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Abstract

Deception is a fundamental issue across a diverse array of
settings, from cybersecurity, where decoys (e.g., honeypots)
are an important tool, to politics that can feature politically
motivated “leaks” and fake news about candidates. Typical
considerations of deception view it as providing false infor-
mation. However, just as important but less frequently studied
is a more tacit form where information is strategically hidden
or leaked. We consider the problem of how much an adver-
sary can affect a principal’s decision by “half-truths”, that is,
by masking or hiding bits of information, when the principal
is oblivious to the presence of the adversary. The principal’s
problem can be modeled as one of predicting future states
of variables in a dynamic Bayes network, and we show that,
while theoretically the principal’s decisions can be made ar-
bitrarily bad, the optimal attack is NP-hard to approximate,
even under strong assumptions favoring the attacker. How-
ever, we also describe an important special case where the
dependency of future states on past states is additive, in which
we can efficiently compute an approximately optimal attack.
Moreover, in networks with a linear transition function we
can solve the problem optimally in polynomial time.

1 Introduction

For better or for worse, deception is ubiquitous. It can be
benign, but just as often deception is used to deliberately
mislead. Commonly, the means of deception can be viewed
as outright lies or misinformation. This is certainly the case
with fake news and false advertising, as well as phishing
emails, and it is also the case for honeypots, even though
here deception is used to help network security, rather than
for a nefarious purpose. However, a more subtle means of
deception involves strategically hiding information. For ex-
ample, misleading advertising about a drug may omit im-
portant information about its side-effects, and we may effec-
tively protect a system against classes of attacks by strategi-
cally deciding what is public about it, such as a Windows
computer publicizing a Safari browser, but not the OS, to
make it appear it’s running Mac OS X.

Theoretical studies of deception typically leverage games
of incomplete information, where deception takes the form
of signaling misinformation about private state (Carroll and
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Grosu 2011; Pawlick and Zhu 2015), for example, adver-
tising an incorrect configuration of computing devices (e.g.,
a Windows machine advertising as Linux) (Schlenker et al.
2018), or warning that there may be inspections when no
inspectors are present (Xu et al. 2016). We take a differ-
ent perspective. Specifically, we start with a decision-maker
(the principal) who makes decisions under uncertainty based
on limited evidence. To formalize this setting, we consider
a two-stage dynamic Bayes network in which the principal
observes a partial realization of the first stage, and makes a
prediction (i.e., derives a posterior) about the second stage.
We study the extent to which such a decision-maker is sus-
ceptible to deception through half-truths—that is, through
an adversarial masking of a subset of first-stage variables,
with the assumption that the principal is oblivious to the ad-
versarial nature of this masking (for example, the individual
is unaware, or fails to take into account, that it is performed
adversarially).

While it may at first blush be puzzling how a rational
Bayesian observer would be oblivious to the presence of
an adversary, situations of this kind in fact abound. Con-
sider algorithmic trading as one example. When order book
information became available, it gave rise to numerous so-
phisticated machine learning methods aiming at taking ad-
vantage of this additional information (Nevmyvaka, Feng,
and Kearns 2006; Nevmyvaka and Kearns 2013). However,
many such approaches proved to be vulnerable to order book
spoofing attacks (Wang, Wellman, and Vorobeychik 2018).
Another example is autonomous driving. Despite a num-
ber of illustrations of attacks on state-of-the-art sophisti-
cated AI-based perception algorithms (Boloor et al. 2019;
Eykholt et al. 2018; Sharif et al. 2016; Vorobeychik and
Kantarcioglu 2018), standard autonomous driving stacks,
such as Autoware (Foundation ) and Apollo (Baidu ) are
largely devoid of any techniques for robust perception.

Our first observation is that in our setting half-truths (that
is, adversarial masking of observations) can lead to arbi-
trarily wrong beliefs. This is self-evident with lies, but sur-
prising when we can only mask observations. However, we
show that the problem of optimally choosing such a mask
is extremely hard: in general, it is inapproximable to any
polynomial factor. Next, we study an important restricted
family of Bayes networks in which transition probabilities
of nodes depend on the sum of the parents. This is a nat-
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ural model if we consider, for example, opinion diffusion
through social influence. For example, suppose that each
variable represents whether an individual likes a particular
candidate in an election. The opinions in the second stage
would correspond to the impact of social influence, where
parents of a node are their social network neighbors. Our
model means that a node’s view depends on the number
of their neighbors who like the candidate. In this additive
model, we show that the problem does not admit a PTAS
even when nodes have at most two parents. However, we
exhibit two algorithmic approaches for solving this variant:
the first an n-approximation algorithm, the second a heuris-
tic (which admits no performance guarantees). Our exper-
iments show that the combination of the two yields good
performance in practice, even while each is limited by itself.
Finally, we show that when temporal dependency is linear,
we can find an optimal mask in polynomial time.
Related Work A number of prior efforts study deception,
many in the context of cybersecurity. Among the earliest is
work by Cohen and Koike (2003), who formalize deception
as guiding attackers through (a benign part of) the attack
graph. Recent qualitative studies of deception (Almeshekah
and Spafford 2016; Stech, Heckman, and Strom 2016) offer
additional insights, but do not provide mathematical model-
ing approaches. A series of mathematical formalizations of
deception in cyber security have also been proposed (Carroll
and Grosu 2011; Greenberg 1982; Ettinger and Jehiel 2010;
Pawlick and Zhu 2015; Xu et al. 2016), but these tend to
model static scenarios and misinformation, rather than in-
formation hiding. Several other mathematical models ad-
dress allocation of honeypots, which is a common means
for deceiving cyber attackers (Kiekintveld, Lisy, and Pibil
2015). Recently, deception has also been considered as a se-
curity game in which a defender chooses a deceptive pre-
sentation of system configuration to an attacker (Schlenker
et al. 2018), but without considering half-truths or structured
information representation such as a DBN.

