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Abstract— Machine learning selects an optimal function to
map input data to output data. In order for the selected
function to be nonlinear, a kernel is used to project the fitting
problem into a higher-dimensional space wherein the candidate
functions are linear. However, the selection of kernel strongly
influences the topology of the space and hence the accuracy
of the fit. As a result, there has been considerable interest in
the problem of posing the kernel selection problem itself as an
optimization problem. Such efforts have been limited, however,
by the absence of a linear parameterization of universal kernel
functions (for which the set of candidate functions is infinite-
dimensional). As a result, previous kernel learning problems
have either been non-convex or limited to a finite-dimensional
subspace of candidate maps. In this paper, we propose a method
for using positive matrices to create a linear parameterization
of kernels, each of which is universal. We refer to such
kernels as Tessellated Kernels (TKs) and demonstrate that
they can replace the standard use of Gaussian kernels and
thus the associated ad-hoc and heuristic approached to the
choice of bandwidth - a conclusion verified through extensive
numerical testing on soft margin Support Vector Machine
(SVM) problems. Finally, TKs can be integrated efficiently with
existing Multiple Kernel Learning (MKL) algorithms such as
SimpleMKL using a randomized basis for the positive matrix
parameters.

I. INTRODUCTION

This paper addresses the problem of automated selection
of an optimal kernel function for a given kernel-based
machine learning problem (i.e. soft margin SVM). Kernel
functions implicitly define a linear parametrization of non-
linear candidate maps y = f(z) from features z to scalars
y. Specifically, for a given kernel, the ‘kernel trick’ allows
optimization over a set of candidate functions in the kernel-
associated hypothesis space without explicit representation of
the space itself. The kernel selection process, then, is critical
for determining the class of hypothesis functions and, as a
result, is a well-studied topic with common kernels including
polynomials, Gaussians, and many variations of the Radial
Basis Function.

Recently, there have been a number of proposed kernel
learning algorithms. For support vector machines, the meth-
ods proposed in this paper are heavily influenced by the
SDP approach proposed by [10] which directly imposed
kernel matrix positivity using a linear subspace of candidate
kernel functions (as in MKL). Because of the complexity of
semidefinite programming, more recent work has focused on
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gradient methods for convex and non-convex parameteriza-
tions of positive linear combinations of candidate kernels, as
in SimpleMKL [15] or the several variations in [19]. These
methods rely on kernel set operations (addition, multiplica-
tion, convolution) to generate large numbers of parameterized
kernel functions as in [5]. When the parameterization is
non-convex, gradient-based methods find local minima and
include GMKL as introduced in [9]. See, e.g. [8] for a
comprehensive review of MKL algorithms.

In this paper, we focus on the class of “Universal Kernels”
formalized in [12].

Definition 1: A kernel £k : X x X — R is said to be
universal on the compact metric space A if it is continuous
and there exists an inner-product space W and feature map,
® : X — W such that k(x,y) = (®(z), P(y))w and where
the unique Reproducing Kernel Hilbert Space (RKHS),

He=A{f : f(z) = (v,2(z)), ve W}

with associated norm ||f|l3 := inf,{||v|w f(z) =
(v,®(x))} is dense in C(X) := {f X - R
fis continuous} where || f||¢ := sup,cx |f(2)]-

Note that for an given PD kernel, H exists, is unique,
and can be characterized using the Riesz representation
theorem [20] as the closure of span{k(y,-) : y € X'} with
inner product defined for any f(z) = > ., ¢;k(y;, z) and
g(x) =30 dik(z,z) as

(f,9)n = Z Z cidik(yi, zi).
i=1 j=1

The most well-known example of a universal kernel is
the Gaussian (generalized in [22]). However, most other
common kernels are not universal, including, significantly,
the polynomial class of kernels (this is significant because
polynomials admit a linear parameterization).

In this paper, we propose a new class of universal kernel
functions which are not polynomials, yet are defined by poly-
nomials and admit a convex parametrization. Specifically,
if ¥ = {z € R” x; € lai,b;]} and the inequality
> is defined by the positive orthant, we consider kernels
k:X x X — R of the form

k(z,y) :/XI(Z,I)Z(z,J:)TPZ(z,y)I(z,y)dz,

1, ifz>z

where I(z,x):{o if 2 %2
, ifz¥x

and where Z : X x X — R™ is a vector of monomials and
P € S™. We show in Section III that if P > 0, then k is a
PK, continuous and universal.



