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ABSTRACT
The Controller Area Network (CAN) is a bus standard commonly
used in the automotive industry for connecting Electronic Control
Units (ECUs) within a vehicle. The broadcast nature of this protocol,
along with the lack of authentication or strong integrity guarantees
for frames, allows for arbitrary data injection/modi�cation and
impersonation of the ECUs. While mitigation strategies have been
proposed to counter these attacks, high implementation costs or
violation of backward compatibility hinder their deployment. In
this work, we �rst examine the shortcomings of state-of-the-art
CAN intrusion detection and identi�cation systems that rely on
multiple frames to detect misbehavior and attribute it to a particular
ECU, and show that they are vulnerable to a Hill-Climbing-style
attack. Then we propose SIMPLE, a real-time intrusion detection
and identi�cation system that exploits physical layer features of
ECUs, which would not only allow an attack to be detected using
a single frame but also be e�ectively nulli�ed. SIMPLE has low
computational and data acquisition costs, and its e�cacy is demon-
strated by both in-lab experiments with automotive-grade CAN
transceivers as well as in-vehicle experiments, where average equal
error rates of close to 0% and 0.8985% are achieved, respectively.

CCS CONCEPTS
• Security and privacy→ Intrusion detection systems;Hard-
ware attacks and countermeasures; • Hardware → Buses and
high-speed links; Networking hardware.
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1 INTRODUCTION
The Controller Area Network (CAN) bus is the de facto indus-
try standard for in-vehicle networks used in modern vehicles for
connecting Electronic Control Units (ECUs). ECUs are embedded
systems with speci�c automotive-related duty, such as engine con-
trol, braking, etc. ECUs are involved with safety-critical tasks, such
as braking and engine control, which require information that is
communicated via the CAN bus, consequently the safety of the pas-
sengers is directly dependent upon the security of the bus [16, 52].
It has been demonstrated should an attacker gain access to the CAN
bus, forged messages can be sent that a�ect the safe operation of
the vehicle (e.g., causing the vehicle to accelerate [12], stopping
the engine, disabling the brakes, selectively braking [30], or dis-
abling the transmission [19]). The connection can be through direct
connection [30] or via a remotely compromised ECU [5].

Based on existing studies, the con�dentiality of CAN messages
is not strictly necessary to provide safe operation, whereas au-
thentication and integrity are essential. A CAN frame can only
accommodate eight bytes of both data and cryptographic informa-
tion (Sec. 2.1), hence, providing authentication and integrity via
message authentication codes (MACs) or digital signatures is not a
straightforward proposition. In [49] an out-of-band channel (CAN+
[55]) is leveraged to transmit authentication information; in [39]
a delayed authentication scheme is proposed that uses multiple
frames to generate a compound MAC; and variable-length MACs
are used in [43] to o�er protection commensurate with a message’s
criticality. In short, existing techniques are either insecure or com-
putationally intensive which makes them incapable of a reliable
authentication on a frame-by-frame basis.

As strong authentication guarantees cannot be provided for
legacy CAN, intrusion/anomaly detection systems (I/ADS) have
been proposed that would at least allow for appropriate counter-
measures to be taken in the event of an attack (e.g., ignoring suspect
messages or putting the car into a safe state) [20, 21, 31, 37, 38, 44].
Of particular relevance to the current work is the subset of IDS that
leverage, broadly speaking, device �ngerprinting techniques based
on di�erentiating devices according to either timing [8, 35] or the
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physical-layer characteristics of frames, such as voltage [9, 10, 36].
However, most approaches rely on multiple frames sent by an ECU
to evaluate and update the �ngerprints.

In this paper, we �rst demonstrate that state-of-the-art device
�ngerprinting-based intrusion detection and identi�cation systems
(e.g., [36], [8], and [9] etc.) are fundamentally vulnerable to Hill-
climbing-style attacks, because they either entirely or partially de-
pend on multiple frames to identify the sender of a frame. Due
to the multi-frame dependence, a Hill-climbing-style attacker is
able to exploit a compromised ECU to impersonate another ECU
without being detected or identi�ed. The attack is achieved by care-
fully injecting an increasing amount of malicious messages among
legitimate messages, so as to gradually shift the pro�le of the target
ECU toward the attacker’s. Since during consecutive time periods
the pro�le only shifts slightly, the attack remains undetected or
unidenti�ed. Ultimately, the attacker ECU will be able to inject a
majority, or replace all, of the frames sent by the target ECU with
its own. Our attack can be regarded as a type of online data poi-
soning attack against machine learning systems [28] (especially,
for classi�cation) which acquire/update training data in an online
manner.

Motived by this attack, we propose SIMPLE, a SIngle-fraMe
based Physical-LayEr identi�cation solution to detect intrusion and
identify the source of each single CAN frame that is transmitted on a
bus by a speci�c ECU regardless of itsmessage ID.We extract unique
voltage-based features (�ngerprints) in the time-domain from each
individual CAN frame transmitted and contribute to an ECU. Unlike
existing multi-frame IDS systems, SIMPLE performs secure updates
of training data by modelling and compensating for the changes in
environment and operating conditions (e.g., temperature and supply
voltage). Since �ngerprinting in SIMPLE is done on a per-frame
basis and is very computationally lightweight, the detection can
�nish even before a frame’s transmission ends, thus enabling real-
time prevention of intrusion attacks by invalidating the spurious
frame before it takes e�ect on the vehicle. SIMPLE is a single-frame
based intrusion detection and identi�cation system that (to the best
of our knowledge) for the �rst time achieves attack prevention with
secure updates.

Our main contributions are summarized as follows:

• We demonstrate that a Hill-climbing-style attack can defeat
multi-frame based intrusion detection and/or identi�cation
systems, in particular for vehicular CANs. We validate the
e�ectiveness of our attack against two existing IDSs: physical
layer-based Viden [9] and clock-based IDS CIDS [10].

• We propose SIMPLE, a single-frame based physical-layer
identi�cation solution. SIMPLE is a dual intrusion detection
and identi�cation system, which is computationally light-
weight and can make detection and identi�cation decisions
before a frame ends.

• SIMPLE performs secure updates of the �ngerprints to com-
pensate for environmental changes, such as temperature and
supply voltage. SIMPLE can also prevent intrusion attacks
by invalidating spurious frames before they take e�ect.

• We evaluate SIMPLE using both an in-lab testbed with ten
automotive-grade ECUs, and in-vehicle experiments. For the
in-lab experiments we show that SIMPLE can distinguish

perfectly between the frames transmitted from compromised
ECU and benign frames, even when the �ngerprint changes
due to environmental e�ects. For the in-vehicle experiments
we show that SIMPLE achieves a low equal error rate (EER)
around 0.8985%.

1.1 Paper structure
Section 2 provides a brief background on the preliminary of the
CAN protocol, the applications of PLI, and a survey of existing
works. Sec. 3 presents our attackmodel. Sec. 4 demonstrates the Hill-
climbing-style attack against two state-of-the-art �ngerprinting
schemes. Sec. 5 describes SIMPLE, which is then analyzed and
evaluated in Sec. 6 and Sec. 7, respectively. Finally, we draw our
conclusion in Sec. 8.

2 BACKGROUND AND RELATEDWORK
2.1 CAN protocol
CAN is a protocol created in 1986 by Robert Bosch GmbH [4], for
communication among ECUs within in-vehicle networks. It is a two-
wire, half-duplex bus generating CAN High (CANH) and CAN Low
(CANL) signals as output which are shown in Fig. 1b. The details
of the CAN protocol is given in [15]. All the ECUs are connected to
the same bus, thus they can receive all the frames broadcasted on
the bus.

There are a few features of the CAN protocol that are related to
this work. First, each ECU can be assigned one or multiple message
identi�ers (IDs) that it can send out, which usually represents the
data type. Two or more ECUs that want to transmit at the same
time have to participate in so-called priority-based arbitration in
order to occupy the CAN bus. The lower the numerical value of
the ID is, the higher the priority the message has. Second, any ECU
that observes an error in a frame will transmit an Error Frame
that will cause other ECUs to discard the previous/current frame
(an ACK slot at the end of each CAN frame allows the ECU that
transmitted the frame to determine if a single ECU successfully
received the frame) [4]. In addition, message reception is not based
on destination address but on message ID (for example, an engine
ECU is programmed to receive only certain subset of “interesting”
message IDs related to engine status/control).

From the security aspect, weak integrity check is performed
by calculating the cyclic redundancy checks (CRC) in each frame.
Considering that an ECU can forge the ID, the protocol lacks strong
authenticity, which can be ful�lled by using physical layer identi�-
cation.

2.2 Physical Layer Identi�cation (PLI)
To enhance authenticity, most of the solutions o�ered so far impose
modi�cations to the protocol. Cryptographic solutions such as
message authentication codes (MACs) [43] are not ideal due to
limited length of CAN frames and the computational constraints
of ECUs. The PLI technique is potentially free of these drawbacks,
while it avoids changing the CAN protocol.

PLI takes into account the hardware and manufacturing incon-
sistencies that cause minute and unique variations in the signalling
behaviour of devices, and translates them into features that can
provide reliable identi�cation [50]. A typical PLI system includes
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three major steps, namely, data acquisition, feature extraction and
decision [18]. The data acquisition converts an analogue voltage
to a digital signal using an analogue to digital converter (ADC) for
further processing; the feature extraction module performs the task
of acquiring �ngerprints for the devices by leveraging the statistical
or physical layer characteristics of the signals collected in the pre-
vious step and using them to �nd features; and lastly, the decision
module compares the extracted �ngerprints from the training data
with the ones from the test data using a speci�c distance metric and
de�nes a threshold for �nal identi�cation decision making based
on how close the features are. Fig. 1a illustrates an overview of a
PLI system. Interested readers are encouraged to read about PLI
and its applications in [14, 17].