Another relevant stream of research is that on information
design (Rayo and Segal 2010, e.g.). In the commonly stud-
ied Bayesian persuasion model (Kamenica and Gentzkow
2011), one considers a signaling game between a sender and
a receiver, where the sender has the ability to acquire su-
perior information to the receiver, and the receiver makes a
decision that yields (state-dependent) utilities for both. The
key question concerns the design of the optimal signal struc-
ture. This area has recently received attention from both the
algorithmic perspective (how hard is the sender’s problem
under different assumptions (Dughmi and Xu 2016)) and in
various applications, for example pricing (Shen, Tang, and
Zeng 2018), auction design (Li and Das 2019), and security
games (Rabinovich et al. 2015). Our work is distinct in that
it assumes an oblivious principal, but effectively considers
signals which have combinatorial structure.

2 Preliminaries
Consider a collection of binary variables X = {X1, ..., Xn}.
We define a 2-stage dynamic Bayes network over these, us-
ing superscripts to indicate time steps (0 and 1). Specifically,
we assume that each X0

i is unconditionally independent and

for each X0
i , let P(X0

i = 1) = pi. Moreover, each X1
i has

a set of parent nodes, Pa(X1
i ) ⊂ X0 (we only allow inter-

stage dependencies to simplify discussion), and for each X1
i ,

define P(X1
i = 1|Pa(X1

i )) as the probabilistic relationship
of the associated variable with its parents (variables it de-
pends on) from stage 0. We will denote the realized values
of these random variables in lower case: that is, the realiza-
tion of a random variable Xt

i is xt
i.

We use this structure to define an interaction between an
attacker and a myopic observer (who we also call the princi-
pal). In particular, consider an observer who observes a par-
tial realization of stage-0 variables, and aims to predict (in
a probabilistic sense) the values of variables in stage 1. This
high-level problem is a stylized version of a broad range of
decision problems, such as voting behavior. Examples in-
clude observing candidate promises, personalities, and past
voting record, to predict what they would do once elected;
observing infection status for a collection of individuals on a
social network, and aiming to predict who will be infected in
the future; and so on. We assume that the observer is myopic
in the sense that they use standard Bayesian reasoning about
posterior probabilities conditional on their observations of
stage-0 realizations. However, we specifically study a situa-
tion in which a malicious party adversarially masks a subset
of stage-0 realizations (having first observed them). We de-
note the masked posterior by P(X1

i = 1|Pa(X1
i ) \ η), where

η is a binary vector with ηi = 1 whenever the realization
of X0

i is not observed (because it is masked). We assume
that all the stage-0 realizations that are not masked are ob-
served by the principal. Let X1 denote the random vector
distributed according to P(X1

i = 1|Pa(X1
i ) (the full set of its

parents from X0), while X1
η is a random vector distributed

according to P(X1
i = 1|Pa(X1

i ) \ η). More precisely, the
sequence of the interaction is as follows:
1. Nature generates a vector x0 = 〈x0

1, ..., x
0
n〉 defining the

outcomes of X0 according to its prior distribution p.
2. The attacker observes x0 and may choose up to k out-

comes to hide from the observer. This decision is cap-
tured by the mask η.

3. The observer observes the partially realized state of X0

after applying the mask η, and makes a prediction about
X1 (which we capture by the distribution of X1

η).

4. Nature then yields the realization of x1 = 〈x1
1, ..., x

1
1〉

according to the posterior distribution of X1.
To understand the consequence of adversarial “half-

truths” of this kind, we consider two problems faced by the
adversary: targeted and untargeted attacks. Specifically, let
the two random vectors, X1 and X1

η also stand for their
respective distributions, and let D(X1,X1

η) be a statistical
distance between the two distributions according to some
metric. In the untargeted case, the adversary’s problem is
to maximize the distance between the masked and true pos-
terior distributions over the random vector in stage 1:

max
η

D(X1,X1
η) s.t. :

∑
i

ηi ≤ k. (1)

In the targeted case, the adversary has some desired distribu-
tion, X1

α, and the adversary would like to push the observer’s
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perception as close to this distribution as possible. We for-
malize this as

min
η

D(X1
α,X

1
η) s.t. :

∑
i

ηi ≤ k. (2)

Note that in this notation we are suppressing the dependence
on the prior, which is implicitly part of any problem instance
faced by the adversary.