To illustrate, we show how this class of kernel can be
rigorously incorporated into both the SDP kernel learning
framework and the MKL framework for SVM soft margin
problems. In the numerical results we illustrate this improved
performance performance on a number of UCI repository
data sets.

II. AN OVERVIEW OF THE OPTIMAL KERNEL LEARNING
PROBLEM FOR THE 1-NORM SVM PROBLEM

We begin this section by posing the kernel-learning prob-
lem as a convex optimization problem for the particular
case of the I-norm soft margin support vector machine.
Next, for a given linear parameterization of kernel functions,
in Subsections A and B, we then present two standard
algorithms for solving the kernel learning problem. These
algorithms will then be applied in Section III to our class of
Tessellated Kernels (TKs).

Suppose we are given a set of m training data points
{z;}™, C R™, each with associated label y; € {—1,1} for
i=1,---,m. For a given “penalty” parameter C' € RT, we
define the linear 1-norm soft margin problem as

1 5 i
. 1 o Z_
weR",(HelIIRI}rm,beR Zw w ;C
st yi(wla; +b) >1—¢, (1)

where the learned map (classifier) from inputs to outputs is
then f: R™ — {—1,1} where
f(z) = sign(wz + b).

If we desire the classifier to be defined by a nonlinear
function, we may introduce a positive kernel function, k.

Definition 2: We say a function £ : X x X — R is a
positive kernel function if

/ / @)k, y) f(y)dady > 0
X JX

for any function f € La[X].
In this case, the classifier becomes

f(z) = sign (Z ayik(z;, z) + b) .
i=1

where « solves the associated dual problem

m m m

> ai- %Zzaiajyiyjk(xhxj) (2)
1=1

i=1j=1

max
acR™

s.t. Zaiyi:O, 0<, <C VYV i=1,...m.
i=1

Note that b can be found a posteriori as the average of y; —
St ayik(zj, ;) for all j such that 0 < aj < C - See
[17]. This implies that the primal variable w is not explicitly
required for the calculation of b, and that the resulting learned
classifier, f, may be expressed solely in terms of «.
Commonly used positive kernel functions include the
gaussian kernel ki(z,y) = e(=Alle=vI") where 3 is the
bandwidth (and must be chosen a priori) and the polynomial

kernel k2(z,y) = (1 + 2Ty)? where d is the degree of the
polynomial.

Unfortunately optimization problem 2 requires that the
kernel function, k(x,y), be chosen a priori. The selection
of a kernel function, however, can have a large effect on the
accuracy of the resulting classifier f. We therefore consider
methods for selecting an optimal kernel function from a
convex set of kernel functions K. In this case, we have the
following convex optimization problem.

Zai - %Zzaiajyiyjk(xmxj) 3)
i—1

i=1 j=1

min max
keK aeR™

s.t. Zaiyizo, 0<a; <C V i=1,...m.
i=1

In the following two subsections we present two standard
approaches to parameterizing K and solving the resulting
convex optimization problem.

A. Formulating the kernel optimization problem for linear
combinations of kernel functions

We first consider the method of [10], wherein positive
matrices were used to parameterize K for a given set of
candidate kernels {k;}!_, as

l
i=1
n e RZ,KZ‘J‘ = ]{?(.%‘i7.%‘j), K = 0}7

where the x; are the training points of the SVM problem and
the k; were chosen a priori to be Gaussian and polynomial
kernels. It is significant to note that the PSD constraint on
the kernel matrix K, enforces that the kernel matrix is PSD
for the set of training data, but does not necessarily enforce
that the kernel function itself is PD - meaning that kernel in
KC are not necessarily positive kernels.

Using this parameterized /C, the kernel optimization prob-
lem for the 1-norm soft margin support vector machine was
formulated as the following semi-definite program,

min t
HER GER™X™m tcR yeR vER™ FER™ ’
t— 26Te) z0
mA

G )
subject to: < etv Ty
Gij = k(zi, )Yy,

(e+v—8+y)TF
v >0, 6 >0,

l
k(z,y) = > wiki(z, y) (4)
=1

Note that here the original constraint K > 0 in K has been
replaced by an equivalent constraint on . This problem can
now be solved using well-developed interior-point methods
as in [1] with implementations such as MOSEK [2].

