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Abstract— In this paper, we develop an SOS-based approach
for design of observers for time-delay systems. The method
is an extension of recently developed algorithms for control of
infinite-dimensional systems. The observers we design are more
general than the class of observers most commonly associated
with time-delay systems in that they directly correct both the
estimate of present state and the history of the state. As a result,
the observer is itself a PDE. In this case the traditional notions
of strong and weak observability do not apply and the resulting
observer-based controllers can significantly outperform existing
approaches.

I. INTRODUCTION

In Part 1 of this paper [1], we presented a method for
control synthesis for systems with multiple delays under
the assumption that the full state is available for control
feedback. However, state variables are often inaccessible in
practice. Therefore, in this part, we consider the state esti-
mation of such systems. Specifically, in Part 2 we consider
the problem of state estimation for delayed systems of the
form

ẋ(t) = A0x(t) +

K∑

i=1

Aix(t− τi) +Bw(t),

z(t) = C10x(t) +

K∑

i=1

C1ix(t − τi),

y(t) = C2x(t), (1)

where y(t) ∈ Rq is the measured output, w(t) ∈ Rr is the
disturbance input, z(t) ∈ Rp is the regulated output, x(t) ∈
Rn are the state variables and τi > 0 for i ∈ [1, · · · ,K]
are the delays ordered by increasing magnitude. We assume
x(s) = 0 for s ∈ [−τK , 0]. Our goal is to construct an
observer of the form

˙̂x(t) = A0x̂(t) +

K∑

i=1

Aiφ̂(t,−τi) + L1e0(t)

+

K∑

i=1

L2iei(t− τi) +

K∑

i=1

∫ 0

−τi

L3i(θ)ei(t+ s)dθ,

∂tφ̂i(t, s) = ∂sφ̂i(t, s) + L4i(s)e0(t) +
K∑

j=1

L5ij(s)ej(t− τj)

+ L6i(s)ei(t+ s) +
K∑

j=1

∫ 0

−τi

L7ij(s, θ)ej(t+ θ)dθ,

φ̂i(t, 0) = x̂(t),
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e0(t) = C2x̂(t)− y(t), ei(t+ s) = C2φi(t, s)− y(t+ s),

ze(t) = C10e0(t) +

K∑

i=1

C1iei(t− τi), (2)

where L3i, L4i, L5i L6i and L7i are polynomials that are

chosen to minimize γ := supw∈L2

‖ze‖L2

‖w‖
L2

.

The structure of the observer is a natural generalization
of the Luenberger observer to infinite-dimensional systems.
Specifically, when all gains are removed (Lij = 0), Sys-
tem (2) reduces to the nominal System (1) without distur-
bance input w. The gains L1 L2i, and L3i correct the estimate
of the current state of the system. The gains L5i L6i and L7ij

correct the estimated history of the state.
The observer developed in Part 2 of this paper has the

following characteristics: 1) The feasibility is expressed as
LMIs; 2) It is not conservative in any significant sense;
3) The conditions are prima facie provable in that they
are certified using Lyapunov-Krasovskii functionals; 4) The
method is scalable to large numbers of states and delays; 5)
The design process has an efficient real-time implementation;
and 6) The algorithm is publicly available for verification via
Code Ocean.

It should be pointed out, however, that our observer in
the current form is not suitable when there is delay in the
output or when the delays are unknown or time-varying.
Furthermore, we do not yet have an effective method to
accommodate the sensor noise in the measured output.

The result may be considered as a generalization of a well-
known LMI for optimal estimation of ODEs. Specifically,
when Ai = 0 and C1i = 0 for i > 0, if there exist P > 0
and Z such that




PA+ ZC2 + (PA+ ZC2)
T −PB − ZD CT

10

−(PB + ZD)T −γI 0
C10 0 −γI



 < 0.

(3)

then if we set L1 = P−1Z and all other gains to zero we
have ‖ze‖L2

≤ γ ‖w‖L2
.

