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Abstract— Sliced Normal (SN) distributions are a generaliza-
tion of Gaussian distributions where the quadratic argument of
the exponential is replaced with a sum of squares polynomial.
SNs may be used to represent the distribution of a diverse set of
random variables including multi-modal, non-symmetric, and
skewed distributions. Unfortunately, the likelihood function of
a SN includes a normalization constant and the inclusion of this
normalization constant makes the likelihood a non-convex func-
tion of the hyperparameters which define the SN. In previous
work, suboptimal fitting of the hyperparameters was performed
by transforming the given data into a higher dimensional
monomial basis and selecting the optimal hyperparameters of
a Gaussian fit in this space. However, this approach did not
account for the effect of lifting on the normalization constant.
Indeed, it was observed that as the number of monomials is
increased the likelihood of the Sliced Normal can decrease. In
this paper, we increase the likelihood of Sliced Normals found
using the previous method by developing a convex formulation
which scales the covariance matrix of the Gaussian fit such
that the likelihood of the Sliced Normal is maximized. The
result is significant improvements of the log likelihood of fitted
SN distributions, including a significant increase, especially for
problems with 500+ monomials.

I. INTRODUCTION

The characterization of uncertainty in measured data is
of significance for system identification, robust analysis [1],
and robust controller synthesis [2]. Poor characterization
of uncertainty can lead to either conservative or unreliable
system analysis and controller design. For example, in [3],
it was shown that for a particular stable uncertain system:
when the uncertainties in system parameters were assumed
to be independent, instability occurred in 20% of the simu-
lations; whereas, when dependencies between variables were
correctly modeled, all simulations were stable.

Methods of uncertainty characterization that account for
parameter dependencies often assume Gaussian distributions:

fG(δ;µ, P ) =
e−

(δ−µ)>P (δ−µ)
2

(2π)n/2
√
|P−1|

. (1)

However, Gaussian distributions are symmetric and uni-
modal - implying a linear dependence of the parameters δ. In
[4] the alternative Sliced Normal (SN) class of distributions
were proposed for modeling complex nonlinear parameter
dependencies - (See Eqn. (2)). In this paper we propose an
improved algorithm for the selection of the optimal hyperpa-
rameters (µ, P ) for these SN distributions. Specifically, let
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δ ∈ Rn be a random variable and Zd : Rn → Rq denote the
vector of monomials of degree less than d but greater than
0 of δ. Then the SN distribution is defined as

f(δ;µ, P ) =

 e−
(Zd(δ)−µ)>P (Zd(δ)−µ)

2

c(µ,P ) for δ ∈ ∆

0 else,
(2)

where ∆ ⊂ Rn is the support set, c is the normalization
constant, and µ ∈ Rq , and P ∈ Rq×q are hyperparameters
of the distribution.

The Non-convex SN Formulation:
Given a data sequence D = {δ(1), . . . , δ(m)} comprised of
IID samples, we want to model the data with a SN by
seeking a µ and P which maximize the likelihood of the data
sequence D. We may explicitly formulate this optimization
problem as

max
µ,P

∏
δ∈D

e−
(Zd(δ)−µ)>P (Zd(δ)−µ)

2

c(µ, P )
. (3)

Unfortunately, however, this native formulation of the
problem is non-convex and is thus difficult to solve when
n, the number of parameters in δ, or q, the number of
monomials in the monomial basis, is large, see [5]. In [4]
we used a convex approximation of the numerical integration
constant (c(µ, P )), yielding a convex approximation of the
original non-convex optimization problem (The Baseline SN
Method). We found that when q (the number of monomi-
als) is small this convex approximation method generated
SNs that significantly outperformed Gaussian distributions.
However, we also observed that for sufficiently large q, the
performance of the convex approximation algorithm can ac-
tually decrease - implying the accuracy of the approximation
decreases as the number of hyper-parameters increases.

In this paper, we show that for a given suboptimal µ and
P obtained from the convex approximation algorithm, we
can substantially increase the likelihood of the data by either
scaling P or iteratively scaling subsets of P . Moreover, and
significantly, we find that this search for the optimal scaling
factors which maximizes the likelihood of the data sequence
is convex.