In Optimization Problem (4), the size of the SDP con-
straint is (m +1) x (m+ 1) which is problematic in that the
complexity of the resulting SDP grows as a polynomial in the
number of training data. Our parameterization, introduced in
Section III, avoids this computational scaling by proposing



kernel positivity tests whose complexity is independent of
the amount of training data. Furthermore, our method does
not require the a priori selection of a set of basis kernels.

B. Formulating the kernel learning optimization problem for
positive linear combinations of kernel functions

In this subsection, we again take a set of basis kernels
{k;}._, and consider the set of positive linear combinations,

l
K:=A{k : k(z,y) = Zﬂiki(%y)a i >0},
i—1

Any element of this set is a positive kernel, replacing the
matrix positivity constraint by an LP constraint.

m 1

. m
Z a; — % Z Z Z Py Yk (24, 25)
=1

i=1j=1k=1

min max
pn>0 acR™

m
s.t. ZaiyizO, 0<ayu<C V i=1,..m.
i=1

Use of this formulation is generally referred to as Multiple
Kernel Learning (MKL). It has the disadvantage that it is
non-convex in native form. Recently, however, a number
of highly efficient two-step methods have been proposed
to solve the associated kernel learning problem, including
SimpleMKL [15]. These methods first fix p; and optimize
over «, then fix o and optimize over p, adding the constraint
that ", p; = 1 using a projected gradient descent. Other
two-step solvers such as [8] solve the second step using
LP. Two-step MKL solvers typically have a significantly re-
duced computational complexity compared with SDP-based
approaches and can typically handle thousands of data points
and thousands of basis kernels.

In section III, we propose a parameterization of kernels us-
ing positive matrices which avoids the need for the selection
of basis kernels. Moreover, we show that this parameteriza-
tion can be combined with MKL algorithms either directly
in SimpleMKL [15] through the use of a randomly generated
basis of kernels, or through a new algorithm which modifies
the second step to optimize over the set of positive matrices.

ITI. POSITIVE “TESSELLATED” KERNEL FUNCTIONS CAN
BE PARAMETERIZED BY POSITIVE MATRICES

In this section, we propose a general framework for using
positive matrices to parameterize a class of tessellated kernel
functions. The following result is based on a parametrization
of positive integral operators initially proposed in [16].

Theorem 3: Let N be any bounded measurable function
N : X x X — R? on compact X and X and P € R7%? be
a positive matrix P > 0. Then

k(m,y):/XN(z,x)TPN(z,y)dz 5)

is a positive kernel function.

Proof: Since N is bounded and measurable, k(x,y) is
bounded and measurable. Since P = 0, there exists P3 such
that P = (Pz)TP2. Now define

o2) = [ PENG.2)f(a)da.

Then

/X /Xf (@)k(@, ) f(y)dxdy
[ [ SN PN G stz

:/X < /P%N(z,x) f(x)dx)Zl(V(z,y)P% fy)dzdydz

p's
:/ g(2)Tg(2)dz > 0.
X

|
Polynomial Kernels Let X = R" and X = R? and define
Zgq : R™ — R? to be the vector of monomials of degree d. In
this case, it was shown in [14] that k is a degree 2d positive
polynomial kernel if and only if there exists some P > 0
such that
k(z,y) = Za(a)" PZa(y)

This implies that a representation of the form of Equa-
tion (5) is necessary and sufficient to represent all positive
polynomial kernels. Unfortunately, polynomial kernels are
not universal and hence we propose the following universal
class of tessellated kernels, each of which is defined by
polynomials, but which are not polynomial.

Tessellated Kernels As defined in [7], a kernel k(z,y) is
semi-separable if there exist functions A; such that

k‘(,’l%y) _ jl(I)AQ(y)7 if x > y
3(z)A4(y), otherwise.