Our proposed scheme SIMPLE also leverages PLI. Among the
diverse techniques that are available, we use the Fisher Discrim-
inant Analysis (FDA) transform, which is a dimension reduction
technique, followed by a distance calculator named Mahalanobis
distance [2], so as to extract and process relevant features from the
analog signals and use them as the discriminators in our system.

2.3 Related work
Existing PLI systems can be categorized into timing-based methods
and voltage-based methods.

Timing-based. CAN messages are typically sent in a periodic
manner. The analysis on the interval/frequency of the messages
might be able to show the �rst evidence of intrusion. Müter et
al. [37] use entropy to analyze the randomness of intervals. Moore et
al. [35] proposed a data-driven inter-signal arrival timesmodel to de-
tect injection attacks. Abnormality detection sensors [38] evaluate
the payload length, frequency or correlation, etc. Taylor et al. [44]
proposed to detect anomalies of the sequence data transmitted from
an ECU by applying neural networks. A similar work [31] auto-
matically classi�es the �elds in CAN messages and measures valid
ranges based on previous data, which is computationally expensive.
Ying et al. proposed [53] TACAN based on shared crytographic keys
and inter-arrival times, which introduced computational overhead.
Cho and Shin [8] proposed clock skew based �ngerprints for their
PLI-based IDS, CIDS. However, the timing-based approaches can be
easily defeated by an adversary imitating the target ECU’s timing
behavior [10, 40]. Avate�pour et al. [1] train a neural network to
capture the features in both frequency and time domain, which is
impractical for a CAN bus because of an ECU’s weak computational
ability.

Voltage-based. The voltage output nature di�ers among the
transmitters of ECUs, enabling voltage-based approaches to detect
the intrusion and identify its source. Murvay et al. [36] took the
�rst step towards voltage identi�cation, which is later extended
by several contributions such as Viden [9], VoltageIDS [10], and
Scission [29]. These methods construct and update voltage pro�les
for the ECUs and use them for identi�cation of malicious messages.
However, the e�ect of the variations of voltage power source and
ambient temperature on these features is non-negligible and has
not been taken into consideration. That is, the life-span of the valid
features would be limited to a short interval as the source voltage
would be easily a�ected by any change in ambient temperature.
This is the reason the features need to be updated every time the

Table 1: Comparison among voltage-based approaches in
sampling rate (S.R.), false negative (F.N.), true possitive (T.P.),
time complexity (T.C.), signal type (S.T.), environmental
compensation (E.C.), secure feature update (S.F.U.), unknow
ECU (U.E.).

Viden [9] VoltageIDS [10] Scission1 [29] SIMPLE
in lab

SIMPLE
in vehicle

S.R. 50 KS/s 2.5 GS/s 20 MS/s 500 KS/s 1 MS/s
F.N. 0.2% 3.52% 0.15% 0% 0.899%
T.P. 99.8% 96.48% 99.85% 100% 99.1%
S.T. CANH&L Di�. Di�. CANH&L Di�.
T.C. �(n2) �(n logn) �(n logn) �(n) �(n)
E.C. No No No Yes Yes

S.F.U. No No Yes Yes Yes
U.E. No No No Yes Yes

vehicle is restarted, which motivates applying adaptive pro�le up-
dates [9]. In fact, because the features smoothly evolve through
time, Viden has to keep track of these changes by updating their
pro�les through time, which makes Viden vulnerable due to the
lack of secure training data that updates with time.

Most existing works (e.g., [9], [8], etc.) in both timing and voltage-
based categories rely on multiple messages to make detection and
identi�cation decisions. We found that, such reliance on multiple
messages makes them vulnerable to a variance of Hill-climbing-
style attack [42], in which the adversary is able to inject carefully
chosen fraction of malicious messages without being either de-
tected or identi�ed. Furthermore, the adversary is able to iteratively
increase the injection rate so that the detection and identi�cation
decision threshold can be shifted. We will demonstrate such vulner-
ability later in Sec. 4. Even though VoltageIDS and Scission does not
rely on multiple messages, it is not motivated by the vulnerability
of multi-frame-based IDS techniques. Besides, they exploit features
in both time and frequency domain, which leads to high complexity.

Our proposed voltage based PLI scheme, SIMPLE, chooses fea-
tures only from the time domain and avoids the complexity of fre-
quency domain transformations. It performs a single-frame based
detection that is not vulnerable to changes in ambient conditions.
Hence, we avoid the unnecessary feature retraining every time the
vehicle gets restarted. Both are accomplished by using a higher
resolution and higher sampling rate sampler; i.e., a cost-vs-security
tradeo� is made to detect an attack using a single frame. Specif-
ically, while Viden [9] only needs to acquire a few samples per
frame over multiple frames, and thus needs only a low-rate sampler,
SIMPLE needs multiple samples for a single frame and thus requires
a high-rate sampler. Nevertheless, SIMPLE is still practical since a
su�ciently high resolution and high sample-rate sampler can be
acquired for less than $10 per CAN bus [45]. Additionally, unlike
Viden, we do not require a separate intrusion detection system (IDS)
next to our identi�cation system. Unlike CIDS [8], we can handle
both periodic and aperiodic messages. Finally, our approach incurs
lower overhead and cost than VoltageIDS [10], as we require fewer
samples and a lower sampling rate.
1Scission used a slightly di�erent setup for the prototype in which each ECU has a dif-
ferent stub length (2.45 - 13 meters) necessitating stub terminations. This imperfection
in CAN bus topology can e�ect the voltage pro�le of the ECUs and bias the results
knowing that the strongest features in Scission are extracted from the overshoot at the
rising edge. In the setup used by SIMPLE however, the length of stubs are all identical
and short enough (less than 5 cm) to be negligible.
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Figure 1: (a) Components of a physical layer identi�cation (PLI) system. (b) A CAN frame captured from a Nissan Sentra. (c)
Masquerade attack model on a CAN bus. ECU-2 is compromised by an adversary and reprogrammed to forge the message ID
of ECU-1 and send spurious frames instead it. (d) SIMPLE runs on a device which is placed on the CAN bus just as other normal
ECUs.

All the voltage-based identi�ers given in Table 1 illustrate a non-
zero value for the error rates. As small as these values are, not even
a frame can go wrong for safety critical applications such as air
bags. Further e�orts like augmented solutions need to be taken to
provide the required security for such applications. SIMPLE has the
lowest time complexity (Table 1), while Viden takes �(n2) time for
each update due to the use of the Recursive Least Squares algorithm.
VoltageIDS and Scission need �(n logn) time because they perform
Fourier Transforms in every update to obtain frequency domain
features.

3 ATTACK MODEL
We consider an adversary capable of compromising one or more2
ECUs either remotely via wireless interfaces (e.g., the telematic
port [19, 33]) or physically (e.g., via OBD-II [30]). Once compro-
mised, the ECU is under full control of the adversary and becomes
an attacker ECU. With the full control, the adversary can either
suspend the ECU or even re-program it to inject arbitrary messages,
e.g., use arbitrary message IDs to impersonate another ECU and/or
transmit messages containing forged/spurious data 3. These mes-
sages are called attack messages. For example, the attacker could
compromise an ECU belonging to the entertainment system, and
send out “accelerate” or “shut down engine” commands under a
di�erent message ID (which is normally sent by the engine con-
trol ECU), so as to spoof the engine to carry out wrong actions.
We assume that the adversary is aware of the IDS that is installed
on the CAN bus and the adversary is able to implement the same
algorithms as the IDS. The adversary can also obtain necessary
information that can be measured on the CAN bus (e.g., timing
and voltage information of other ECUs) using the compromised
ECU. Note that this is also assumed by CIDS [8] and Viden [9]. We
additionally assume that the ECUs are equipped with temperature
sensors with secure measurements.

Furthermore, there are two types of objectives that the adver-
sary may wish to achieve for an impersonation attack. First, it

2Our Hill-Climbing style attack requires compromising only one ECU to work. While
SIMPLE can defend against multiple compromised ECUs.
3Similar attack goals have been considered in previous works [8, 9]

may choose to pursue dominant impersonation where at the end
a majority of the messages with the targeted message ID are at-
tack messages; or it can choose to pursue complete impersonation
which is even stronger as the adversary is now able to replace all
legitimate messages with attack messages. The methods to achieve
these attacks will be detailed in the next section. We assume that
the attacker can either directly inject its own frame onto the CAN
(when no other ECUs are transmitting) or preventing another ECU
from transmitting. The latter can be done by synchronizing to the
regular messages on the CAN bus and play attack messages right
before the one that a legitimate ECU is about to send [34], or by
contending with the latter during the arbitration phase [4, 7].

Note that, the attacker ECU could also inject false data under its
own ID, however this is not as e�ective as impersonation, because
CAN messages are addressed by its message IDs which typically
represent the data type (e.g., an engine ECUwould ignore a message
with one of the IDs belonging to an entertainment ECU). Hence,
false data injection attack detection is out of scope of this work.
Detection of denial-of-service attacks, such as the bus-o� attack [7]
will also be studied in the future.

