stimuli with theAMand SP correlated
properties: (1) in single neurons, repeated exposure to stimuli of
correlated attributes reduced SNR of responses to stimuli along
the orthogonal dimension. This change was consistent with the
decreased discrimination performance made by the decoder
trained on neural data along the orthogonal dimension. (2) Tun-
ing to the attributes of theAMand SP stimuli in different neurons
became less correlated following exposure to stimuli with cova-
riance, enhancing the efficiency of the population coding of stim-
ulus identity. Consequently, as observed in Experiment 2,
exposure effects did not materialize when stimulus parameters
varied along only one dimension (AM or SP), although, adapta-
tion (decrease) of spike rates still occurred to the exposure stimuli
as before. Finally, we found in Experiment 3 that neurons were
capable of extracting and enhancing the coding efficiency of two
correlated properties even when they were embedded in a higher
dimensional space that included independent variation in a third
dimension.

Reduced SNR along the orthogonal dimension reflects an
adaptive coding mechanism in single neurons in response to dy-
namically changed feature statistics. This mechanism can be
modeled by changes in the receptive field (RF) of single neurons
which are schematized as a 2-dimensional Gaussian probability
density functions (PDF) as shown in Figure 8. The variance of the
PDFs is estimated by the mean of the variances between stimuli
along the exposure and orthogonal dimensions, which were cal-
culated from the A1 neurons studied in Experiment 1. Because
there were no significant changes in overall response amplitude,
changes in PDF widths before and after exposure illustrate how
such change may contribute to adaptive coding of a new com-
bined feature that emerged during passive exposure. As shown in
Figure 8, the estimated RFs after exposure became tilted along the
exposed dimension (Fig. 8, middle). To examine this change fur-
ther, we took the difference between the two PDFs (Fig. 8, right).
The RF change reflects increased responsiveness that takes the
shape of an ellipse along the exposure dimension, with reduced
responsiveness along the orthogonal dimension. Such a change

would optimize a neuron’s capacity to capture the emergent fea-
ture along the exposure dimension at the cost of coding capacity
along the orthogonal dimension. This is analogous to the princi-
ple component analysis, inwhich the coordinate of variancemea-
surement is altered to capture the most important feature. This
hypothesis is consistent with previous behavioral results and
models based on the psychophysical data (Stilp et al., 2010; Stilp
and Kluender, 2012, 2016). As schematized in Figure 5G, when
the RF shapes change in single units, the tuning center of each
neuron in the tested population also moves away from the ex-
posed diagonal in the testing feature space, which in turn leads to
an overall decrease in response amplitude to the exposed stimuli
(Fig. 2D).

Apparently, enhancing a neuron’s capacity to efficiently cap-
ture an emergent combined features along the covariant dimen-
sion comes at the cost of reducing coding capacity along the
orthogonal dimension. Therefore, if the brain develops sparse
coding cortical ensembles that are highly sensitive to covaried
properties, this would come at the expense of coarser resolution
for independent sensory features. An alternative compromise
might be that there is a highly adaptive network of cortical neu-
rons that reshape their responses to encode covaried stimulus
attributes, and also different cell populations in other cortical
networks that maintain sharp tuning for unidimensional sensory
features. Consequently, separate networks would provide both a
lower-resolution code for covaried sensory attributes and a high-
resolution encoding for independent features.

Our results provide the first evidence at the neuronal level that
sensory neurons in the primary auditory cortex may adapt to
combine different sensory cues. However, it is also evident that
not all neurons exhibited the change to capture covariance.
Therefore, although we have emphasized efficient coding and
covariant coding, it is possible and consistent with our observa-
tions that a subset of neuronsmay retain sensitivity to single cues,
while another subset of neurons adapts to capture covariance. In
this way, with multiple forms of adaptation, sensory systems
could flexibly adopt different perceptual strategies in different
situations. Further studies with high-density simultaneous re-
cordings may reveal the presence of multiple, different encoding
neuronal networks.

Although the decorrelation between neurons that we ob-
served is consistent with the EC hypothesis (Barlow and Földiák,
1989), a recent study that develops a Bayesian theory of EC that
goes beyond the traditional reliance of EC on the information
theoretic approach, has questioned whether decorrelation con-

Figure 8. A, The RF of neurons before exposure, modeled with 2-dimensional Gaussian probability density function. Variance
between stimuli on the exposed dimension and the orthogonal dimension in Experiment 1 were used in this model. B, The RF of
neurons after exposure, modeled with variance between stimuli from Experiment 1. C, Changes of RFs, by taking the difference
between the probability density function before and after exposure. The coordinate of the exposed and orthogonal dimension is
indicated by red arrows.
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tributes to neural coding in all contexts (Park and Pillow, 2017).
For example, by re-examining classic data from blowfly retinal
neurons (Laughlin, 1981), it is shown that decorrelation may
only be beneficial at high SNRs (Park and Pillow, 2017). Never-
theless, as we argued in the introduction, the changes we have
observed in this study of the primary auditory cortex following
short-term exposure to correlated featuresmay be highly relevant
to the sensory processing of natural stimuli because the covari-
ance of multiple sensory attributes is key to enhancing the reli-
ability of transmitting and perceiving the information in complex
stimuli.