3 Half-Truth is as Good as a Lie

Our first result demonstrates that in a fundamental sense, in
our model, there are cases where partially hiding the true
current state can lead to arbitrary distortion of belief by a
myopic observer.

Recall that the adversary’s aim is to maximize statistical
distance D between the true posterior distribution over X1,
and the posterior induced by masking a subset of variables
in stage 0, X1

η . We now show that for most reasonable mea-
sures of statistical distance, we can construct cases in which
the adversary can make it arbitrarily large (within limits of
the measure itself)—that is, the adversary can induce essen-
tially arbitrary distortion in belief solely by masking some
of the observations.
Definition 1. We say a statistical distance is positive if for
any two random variables A, B we have D(A,B) ≥ 0.

Note that any distance metric, or probabilistic extension
of a distance metric, fits the definition of positive symmetric.
Theorem 2. Suppose the attacker’s objective is to maximize
some positive statistical distance D. Let A and B be any
vectors of binary random variables, then there exists some
sequence of dynamic Bayes networks such that

lim
n→∞

(
EX0

[
max

η
D(X1,X1

η)
])

= lim
n→∞

(
max
A,B

D(A,B)
)

Proof. Let A,B be the vectors of binary random variables
for which D(A,B) attains its maximum value, with respect
to n. Then A = 〈A1, ..., An〉, B = 〈B1, ..., Bn〉 and each
variable has prior P(Ai = 1) = ai, P(Bi = 1) = bi. Let
X0 → X1 define a dynamic Bayes network on n variables.
For all 1 ≤ j ≤ n, let Pa(X1

j ) = {X0
i : 1 ≤ i ≤ n}. That

is, all nodes in layer 0 are parents of every node in layer 1.
Define the probability distributions over X0 and X1 by the
following: ∀X0

i ∈ X0, P(X0
i = 1) = ε. Next, ∀X1

i ∈ X1,
P(X1

i = 1|∃x0
j = 1) = bi and P(X1

i = 1|�x0
j = 1) = ai.

For each n we will consider the value of D(X1,X1
η) un-

der three types of events that could occur with respect to the
possible outcomes, x0 of X0, the adversary’s budget k, and
the adversary’s choice of which nodes to hide conditional on
x0. Each of these settings admits a unique type of optimal
play from the adversary. Specifically

• (1)
∑

X0
j
x0
j = 0. In this case the adversary will hide k

random nodes since all outcomes are 0.
• (2)

∑
X0

j
x0
j = m ≤ k. In this case the adversary will hide

only the m nodes whose outcomes are 1.
• (3)

∑
X0

j
x0
j = m > k. In this case the adversary will hide

nothing.

In events of type (1) when there is no mask X1 = A. When
a mask η is employed, X1

η = B with probability 1−(1−ε)k,
and X1

η = A with probability (1− ε)k. Thus, in this setting,

E
[
D(X1,X1

η)
]
=
(
1− (1− ε)k

)
D(A,B)

+ (1− ε)kD(A,A)

Events of this type occur with probability (1− ε)n.
In events of type (2), without η we have X1 = B. Since

m ≤ k and all nodes with outcome 0 are hidden. Thus, in
light of η we have X1

η = A with probability (1 − ε)m, and
X1

η = B with probability 1 − (1 − ε)m. Therefore, the ex-
pected value in this setting is

E
[
D(X1,X1

η)
]
=
(
1− (1− ε)m

)
D(B,B)

+ (1− ε)mD(B,A)

Events of this type occur with probability
(
n
m

)
εm(1−ε)n−m

for each m ≤ k.
In events of type (3) there are more nodes yielding 1

in layer 0 than the adversary is capable of hiding. So
X1 = X1

η = A. Events of this type occur with probabil-
ity

(
n
m

)
εm(1− ε)n−m for each m > h.