II. NOTATION

Denote by Sn and Sn+ the symmetric matrices and cone
of positive semi-definite matrices of size n× n respectively.
Furthermore, let the function Zd : Rn → Rq denote the
vector of monomials of degree less than d but greater than
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Example Data Cloud

(a) Data cloud generated in polar coordinates
by sampling 1000 points from a data generating
mechanism1.
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Baseline Method

(b) Likelihood of the SN on the data sequence D
for varying degree using the baseline method.

(c) The SN with hyperparameters optimized using
the baseline method that had the highest likelihood
to the data given in subfigure (a).

Fig. 1: Subfigures a-c show the data sequence D, the log likelihood of SN’s found using the baseline method, solving Optimization Problem (4), for
varying degree, and the joint PDF of the degree SN that had the maximal likelihood.

0, where q =
(
n+d
n

)
− 1. We denote the Hadamard product

with ◦.

III. OPTIMIZED SLICED NORMALS USING AN
APPROXIMATE NORMALIZATION CONSTANT

In this section, we give a summary of the previous
baseline method for SN density estimation.
The Baseline SN Method:
This method uses a convex approximation of the
integration constant in Optimization Problem (3).
Specifically, we approximate c(µ, P ) in Eq. (2) with
the normalization constant of a multivariate gaussian
where c = (2π)q/2

√
|P−1|. This approximation yields the

following convex formulation:

max
P∈S+, µ∈Rq

 log
∏
δ∈D

e−
(Zd(δ)−µ)>P (Zd(δ)−µ)

2

(2π)q/2
√
|P−1|

: P � 0

 .

(4)
For a fixed degree d, Optimization Problem (4) admits an

analytical solution where the optimal hyperparameters are,

µ∗ =
1

m

m∑
i=1

Zd(δ
(i)), P ∗ = Σ−1,

and Σ = 1
m

∑m
i=1(Zd(δ

(i))− µ∗)(Zd(δ(i))− µ∗)>.
While the baseline method works well when the P matrix

of the SN is small, we find that the likelihood of the
fitted data sequence D can actually decrease when a large
monomial basis is selected for the SN. For example, in
Fig. 1(b) we compare SNs of degree d where the monomial
basis consists of all monomials of degree d or less. One
would expect the larger degree SNs to perform better because
they have more hyperparameters to fit to the data. However,
the SN with the best likelihood for the data sequence in
Fig. 1(a) is of degree 3, with higher degree SN’s having a

1Data set is generated by uniformly sampling between [2.8, 3.2] to
define the radius and using a normal distribution centered at 90 degrees
with standard deviation of 1.3 to define the angle of the points in polar
coordinates. Half of the points are translated 2.9 units in δ2 while the other
half are reflected over the δ1 axis and then translated -2.9 units.

smaller likelihood value. In Fig. 1(c) we see that baseline
method allocates likelihood poorly in the areas with a low
concentration of points, but does place high likelihood on
areas with a high concentration of points.

In the following section we propose a new convex formu-
lation of the problem which seeks to increase the likelihood
of the data by scaling the hyperparameter P that results from
the baseline method. This practice, in turn, has been observed
to increase the covariance of the SN in physical space and
generates SN’s with higher likelihood than those generated
by the baseline method.

IV. OPTIMIZED SLICED NORMALS BY SCALING THE P
HYPERPARAMETER

In this section, we propose a convex optimization problem
that maximizes the likelihood of the SN for a given data
sequence by scaling the suboptimal P matrix obtained from
the baseline method without using a convex approximation
for the function c.

In this case, we assume that a degree d has been selected
and we are given previously selected values of the hyperpa-
rameters P ∈ Rq×q and µ ∈ Rq , presumably found using
Optimization Problem (4). We now consider SN ‘candidates’
of the following form,

f(δ; γP, µ,∆) =

{
e−φ(δ,µ,γP )

c(µ,γP ) for δ ∈ ∆

0 else,
(5)

where P and µ are fixed, ∆ ⊂ Rn is the support set of the
SN, and

φ(δ, µ, P ) =
(Zd(δ)− µ)>P (Zd(δ)− µ)

2
. (6)

Our goal then, is to find a solution to the following
optimization problem,

max
γ∈R+

{
log

∏
δ∈D

e−φ(δ,µ,γP )

c(µ, γP )

}
, (7)
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Example Data Cloud

(a) Data cloud generated in polar coordinates
by sampling 1000 points from a data generating
mechanism.
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Covariance Scaling

(b) Likelihood of the SN on the data sequence D
for varying degree using the covariance scaling
method.