To generalize this LMI for multi-delay systems, we take
the following approach, which parallels the developments
for controller synthesis in Part 1 [1]. First, in Section III,
Theorem 1 we show that an operator-valued version of
LMI (3) holds for a general class of Distributed-Parameter
Systems (DPS). In Theorem 1, however, the system matrices
become operators. Similarly, the matrix variables P and Z
are also replaced by linear operators. Next, in Section IV,
we formulate the estimator design problem for multi-delay
systems in the DPS framework, defining the system operators
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A, B, C1, C2 and D and using the PQRS framework to param-
eterize the operator variables P and Z as in Equations (8)
and (10). The PQRS framework (Eqn. (8)) uses matrix-
valued polynomials to parameterize multiplier and integral
operators and positivity of PQRS operators can be enforced
using LMI constraints on the coefficients of the polynomials,
as defined in Section IV of Part 1 [1] and summarized here
in Corollary 2. Having defined the system operators and
parameterized the variables, in Section VI we provide the
main result which shows that when these definitions and
parameterizations are applied to Theorem 1, we obtain an
optimal observer synthesis condition expressed as positivity
and negativity of operators of the PQRS format. These
synthesis conditions can then be expressed as LMIs using
the DelayTOOLs Matlab toolbox described in Section IX.
To extract the optimal observer gains, however, one last step
is required. Namely, we must find L = P−1Z — which
requires inversion of P . In Section VII, Theorem 4, we give
an analytic expression for the inverse of a PQRS operator.
This inverse is itself a PQRS operator and when composed
with Z , yields the optimal observer gains — an expression
for which is found in Section VIII, Lemma 5. Finally, in
Section X, these gains are implemented efficiently in Matlab
and are shown to reject disturbances as per the predicted
bounds on L2-gain. Section X also performs an accuracy
analysis when compared with observers designed using a
high-order Padé approximation. The bounds obtained for
our results are accurate in this metric to several decimal
places in all problems considered. Furthermore, in Section X
a computational complexity analysis is performed and it is
shown that the algorithms can be implemented on desktop
computers when the product of the number of states and the
number of delays is less than 50.

II. NOTATION

The symmetric matrices are denoted Sn ⊂ Rn×n. An
element of a symmetric matrix which can be deduced from
symmetry is denoted with a ∗. We use Ln

2 [T ] to denote the
vector-valued Lesbesque square integrable functions which
map T → Rn. In this paper, either T = Ti := [−τi, 0]
or T = [0,∞]. We occasionally denote the Sobolev space
Wn

2 [T ] := {x ∈ Ln
2 [T ] : ẋ ∈ Ln

2 [T ]}. We also use the
index shorthand [K] := {1, · · · ,K}.

III. OPTIMAL ESTIMATION OF

DISTRIBUTED-PARAMETER SYSTEMS

In this section we consider the general class of distributed-
parameter systems given by

ẋ(t) = Ax(t) + Bw(t), x(0) = 0,

z(t) = C1x(t), y(t) = C2x(t) +Dw(t), (4)

where A : X → Z , B : Rr → Z , C1 : X → Rp, C2 : X → Y
and D : Rr → Y . Now for a given operator L : Y → Z , we
define the observer dynamics as follows

˙̂x(t) = Ax̂(t) + L (C2x̂(t)− y(t)) , (5)

where x̂(0) = 0. Now, defining the error state as e(t) =
x̂(t) − x(t), ze(t) = C1x̂(t) − z(t) = C1e(t) we obtain the
error dynamics as

ė(t) = (A+ LC2)e(t)− (B + LD)w(t),

ze(t) = C1e(t), e(0) = 0. (6)

The goal is to construct the operator L which minimizes γ >
0 such that ‖ze‖L2

≤ γ ‖w‖L2
for any e and ze which satisfy

Equation (6). Note that although this paper is concerned with
the H∞ gain from disturbance w to the measured output z,
it is also possible to extend this result to L2 gain from the
nonzero initial condition e(0) to z in a manner similar to [2].