Semi-separable kernels define a broader class of integral
operators include, e.g. the Volterra operators. To parameterize
such as class of kernels, we first replace x > y with the
constraints x —y € S1 C R™” and z — y € Sy C R™ where
the S is the positive orthant and .S, is the negative orthant.
We now define the following indicator function

1 z—xz €S
Is(z,x) =
s(2,2) {O otherwise,

Now let X = X = R™ and define Z; : X x X — R? to
be the vector of monomials of degree d in R2". We propose
the following definition for N : X x X — R24,

. Z (Z,I)I 1(Z’x)
N(z,x) = {ZZ(z,m)Izg (Za‘r):|

Using Eqn. (5), the associated kernel function is,

(6)

k(:&y)Z/XN(Z,ZC)TPN(Ly)dZ.

A Partition of the Tessellated Kernel In this part, we
partition the domain X into 2" orthants and by expanding
the integral and show that a tessellated kernel is piecewise
polynomial, using polynomial kg indexed to each domain
Xs.

Lemma 4: Suppose that fora < b € R", X = X = [a, ],
N is as defined in Eqn. (6)

P:|:P11 P12

=0
Py P22:|



and k is as defined in Eqn. (5). Then if we define the partition
of R™ xR™ into 2" orthants - parameterized as { X3} 50,11
where

X,B = {(I,y) cR" x R" - x>y, for allj:,Bj:O,},

gi >, for all i:8;=1
we have that

k(a,y) = {kﬁ(w»y) if (z,y) € Xs. 7
where the kg are polynomials defined as

kg(z,y) =

b; b;
H / H / Z4(z, :1c)TQlZd(z7 y)dz + ko(z,y)

i:ﬁiZOZi:x‘i j:szlzj:yj
b

kO(xuy) :/ Zd(zam)TQQZd(Zuy)dZ
x

b b
+ / Zalz, )T Qs Za(z, y)d= + / Za(z2)T PraZa(z y)dz.
y a

Q1=P11—Pi1o—Pa1— P2, Qa=P1o—Pa3, Q3=FP21—Pao
Proof: Given N as defined above, if we partition P =
[Pu Pyo
Py Pa

) = |

2

- Z /(m,y,z)EXq,

ij=1

into equal-sized blocks, we have

N(z,2)TPN(z,y)dz

Zd(z,x)TPi)jZd(z,y)dz

J

where
Xij = {2z € R . Ig (2, 2)Ig,(2,y) = 1}.

From the definition of X;; we have that,
Xllz{zGZ: zlzp:($7y)77/:17an}
X12 :{ZGZ : zizxi,izl,--~,n}/X11
Xgl :{ZGZ . zizyi,izl,'u,n}/Xn
Xoo =7/ (X11 U X12 U Xo1) .

where pf(z,y) = max{z;,y;}. By the definitions of
X1, X129, Xo1, and Aoy we have that,

b
k(z,y) Z/Zd(ZS 2)T(Piy — Pra — Py — Pao) Zy(z,y)dz
p*(z,y

b
+/Zd(27l')T(P12 — Py2) Z4(z,y)dz
b
+ /Zd(Z,IE)T (Po1 — Pa3) Zg(2,y)dz
y

b
+ / Z(2,2)T PayZy(2,y)dz. (8)

|
Note that the number of domains Xg used to define the
piecewise polynomial & is 2™, which does not depend on
g (the dimension of FP;;). Thus, even if Z; = 1, the
resulting kernel is partitioned into 2" domains. The length of
Z4(x,y) € R? only influences the degree of the polynomial
defined on each domain.

Classifier Value

) 0 1 2 3 4

s 3 7 8 9 10
Data Value

Fig. 1: Optimal classifier, f(z) for labelling a 1 dimensional
dataset using a degree one tessellated kernel (solid lines),
and a positive combination of Gaussian kernels (dotted lines)
with three different penalty weights C. Note that as C
increases so to does the maximum slope of f(z) for the
tessellated kernel and the maximum value of f(z) for the
Gaussian kernel.

The significance of the partition does not lie in the number
of domains, however. Rather, the significance lies in the
resulting classifier, which it defined by the input data {x;}7*,
and has the form

f(z) = Z%‘yik(ﬂ% z)+b
i=1

= {Zil a;yikg(xi, z) if (z5,2) € Xp.

={fise) if z€Xip.

fip(z) = Z aiyikp (i, 2)
i=1

Xi1ﬁ = {Z : ZkZ(ZL’L)k for all kﬁlzk

where the f; g are polynomials. In this way, each data point
further divides the domains which it intersects, resulting in
(m + 1)™ disjoint sub-domains, each with associated poly-
nomial classifier. Thus we see that the number of domains
of definition grows quickly in the number of training data
points m. For instance with n = 2 there are 100 sub-domains
for just 9 data points. This growth is what makes tessellated
kernels universal - as will be seen in Section IV.