(c) The SN with hyperparameters optimized using
the covariance scaling method that had the highest
likelihood to the data given in subfigure (a) of the
degrees tested.

Fig. 2: Subfigures a-c show the data sequence D, the log likelihood of SN’s optimized with the covariance scaling method for varying degree, and the
joint PDF of the degree SN that had the maximal likelihood.

which optimizes the likelihood of the candidate SN using an
accurate representation of the normalization constant c. Our
approach to constructing an accurate convex representation
of the normalization constant c are presented in Subsec-
tion IV-A.

A. Numerical Calculation of the Normalization Constant

To construct an accurate convex representation of c, we
will use Monte Carlo integration techniques. First, we take
a uniform sampling of the set ∆, as s(i) for i = 1, ..., b. If
the volume of ∆ is V , then we may now approximate the
normalization constant of the SN as,

c∆(µ, γP ) =

∫
∆

e−φ(δ,µ,γP )dδ ≈ V

b

b∑
i=1

e−φ(s(i),µ,γP ).

(8)
Note that this approximation requires the volume of ∆,

which is the support of the SN.
Note however that if ∆ does not tightly enclose the data,

when n is large the likelihood of most of the s(i) samples
might be close to zero, and our approximation may be
inaccurate. This deficiency can be mitigated by increasing
b, sampling uniformly over a smaller data-containing set of
known volume, or using an importance sampling technique
[6].

In this paper we estimate c by sampling uniformly over
an ellipsoidal set that tightly encloses the data. This set is
calculated by using the worst-case likelihood formulation
presented in [4]. The uniformly distributed s(i) samples are
obtained by using the technique proposed in [8]. The volume
of this set can be considerably smaller than the volume of a
hyper-cube when the dimension, n, increases.

B. Optimizing the Maximal Likelihood of a SN by Scaling
the P Hyperparameter

For δ ∈ ∆, our candidate function with the numerical
approximation c∆ of the integration constant, c, is,

f(δ; γP, µ,∆) =
e−φ(δ,µ,γP )

c∆(µ, γP )
. (9)

We may take the log of our objective function and find,

log
∏
δ∈D

e−φ(δ,µ,γP )

c∆(µ, γP )
=
∑
δ∈D

log
e−γφ(δ,µ,P )

c∆(µ, γP )
,

= m log

(
1

c∆(µ, γP )

)
−γ
∑
δ∈D

φ(δ, µ, P )

(10)

where, for a given sampling s(i) of ∆,

c∆(µ, P ) =
V

b

b∑
i=1

e−γφ(s(i),µ,P ), (11)

where V is the volume of ∆.
The Covariance Scaling SN Method:
Inserting Eq. (11) into Eq. (10) leads to,

m log

(
1

c∆(µ, γP )

)
− γ

∑
δ∈D

φ(δ, µ, P )

= m log

(
b

V
∑b
i=1 e

−γφ(s(i),µ,P )

)
− γ

∑
δ∈D

φ(δ, µ, P )

= m log(
b

V
)−m log

(
b∑
i=1

e−γφ(s(i),µ,P )

)
−γ
∑
δ∈D

φ(δ, µ, P ).

Since the first term is a constant, we may rewrite Opti-
mization Problem (7) as,

max
γ∈R+

{
−m log

(
b∑
i=1

e−γφ(δ,µ,P )

)
− γ

∑
δ∈D

φ(δ, µ, P )

}
.

(12)
Optimization Problem (12) is now convex, a fact we prove
in the following section.

Since the optimization problem is convex, any local max-
imum is a global maximum and we may therefore use a
gradient based algorithm to seek the global optimum. The
need for a gradient-based search is the result of having to
estimate the integration constant numerically.
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(a) Data cloud generated in polar coordinates
by sampling 1000 points from a data generating
mechanism2.
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Covariance Scaling Versus Augmentation

Covariance Scaling
Covariance Augmentation

(b) Likelihood of the SN on the data sequence D
for varying degree using the covariance scaling
versus the covariance augmentation method.