4 VULNERABILITY OF MULTI-FRAME BASED
FINGERPRINTING SYSTEMS

In a multi-frame based �ngerprinting system, a batch of multiple
frames has to be collected in order to perform one update of the
�ngerprinting record/threshold. Such �ngerprinting schemes are
vulnerable to the so-called Hill-climbing-style attack, where the
adversary is able to control the quantity of attack frames among the
batch of frames collected, so that the attacker ECU can both hide its
identity and shift the �ngerprinting decision threshold gradually.
Speci�cally, from the batch of n collected frames, onlym of those
are attack frames. The injection ratio r = m/n can be carefully
chosen for each step, so that the IDS cannot identify the attacker.
More importantly, the �ngerprinting decision threshold will be
shifted via raising r iteratively, so that eventually, the attacker will
be able to impersonate the legitimate ECU.

In this section, we will use the Viden �ngerprinting system [9]
as our case study to demonstrate how multi-frame based schemes
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Figure 2: (a) The attack tree against Viden’s �ngerprinting
system. Hill-climbing-style attacks towards (b) Dominant
impersonation and (c) Complete impersonation.

are vulnerable to the Hill-climbing-style attack. In the system, two
�ngerprinting schemes are employed independently in parallel: (i)
Clock-based IDS (CIDS) [8] that tries to estimate the clock skews of
di�erent ECUs; and (ii) Voltage-based Identi�cation (Viden) [9] that
tries to abstract the voltage output characteristics. Both schemes
collect a batch of frames, calculate the momentary features that
ideally are constant over time, and then accumulate the latest fea-
ture with all historical ones. Because of the constancy of features,
the cumulated quantity appears linear over time; hence the slope
of it can be regarded as the pro�le of an ECU (i.e., the clock-skew S

and the voltage pro�le �). Details of the two works are re-stated in
Appendix A. Here, we mainly focus on the �ngerprinting system
and we leave the discussion about the intrusion detection system
to the end of this section.

As discussed in Sec. 3, the adversary can pursue the dominant
impersonation or the complete impersonation. It will be demon-
strated in the rest of this section that the former is easier to succeed,
whereas the latter is stronger. This is summarized in an attack tree
(Fig. 2a).

4.1 Dominant Impersonation
An example of the dominant impersonation is given in Fig. 2b,
where the attack frames are injected right after the legitimate frames
so that the attack frames will be in charge of the vehicle for most of
the time [12]. With the carefully chosen injection ratio r for each
step, the adversary will be able to evade identi�cation 4. Note that
CIDS does not work because the periodicity of frames is disrupted,
thus the adversary only has to defeat the voltage-based scheme [9]
at this point.

Let us suppose the adversary compromises ECU A and runs the
voltage-based �ngerprinting scheme on it for k0 steps. The adver-
sary decides to start the intrusion at step k0+1 to impersonate ECU
B. In each of these future steps, the voltage-based �ngerprinting
scheme will observe a batch of n mixed frames, consisting ofm at-
tack frames sent from ECUA and n�m legitimate frames sent from
ECU B, both with B’s target ID. The adversary wants to enlarge
m as much as possible, while it does not want the �ngerprinting

4For dominant impersonation, our goal is not to evade detection since it may be
trivially detected based on the periodicity of CAN frames. But complete impersonation
can evade both detection and identi�cation.

scheme to identifyA. To do so, the injection ratio r has to be chosen
carefully.

Given the learnt voltage pro�les �A[k � 1] and �B[k � 1] from
the previous k � 1 steps, the adversary derives the desired voltage
pro�le, �B[k], of the mixed frames for the next step (i.e., k-th step)
by solving the following optimization problem:

minimize
�����B[k] � 1

2

⇣
�A[k � 1] + �B[k � 1]

⌘����
subject to |�B[k] � �B[k � 1]| < |�B[k] � �A[k � 1]| ,

(1)

where the objective is to make �B[k] as close to the threshold
(the average of two pro�les) as possible. With the constraint, the
adversary makes sure that �B[k] is still closer to �B[k � 1] than
�A[k � 1], so that the �ngerprinting scheme regards B as the source
of all the n frames. Eq. 1 yields

�B[k] =
1
2

⇣
�A[k � 1] + �B[k � 1]

⌘
+

� · sign(�B[k � 1] � �A[k � 1]),
(2)

where � is a small enough factor for satisfying the constraint. See
Fig. 3a for its illustration, from which we see that the pro�le of the
mixed frames is sitting below the decision threshold by � , fooling
the �ngerprinting scheme into believing that the intrusion source
is B. Furthermore, the threshold is shifted a bit closer to A’s pro�le
after each step, so is the pro�le of B. This is done by gradually
increasing the injection ratio r .

The relationship between the desired pro�le �B[k] and the in-
jection ratio r [k] of k-th step is

�B[k] = r [k]�A[k � 1] + (1 � r [k]) �B[k0], (3)

where �B[k0] is the ground truth pro�le of B because the intrusion
started at step k0 + 1; �B[k] is the pro�le of the n mixed frames at
step k , and k > k0. The detailed derivation of Eq. 3 can be found in
Appendix A.2. Finally we have the maximum injection ratio

r
⇤[k] = �B[k] � �B[k0]

�A[k � 1] � �B[k0]
. (4)

With the maximum injection ratio, the adversary will be able to
inject as many attack frames as possible at step k while avoiding
identi�cation. Since the legitimate ECU B is identi�ed as the source,
Viden accepts this batch of frames and updates �B to be a bit closer
to �A. With the updated pro�le, the adversary will be able to get an
even higher r , thus injecting more and more attack frames at each
future step. Hence, the injection ratio r will be able to reach 1/2.
Note that the attack will not trigger the random forest classi�er of
Viden because the attack will not bring two pro�les close to each
other; instead, it is only the pro�le of the legitimate ECU that gets
shifted (not the pro�le of the attacker ECU).

The adversary can of course continue shifting the pro�le, i.e., r
is approaching one. In the dominant impersonation, it is unneces-
sary to do so because it will not increase the amount of time that
the attack frames take e�ect on the vehicle (Fig. 2b). However, it
becomes necessary in the complete impersonation.

4.2 Complete Impersonation
Although the dominant impersonation is strong enough to let the
vehicle follow what the attack frames instruct, there are still some
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during the arbitration phase.

legitimate frames being transmitted on the CAN bus and instructing
the vehicle to behave as normal. This con�ict may cause suspicion.

As a result, the adversary wants to block B from sending any
frame, i.e., r = 1, by contending with the legitimate ECU B during
the arbitration phase, using a forged and smaller identi�er (than
B’s), making B lose the contention.

4.2.1 Blocking the legitimate frames. In order to block the legiti-
mate frame, the adversary has to know beforehand when the legiti-
mate frame will be sent. To do so, the attacker ECU A learns the
time skew SAB of the legitimate ECU B, just as a CIDS’s ECU (say
C) that learns of SCB. After the learning phase where i legitimate
frames have been sent, A calculates the moment when the next
frame will be sent as

t
(i+1)
A

= t
(i)
A

+T · (1 + SAB), (5)

where T is the preset interval between two legitimate frames. Sim-
ilar results were derived by two previous works [10, 40]. The dif-
ference is that here the clock-skew imitation is used to block the
legitimate frames, rather than directly inject the attack frames. An
example of Eq. 5 is given in Fig. 4, in which A learns the time skew
of B as SAB = (10.03 � 10)/(10) = 0.003. Meanwhile, CIDS learns
it as SCB = (10.01 � 10)/10 = 0.001. According to Eq. 5, at the A’s
time 10.03 + 10 + 10 · 0.003 = 20.06 (or B’s time 10 + 10 = 20), A
blocks the legitimate frame.

The blocking is done by taking advantage of the arbitration phase.
In order to block a legitimate frame at t (i+1)

A
, the attacker ECU A

simply sends a frame with a smaller identi�er than the legitimate
ECU’s. An illustration of the contention is shown in Fig. 3b.

The contention will not trigger the “bit-error” because the CAN
bus standard [4] does not count the wrong bits in the identi�er
�eld as bit-errors. Also, the feasibility of �ipping a bit has been
demonstrated by the bus-o� attack where the adversary is able to
disable a targeted ECU by letting the attacker ECU �ip a bit in the
data �eld of the frames sent by the targeted ECU [7].

4.2.2 Defeating the clock-based scheme. In addition to defeating
the voltage-based �ngerprinting scheme, now the adversary has to
defeat the clock-based scheme [8] at the same time in the complete
impersonation. This is because the periodicity of the frames still
exists when the legitimate frames are blocked, and such periodicity
can be used by CIDS to do identi�cation. Since t

(i+1)
A

has been

0

0

0

t

ECU A

CIDS

20

19.96 20 20.02

20 20.0610

9.98 10 10.01

10.03
10 Arbitration

occurs

�

ECU B

Figure 4: Complete impersonation zoomed-in from Fig. 2c.
The three rows of numbers represent the time that di�erent
ECUs report.

occupied for blocking, the adversary has to inject the attack frame
� seconds later. The injection o�set � is illustrated in Fig. 4 and it
can be determined as follows.