In Figure 1 we see the function, f(z) =
Yo ouyik(z,2) + b, for a degree 1 tessellated kernel
function trained for a 1-dimensional labeling problem
as compared with a Gaussian kernel. We see that the
tessellated kernel is continuous, and captures the shape of
the generator better than the Gaussian. However, the kernel
is not continuously differentiable and this property must
be imposed using the inverse regularity weight C' in the
objective function on Eqn (1). In Figure 1, as C' decreases
we see that the changes in slope at edges of the domain
decrease.

(x4);>2; for all j;,@j:o,}

IV. PROPERTIES OF THE TESSELLATED CLASS OF KERNEL
FUNCTIONS

In this section we prove that tessellated kernel functions

are both continuous and universal, even in the simplest case



of degree d = 0.

Theorem 5: Suppose that for a < b € R", X = X =
[a,b], P = 0, N is as defined in Eqn. (6) for and d > 0
and k is as defined in Eqn. (5). Then for any {x;}]",, the
function Ui
f(z)= Zaik(mi,z),
is continuous. =l

Proof: Partition P as follows

Py Pro
P = > 0.
{Pm Pzz}

To prove that f(z) is continuous we need only prove that
k(z,y) is continuous. Applying Lemma 4 we may define
k(z,y) as

k(z,y) = {kﬂ(m,y) if (z,y) € Xp. ©)
where the kg are polynomials defined as
kp(z,y) =

b;

bj
[ 0 | 2o ez ke
i:ﬂi:OZi:Ii j:ﬁj:lzj:yj
Q1 =P — Pro—Po1 — Py
where ko(z,y) is a polynomial and thus continuous. To
expand kg(x,y), we use multinomial notation for the mono-
mials in Z4. Specifically, we index the elements of Z; as
Za(x,2); = x*27 where oy, € N* fori = 1,--- | q.

Then b

H / H /Zd(zax)TCth(z,y)dz

©Bi=0,, 2y, 56512y,

by by
= Z (Ql)k’l H / H /xakz’}’kz’)’lyaldz
k,l

uBi=0, 2o J:B; :12.7‘ =y,

b; by
= Z (Ql)k,l zH oy / H /Z’Yk-i-’ndz_

k.l e
(10)
Expanding the integrals in (10), each has the form

H]H/zo‘dz

=0, Zq, T:8i=1,, 5y,

b; b;
= H / zdz; H / z?'jdzj

Bi=0, 2, JBi=ly 2y,

1 ) 1 1
by — a;+1 I | be — a;+
ai+1( i )‘ﬁ 1aj+1(7 v
JBi=

IT @ =0 T by — w7 ™

k=1 i:8;=0 J:B;=1

_ ﬁ bj — (5w +y5 + lzy —y; 1)+
Oéj'i‘l '

where we have used the fact that

r >y

Lty +le— )
—(x x—y|) =
2 Y Y y o y>a.

Therefore k(z,y) is the product and summation of contin-
uous functions and thus k(z,y) can be defined by a single
continuous function over every domain. We conclude that %
and therefore the resulting classifiers are both continuous. H

In addition to continuity, we show that any kernel of this
form for P > 0 has the universal property. We use the
following definition of universal kernel as can be found in,
e.g. [12].

Definition 6: A kernel k£ : X x X — R is said to be
universal on the compact metric space X if it is continuous
and there exists an inner-product space VW and feature map,
® : X — W such that k(x,y) = (®(z), ®(y))w and where
the unique Reproducing Kernel Hilbert Space (RKHS),

H:=Af: f(z) = (v,®(x)), ve W}

with associated norm || f||% := inf,{||v|lw flx) =
(v,®(z))} is dense in C(X) = {f X - R
fis continuous} where || f||¢c := sup,cx | f(z)].

Recall that H can be characterized as the closure of
span{k(y,-) : y € X}

The following theorem shows that any tessellated kernel
with P > 0 is necessarily universal.

Theorem 7: Suppose k is as defined in Eqn. (5) for some
P > 0,d € N and N as defined in Eqn. (6). Then £ is
universal for X = X = [a,b], a < b € R™.