Previous studies have shown that sensory systems can com-
bine different sensory cues to improve perception. For example,
in vision, shape information from texture, and depth informa-
tion from disparity cues, can be combined to form a fused per-
cept, leading to improved discrimination performance compared
with performance based on single cues (Hillis et al., 2002). Face
recognition and detection algorithms use combinations of face
parts to accomplish classification (Ullman et al., 2002) and a
recent, compelling study of the neural basis for face recognition
in themacaquemonkey showed that the best model for decoding
assumes that face patch neurons are linearly combining different
features (Chang and Tsao, 2017). In haptic perception, force and
position cues can be integrated for shape perception (Robles-
De-La-Torre and Hayward, 2001; Drewing and Ernst, 2006).
Furthermore, sensory cue integration may even occur across dif-
ferent sensory modalities (McGurk andMacDonald, 1976; Ernst
et al., 2000; Shams et al., 2000).

Recent psychoacoustic studies also show that capturing cor-
relation betweendifferent acoustic attributesmay improve sound
perception (Stilp et al., 2010; Stilp and Kluender, 2011, 2012,
2016). However, in auditory signal processing, the benefits of
relying on correlated cues over single cues are even more prom-
inent in vocal communication in animals and in speech (Kluen-
der et al., 2019). A recent study has emphasized the value of sound
categorization of marmoset vocalizations using combinations of
acoustic features (Liu et al., 2019).Human speech is an evenmore
complex signal characterized by many correlated attributes aris-
ing from the physical acoustic constraints of the vocal apparatus.
Single acoustic attributes can be modified by the dynamics of
articulating sequences of sounds (leading to co-articulation cor-
related context effects). In contrast, correlation between different
attributes, such as power spectrum and manner of articulation
(Llanos et al., 2017) and other covariant relationships (Sussman
et al., 1998)may providemore reliable and robust information in
the perception and acquisition of human speech. In such cases,
tuning to the covariance, even at the cost of possible loss of reso-
lution for any single attribute, would still be beneficial for pro-
cessing speech.

We should note that the adaptive effects we have studied here
are induced by short periods of passive exposure. Our previous
work (Fritz et al., 2003, 2007) would suggest that the effects may
become enhanced and magnified by behavioral training and/or
task engagement in an auditory task that requires recognition of
stimuli with covarying attributes. Thus, the ability to capture
regularities though repetitive passive exposuremay not only ben-
efit the organism in sensory coding efficiency, but also function as
a simple form of learning. There is considerable evidence that
sensory systems can learn different types of regularities through
such passive exposure: transition probability in sound sequences
(Saffran et al., 1996, 1999;Hauser et al., 2001; Newport andAslin,
2004; Newport et al., 2004; Abe and Watanabe 2011; Lu and
Vicario, 2014) and other complex patterns (Agus et al., 2010;

McDermott et al., 2011; Barascud et al., 2016; Lu et al., 2018; Stilp
et al., 2018). Our current study fits into this mold, and demon-
strates the underlying neural transformations that make it possi-
ble. We note that our observations in this study are also
interpretable in the context of implicit learning and habituation
(Lu et al., 2018) in which exposed stimuli are contrasted with
novel (unexposed or “orthogonal”) stimuli. However, thor-
oughly exploring this interpretation of our results will require a
new study in which exposures and analyses are adapted to the
parameters typical of statistical learning paradigms (Lu et al.,
2018).

Our current work therefore demonstrates a form of implicit
learning at the neuronal level in A1 that binds features from two
correlated attributes, even when the pattern was embedded in
high dimensional variance. This study therefore adds to the ex-
tensive previous research exploring brain areas and neural mech-
anisms underlying such learning, ranging from the oddball tone
detection (Ulanovsky et al., 2003, 2004; Yaron et al., 2012; Nieto-
Diego and Malmierca, 2016; Parras et al., 2017), to the encoding
of transition probabilities in sound sequences (Lu and Vicario,
2014), to the mismatch negativity due to the detection of viola-
tions in acoustic sequences (Paavilainen et al., 2007; Barascud et
al., 2014). Finally, implicit learning is widespread and not limited
to the auditory system. For example, human subjects can im-
plicitly learn visual transition probabilities in visual scene se-
quences (Turk-Browne et al., 2009), whereas mice can learn
spatiotemporal sequences through exposure at the neuronal
level in V1 (Gavornik and Bear, 2014). It is therefore highly
likely that a larger network, including higher auditory and
other sensory areas, contribute to these encoding and learning
phenomena, and the future challenge is to unravel the inter-
locking roles of these different brains.
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