Similar to Sec. 4.1, the attacker ECU A has been learning the
clock o�set O as well as the clock skew S of the legitimate ECU B

for k � 1 steps. Given the maximum injection ratio r⇤[k] derived
from Eq. 4, the maximum injection o�set � [k] can be obtained by
solving the following optimization problem:

minimize
����SB[k] � 1

2

⇣
SA[k � 1] + SB[k � 1]

⌘����
subject to |SB[k] � SB[k � 1]| < |SB[k] � SA[k � 1]| .

(6)

Similar to Eq. 1, the adversary tries to change SB[k] as much as
possible but not too far. In practice, because of the relativity of
clock skew, SA[k � 1] = 0 and SB[k � 1] is the clock skew from the
perspective of A. Eq. 6 yields the optimal desired clock skew SB[k]
that is similar to Eq. 2, which we will omit due to the page limit.
Then � [k] can be derived from its relationship with SB[k], which is

SB[k] =
O[k � 1] + � [k]r⇤[k]n/(n � 1)

t[k] � t[k � 1] , (7)

whereO[k � 1] is the clock o�set of the previous step. Readers may
go to Appendix A.1 to see why Eq. 7 holds.

It should be noticed that we choose such � [k] in order to evade
the identi�cation of CIDS, not its detection. Of course, the adversary
can always evade detection by adding the detection thresholds
(Eq. 14) as constraints to Eq. 6. In Sec 7.2.2, however, we evaluate
only the identi�cation evasion due to experimental data limitations.

4.3 Attack Evaluation
We use real-world data collected from vehicles to evaluate the at-
tacks against the voltage-based and the clock-based identi�cation
schemes. Results show that the attacker ECU was able to imper-
sonate the legitimate ECU and was identi�ed by neither of the
schemes. Meanwhile, the pro�les of the legitimate ECU was shifted
to the attacker ECU pro�le gradually. Moreover, the number of
steps required to achieve dominant impersonation increases with
the di�erence between two pro�les. Refer to Sec. 7.2.2 for the details
of the attack evaluation results.

4.4 Discussion
IntrusionDetection System. In Viden’s �ngerprinting system [9]
there is an underlying IDS that detects the intrusion and submits
the suspicious frames to the �ngerprinting schemes. However, Cho
et al. did not specify what (type of) IDS is used, thus we do not
specify the IDS in this work, either. Instead, we assume that as long
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as the �ngerprinting result is the legitimate ECU, the vehicle will
behave normally and no one gets suspicious. Note that if the IDS is
based on multiple frames, it is also vulnerable to Hill-climbing-style
attacks.

Arbitrary attack targets. In the previous example, we assumed
that ECU A and B’s pro�les are adjacent. In general, there may
be another ECU C, whose pro�le is in between A’s and B’s, in
which case Viden would regard C as the source of intrusion and
an alarm may be triggered. To avoid so, the adversary can only
impersonate the legitimate ECU that has the nearest voltage pro�le
to the attacker ECU’s pro�le. Such limitation can be addressed
by enabling the adversary to imitate other ECU’s voltage pro�le,
e.g., changing the temperature. This can be achieved by extra code
executions or increasing the CPU’s clock speed.

Retransmission. Because the CAN bus protocol [4] did not
specify what an ECU would do if it loses a contention during the
arbitration phase, we assumed in Sec. 4.2 that it would simply give
up this frame. We argue that even if retransmission occurs once the
CAN bus becomes idle in some speci�cations/implementations, the
adversary can always choose to pursue the dominant impersonation,
which does not involve any contention.

Voltage/timing pro�le knowledge. When the compromised
ECU does not have an analog to digital converter (ADC), or a
precise clock embedded, the adversary cannot calculate the op-
timal/maximum injection rate r . It can, however, be conservative.
That is, it can �nd out the common minimum distance between
pro�les in car ECUs and use that as an empirical value to get a min-
imum injection rate. The attack will then take more time to succeed
(or probabilistically). From our real-world experiment, however,
r can still be high even with a small distance. See Fig. 10 for an
example, where the distance is just 0.05 but r can still be as high as
8/28 at the �rst step.

5 SECURE PLI FOR CAN
In Sec. 4, we showed that existing �ngerprinting schemes are vul-
nerable to the Hill-climbing-style attack due to their dependence
on multiple frames to make one detection or identi�cation deci-
sion. In this section, we will describe our �ngerprinting scheme,
SIMPLE. Since it only requires a single CAN frame to perform the
identi�cation, it is immune to the Hill-climbing-style attack.

The overview of SIMPLE can be found in Fig. 5a, where the
samples collected from the entire frame (identi�er as well as the
data frame) are used for generating features, dimension reduction
and eventually are fed into a Mahalanobis distance calculator. On
the CAN bus, the location of SIMPLE is shown in Fig. 1d where
it listens to all the tra�c. Beyond securing against Hill-climbing-
style attacks, another bene�t of SIMPLE is the ability to prevent
malicious frames from having their intended e�ect by intentionally
introducing errors that will cause ECUs to ignore the frames.

5.1 Feature Extraction
As an essential step of �ngerprinting, feature extraction should
not be time consuming and should reduce or eliminate the domain
transformations as much as possible. We �rst, select proper features,
and then apply a dimension reduction transformation which even-
tually saves computational power. For the �rst step, we intend to

use the sample points after high-to-low or low-to-high transitions
in a CAN frame. After detecting such a transition in the line volt-
age, we use Alg. 3 to separate the high/low sample points, named
hereafter as bins. Next, we apply an intra-frame average on the
bins to increase the signal to noise ratio (SNR) given at Alg. 2.

In the state-of-the-art IDSs, usually inter-frame average of CAN
frames is used to achieve su�ciently high SNR features, which
requires multiple frames for �nalizing the detection process; oth-
erwise, the identi�cation performance will be degraded. Fig. 5b
illustrates the di�erence of inter-frame average of features with
intra-frame average of features. To be more speci�c about the intra-
frame averaging (our method for achieving a high SNR), sample
points from a CAN frame are shown in Fig. 5c, where the S11 and
S
2
1 and any other �rst sample point after a high-to-low transition
throughout the frame will be averaged together and create the �rst
feature, denoted as F1 here. The same process will be repeated for
generating the second feature, F2, by averaging all the second sam-
ple points after all of the high-to-low transitions within a single
CAN frame. We extract eight features from the low bins and eight
from the high bins; and the reason behind not proceeding further
is that increasing the number of features does not enhance the
accuracy of our work based on the experiments. Choosing fewer
than eight features however increases false positive/negative rates.

We collect signals from high/low bins of CANH/CANL at the
same time which aggregates to 32 features overall. The feature
selection process is based on simple operations all in the time
domain, which eliminates the need for intricate operations. This
enables us to e�ciently identify the source of a frame on a single-
frame basis analysis.

Next, we perform Fisher-Discriminant Analysis (FDA) [2] in
order to derive a transformationW to reduce the dimension of
the data. In fact, FDA captures the most discriminant information
in the features. It has been used with identi�cation/classi�cation
purposes for instance to discriminate human biometrics [54]. An
optimal transformation matrix,W , is the main output of the FDA
algorithm which focuses on maximizing the separability of known
categories in a classi�cation problem.W is used for projecting the
features, F , to a new set of features, F ,

F =W ⇥ F . (8)

5.2 Mahalanobis distance calculation
Mahalanobis distance is a measure of calculating the distance of a
point from a distribution. If we associate a distribution to a set of
data during the training phase with mean and covariance of µ and
�, we can next calculate the distance of a new set of observations,
F during the test phase, from that distribution by the following
de�nition of Mahalanobis distance [2]:

d =

q
(F � µ)T ��1 (F � µ). (9)

In this context, Mahalanobis distance can be used as a measure of
similarity between the features and used as a score to match and
compare the features generated from an uncertain origin to the
templates belonging to the legitimate devices.
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Figure 5: (a) Defense mechanism in a chronological perspective. (b) Inter-frame average of features vs. intra-frame average of
features. (c) Generating features from a CAN frame. (d) The general diagram for building automotive grade ECUs using a CAN
transceiver and a TM4C123GXL (TI) controller (the necessary side circuitry for proper functionality of the ICs is omitted).

5.3 Training and Testing
There are two main steps for designing SIMPLE, �rst, training and
testing phase, which results in thresholds for identi�cation of each
device, and next, real-time identi�cation using these thresholds.

Training Here we generate an o�ine database of legitimate
features for each device. These templates are calculated as explained
in Sec. 5.1 using 200 frames from each device. Data alignment
(traditionally used to eliminate the e�ects of the lags in data) is not
necessary because the selected features in Sec. 5.1 inherently take
care of it by selecting the sample points after transitions which
leads to their alignment.

Testing For every single record, the Mahalanobis distance (Sec.
5.2) of its feature is calculated from template features of the device
that this frame normally should be emitted from. If the distance is
not close enough, it will be identi�ed as a malicious frame trans-
mitted by a spoofed ECU. A binary search algorithm [51] is used to
�nd the threshold for these distances by looking for EERs. EER is
a common measure of performance of biometrics systems which
indicates a condition of the system where the number of false posi-
tives is equal to the number of false negatives [3]. The EER point,
corresponds to the thresholds that we need as a distance metric.
An ideal system would have an EER of 0 %.

Real-time Identi�cation During the identi�cation, every sin-
gle frame needs to be tested to establish the frames’ provenance.
To do so, the same feature extraction process is applied to the data
frames and the output is compared to the feature templates that are
already generated and logged in the training phase. If the features
of the frames under test, match as close as needed to the template of
the device that they are claiming to be transmitted from, they can
be marked as legitimate and mounted on the bus. This is measured
using the threshold values that are generated in the testing phase.
After the identi�cation is over, the valid frames are used to securely
update the template of the device that they belong to, over time.