Proof:

Without loss of generality, we assume X = X = [0, 1]™.

If P > 0, then there exist ¢; such that P = Py + >, ¢;P;

where Py > 0 and
0 0
where {e;} is the canonical basis for R™. In this case

k(z,y) = ko(x,y) + [ ] esmin{as, v},

i=1

ki(z,y)

where kg is a positive kernel. Since the hypothesis space
satisfies the additive property [21] [3], if &y is a universal
kernel, then k is a universal kernel.

Now, consider

span{ki(y,-) : y € X}

which consists of all functions of the form
f@) =3¢ [ fis()
j i=1

where

. z, ifx <y
fij(x) = min{z, y;;} = { !

Yij, otherwise.
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Fig. 2: Log-Log Plot of Computation Time vs number of training data for 2-feature kernel learning.

For n = 1, we may construct a triangle function centered at
Y2 as

07 1fx <y1
3 .
o(z —y1), ifyr <z <y
i=1 —0(x—yo), ifys<w<ys
07 if ys < x

where § = y1 —y2 = y2 — y3, and

ap = —0, «ap =20, «az=—0.

By taking the product of triangle functions in each dimen-
sion, we obtain the pyramid functions which are known to
be dense in the space of continuous functions on a compact
domain [18]. We conclude that k; is a universal kernel and
hence k is universal.

Notation For convenience, we denote the positive Tessel-
lated Kernels by saying k € IC% if there exists some P >~ 0
such that k is as defined in Equation (5) where N is as
defines in Eqn (6) using Z;.

|

This theorem implies that even if the degree of the
polynomials is small, the kernel is still universal. Specifically,
in the case when n = 1 and d = 0, the set K7 contains only
three parameters (elements of P).

V. SDP FORMULATION OF THE KERNEL LEARNING
PROBLEM

Section II detailed general optimization methods by which
we may search for an optimal kernel function, k& € KC, given
that the set of kernel functions has a linear parameterization.
We will now formulate specific methods for learning an opti-
mal tessellated kernel function using either the SDP method
of Optimization Problem (4), or using a two-step method
like SimpleMKL. Using the representation of Tessellated
Kernels (X = Cr) in Theorem 5 in Section IV, Optimization
Problem (3) may be expressed as

t, (an

min
teER,yERVER™ §ER™

. G(P) et+v—40+y
bject to: =0
subject to <(e+u—6+7y)T t— %JTe -
v>0, 6 >0, P >0, trace(P) <1
GolP) = 30 Yo (Pg)atiast [ iz,
i,j=1,2 k,l Xij

Optimization Problem (11) is an SDP and can therefore be
solved efficiently using standard SDP solver such as [2]. Note
that we use the trace constraint to ensure the kernel function
is bounded.

Typically SDP problems require roughly p?>n? number of
operations, where p is the number of decision variables and
n is the dimension of the SDP constraint [6]. The number of
decision variables in (11) is moderate, increasingly linearly
in the number of training data points and the size of P.
However, this optimization problem has a semi-definite ma-
trix constraint whose dimension is linear in m. As we will
see in Section VII, this limits the amount of training data
which can be processed using Optimization Problem (11).
To improve the scability of the algorithm, we therefore turn
to variations on SimpleMKL.

VI. SIMPLEMKL FORMULATION OF THE KERNEL
LEARNING PROBLEM

Recall that SimpleMKL searches for an optimal linear
combination of kernel functions, that is it returns a vector
of weights p, on the a priori selected kernel functions. Here
we discuss how SimpleMKL can be used to find optimal
combinations of tessellated kernel functions that perform
well in practice.

Since tessellated kernel functions have a linear param-
eterization, the positive sum of multiple tessellated kernel
functions, parameterized by the positive semi-definite matri-
ces P;, is equivalent to a single tessellated kernel function,
represented by the matrix P = Zle P;.

Therefore, by randomly generating a set of [ positive semi-
definite matrices, P; for ¢ = 1,...,l, we may use Sim-
pleMKL to find the optimal linear combination of tessellated
kernels defined by each matrix P;. The optimal tessellated
kernel function may then be approximated as the tessellated
kernel function parameterized by the matrix,

k

i=1

Where 1 is the vector of weights returned by SimpleMKL.
In practice, we find that this randomized approach performs
well in terms of accuracy on test data sets. Note that the
complexity of SimpleMKL approximately increases linearly
with the number of kernel functions, and superlinearly with
respect to m, the number of data points [15].