Theorem 1: Suppose there exist bounded linear operators
P : Z → Z and Z : Y → Z , such that P is coercive and

〈(PA+ ZC2)e, e〉Z + 〈e, (PA+ ZC2)e〉Z
− 〈e, (PB + ZD)w〉Z − 〈(PB + ZD)w, e〉Z

− γ ‖w‖
2
− γ ‖v‖

2
+ 〈v, C1e〉+ 〈C1e, v〉

≤ −ǫ ‖e‖
2

∀e ∈ X, w ∈ R
r, v ∈ R

q

for some ǫ > 0. Then P−1 exists and is a bounded linear
operator and for L = P−1Z and any w ∈ Lr

2, the solution
of Eqn. (6) satisfies

‖ze‖L2
≤ γ ‖w‖L2

. (7)

Proof: Since P is coercive and P : Z → Z , P−1

is a bounded linear operator with P−1 : Z → Z . Let e

satisfy Eqn. (6). Then e(t) ∈ X . Define the storage function
V (e) = 〈e,Pe〉, then V (e) ≥ δ ‖e‖

2 for some δ > 0 since
P is coercive. Differentiating, we obtain

V̇ (e(t)) = 〈(PA+ PLC2)e, e〉Z + 〈e, (PA+ PLC2)e〉Z
− 〈e, (PB + PLD)w〉Z − 〈(PB + PLD)w, e〉Z .

Now since Z = PL, we have

V̇ (e(t)) = 〈(PA+ ZC2)e, e〉Z + 〈e, (PA+ ZC2)e〉Z
− 〈e, (PB + ZD)w〉Z − 〈(PB + ZD)w, e〉Z

< γ ‖w(t)‖
2
+ γ ‖v(t)‖

2
− 〈v(t), C1e(t)〉 − 〈C1e(t), v(t)〉

= γ ‖w(t)‖
2
+ γ ‖v(t)‖

2
− 〈v(t), ze(t)〉 − 〈ze(t), v(t)〉

for all [e(t) w(t) v(t)] 6= 0. Let v(t) = 1
γ
ze(t). Then we get

V̇ (e(t)) < γ ‖w(t)‖
2
+

1

γ
‖ze(t)‖

2
−

2

γ
‖ze(t)‖

2

= γ ‖w(t)‖
2
−

1

γ
‖ze(t)‖

2
.

Integration of this inequality yields

V (e(t))−V (e(0))+
1

γ

∫ t

0

‖ze(s)‖
2 ds < γ

∫ t

0

‖w(s)‖2 ds.

As V (e(0)) = 0 and V (e(t)) ≥ 0, if we let t → ∞, we see
that the above implies (7).
Note that the conditions of the theorem also establish
limt→∞ e(t) = 0 when limt→∞ w(t) = 0.
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IV. APPLICATION TO SYSTEMS WITH MULTIPLE STATE

DELAYS

Theorem 1 gives a convex formulation of the observer
synthesis problem for a general class of distributed-parameter
systems. In this section and the next, we apply Theorem 1
to the case of systems with multiple delays. Specifically, we
consider solutions to the system of equations given by Equa-
tion (1). First, we express System (1) in the abstract form
of (4). Following the mathematical formalism developed
in [3], we define the inner-product space Zm,n,K := {Rm×
Ln
2 [−τ1, 0]× · · · × Ln

2 [−τK , 0]} and for {x, φ1, · · · , φK} ∈
Zm,n,K , we define the following shorthand notation

[
x
φi

]

:= {x, φ1, · · · , φK},

which allows us to simplify expression of the inner product
on Zm,n,K , which we define to be

〈[
y
ψi

]

,

[
x
φi

]〉

Zm,n,K

= τKyTx+

K∑

i=1

∫ 0

−τi

ψi(s)
Tφi(s)ds.

When m = n, we simplify the notation using Zn,K :=
Zn,n,K . The state-space for System (1) is defined as

X :=

{[
x
φi

]

∈ Zn,K : φi∈Wn
2 [−τi,0] and

φi(0)=x for all i∈[K]

}

.

We now represent the infinitesimal generator, A : X →
Zn,K , of Eqn. (1) as

A

[
x
φi

]

(s) :=

[

A0x+
∑K

i=1 Aiφi(−τi)

φ̇i(s)

]

.

and the operators B : Rr → Zn,n,K , C1 : X → Rp, C2 :
X → Zq,q,K are defined as

(Bw) (s) :=

[
Bw
0

]

,

(

C2

[
x0

xi

])

(s) :=

[
C2x0

C2xi(s)

]

(

C1

[
x0

xi

])

:=
[

C10x0 +
∑K

i=1 C1ixi(−τi)
]

.