For notational convenience, and without loss of general-
ity, we will reorder the nodes in X0

n after the observations
are made by the adversary, such that for 0 ≤ j ≤ m, x0

j = 1.
Suppose k = n, similar analysis holds for any constant frac-
tion of n. Since D is positive symmetric we have,

EX0

[
max

η
D(X1,X1

η)
]

≥D(A,B)
(
1− (1− ε)n

)
(1− ε)n

+D(B,A)

( n∑
m=1

(
n

m

)
εm(1− ε)n−m(1− ε)m

)

Using the binomial identities we can reduce the above
equation to form

D(A,B)
(
1− (1− ε)n

)
(1− ε)n

+D(B,A)(1− ε)n ((ε+ 1)n − 1)

Thus, since both terms in the above sum are positive, it re-
mains only to be shown for ε = log(n)

n ,

(1− ε)n ((ε+ 1)n − 1) → 1 as n → ∞
This limit can be evaluated as follows

= lim
n→∞

(
1− log(n)

n

)n ((
1 +

log(n)

n

)n

− 1

)

Using a slight variation to the identity limn→∞(1+ a
n )

cn =
eac, we can obtain that this limit does in-fact converge to 1.
Thus giving the desired result that

lim
n→∞

(
EX0

[
max

η
D(X1,X1

η)
])

= lim
n→∞

(
max
A,B

D(A,B)
)
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4 Computational Complexity of Deception

by Half-Truth

Let X0 → X1 define a dynamic Bayes network over a set
of n binary random variables. Let x0 be a binary vector de-
scribing the realized outcomes of X0.

In the remainder of the paper, we restrict attention to par-
ticular distance metrics of the form:

untargeted: D(X1,X1
η) = E

[||X1 −X1
η||p

]
targeted: D(X1,X1

η) = E
[||X1

α −X1
η||p

]
where the expectation is with respect to the product distribu-
tion of the two random variables and p ∈ N∪{∞}. These are
natural distances in the context of random variables, and cor-
respond to the Lukaszyk-Karmowski metric (LKM) of sta-
tistical distance between the distributions. We call the result-
ing problems (of computing the optimal mask given a prior
and a realization of variables at layer 0) Deception by Bayes
Network Masking (DBNM) for the untargeted case, and Tar-
geted Deception by Bayes Network Masking (TDBNM) for
the targeted case. We now show that this problem does not
even admit a polynomial factor approximation for any p.

Theorem 3. If DBNM has a deterministic, polynomial-time,
polynomial approximation, for any value of p, then P=NP.

Proof. Suppose that there exists a deterministic, polynomial
factor, polynomial time approximation of DBNM. We will
show that under this assumption SAT can be solved in poly-
nomial time. Consider an instance of SAT defined by a set
of Boolean variables B and a Boolean function Φ, whose
terms are the elements of B. The objective is to determine
if there exists an assignment of the variables in B such that
Φ evaluates to 1. An arbitrary instance of SAT can be en-
coded into DBNM in the following manner. Let X0 = B,
Pa(X1

1 ) = X0, and define P(X1
1 = 1|Pa(X1

1 )) = Φ (that is,
X1

1 = 1 if and only if the formula Φ evaluates to true). For
all other j 
= 1, P(X1

j = 1|Pa(X1
j )) = 0. Lastly, set each

prior P(X0
i = 1) = 1

22n and set x0 = 〈1, 1, ..., 1〉.
In the case that b = 1, ∀b ∈ B, yields Φ = 0, the objective

of the attacker is to select a mask η that maximize the value
of P(X1

1 = 1|x0\η). For a given mask η, y0
η be any outcome

that agrees with x0 on all in X0 \ η, i.e. xi = y0η,i for all
X0

i /∈ η. Let
ay0

η
= ||x0 − y0

η||1
Then, for any η we have,

P(X1
η,1 = 1|x0) =

∑
y0
η

P(y0
η)P(X

1
1 = 1|y0

η)

=
∑
y0
η

P(X1
1 = 1|y0

η)(1−
1

22n
)
ay0

η (
1

22n
)
|η|−ay0

η

A certificate for the SAT instance can be generated via
assigning bi = 1 if X0

i /∈ η and bi = 0 if X0
i ∈ η. To see

that this certificate is valid, consider two cases on η. The first
being, η corresponds to an assignment of B yielding Φ = 0,
and the second being when the assignment gives Φ = 1.

In the first case, let y
′0
η be the y0

η outcome such that y0η,i =
0 for all X0

i ∈ η and y0η,j = 1 for all X0
j /∈ η.

Then, since P(X1
1 = 1|y′0

η ) = 0, we have

∑
y0
η

P(X1
1 = 1|y0

η)(1−
1

22n
)
ay0

η (
1

22n
)
|η|−ay0

η

=
∑

y0
η �=y′0

η

P(X1
1 = 1|y0

η)(1−
1

22n
)
ay0

η (
1

22n
)
|η|−ay0

η

Note that for each y0
η 
= y

′0
η , |η| − ay0

η
≥ 1. Thus,

=
∑

y0
η �=y′0

η

P(X1
1 = 1|y0

η)(1−
1

22n
)
ay0

η (
1

22n
)
|η|−ay0

η

≤
∑

y0
η �=y′0

η

1

22n
≤ 2n(

1

22n
) =

1

2n

Therefore, if the adversary selects a mask that does not cor-
respond to a satisfying assignment for Φ, its utility is at most
1
2n .