TABLE I: TSA comparison for algorithms a), b), c), and d).
The maximum TSA for each data set is bold. The average
TSA, standard deviation of TSA and time to compute are
shown below. m is size of dataset and n the number of
features.

Data Set Method Accuracy Time

Liver Tessellated 72.32 + 4.92 95.75 + 2.68
m=346 SimpleMKL 65.51 £ 5.10 2.61 + 0.42
n=6 SimpleMKL Tess.  70.58 4 4.69 8.37 £ 0.30
Combined 70.53 + 4.79 14.70 + 0.76

Cancer Tessellated 97.18 + 148 636.17 + 25.43
m=684 SimpleMKL 96.55 + 1.34 1474 + 1.33
n=9 SimpleMKL Tess.  96.89 4 1.43 45.84 + 4.28
Combined 96.89 + 1.42 65.08 £+ 10.52

Heart Tessellated 83.46 £+ 4.56 221.67 + 29.63
m=271 SimpleMKL 83.70 £+ 4.77 3.09 £+ 0.19
n=13 SimpleMKL Tess.  84.38 + 4.34 55.48 £+ 2.67
Combined 83.64 + 4.54 13.23 + 2.70

Pima Tessellated 7632 £ 3.10  1211.66 + 27.01
m=769 SimpleMKL 76.00 + 3.33 19.04 + 2.33
n=8 SimpleMKL Tess.  76.75 + 2.81 34.65 + 23.28
Combined 76.57 + 2.72 96.20 + 30.42
Ionosphere Tessellated 93.24 + 3.04 6.69 £+ 0.27
m=352 SimpleMKL 92.16 &+ 2.78 26.24 £+ 2.78
n=34 SimpleMKL Tess.  87.65 4 2.88 8.28 £+ .16
Combined 92.16 + 2.78 50.77 + 2.98

Finally, we mention that we may avoid the heuristic use
of randomized matrices by noting that SimpleMKL is a two-
step method - where the second step fixes o and searched
over u;. Since our parameterization of tessellated kernels is
linear, this second step may be used to search over the entire
space of tessellated kernels. However, implementation of this
approach is left for future work.

We will next consider an experimental complexity analysis
of the SDP method before comparing the accuracy of the two
proposed methods.

VII. IMPLEMENTATION AND COMPLEXITY ANALYSIS

In this paper, we have proposed a new class of kernel
functions defined by piecewise polynomials. In this section
we analyze the complexity of Optimization Problem (11)
with respect to the number of training points as well as the
selected degree of the tessellated kernel function.

The constraint that the kernel be a positive tessellated
kernel can be expressed as an LMI constraint with variables
P;;. Using Optimization Problem (11), if P € R?*9, and m
is the number of training data, with a Mosek implementation,
we find experimentally that the complexity of the resulting
SDP scales as approximately m?® 4 ¢ as can be seen in
Fig. 2 and is similar to the complexity of other methods such
as the hyperkernel approach in [13]. These scaling results
are for training data randomly generated by two standard
2-feature example problems (circle and spiral - See Fig. 4)
for degrees d = 1, 2, 3 and where d defines the length of
Z4 (and hence ¢) which is the vector of all monomials in 2
variables of degree d or less.

Note that the length of Z; scales with the degree and
number of features, n, as ¢ = %. For a large number
of features and high degree, the size of Z; will become
unmanageably large. Note, however, that, as indicated in the
Section IV, even when d = 0, the kernels are universal.
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Fig. 4: Discriminant Surface for Circle and Spiral Separator
using Tessellated kernel [T] as Compared with SimpleMKL
[S] for n training data.