In this paper, we set D = 0 since a realistic model of sensor
noise requires an augmented state space. We leave inclusion
of sensor noise for future work.

A. The PQRS Framework

Now that we have specified the operators A, B, C1, C2, and
D which define the nominal system, we next use matrices and
matrix-valued polynomials to define the decision variables
in Theorem 1. Specifically, we now introduce a class of
operators P{P,Qi,Si,Rij} : Zm,n,K → Zm,n,K , parameterized
by matrix P and matrix-valued functions Qi ∈ Wm×n

2 [Ti],
Si ∈ Wn×n

2 [Ti], Rij ∈ Wn×n
2 [Ti × Tj] as

(

P{P,Qi,Si,Rij}

[
x
φi

])

(s) := (8)
[

Px+
∑K

i=1

∫ 0

−τi
Qi(s)φi(s)ds

τKQi(s)
Tx+τKSi(s)φi(s)+

∑K
j=1

∫ 0

−τj
Rij(s, θ)φj(θ) dθ

]

.

We now turn to the operator Z . To obtain the estimator form
defined in (2), the error injection operator L : Zq,q,K →
Zn,n,K must have the form

L

[

y0
yi

]

(s) =





L0y0 +
K
∑

i=1

L2iyi(−τi) +
K
∑

i=1

∫

0

−τi
L3,i(θ)yi(θ)dθ

li(s)





li(s) = L4i(s)y0 +

K
∑

j=1

L5ij(s)yj(−τj) + L6i(s)yi(s)

+
K
∑

j=1

∫

0

−τj

L7ij(s, θ)yj(θ)dθ. (9)

Using this parametrization of P and L, we may compose
these operators to show that Z = PL likewise has the form

Z

[

y0
yi

]

(s) =





Z0y0 +
K
∑

i=1

Z2iyi(−τi) +
K
∑

i=1

0
∫

−τi

Z3,i(θ)yi(θ)dθ

τKzi(s)





zi(s) = Z4i(s)y0 +
K
∑

j=1

Z5ij(s)yj(−τj) + Z6i(s)yi(s)

+
K
∑

j=1

∫

0

−τj

Z7ij(s, θ)yj(θ)dθ. (10)

The expressions for the gains Zi in terms of PQRS and
Li are omitted for brevity. Now that we have defined the
problem and parameterized our decision variables, we may
apply these results to Theorem 1 to obtain a synthesis con-
dition expressed entirely in the PQRS framework. However,
before we do this, we need to show how LMIs can be
used to enforce positivity of operators in the PQRS format.
Furthermore, we need to show how to construct P−1 when
P is in PQRS format.

V. ENFORCING OPERATOR INEQUALITIES IN THE

P{P,Qi,Si,Rij} FRAMEWORK

The problem of enforcing operator positivity on Zm,n,K

in the P{P,Qi,Si,Rij} framework was solved in [3]. To avoid
repetition, we refer to Section IV in Part 1 of this paper [1]
for a detailed discussion. However, for convenience, we
repeat the main result of that section.

Corollary 2: Let Ξd,m,K and L1 be as defined in Section
IV of Part 1 [1]. Suppose there exist d ∈ N, constant ǫ > 0,
matrix P ∈ Rm×m, polynomials Qi, Si, Rij for i, j ∈ [K]
such that

L1(P,Qi, Si, Rij) ∈ Ξd,m,nK .

Then
〈
x,P{P,Qi,Si,Rij}x

〉

Zm,n,K
≥ 0 for all x ∈ Zm,n,K .