The next case to consider is when the adversary selects a
a mask which induces Φ = 1. In this case, we have∑

y0
η �=y′0

η

P(X1
1 = 1|y0

η)(1−
1

22n
)
ay0

η (
1

22n
)
|η|−ay0

η

+ P(X1
1 = 1|y′0

η )(1− 2

22n
)
a
y
′0
η

≥ (1− 1

22n
)
a
y
′0
η ≥ (1− 1

22n
)n

Thus, if η induces an assignment of B that yields Φ = 1, the
adversary utility at least (1 − 1

22n )
n. Which converges to 1,

from below, faster than an polynomial of n.
By these two cases, we know that when Φ is satisfiable,

there exists a mask with value at least (1 − 1
22n )

n and that
no mask corresponding to Φ = 0 can have value greater
than 1

2n . In addition to the results of these two cases, we
also know that an optimal mask can achieve no more than
a value of 1, since only 1 node in X1 has outcomes de-
pendent on X0 and any Lp norm applied to a vector with
only a single nonzero dimension will evaluate to exactly the
value of the dimension. Therefore, if a polynomial approx-
imation of the optimal solution were to be given, one could
deduce the satisfiability of Φ based on the value of the mask
η. That is if V (η) ≤ 1

2n , then Φ is not satisfiable, and if
V (η) ≥ (1 − 1

22n )
n, then Φ is satisfiable and η gives the

satisfying assignment.
This covers all but the case when bi = 1, ∀bi ∈ B, yields

Φ = 1. In this case, the adversary could return a mask of
value arbitrarily close to 0 even though Φ has a satisfying as-
signment. This case is easily remedied by choosing to check
the assignment bi = 1, ∀bi ∈ B, before running the approx-
imation.

Under this scheme we could use the polynomial approxi-
mation algorithm to determine if a given instance of SAT is
satisfiable. Since SAT is NP complete, the existence of such
an approximation algorithm would imply that P = NP.
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Next, we show that this inapproximability obtains even if
we consider randomized algorithms.

Theorem 4. If DBNM has a randomized polynomial factor
approximation with constant probability, for any p, then PR
= NP.

Proof. Using the previous construction from SAT to
DBNM. If there existed an algorithm that could produce a
polynomial factor approximation of the constructed instance
of DBNM with some constant probability p ∈ (0, 1), then
the same line of reasoning in the above proof yields a poly-
nomial time algorithm that can determine if a true instance
of SAT is satisfiable with probability at p ∈ (0, 1). This al-
gorithm could then be run 1

p times to obtain a success rate of

1− (1− p)
1
p ≥ 1− 1

e ≥ 1
2 . Moreover, the algorithm would

never falsely identify a non-satisfiable instance as satisfiable.
The existence of such an algorithm would imply that SAT ∈
RP, and since SAT is NP-complete and RP is closed under
L-reductions, this would also imply that RP = NP.

Finally, we extend the hardness results above to the tar-
geted version of our problem.

Corollary 5. If TDBNM has a deterministic polynomial
time, polynomial approximation, or a randomized polyno-
mial time, polynomial approxiation with constant probabil-
ity, for any p, then P=NP or RP=NP respectivly.

Proof. In both cases we can set Xα = 〈1, 0, ..., 0〉 and our
objective is exactly the same as it was in the untargeted case,
with the only difference being that we need not consider the
case when bi = 0 for all i ≤ n yields Φ = 1, since η = ∅
is an optimal mask. Once we have this setting for Xα, the
proof follows identically to the proofs of 3 and 4.

5 Approximation Algorithm for the Additive

Case

Our result above shows that polynomial approximations of
the optimal solution are intractable in the general case, when
the adversary must be able to compute the optimal mask
for any prior and any realization of the variables in layer 0.
Therefore, we now turn our focus to cases where the DBN
exhibits special structure on the transition probabilities. We
start with DBNs with additive transition structure, which we
define next.

Definition 6. We say a transition probability for Xi is addi-
tive if

P(Xi = 1|Pa(Xi)) = P(Xi = 1|Zi)

where Zi =
∑

X0
j ∈Pa(X1

i )
X0

j

We term the problem of finding an optimal adversarial
mask when all transitions are additive ADBNM, for Addi-
tive DBNM in the untargeted case, and TADBNM refers to
the corresponding targeted problem.

5.1 Inapproximability in the Additive Case

First, we show that even this case is inapproximable, but now
in the sense that no PTAS exists for this problem.
Theorem 7. No PTAS exists for either ADBNM (untargeted)
or TADBNM (targeted), when p = 1, unless P=NP, (even for
monotone transition functions, when nodes have at most 2
parents).

Proof. To show that no PTAS exists for either problem, we
will reduce from Dense k-Subgraph (DKSG). An instance
of DKSG is defined by a budget k and a graph G = (V,E).
The objective is to find a vertex set S ⊂ V such that
|{(u, v) ∈ E : u, v ∈ S}| is maximized while |S| ≤ k.