(c) The SN with hyperparameters optimized using
the covariance augmentation method that had the
highest likelihood to the data given in subfigure
(a).

Fig. 3: Subfigures a-c show the data sequence D, the log likelihood of SN’s optimized with the covariance scaling and augmentation method for varying
degree, and the joint PDF of the covariance augmented degree five SN that had the maximal likelihood.

In Fig. 2(b) we see that the SN with the best likelihood
for the data sequence in Fig. 2(a) is of degree 7 and that,
unlike the baseline method, increasing the degree increases
the likelihood of the SN. Fig. 2(c) shows that the SN of
degree 7 does model the dataset better than the SN resulting
from the baseline approach.

In this section we have assumed that γ is a scalar factor
that affects the hyperparameter P . In the following section
we will now perform a multivariate scaling of P .

V. OPTIMIZED SLICED NORMALS BY ITERATIVE
SCALING OF SUBSETS OF THE P HYPERPARAMETER

In this section we develop a multivariate extension of the
covariance scaling approach described earlier, by iteratively
modifying the P matrix from the Baseline method. Again
we assume that a degree d has been selected and we have a
P ∈ Rq×q , and a µ ∈ Rq , that define the hyperparameters
of a SN found using the baseline method. Then we consider
SN ‘candidates’ of the following form,

f(δ;µ,Γ ◦ P ) =

{
e−φ(δ,µ,Γ◦P )

c(µ,Γ◦P ) for δ ∈ ∆

0 else,
(13)

where ◦ is the Hadamard product and the hyperparameter is
Γ ∈ Rq×q (instead of the scalar γ in the previous section).
Note that we do not constrain Γ to be positive definite,
differing from the original construction of the Sliced Normal
distribution which required the polynomial to be sum-of-
squares. However, f(δ;µ,Γ◦P ) is still globally positive and
the Sliced Normal is thus still a valid distribution.

Our goal then, is to find a solution to the following
optimization problem,

2Data set is generated by sampling 500 points a normal distribution
centered at π

2
radians with standard deviation of 1.3 to define the angle

of the points in polar coordinates, the radius of the points is 3 plus a value
randomly sampled between 0 and .2 multiplied by the angle of the point
minus π

2
. Any point with a δ1 value less than 0 are reflected over the

δ1 axis. This data set is sampled again, but these points are additionally
reflected over the δ1 and δ2 axes.

max
Γ∈Rq×q

{
log

∏
δ∈D

e−φ(δ,µ,Γ◦P )

c(µ,Γ ◦ P )

}
, (14)

where we may again use the accurate convex approximation
c∆ to optimize the likelihood. As in the previous method we
have,

log
∏
δ∈D

e−φ(δ,µ,Γ◦P )

c(µ,Γ ◦ P )
=
∑
δ∈D

log
e−φ(δ,µ,Γ◦P )

c(µ,Γ ◦ P )
,

= m log

(
1

c(µ,Q)

)
−
∑
δ∈D

φ(δ, µ,Q).

(15)

where Q = Γ ◦ P .
Given V , the volume of a ∆ that has been uniformly

sampled, we may again approximate c as,

c∆(µ,Q) =
V

b

b∑
i=1

e−φ(s(i),µ,Q),

where V is the volume of ∆. We may then further simplify
Eq. (15) to,

m log

(
1

c∆(µ,Q)

)
−
∑
δ∈D

φ(δ, µ,Q)

= m log

(
k

V
∑k
i=1 e

−φ(s(i),µ,Q)

)
−
∑
δ∈D

φ(δ, µ,Q)

= cV −m log

(
k∑
i=1

e−φ(s(i),µ,Q)

)
−
∑
δ∈D

φ(δ, µ,Q),

where cV = m log( kV ). Since cV is a constant, we may
rewrite Optimization Problem (14) as,

max
Γ∈Rq×q

{
−m log

(∑
δ∈S

e−φ(δ,µ,Γ◦P )

)
−
∑
δ∈D

φ(δ, µ,Γ ◦ P )

}
.

(16)



Next we will prove convexity of a slightly more general
class of optimization problem. This result will then be used
to show that Optimization Problem (12) is convex and that
Optimization Problem (16) is multi-convex.