Here is a summary of SIMPLE, with its details given at Alg. 4.

(1) Feature extraction and FDA transformation, Alg. 3 and 2.
(2) Training feature templates for each ECU, Alg. 4.
(3) Associating a threshold to each ECU by comparing the fea-

ture templates using Mahalanobis distance metric, Alg. 4.
(4) Identifying the origin of a single frame based on the prox-

imity of its distance from the template of the device, to the
device’s prede�ned threshold.

(5) Updating the feature templates of the devices after con�rm-
ing validity of the origin of a message.

5.4 Time Complexity Analysis
Referring to the algorithms in Sec. 5.3, the time complexity of
SIMPLE is limited to: generating the features which depends on
the number of sample points within each frame that grows with
time n as � (n), followed by calculating the Mahalanobis distance
of this feature from the template of the ECU that it claims to be
emitted from, � (1), and �nally a comparison with the threshold
of that ECU (generated o�ine in the training phase), � (1). Hence,
the overall complexity of the real-time IDS SIMPLE is � (n).

5.5 Intrusion Prevention
Since SIMPLE is able to determine that a frame is malicious before
its transmission ends, it can e�ectively prevent the attack frame
from being received (acted upon) by other ECUs. There are two
possible ways to achieve this. First, upon detecting a malicious
frame SIMPLE can transmit an Error Frame (signi�ed by an error
�ag of six dominant “0” bits and then an error delimiter) which
will cause non-compromised ECUs to ignore the frame. Second,
SIMPLE could introduce errors in the frame that would cause the
intended recipient devices to ignore the frame. For example, it can
force the bus into the dominant state for consecutive and/or random
bit periods (equivalent to sending 0s) when the body of the frame
(including CRC) is being transmitted; this can fail the CRC check (all
ECUs are obligated to perform), which results in the transmission
of an Error Frame that will cause all ECUs to ignore the frame. For
CAN frames with extended identi�ers, in the best case scenario
with only one byte of data, it will take 1.575 �s to prevent the attack,
while in the worst case of eight bytes, it will take 2.975 �s to prevent
the attack in a device with 80 MHz of processing power.

6 ORIGIN OF FINGERPRINT VARIATIONS
In the above section, we introduced the basics of our PLI system
when the �ngerprints are stable over time; existing work in the
area indicates that �ngerprints are stochastic. In this section, we
undertake experiments to identify the factors that cause �ngerprint
variations and propose a method to compensate for their e�ects.

6.1 Voltage and Temperature E�ects
Changes in temperature and supply voltage are the main potential
factors that could cause drift in the features that we extract for
�ngerprinting in our IDS [9]. In practice, a vehicle experiences
di�erent environmental conditions; e.g., it is hot when running and
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colder when turned on after a cold night. Here we try to evaluate
the impact of these factors and compensate for them.

6.1.1 Impact of Supply Voltage. We look for a relationship between
features and voltage supply so that we could scale the features taken
at a voltage di�erent than the voltage level used in the training data,
and compensate for variations of Vcc in a realistic scenario. That is,
we want to discover the relationship between the features generated
from the new voltage levels, Vcc = Vsr, and the features generated
on Vcc = Vtg, which are to be called the source domain and target
domain, respectively. We use a linear regression model for all 32 fea-
tures coming from high/low sample points of CANH/CANL during
training phase and estimate the scaling parameters so as to trans-
form the features from each source domain up to the target domain.
These linear scaling parameters allow us to remove the e�ect of
change in the voltage level by transferring all the features to the tar-
get domain. Later in the testing phase, after the features get gener-
ated for each frame, they get scaled up to the target domain using the
scaling parameters that were estimated in training phase. Last, the
conventional FDA-followed-by-Mahalanobis-distance-calculation
is performed. Eq. 10 shows this linear regression.

Ftg = a
f
0 ⇤ Fsr + a

f
1 , (10)

where Ftg is the vector of features on the target domain, Fsr is the
vector of features on the source domain, and a

f
0 and a

f
1 are the

scaling parameters for feature set f which can be one of the four
di�erent combinations of features (high/low bins of CANH/CANL).

Now we need to leverage this knowledge to upgrade our IDS in a
way that it accounts for variations in the supply voltage level. To do
so, we extracted features on supply voltage levels that already had
training data available and scaled them to a speci�c target voltage
domain (to avoid the drift in the �ngerprints caused by variations of
the voltage level). Next, we need to be capable of repeating the same
process on supply voltage levels for which the training data is not
available. This is leads to a generalized solution in the following.

Compensating for supply voltage changes. In the previous
discussions, we de�ned di�erent voltage domains for generating
features and exploited regression as a simple tool for mapping the
features from one domain to another. Now we apply the idea to our
scenario and estimate matrices A and B, as n ⇥ 1 matrices, where
the rows correspond to the voltage level varying in the interval
of [3.00, 3.25] V with steps of 50mV to cover the operating range
of our ECUs. The column in A and B hold the values of af0 and af1
explained in Eq. 10. Depending on the type of feature f (low/high
of CANH/CANL), the A and B values would be:

A =
h
a
f
0 (�1),a

f
0 (�2), · · · ,a

f
0 (�n )

i|
,

B =
h
a
f
1 (�1),a

f
1 (�2), · · · ,a

f
1 (�n )

i|
,

(11)

assuming there are n voltage levels.
After generating the A and B matrices we �t another linear

regression to elements of each matrix, trying to estimate the cor-
responding âf0 and âf1 for another voltage level in source domain,
�̂ , for which we do not have access to training data. In fact, we are
able to estimate the scaling parameters for mapping the features

from any random voltage level within the operating range of our
device up to the target domain, later validated in Sec. 6.2.

6.1.2 Impact of Temperature. At all rounds of data collection, the
temperature values are collected and stored on a per frame basis
for further analysis. We investigate the possibility of a linear re-
lationship between the features and temperature in a controlled
setup, which emulates the rise of temperature once the engine gets
started. Such a linear relationship can be modelled using Eq. 12,

F = c
f
0 ⇤T + c

f
1 (12)

where F is the vector of features,T is the internal temperature, and
c
f
0 and c

f
1 are the estimation parameters for feature set f which

can be one of the four di�erent combinations of features (high/low
bins of CANH/CANL), later validated in Sec. 6.2.

6.2 Evaluation
An experimental setup is used for emulating the ECUs that are con-
nected via a CAN bus and send messages that are crafted based on
CAN protocol. The setup includes TM4C123GXL micro-controllers
[46] integrated on a TivaC launchpad which are programmed to
send extended CAN (2.0b) messages with 29 bit identi�ers, where
the identi�er and data section for each frame in each round of data
collection are con�gured to be random. These devices have exactly
the same con�guration, have been built by the same manufacturer,
and purchased at the same time. The ECUs send a CAN message
every 1 s with data rate of 110 Kbps, and a USB2523-MCC DAQ
[32] with 12 bits of resolution is used to perform sampling at rate
of 500 Ksps on each channel associated with CANH and CANL. Fig.
7a illustrates the basic setup that was used for data collection.

6.2.1 Results for Constant Voltage with Natural Variations in Tem-
perature. We emulate 10 ECUs in this setup, and collect 10,000 CAN
frames from each. Next we select 2% of the data at random to ex-
tract feature templates for each ECU and generate thresholds. The
remaining data is used for the testing phase. The ECUs take turns to
be the legitimate device in each round of analysis which is indicated
as Case i where the ith ECU is the legitimate one. The EERs and
the thresholds associated with them are reported in Table 3a.

Table 3a shows that the features generated based on SIMPLE
are able to distinguish perfectly between the devices when Vcc is
constant and give EER values close to 0% (the ideal EER value).

6.2.2 Results for Changing Voltage with Natural Variations in Tem-
perature. We collect new rounds of data from devices when the Vcc
is reduced by steps of 50 mV, within the operating voltage range of
the transceivers covering Vcc 2 {3.00, 3.05, 3.10, 3.15, 3.20, 3.25}.
The primary analyses demonstrate as low EER results as 0% which
are not presented here due to space limitations.

Next, we validate the proposed solution provided in Sec. 6.1,
which accounts for the variations in the voltage levels with no data
available for exact scaling parameter training. We collect new data
at di�erent voltages than the ones mentioned above, but within
the operating range of our transceiver (3.3V with drop value of
within 0.3V [46]). Now results of two sample voltage levels, Vsr
= 3.275V and Vsr = 3.225V are given here as representatives of
several rounds of data collection and testing. Tables 3b and 3c give
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the EER values and their corresponding thresholds for after using
the estimated scaling parameters for mapping features from source
domains (no training data) to the target domain (Vtg = 3.30V here).

The Mahalanobis distances of features calculated during test
phase of Case 2 (where all ECUs take turns to send malicious frames
on behalf of ECU02, whereas ECU02 is sending legitimate frames)
are plotted on top on each other as a sample result in Fig. 6b, which
shows the capability of SIMPLE to compensate for Vcc variation.