To reduce an instance of DKSG to an instance of ADBNM
perform the following actions. First, let X0 = {X0

v : v ∈
V } and let X1 = {X1

(u,v) : (u, v) ∈ E}. For each X0
v ∈

X0, let P(X0
v = 0) = ε for arbitrarily small ε. It is easy

to check that for ε = 1
22n , similar reasoning to our previous

hardness result holds. Lastly, set P(X1
(u,v)|Z(u,v)) = 1 if

z(u,v) = 2 and P(X1
(u,v)|Z(u,v)) = 0 otherwise. Suppose

that x0 =< 0, 0, ..., 0 >. For TADBNM we need one extra
condition that Xα = 〈1, 1, .., 1〉. Now, let η ⊂ X0 be any
mask. Then, for each pair X0

v , X
0
u ∈ η, we have

E
[|X1

(u,v) −X1
η,(u,v)|

∣∣x0
]
= (1− ε)2

Therefore, for a given η, the attacker’s total utility is∑
X0

u,X
0
v∈X1:u�=v

(1− ε)2 = β(1− ε)2

where β is the number of unique pairs contained in η. Hence,
the maximum utility an attacker can obtain is β∗(1 − ε)2

where β∗ is the maximum number of distinct pairs X1
v , X

1
u

that can be contained in any η of size at most k. Since each
such pair represents an edge in E and η represents a collec-
tion of vertices of V , the maximum dense k-subgraph has
size β∗ and is given by the vertices in η. That is, if a given
mask η has utility β(1 − ε)2, then the vertices in η corre-
spond to a subgraph of cardinality β. Similarly, if S ⊂ V
describes a subgraph of size β, then by mapping the vertices
in S to a mask η, the attacker can achieve utility β(1− ε)2.

Since the objectives of the two problems share arbitrary
similarity, if a PTAS where to exists for ADBNM, then that
same PTAS also exists for DKSG. However, unless P=NP
no such algorithm exists for DKSG. Thus, no PTAS exists
for ADBNM, unless P=NP.

Theorem 8. For p ∈ N≥2 ∪ {∞} ADBNM (untargeted) or
TADBNM (targeted), when p = 1, unless P=NP, (even for
monotone transition functions, when nodes have at most 2
parents).

Proof. We will use the same reduction from DKSG used in
the proof of Theorem 7. Under construction, and for a gen-
eral p, the attacker’s utility for any η is

n∑
i=1

P
( ∑
X0

j ∈X0

X0
j = i

)
i
1
p
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with the understanding that i
1
∞ = 1. Note that this objective

function is monotone with respect to the number of unique
pairs X0

u, X
0
v ∈ η that correspond to edges (u, v) ∈ E. Fur-

ther, since each node in X0 is identical each such pair con-
tributes the same increase to the objective function. There-
fore, the objective function increases with respect to the
number of unique pairs corresponding to edges in the origi-
nal graph, independent of which pair is added. Therefore the
objective function of the attacker is maximized by finding
the largest set of unique pairs X0

u, X
0
v which correspond to

edges in the graph, this is the exact objective of the original
DKSG problem, meaning that a valid solution to one prob-
lem is exactly a valid solution to the other and both ADBNM
and TADBNM are NP hard for p > 1.

5.2 Approximation Algorithm

While even the ADBNM special case is inapproximable in
a sense, we now present our first positive result, which is an
n-approximation (recall that the best known approximation
of DKSG is Θ(n1/4), and we showed that our problem is no
easier in the reduction above).

First, we impose an additional restriction on the problem:
we assume that all transition functions have the propriety
that P(X1

i = 1|Zi) is monotone with respect to Zi. We pro-
pose Algorithm 0 for this problem. Next, we show that this
algorithm yields a provable approximation guarantee.

Algorithm 1 Approximation algorithm

1: bestMask := ∅
2: for each X1

i ∈ X1 do
3: η := ∅
4: S0 = {X0

j ∈ Pa(X1
i ) : x

0
j = 0}

5: S1 = {X0
j ∈ Pa(X1

i ) : x
0
j = 1}

6: Select S ∈ {S1, S0} on the target of X1
i

7: while |η| < k and S \ η 
= ∅ do
8: x := argminX0

j ∈SP(X
0
j 
= x0

j )

9: add x to η

10: if V (η) > V (bestMask) then
11: bestMask := η

return bestMask

Proposition 9. For any p ∈ N∪ {∞} Algorithm 1 achieves
a n−approximation on both targeted and untargted attacks.