Theorem 1: For any r ∈ N, m ∈ N, α ∈ Rm, β ∈ Rm,
κ ∈ Rn, and ψ ∈ Rn, the function,

f(γ) = −m log

(
r∑
i=1

e−γαi+βi

)
−

m∑
j=1

γκj + ψj

is concave with respect to γ ∈ R.
Proof:

We will prove that the second derivative of f(γ) is
negative for all values of γ. The first derivative of f(γ) is,

f ′ = −m
∑r
i=1−αie−γαi+βi∑r
i=1 e

−γαi+βi
−

m∑
j=1

κj ,

and the second derivative f ′′ is,

n(γ)

d(γ)
=

−m
(

r∑
i=1

α2
i ai(γ)

)(
r∑
i=1

ai(γ)

)
−
(

r∑
i=1

αiai(γ)

)2

(
r∑
i=1

ai(γ)

)2 ,

where
ai(γ) = e−γαi+βi > 0 ∀ γ.

Clearly d(γ) is positive so we must show that n(γ) is
negative to prove concavity of f(γ). We have that,( r∑
i=1

α2
i ai(γ)

)( r∑
i=1

ai(γ)

)
=

r∑
i=1

α2
i ai(γ)2 +

r∑
i=1

r∑
j=i+1

(α2
i + α2

j )ai(γ)aj(γ),

and( r∑
i=1

αiai(γ)

)2

=

r∑
i=1

α2
i ai(γ)2 +

r∑
i=1

r∑
j=i+1

2αiαjai(γ)aj(γ),

therefore,

n(γ) =−m
r∑
i=1

r∑
j=i+1

(α2
i + α2

j )ai(γ)aj(γ)−2αiαjai(γ)aj(γ)

= −m
r∑
i=1

r∑
j=i+1

ai(γ)aj(γ)(α2
i − 2αiαj + α2

j )

= −m
r∑
i=1

r∑
j=i+1

ai(γ)aj(γ)(αi − αj)2,

≤ 0.

Since n(γ) is always negative and d(γ) is always positive,
f ′′(γ) is negative for all γ and f(γ) is concave.

To prove that the objective function of Optimization Prob-
lem (12) is concave let,

αi = φ(s(i), µ, P ), κj = φ(δ(j), µ, P ),

and βi, ψj be zero for all values of i and j.
To prove that Optimization Problem (16) is multi-convex,

let ν ∈ N2×r be a list of r elements of Γ that we wish to
optimize. Then let,

M
(ν)
i,j =

{
Pi,jΓi,j (i, j) ∈ ν
0 else

, N (ν) = Γ ◦ P −M (ν)

and

αi = φ(s(i), µ,M (ν)), βi = φ(s(i), µ,N (ν)) for all i and,

κj = φ(δ(j), µ,M (ν)), ψj = φ(δ(j), µ,N (ν)) for all j.

Then, by Theorem 1, the objective function is concave.
The Covariance Augmentation SN Method:
Optimization Problem (16) is multi-convex meaning we may
iteratively optimize Γ using convex optimization problems
to approximate the optimal solution. First we select a basis
v(i) ∈ Rq×q ∀i = 1, ..., k for Rq×q . Then we may use
Algorithm 1 to find Γ.

Algorithm 1 The Covariance Augmentation Method

Given: v, P , µ, D, s, N
Γ = 1, i = 0
while i < N do

for i = 1, ..., k do
Calculate α, β, κ and ψ for the basis v(i)

γ = argmax
γ
−m log

(
r∑
i=1

e−γαi+βi
)
−

m∑
j=1

γκj +ψj

Γ = Γ + γv(i)

end for
i = i+1

end while
return Γ

In Fig. 3, we show a comparison between the covariance
scaling method, and the covariance augmentation method.
For this example we choose the canonical basis for Rq×q -
optimizing a single element of Γ at each iteration until every
element has been updated five times (1050 optimization
problems).

In numerical tests we will compare using the canonical
basis to the following basis,

v
(i)
k,j =

{
1 if min(k, j) = i

0 else.
(17)

The benefit of the basis in Eq. (17) is that the number of
matrices in the basis increases linearly with the size of the
monomial basis. The number of matrices in the canonical
basis however increases as a quadratic with respect to the
size of the monomial basis.