6.2.3 Results for Constant Voltage with Natural Variations in Tem-
perature. In all rounds of data collection, the temperature values
are collected with an ADC and temperature sensor integrated in the
same TivaC LaunchPad [26], and stored for each frame for further
analysis. We train our templates for each device on di�erent days
with di�erent conditions such as no air conditioning. Fig. 6a is a
sample result when other ECUs take turns doing a masquerade
attack on ECU01. After accounting for the variations in the Vcc
level, and are able to identify the malicious frames with EER of zero,
regardless of the temperature di�erences during the training and
testing phase. Repeating the same analysis on more than 70 rounds
of data collection on di�erent days, and EER of zero for all, allows
us conclude that features used by SIMPLE are robust enough that
they are not a�ected by natural temperature changes up to ±6�C .

7 EXPERIMENTAL VALIDATION
The above in-lab experiments, carried out using commonly avail-
able parts, allowed us to determine the factors that a�ect ECU
�ngerprints. In this section we extend this analysis by examining
emulated ECUs that are architected to re�ect actual automotive
ECUs and built using automotive grade parts.

7.1 In-lab Experiments
Automotive grade transceivers, reported in Table 2, were used for
building ECUs on a CAN bus shown in Fig. 7b. TM4C123GXL mi-
crocontrollers were used as the CAN protocol controller, and TI
voltage regulators for proper powering of the devices (Fig. 5d).

Table 2: Automotive grade transceivers on the CAN bus pro-
totype.

CAN transceiver Manufacturer Quantity Voltage Regulator
TJA1050 [41] NXP 3 TLV1117-50 [23]
NCV7340 [25] ON Semiconductor 1 TLV1117-50 [23]
HA13721 [11] Renesas 2 TLV1117-50 [23]
TCAN332 [24] Texas Instruments 2 TLV1117-33 [23]
MAX3051 [27] Maxim Integrated 2 TLV1117-33 [23]

7.1.1 Results for Varying Voltage with Natural Variations Tempera-
ture. The results of the lab experiments presented in Sec. 6.2.1, illus-
trate that the �ngerprints deviate mainly due to changes in voltage
source values. However, in this setup as in actual automotive ECUs,
Vcc was tightly controlled via a voltage regulator in the powering
circuitry. In order to analyse how voltage drops in Vcc change the
�ngerprints, we tested extreme cases where the Vcc was dropped
with steps of 1 Volt, covering values of Vsr = {8, 9, 10, 11, 12} V
and collected 10,000 sample frames. Next, we did the feature trans-
formation conducted in Sec. 6.1.1 to scale features that were col-
lected in a source voltage level domain (could be any value out of

Vsr = {8, 9, 10, 11} V) up to a target voltage domain of choice (12 V
in this work). Repeating the same procedure as Sec. 6.1.1, we were
able to estimate the new scaling coe�cients (Eq. 10) for a randomly
selected voltage level in the continuous interval of Vsr 2 [8 : 12]
V without collecting training data. Table 3d illustrates the conven-
tional analysis where we collected 10,000 sample frames from the
ECUs on the bus when Vcc = 12.00 V and using K-fold cross valida-
tion for the EER analysis. In results shown at Table 3f, the feature
transformation coe�cients were trained on the data collected at
Vsr = {9, 10, 11} V and validated on the data collected at Vsr = 8.00
V. Fig. 6c shows a sample result, where the data collected from the
ECU with HA13721-02 (HA02) transceiver at Vsr = 8.00 was scaled
up to Vtg = 12.00 and tested against any other existing ECU on
the bus that could impersonate it. As shown in the temperature
graph, natural variations in temperature did not a�ect the proper
performance of SIMPLE.

Table 4: Cross validating a linear regression for modelling
the change of features with temperature.

CAN transceiver Correlation type
with high-of-CAN R2 (round-a) MSE (round-b)

TJA1050 [41] negative 0.9874 0.0002
NCV7340 [25] negative 0.9330 0.0132
HA13721 [11] negative 0.9684 0.0165
TCAN332 [24] positive 0.9812 0.0180
MAX3051 [27] positive 0.9850 0.0168

7.1.2 Results for Constant Voltage with Controlled High Temper-
ature. Here we slightly modi�ed the benchtop setup by using a
cardboard covering and increasing the temperature of the ECUs
using a heat gun during data collection. Fig. 8a illustrates how the
�rst feature of NCV7340 changed over time in the upper graph,
with the changes in the temperature is depicted in the lower graph.
We use the linear regression model given at Eq. 12 to correlate the
features of every device to temperature values, a sample of which
shown at Fig. 8b for NCV7340. The average R2 values of this �tting
model are given at table 4, where the averaging was performed
over di�erent features. R2 values of close to unity for all devices,
validates that there was a linear relationship between the features
and the temperature. We observe both positive and negative corre-
lations between the feature and temperature for di�erent devices,
which is a consistent behaviour based on repetitive experiments on
each device. Next, we tested the trained linear model on another
round of experiment (round-b). The average of mean square error
(MSE) values of estimation of features for round-b given at Table
4 are close to zero which validates the goodness of the �t in this
model. Note that the graphs in this section include the �rst fea-
ture as a representative of the rest of features which show similar
behaviour.

In summary, SIMPLE is robust to variations in temperature and
supply voltage values.

7.2 In-vehicle Experiments
We collected CAN messages from two vehicles, Nissan Sentra 2016
(Fig. 9a) and Subaru Outback 2011 (Fig. 9b), via the OBD-II port
using a Tektronix DPO 3012 oscilloscope shown in Fig. 9c. The
oscilloscope sampled at 50Msps per channel with 8 bits of resolution
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Figure 6: (a) The e�ect of temperature on �ngerprinting process of ECU1. The training is done at Vsr = 3.00V on an ambient
temperature di�erent from the testing phase with voltage level of Vtg = 3.30V. Natural variations of temperature values are
plotted in the lower graphwith respect to CAN frame indices. (b) TheMahalanonbis distance of CAN frames transmitted from
all ECUs from the template feature of ECU02. The source voltage is set to Vsr = 3.225V and Vtg = 3.30V. (c) The Mahalanonbis
distance of CAN frames transmitted from all ECUs from the template feature of ECU:HA02. The source voltage is set to Vsr
= 8.00V and Vtg = 12.00V. Natural variations of temperature values are plotted in the lower graph with respect to CAN frame
indices. The ambient temperature is di�erent at training and testing process, however, it does not a�ect the functionality of
the identi�cation process. (d) TheMahalanonbis distance of CAN frames transmitted from all ECUs from the template feature
of ECU:F collected from Subaru Outback.

Table 3: The EER values and their corresponding thresholds (Mahalanobis distances). ECUi corresponds to the ith emulated
ECUbeing the legitimate device. Tables (b)(c)(e)(f) show thatwewere able to test the frames transmitted fromECUs at di�erent
source voltages without having training data for that source level.

(a) Vcc = 3.30 V

EER Thresh.
ECU1 0% 104.238
ECU2 0% 120.533
ECU3 0% 126.051
ECU4 0.007% 49.325
ECU5 0% 860.617

EER Thresh.
ECU6 0% 245.553
ECU7 0% 592.987
ECU8 0.007% 46.585
ECU9 0.001% 35.116
ECU10 0% 1047.8

(b) Vsr = 3.225 V, and Vcc = 3.30 V

EER Thresh.
ECU1 0% 235.561
ECU2 0% 555.872
ECU3 0% 675.377
ECU4 0% 789.302
ECU5 0% 157.287

EER Thresh.
ECU6 0% 523.422
ECU7 0% 1958.2
ECU8 0% 737.364
ECU9 0% 573.653
ECU10 0% 145.564

(c) Vsr = 3.275 V, and Vcc = 3.30 V

EER Thresh.
ECU1 0% 208.378
ECU2 0% 112.142
ECU3 0% 143.402
ECU4 0% 982.568
ECU5 0% 1290.6

EER Thresh.
ECU6 0% 578.659
ECU7 0% 341.115
ECU8 0.02% 45.741
ECU9 0.05% 44.206
ECU10 0% 1235.5

(d) Vcc = 12.00 V

EER Thresh.
ECU1 0% 9174.5
ECU2 0% 811.913
ECU3 0% 1514.2
ECU4 0% 8926.5
ECU5 0% 868.247

EER Thresh.
ECU6 0% 473.877
ECU7 0% 81.51
ECU8 0% 87.171
ECU9 0% 1589.7
ECU10 0% 501.142

(e) Vsr = 10.00 V, and Vcc = 12.00 V

EER Thresh.
ECU1 0% 5595.2
ECU2 0% 394.373
ECU3 0% 702.926
ECU4 0% 6870.8
ECU5 0% 440.148

EER Thresh.
ECU6 0% 456.227
ECU7 0% 60.7209
ECU8 0% 306.410
ECU9 0% 2296
ECU10 0% 52.9382

(f) Vsr = 8.00 V, and Vcc = 12.00 V

EER Thresh.
ECU1 0% 3.7624e + 03
ECU2 0% 752.0212
ECU3 0.04% 400.4652
ECU4 0% 1.0970e + 03
ECU5 0% 1.1843e + 03

EER Thresh.
ECU6 0% 730.6701
ECU7 2.3% 13.7138
ECU8 0.52% 19.1959
ECU9 0% 1515.6
ECU10 0.08% 861.1623

I

II
III

(a) (b)

Figure 7: (a) Emulated setup for collecting CAN frames from
ECUs. I: MCC DAQ, II: SN65HVD230 CAN transceiver [47],
and III: TivaC micro-controller (emulating CAN controller).
(b) Benchtop CAN bus setup, includes 10 ECUs listed at Ta-
ble 2. Each ECU is designed based on the diagram given at
Figure 5d.

and sent records to a computer via USB connection. We drove the
vehicles for about forty minutes in each round, including local and

highway, and collected over 16,000 frames. The in-vehicle CAN bus
voltage dataset has been made public 5.