Proof. The algorithm generates one mask for each node
X1

i ∈ X1. The associated mask, ηi, is meant to push the
observer’s perception of P(X1

i |zi) as close to some extreme
(0 or 1) as possible. We will examine the contribution that
the X1

i , most pushed to the desired extreme, makes to the
attacker’s total utility. Suppose P(X1

i = 1|zηi

i ) is being
pushed to 1. A symmetric argument will hold in the case

of 0. Let X1
a = argmaxXi

(
maxηi

P
(
Xi = 1|zηi

i

))
and

let Qa = P(X1
i = 1|zηi

i ). Next we will show that Qa is
at least 1

n of the optimal solution no matter what Lp norm
is used. The attacker’s utility is given by E[||X1

ηi
−X1||p],

where Xηi −X1 is a binary vector. For finite p we have,

||Xηi
−X1||p =

( n∑
i=1

|xηi − xi|
) 1

p

≤ n
1
p

and in the case when p = ∞ we have

||Xηi −X1||p = max
i

|xηi − xi| ≤ 1

Under any p the attackers utility on ηa is at least Qa||1||p =
Qa. To get the actual bound on approximation we will split
on 3 cases. The first being when p = 1, the second being
when 2 < p < ∞ and the third being when p = ∞. In
each case, each node has probability at most Qa to attian the
desired outcome (0 or 1). In the first case, when p = 1, the
attacker’s optimal utility is upper-bounded by

n∑
i=1

i

(
n

i

)
Qi

a(1−Qa)
n−i = nQa

Hence the ratio to the optimal solution given by ηa is Qa

Qan
=

1
n . In the second case, when 2 < p < ∞, we have that the
attackers optimal utility is upper-bounded by

n∑
i=1

i
1
p

(
n

i

)
Qi

a(1−Qa)
n−i

≤
n∑

i=1

i

(
n

i

)
Qi

a(1−Qa)
n−i = nQa

and again we get that the ratio to the optimal solution is 1
n .

Lastly, when p = ∞ the attackers utility is exactly the
probability that there exists at least one node with the de-
sired outcome. Since each node has at most probability Qa

to yield the desired outcome, the attacker’s optimal utility
is at most 1 − (1 − Qa)

n and the attacker’s utility on ηa is
at least Qa. Thus the ratio to the optimal solution is at least

Qa

1−(1−Qa)n
. By montonicity and evaluation of the limit as

Qa → 0 we see that 1
n ≤ Qa

1−(1−Qa)n
. Therefore, for any

p ∈ N ∪ {∞} we get an approximation ratio of at least 1
n

5.3 Heuristic

In addition to our approximation algorithm above, we pro-
pose a simple heuristic approach for approximating the opti-
mal mask. The heuristic is a hill-climbing strategy in which,
at each iteration, we add the node to η that results in the
maximum increase of the value of η; see Algorithm 0. As
we demonstrate in the experiments below, the combination
of the algorithm and the heuristic performs much better than
either in isolation (and, of course, jointly achieves the n-
approximation above).

We now show that by itself, heuristic can be arbitrarily
bad. Fix n > 3 such that 2|n, let k = n

2 , and let pi = 1 − ε

for a sufficiently small ε. Suppose x0 =< 0, 0, ..., 0 >. Let
Pa(X1

1 ) = {X0
1 , X

0
1 , ..., X

0
n/2}, and for each X1

i with i > 1,
let
Pa(X1

i ) = {X0
n/2+1, ..., X

0
n}. Define P(X1

1 = 1|z1) = εz1
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Algorithm 2 Heuristic algorithm

1: bestMask := ∅
2: η := ∅
3: while |η| < k do
4: x := node with largest increase to V (η)
5: η = η ∪ {x}
6: if V (η) > V (bestMask) then
7: bestMask = η

return bestMask

and for all i > 1 P(X1
i = 1|zi) = 0 if zi < n

2 , and
P(X1

i = 1|zi) = 1 if zi = n
2 . Then we can see that the opti-

mal mask, in both the hiding and flipping case is to hide all
nodes X1

n/2+1, ..., X
1
n. Which, results in a value of at least

n
2 (1 − ε)n/2 in the hiding case, and n

2 in the flipping case.
However, since the only way to greedily increase the value
of η is to keep hiding nodes from {X0

1 , ..., X
0
n/2}, the mask

produced by the heuristic will have value (1−ε)n/2εn2 . Thus,
we get a ratio of

(1− ε)n/2εn2
n
2 (1− ε)n/2

= ε

Note that ε is independent of n. Thus, as ε → 0 the value of
the heuristic solution also converges to 0 ∀ n > 3.

Next we will define and discuss linear Bayesian networks,
on such networks this proposed heuristic is guaranteed to
find the optimal solution, although doing so can be achieved
by a much simpler algorithm which we will also discuss.

6 Polynomial-time Algorithm for Linear

Bayesian Networks

Our final contribution is a further restriction on the DBN that
yields a polynomial-time algorithm for computing an opti-
mal mask for the adversary. Specifically, we consider net-
works in which each transition function is of the form

P
(
X1

i = 1|Pa(X1
i )
)
=

∑
X0

j ∈Pa(X1
i )

aijX
0
j .