In Section VI we will compare the performance of the
baseline, covariance scaling and covariance augmentation
methods.



TABLE I: Comparison between the Baseline Method (B), the Covariance Scaling Method (CS ), the Covariance Augmentation Method using the basis in
Eq. (17) (CA1), and the Covariance Augmentation Method using the canonical basis (CA2)

Data Set n Degree q Log Likelihood (1× 103) Time (seconds)

B CS CA1 CA2 B CS CA CA2

Eight (Fig. 1(a)) 2 5 20 -4.6965 -2.2212 -2.1897 -2.1740 1.48 1.56 44.50 350.05
Eight (Fig. 1(a)) 2 7 35 -9.1309 -2.0201 -2.0033 -1.9925 1.67 2.30 85.57 1939.80

Circular (Fig. 3(a)) 2 5 20 -6.3547 -2.1981 -2.1284 -2.1069 0.86 1.53 46.85 353.21
Iris [7] 4 3 34 -1.7208 -0.2316 -0.2043 -0.2009 2.15 2.31 87.48 1754.80
Iris [7] 4 4 69 -3.4371 -0.0977 N/A N/A 5.62 5.99 N/A N/A

Seeds [7] 7 3 119 -6.0016 1.8081 N/A N/A 16.9312 16.9757 N/A N/A
Abalone [7] 8 4 496 -196.78 14.450 N/A N/A 180.15 180.98 N/A N/A

VI. COMPARISON STUDY

Here we use datasets from the UCI machine learning
repository [7] and datasets shown in Fig. 1(a) and Fig. 3(a)
to compare the performance of the three different methods
with respect to the log likelihood of the data sequence. The
results can be seen in Table I, where the log likelihood of
the optimized SN on the data sequence are presented as
well as the time taken to estimate the SN and calculate the
normalization constant.

In the table we compare the Baseline Method, the Covari-
ance Scaling Method, the Covariance Augmentation Method
with the basis in Eq. (17) iterated 10 times, and the Covari-
ance Augmentation Method with the canonical basis iterated
5 times.

The ∆ selected for the datasets in Fig. 1(a) and Fig. 3(a)
were hand selected and are equal to the range of axis values
seen in the plots. The samples for the datasets taken from the
UCI database [7], were generated using the method in [8],
where the ellipsoidal set was a level set of the optimal worst
case degree 1 SN using the optimization method in [4].

Note that the difference in time taken between the baseline
method and the covariance scaling method is negligible. This
is because the most computationally expensive part of the
method is calculating the normalization constant, which is
necessary for the baseline method as well. Therefore, there
seem to be few, if any, circumstances where the baseline
method would be preferred to the covariance scaling method.
Note that all of these methods work for problems where the
P matrix has greater than 1000 elements, and the covariance
scaling method works for problems where the P matrix has
over 240,000 elements.

Note that as q (the size of the monomial basis) increases,
the difference between the log likelihood of the baseline
method and the covariance scaling method also increases.
In addition, as the size of the monomial basis increases
the covariance augmentation methods also begin to have
numerical difficulties and fail or take a significant amount of
computational time. Thus the more computationally expen-
sive covariance augmentation methods should be reserved for
problems with a smaller monomial basis than the covariance
scaling method.

VII. CONCLUSION

This paper proposes a convex optimization problem for
improving sub-optimal Sliced Normal hyperparameters ob-

tained by the algorithm proposed in [4]. The proposed
algorithm takes the solution of the covariance matrix from the
Baseline Method for a Sliced Normal from Eq. (4) and finds
an optimal scaling factor γ which scales the entire P matrix,
or find an optimal matrix Γ through iteratively optimizing
subsets of the P matrix.

The single scaling method offers large improvements
over the previous baseline method with negligible additional
computational expense. In cases where computation time is
unimportant, the more complex iterative method may be used
which offers additional increases in log likelihood values
when compared to the covariance scaling method.

The developments herein allow for the efficient character-
ization of the dependencies in datasets of larger dimension.
Properly characterizing the dependencies of the data is
instrumental in system identification, robust analysis, and
robust controller synthesis.
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