In another round of data collection shown at Fig. 9d, we collected
a million CAN messages with timestamps in microseconds using a
PCAN-USB device [22] and the python-can library [48] to collect
these messages while driving the vehicles for about ten minutes.

7.2.1 Ground truth establishment. In the data collected from real-
world vehicles, frames were labelled with IDs only. Since one
ECU can send messages with di�erent IDs, we needed to asso-
ciate these frames with ECUs as well (because SIMPLE aims to
identify ECUs, not IDs). Hence we used Viden and CIDS to as-
sociate IDs with ECUs. Fig. 13 shows these results. For the Nis-
san Sentra, messages IDs fell into the ECU clusters of {374, 375},
{644, 645, 646} , {386} , {533, 534}, and {849}, which will be referred
to as ECUs A, B, C, D, and E hereafter. For the Subaru Outback,
IDs fell into {817, 818, 819, 820}, {593, 594, 595}, {849, 850, 855}, and
{561, 562, 565}, which will be referred to as ECU F through I.

5https://github.com/harry1993/simple-dataset
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Figure 8: (a) The e�ect of temperature on features of
ECU:NCV7340 with respect to time. The features are shown
in the upper graph (blue) and the tempearture values are
given in the lower graph (red). In both cases a data col-
lected in room temperature is given for the sake of com-
parison (black). (b) Modelling the change of features of
ECU:NCV7340 with hot temperature using linear regression
on round-a of data collection. The drift in the features with
respect to time is color coded, starting from dark blue and
ending at yellow.

7.2.2 Hill-climbing-style a�acks results. We evaluated our attacks
on both voltage-based and clock-based �ngerprinting schemes,
using the real-world data. We ran our attacks on ECUs A and B’s
data to demonstrate how A was able to impersonate B. The results
are plotted in Fig. 10. We can observe that B’s pro�le was shifted
gradually to A’s while it never crossed the decision threshold. The
dot markers indicate the moments when the number of attack
frames,m was increased by one, i.e., injection ratio r was increased.
In Fig. 10b, the injection o�set � was also increased because SB was
increased along with r . We plot the results up to only 140 steps due
to the page limit. But from the trend of r , we can see that it will
approach one.

We also calculated the average of number of steps the attack
needed to achieve dominant impersonation. We ran our attack on
every pair of ECUs whose pro�les were next to each other. Since
there were multiple IDs associated with one ECU, we were able
to calculate the average numbers of steps. Results show that the
number of steps increased with the di�erence of voltage pro�les
between two ECUs. E.g, the di�erence of voltage pro�les of ECUs
A and B was 0.05; A impersonating B took averagely 115.5 steps.
B impersonating C required 171.75 steps because their pro�les’
di�erence was 0.089.

7.2.3 SIMPLE’s identification results. After associating frames with
ECUs, we tested SIMPLE’s ability to identify the source of a message
when other ECUs impersonate the legit device. The results in terms
of EERs, with their corresponding thresholds, are given at Table 5.
It should be noted that the di�erential signal was used for feature
extraction for noise cancellation purposes.

7.2.4 Robustness against the Hill-climbing-style a�ack. Unlike pre-
vious CAN IDS schemes, SIMPLE makes an identi�cation decision
for each individual frame. On average, the source of each frame is
correctly identi�ed (and intrusion is detected) with probability of
1 � EER. We note that the hill-climbing style attack is no longer

feasible against SIMPLE, because the identi�cation threshold is
not updated using the features or voltage pro�les across multiple
frames. Rather, it is updated based on supply voltage or tempera-
ture measurements (which are assumed to be secure). Thus, even
if the attacker injects multiple malicious messages it cannot shift
the voltage pro�le. On the other hand, even though the EERs from
our in-vehicle experiments are not 0% in some cases, if the attacker
injects multiple messages, the intrusion will be detected with a
probability that approaches one exponentially. Finally, we note that
it is infeasible for an attacker to generate malicious frames that
exactly mimic the benign frames by replicating their features, since
that will require an Arbitrary Waveform Generator (AWG) [13].

Table 5: The EER values and their corresponding thresholds
(Mahalanobis distances) . The�rst column in each row corre-
sponds to ECU being the legitimate device from Nissan Sen-
tra and Subaru Outback.

Nissan March 24 EER Thresh.
ECU A 0.0372% 66.12
ECU B 0.0342% 113.51
ECU C 0.3766% 19.96
ECU D 2.3824% 26.60
ECU E 0.0238% 1881

Nissan Feb 01 EER Thresh.
ECU A 0% 78.0204
ECU B 0.0297% 123.5658
ECU C 0.2330% 20.0671
ECU D 0.3434% 35.1643
ECU E 0.0202% 2.7189e + 03

Nissan Feb 18 EER Thresh.
ECU A 0.1899% 26.4375
ECU B 0.1151% 48.2290
ECU C 3.7573% 14.5754
ECU D 3.3665% 15.3776
ECU E 0% 5031.4

Nissan Feb 21 EER Thresh.
ECU A 0% 110.5868
ECU B 0.0487% 140.2214
ECU C 0.05% 47.4978
ECU D 0.5250% 39.8275
ECU E 0% 1.5860e + 177

Subaru EER Thresh.
ECU F 0.0913% 122.32
ECU G 0.1101% 27.09
ECU H 4.3496% 13.22
ECU I 5.48% 12.78

7.2.5 Stability analysis. Long term data collection from Nissan
Sentra shows drift in the features within the period of �ve months.
Based on experiments in Sec. 7.1.2, the drift in the features that
were used by SIMPLE was linearly correlated with change in the
temperature. Using the average of the estimated linear coe�cients
derived in Sec. 7.1.2, we �nd the temperature estimates for ECU-A
of Nissan Sentra plotted in Fig. 11. The temperature estimates for
the ECU-A were in the range of 45�C to 52�C, which is a valid range
for ECUs in a running vehicle. The reason of not having original
ECU temperature data is because the ECU locations are hard to
access, so we validate the model by predicting the ECU tempera-
ture from features and see if they fall into a reasonable range.The
average ambient temperature in Tucson, Arizona on the day of
the data collection is also illustrated in the �gure, which shows
a negative correlation between the ambient temperature changes
and the drift in the features. This observation is in agreement with
temperature estimates for ECU-A. ECUs in a vehicle were prone to
drastic temperature changes and that is the reason they had a wide
range of operating temperature. This a�ected the features used by
any voltage-based IDS, hence cannot be overlooked.

8 CONCLUSION AND FUTUREWORK
Wedemonstrated the vulnerability of the existingmulti-frame based
automotive intrusion detection and identi�cation systems to a Hill-
climbing-style attack, which allows a compromised ECU to im-
personate another. We also showed the feasibility of our attacks
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(a) Nissan Sentra 2016 (b) Subaru Outback 2011 (c) CAN bus voltage measurement (d) CAN messages logging

Figure 9: Two experiment vehicles and experimental setups.
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Figure 10: Hill-climbing-style attacks on both schemes.

(&8�Temperature�(VWLPDWHV [°C]
45 46 47 48 49 50 51 52

V
ol

ta
ge

 [V
]

2.18

2.19

2.2

2.21

2.22

2.23

Feature 1 of ECU-A Nissan Sentra

June 9 th

Tamb  = 33.5 °C

June 11 th

Tamb  = 35 °C

June 6 th  p.m.
Tamb  = 30.5 °C

June 6 th  a.m.
Tamb  = 26.5 °C

Feb 21 th

Tamb  = 12.2 °C

Figure 11: Validation of linear relationship between the ob-
served drift in the features of ECU-A fromNissan Sentra and
temperature over the period of �ve months. Tamb shows the
average reported ambient temperature during the day for
each date of data collection from the moving vehicle.

against Viden [8] and CIDS [9]. Next, we introduced SIMPLE, a
novel intrusion detection and identi�cation system for in-vehicle
networks that is immune to this type of attack. Our detection sys-
tem uses physical layer features within a single frame to �ngerprint
the ECUs on a CAN bus. In addition to the reliability and perfectly
distinguishing a legit device from a non-legit one (the average EER
is close to 0% in in-lab, and 0.8985% in in-vehicle experiments),

what makes SIMPLE unique is its practicality. It requires a rela-
tively low sampling rate, a single-frame for detection, and incurs
low timing complexity and overhead. It is also able to account for
the variations in the ambient conditions such as temperature and
the supply voltage values. In future, we are interested in how di�er-
ent versions of �rmware change the voltage output characteristics
of an ECU. Chilenski et al. [6] discuss how the side-channel analysis
of RF emissions relate to the �rmware’s execution.
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A PRELIMINARIES OF VIDEN AND CIDS
In this section of the appendix, we will re-state the details of CIDS
and Viden.

A.1 CIDS
In order to detect the intrusion and identify the attacker ECU, Cho
et al. proposed Clock-based IDS (CIDS) where the clock skews are
used as the �ngerprints of ECUs. This is based on the fact that the
clock in every ECU advances di�erently. The clock skew is de�ned
as the di�erence between the advancing rate of the estimated clock
and the true clock. For example, after t seconds, a clock reports
the elapsed time as t 0 seconds. The skew of this clock is then t 0�t

t .
However, since a CAN frame does not contain a timestamp, CIDS
updates the clock skew by evaluating the arrival timestamps of a
batch of n messages, i.e., the moments when these messages arrive
at the receiver.