We call these linear Bayesian networks.
Theorem 10. In linear Bayesian networks the optimal solu-
tion to DBNM and TDBNM can be computed in polynomial
time for the l1-norm.

Proof. Consider the untargeted case first. Let x0 be the out-
come given by nature. Let y0 be any outcome of X0 which
agrees with x0 on all elements except those in η. More
specifically, if X0

j /∈ η then x0
j = y0j and if X0

j ∈ η then
y0j is free to be either 0 or 1.

For notational convenience we define the following vari-
ables for any mask η, and for any X1

i ∈ X1 let

Pi,r = Pa(X1
i ) ∩ ηr and Pi = Pa(X1

i ) ∩ η

Qi =
∑

X0
j ∈Pa(X1

i )

aijx
0
j and Ri =

∑
X0

j ∈Pa(X1
i )\η

aijx
0
j

then attacker’s utility on Xi
1 can be given as

Qi +Ri +
∑

X0
j ∈Pi

aijpj − 2Qi

(
Ri +

∑
X0

j ∈Pi

aijpj
)

Consider the change in value of η when adding some X0
r ∈

Pa(X1
i )\η denote this new mask as ηr = η∪{X0

r }. Assume
that x0

r = 1, a symmetric argument will yield a similar result
when x0

r = 0. For notational convenience, let R′
i = Ri − 1.

Then, the difference in value of η and ηr is

Qi +R′
i +

∑
X0

j ∈Pi,r

aijpj − 2Qi(R
′
i +

∑
X0

j ∈Pi,r

aijpj)

−Qi −Ri −
∑

X0
j ∈Pi

aijpj + 2Qi

(
Ri −

∑
X0

j ∈Pi

aijpj
)

= −airpr(1− 2Qi)

Thus for any X1
i ∈ X1 if we hide X0

r when x0
r = 1, then

the change in utility to X1
i ’s contribution to the total utility

is −prair(1− 2Qi), and similarly when x0
r = 0, the change

is prair(1− 2Qi). Thus in both cases we get that hiding X0
r

causes the attacker’s utility to increase by (−1)βrprair(1−
2Qi) where βr = x0

r . In the targeted case the only way in
which our analysis changes is in the value of βr. Since we
now have a desired target for each X1

i , if that desired target
is 0 then βr is also 0 and similarly when the target is 1, so
is betar. Thus in both the targeted and untargeted case the
change in utility is independent of the current mask η and
that the total utility is simply the sum of the utility on each
X1

i . Thus, when hiding any X0
r the change in the attacker’s

total utility increases linearly by a value that depends only
on x0

r and not on the current mask η. Therefore the attackers
utility can be written as

n∑
i=1

Qi +
∑

r∈I(Pa(X1
i )

yr(−1)x
0
rprair(1− 2Qi)

where I(Pa(X1
i ) is the index set of the parents of X1

i , and
if X0

r ∈ η then yr = 1 and if X0
r /∈ η then yr = 0. As-

signing values to each yr such that
∑n

r=1 yr ≤ k can be
done in polynomial time by simply selecting the yr’s with
the highest associated coefficients.

7 Experiments

As discussed in Section 5, our approximation scheme is to
compute both the n-approximation mask and the heuristic
mask, then take the one yielding the higher utility. Note that
this combination clearly yields an n-approximation. As we
now demonstrate, it is also significantly better in combina-
tion than either of the approaches by itself.

Figure 1 (left) shows the results on random general and
additive networks, and demonstrates that our combined al-
gorithm significantly outperforms the approximation algo-
rithm, largely on the strength of the heuristic, which is highly
effective in these settings. Figure 1 (right) studies settings
constructed to be adversarial to the heuristic. As we can see,
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Figure 1: Comparison between our combined algorithm,
heuristic and approximation algorithms in isolation, and ran-
dom masking on randomly generated networks (left) and
networks generated adversarially (right).

here the combined algorithm performs similarly to the ap-
proximation algorithm, while the heuristic in isolation ulti-
mately performs poorly. Thus, the combination of the two is
far stronger than each component in isolation.

8 Conclusion

We introduce a model of deception in which a principal
needs to make a decision based on the state of the world,
and an adversary can mask information about the state. We
study this in a model where the principal is oblivious to the
presence of the adversary and reasons about state change
using a dynamic Bayes network. Even in a simple two time
period model, we showt the existence of cases where an ad-
versary with the ability to mask information about the state
at time 0 can cause the oblivious principal to have an arbi-
trarily incorrect posterior. However, computing, or even ap-
proximating these masks to within a polynomial factor, is
NP-hard in the general case. We also consider this problem
with special structure on the transition probabilities, show-
ing that when transitions only depend on the sum of parent
values, the problem remains inapproximable, although we
now exhibit an n-approximation. On the other hand, when
transitions are linear, we show that it can be solved in poly-
nomial time.
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