VIII. ACCURACY AND COMPARISON WITH EXISTING
METHODS

In this section, we evaluate the relative accuracy of 1)
Optimization Problem (11); 2) SimpleMKL as defined in [15]
using polynomial and Gaussian kernels three different sets of
kernel basis C - the first contains polynomial and Gaussian
kernels, the second is the parameterization of tessellated ker-
nels from Section VI, and the last contains both tessellated,
polynomial and Gaussian kernels. To determine the set X for
the integral of the kernel function, we first scale the data so
that z; € [0,1]™, and then set X' := [0 —¢, 1 +¢]™, where € is
chosen by 5-fold cross-validation. For the numerical tests we
use the soft-margin problem with regularization parameter C'
also determined by 5-fold cross-validation and compare the
following methods: a) For the tessellated kernel, in all cases
we choose d = 1 (Except Ionosphere, which uses d = 0);
b) For SimpleMKL, we use the standard kernel selection of
combined Gaussian and polynomial kernels with bandwidths
arbitrarily chosen between .5 and 10 and degrees of degree
one through three - yielding approximately 13(n+1) kernels;
¢) To illustrate the effect of combining the proposed kernel
with SimpleMKL, we randomly generated a sequence of
300 positive semidefinite matrices and used these as the
SimpleMKL library of kernels; Finally, in d) We combined
the SimpleMKL library of kernels mentioned earlier with the
300 randomly generated tessellated library of kernels.

In all evaluations of Test Set Accuracy (TSA), the data is
partitioned into 80% training data and 20% testing and this
partition is repeated 30 times to obtain 30 sets of training
and testing data. In Table I, we see the average TSA for
these four approaches as applied to several randomly selected
benchmark data sets from the UCI Machine learning Data
Repository. In all cases, the tessellated kernel met or in some
cases significantly exceeded the accuracy of SimpleMKL.

In addition to the standard battery of tests, we performed
a secondary analysis to demonstrate the advantages of the
tessellated kernel class when the ratio of training data to



o
S
a

= — — - Tessellated

o
2

o
>

Test Set Accuracy

o
o
&

00 250

Number of Training Inputs

(a) Average test set accuracy on the Liver dataset vs.

Residual Error

50 100 150 200 250 300 350 400 450 500

Number of Training Inputs

(b) Semilog plot of residual error on generated 2D spiral

the number of training data for the proposed method data vs. number of training data for proposed method

compared to SimpleMKL

compared to SimpleMKL. .

Fig. 3: Plots demonstrating the change in accuracy of the tessellated kernel method and SimpleMKL with respect to the
number of training inputs. The residual error is defined as 1-TSA where TSA is the test set accuracy.

number of features is high. For this analysis, we use the liver
data set (6 features ) and the spiral discriminant [11] with 2
features (x and y) (we also briefly examine the unit circle).
For the liver data set, in Figure VI, we see a semilog plot of
the residual error (i.e. 1-TSA) as the size of the training data
increases as compared with SimpleMKL. This figure shows
consistent improvement of the tessellated class over standard
usage of SimpleMKL. For the spiral case, in Figure VI we
again see a semilog plot of the residual error as the size of
the training data increases as compared with SimpleMKL.
In this case, both methods converge well with the tessellated
kernel showing significant improvement over SimpleMKL
only for very large training data sets.

Finally, as illustration, we plotted the discriminant surface
for both the spiral and unit circle data sets using both the
Tessellated kernel and SimpleMKL using 150 training data
points. These 2D surfaces are found in Figure 4.

IX. CONCLUSION

In this paper, we have proposed a new class of universal
kernel functions that can be parameterized directly using
positive matrices. Furthermore, any element of this class is
universal, yielding comparable performance to and properties
of the Gaussian kernels. However, unlike the Gaussian, the
tessellated kernel does not require a set of bandwidths to
be chosen a priori. Indeed, by increasing the degree of
the monomial basis, it may be possible to show that the
tessellated kernels can approximate any universal kernel
arbitrarily well.

We have demonstrated the effectiveness of the tessellated
class of kernel on several datasets from the UCI reposi-
tory. We have shown that the computational complexity is
comparable to other SDP-based kernel learning methods.
Furthermore, by using a randomized basis for the positive
matrices, we have shown that the tessellated class can be
readily integrated with existing multiple kernel learning
algorithms such as Simple MKL - yielding similar results
with less computational complexity. In most cases, either
the optimal tessellated kernel, or the MKL learned sub-
optimal tessellated kernel will out perform or match an
MKL approach using Gaussian and polynomial kernels with
respect to the Test Set Accuracy. Finally, we note that this
universal class of kernels can be trivially extended to matrix-
valued kernels for use in, e.g. multi-task learning [4].
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