Speci�cally, at k-th step (during t[k � 1] to t[k]), n arrival times-
tamps (ai , for n = 1 . . .n) are recorded. The interval between i-th
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and i � 1-th arrival timestamps is Ti = ai � ai�1. CIDS calculates
the upper and lower control limits L+[k] and L�[k] as follows:

µT [k]  
1
n

n’
i=1

Ti , (13a)

O[k]  1
n � 1

n’
i=2

ai � (a1 + (i � 1)µT [k � 1]), (13b)

Oacc [k]  Oacc [k � 1] + |O[k]|, (13c)
e[k]  Oacc [k] � S[k � 1]t[k], (13d)

µe [k]  
1
k

k’
i=1

e[i], (13e)

�
2
e [k]  

1
k

k’
i=1

(e[i] � µe [k])2, (13f)

L
+[k]  max


0,L+[k � 1] + e[k] � µe [k]

�e [k]
� �

�
, (13g)

L
�[k]  max


0,L�[k � 1] � e[k] � µe [k]

�e [k]
� �

�
. (13h)

If either of the control limits L+[k] or L�[k] exceeds �L = 5, CIDS
declares a detection of intrusion. If the adversary wants to defeat
the intrusion detection, it can simply add the following constraints
to Equation 6:

L
+[k] < �L (14a)

L
�[k] < �L (14b)

With the accumulated clock o�set Oacc , the identi�cation error
e[k] and the elapsed time t[k], a linear parameter identi�cation
problem can be formulated as:

Oacc [k] = S[k] · t[k] + e[k], (15)

where the clock skew S[k] (i.e., the slope) can be learnt using the
Recursive Least Squares (RLS) algorithm. The slope S[k] is viewed
as the norm clock behavior that CIDS uses to determine the ex-
pected timing behavior of the legitimate ECU. See Figure 12 for an
illustration of these terms.

A.2 Viden
Since CIDS can deal with only the case when the messages are sent
periodically, Cho et al. proposed the Voltage-based attacker identi�-
cation (Viden) [9] that learns the voltage output of the transmitters
as the �ngerprints of them. Cho et al. assumed there is a perfect
underlying IDS that detects intrusions in the �rst place. Once an
intrusion is detected, the suspicious messages are submitted to
CIDS [8]. CIDS tries to identify the source of these messages. If
CIDS fails, these messages are then submitted to the voltage-based
identi�cation model.

Viden is detailed in Algorithm 1. Whenever � dominant voltage
values are sampled, Viden derives the voltage instance �1...6 from
the latest �R samples (Line 5 through Line 10), representing the
momentary voltage output character. Then, Viden uses the latest
voltage instance to update the voltage pro�le � (Line 11 through

S[k � 1]
t[k � 1] t[k] t

Step k

e[k]

Oacc[k]

Oacc

Oacc[k � 1]

O[k]

0

Figure 12: Accumulated clock o�sets Oacc . From time 0 to
t[k � 1], ECU A sends messagesmA. Its Oacc is plotted in red
solid line. Meanwhile, ECU B sends messagesmB, plotted in
blue solid line. From t[k � 1] to t[k], the adversary mounts
a masquerade attack, where B is suspended and A is pro-
grammed to sendmB instead.mB’s newOacc is plotted in red
solid line, which is di�erent from the norm clock behavior
(the blue dash line). The identi�cation error e[k] indicates
how far the accumulated clock o�set deviates from CIDS’s
expectation at t[k]. Based on e[k], CIDS decides whether the
intrusion exists or not. Furthermore, the slopes of two red
solid segments being similar, provides the identi�cation in-
formation. In other words, this tells CIDS that the attack
messages are sent by ECU A.

Algorithm 1: Update the voltage pro�le � at step k
1 function UpdateDispersion(V , �, P ⇤):
2 return �  � + � (P ⇤ � #(V <�)

#V )3

3 while # of dominant voltage samples collected � � do
4 VH , VL  past �R CANH and CANL measurements
5 �1  the most frequently measured CANH voltages from � values
6 �2  the most frequently measured CANL voltages from � values
7 �3  UpdateDispersion(VH , �3 , 0.75)
8 �4  UpdateDispersion(VL , �4 , 0.25)
9 �5  UpdateDispersion(VH , �5 , 0.9)

10 �6  UpdateDispersion(VL , �6 , 0.1)
11 for x = 1 . . . 6 do
12 CVDx [k ] = CVDx [k � 1] + �[k ](1 � �x [k ]

�⇤
x

)

13 �[k ] = Õ6
x=1CVDx [k ]

14 �accum [k ] = Õk
i=1 �[i]

15 �  The slope of �accum with respect to t learnt by the RLS algorithm

Line 15) and regards it as the �ngerprint of the ECU. Once the
underlying IDS detects an intrusion and submits a batch of sus-
picious messages, Viden runs the same algorithm to compute the
suspicious voltage pro�le �0 and matches it with the voltage pro�les
that Viden has learnt and trusts. Whichever the closest is decided
as the attacker.

More details of Algorithm 1 are given as follows.�⇤{1,3,5} = 3.5V
and�⇤{2,4,6} = 1.5V .CVD {1...6}[0] = 0. � = 0.5. �[k] is the elapsed
time since step k � 1.
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Algorithm 3: Extract upper/lower sample points from a
CAN signal
1 High/Low sample points of the input signal, X , are extracted and stored in Sp
2 Sp1 ⇢ R : 8sp 2 Sp1 7mean (X )
3 Sp2 ⇢ R : 8sp 2 Sp2 7mean (Sp1)
4 Sp3 ⇢ R : 8sp 2 Sp3 7mean (Sp2) ± std (Sp2)
5 Sp  Sp3
6 std represents the standard deviation of the sample points. -std applied for

upper point separation, and +std applied for lower point separation.

Algorithm 4: Training, Testing, and Real-time Identi�ca-
tion
1 Training and testing for each ECU
2 Training
3 for Each ECU i do
4 F  goto feature extraction Alg. 2.
5 F  F [F

1 Testing:
2 for Each legitimate ECU i do
3 Fi  goto feature extraction Alg. 2.
4 for Each ECU j do
5 Score  Mahalanobis distance of Fi fromFj

6 thresholds  Binary search to �nd EERs for the scores

1 Real-time Identi�cation: decision making procedure:
2 F  extract features for the target CAN frame, Alg. 2
3 MahDis  Mahalanobis distance ofF from the templates generated at
Training

4 if MahDis < threshold then
5 Valid Frame
6 Update the template of the origin of the frame

7 else
8 Malicious Frame
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Figure 13: Identi�cation results of the data from Nissan Sen-
tra and Subaru Outback. Legends are sorted by pro�les for
clustering.

Algorithm 2: Feature Extraction
1 Generating a template featureF for training of an ECU
2 for Each Training Frame i > 1 do
3 Detect all low-to-high/high-to-low transitions in the line voltage
4 goto upper/lower level sample points Alg. 3.
5 Sn

i  the i th sample points after the nth transition
6 Fi  mean {S1

i , S
2
i , . . . , S

N
i }

7 F  {F1, F2, . . . , F8 }
8 Apply FDA to features and �nd W
9 F  W ⇥ F

When voltage samples from two ECUs are mixed, the mixed
pro�le can be approximated as the linear combination of the two
pro�les under the assumption that the variants of voltage outputs
from all ECUs are close. Speci�cally, let us suppose ECU A’s VH
distribution follows N

�
µA,�

2� and B follows N
�
µB,�

2� . In the
mixed samples, r of them are from A and the rest are from B, then
the mixed samples’ distribution is N

�
rµA + (1 � r )µB,� 2� . The

feature �i (for i = 1..6) of the mixed samples can be calculated as:

�i = [0.68 � µ] /�
= [0.68(1 + r � r ) � (rµA + (1 � r )µB )] /�
= [r (0.68 � µA) + (1 � r ) (0.68 � µB)] /�
= r�

A

i + (1 � r )�Bi .

(16)

Similar derivations can be applied to all the other features, in-
cluding �1 and �2 because they are basically the 50th percentiles
for CANH and CANL, respectively.

Viden also uses a machine classi�er based on random forest to
defeat against the time-voltage-aware adversary who attempts to
tune its voltage output to mimic the legitimate ECU. Since the weak
adversary we assumed in the Hill-climbing attack does not attempt
to do so, the machine classi�er will not be triggered. As a result,
we omit the details of the classi�er here.

Viden’s reliance on multiple messages can be seen by the fact
that deriving a voltage instance needs the latest �R voltage samples,
which means the minimal number of messages required is

n =
# of voltage samples needed (� · R)

(% of dominant bit)⇥(CAN frame max size)
transmission rate ⇥ (sample rate)

=
15 · 10 Samples

50%·108 bit/msg
500 Kbps · 50 Ksamples/sec

⇡ 28 messages.
(17)

In [9], the authors claimed 2 to 3 messages would be enough to
derive a voltage instance. That is because they did not consider the
R = 10.

B SIMPLE’S ALGORITHMS
See Algorithms 2, 3 and 4 for a better understanding of SIMPLE.

C GROUND TRUTH ESTABLISHMENT
RESULTS

See Fig. 13 for the results.