VI. REFORMULATION OF THE SYNTHESIS CONDITION

USING Z2n+r,n

In this section, we reformulate the conditions of Theo-
rem 1 as a linear operator inequality where all operators are
of the form of Equation (8). Specifically, we show that for
e ∈ X ,

〈(PA+ ZC2)e, e〉Z + 〈e, (PA+ ZC2)e〉Z
− 〈e, (PB + ZD)w〉Z − 〈(PB + ZD)w, e〉Z

− γ ‖w‖
2
+

1

γ
‖C1e‖

2
=
〈
h,P{D,Ei,Fi,Gij}h

〉

Zr+q+n(K+1),n,K
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where

h =
[
wT vT eT0 e1(−τ1)

T · · · eK(−τK)T eTi
]T

∈ Zr+q+n(K+1),n,K .

Theorem 3: For any γ > 0, suppose there exist d ∈ N,
constant ǫ > 0, matrix P ∈ Rn×n, polynomials Si, Qi ∈
Wn×n

2 [Ti], Rij ∈ Wn×n
2 [Ti × Tj] for i, j ∈ [K], matrices

Z0, Z2i ∈ R
n×q and polynomials Z3i, Z4i, Z5ji, Z6i ∈

Wn×q
2 [Ti] and Z7ij ∈ Wn×q

2 [Ti × Tj] for i, j ∈ [K] such
that

L1(P − ǫIn, Qi, Si − ǫIn, Rij) ∈ Ξd,n,nK

−L1(D+ǫÎ, Ei, Fi + ǫIn, Gij) ∈ Ξd,r+q+n(K+1),nK ,

where

D=












− γ
τK

I 0 −T T
w0 0 . . . 0

∗T − γ
τK

I C10

τK

C11

τK
. . . C1K

τK

∗T ∗T T00 T01 . . . T0K

∗T ∗T ∗T S1(−τ1) . . . 0
...

...
...

...
. . .

...
∗T ∗T ∗T ∗T . . . SK(−τK)












Ei(s) =
[
−Φwi(s) 0 Φ0i(s) Φ1i(s) . . . ΦKi(s)

]T
,

Fi = Ṡi(s) + Z6i(s)C2 + CT
2 Z6i(s)

T ,

Gij(s, θ) = −
∂

∂s
Rij(s, θ)−

∂

∂θ
Rij(s, θ)

+ τK
(
Z7ij(s, θ)C2 + CT

2 Z7ji(θ, s)
T
)
,

and

Tw0 = PB,

T00 = PA0 +A
T
0 P +

K
∑

k=1

Qk(0) +Qk(0)
T + Sk(0)

+ Z1C2 + C
T
2 Z

T
1 ,

T0i = PAi −Qi(−τi) + Z2,iC2,

Φwi(s) = Qi(s)
T
B,

Φ0i(s) = A
T
0 Qi(s) +

1

τK

K
∑

k=1

R
T
ik(s, 0) − Q̇i(s)

+ Z4i(s)C2 + C
T
2 Z3,i(s)

T
,

Φji(s) = A
T
j Qi(s)−

1

τK
R

T
ij(s,−τj) + Z5i,j(s)C2,

Î = diag(0r+q, In, 0nK), and L1 is as defined in Section
IV of [1]. Then if L = P−1

{P,Qi,Si,Rij}
Z , where Z is as

defined in Equation (10), then L has the form of Eqn. (9)
and any solution of Eqns (1) coupled with Eqns. (5) satisfies
‖ze‖L2

< γ ‖w‖L2
.

Proof: First let P = P{P,Qi,Si,Rij}. Then

〈e,Pe〉

=
〈
e,P{P−ǫI,Qi,Si−ǫI,Rij}e

〉
+ ǫ ‖e‖

2
Zn,K

≥ ǫ ‖e‖
2
Zn,K

,

hence P is coercive. Next, we show that for e ∈ X ,

〈(PA+ ZC2)e, e〉Z + 〈e, (PA+ ZC2)e〉Z
− 〈e, (PB + ZD)w〉Z − 〈(PB + ZD)w, e〉Z

−γ‖w‖
2
+

1

γ
‖C1e‖

2
=
〈
h,P{D,Ei,Fi,Gij}h

〉

Zr+q+n(K+1),n,K

where

h =
[
wT vT eT0 e1(−τ1)

T · · · eK(−τK)T eTi
]T

=

[
h0

hi

]

∈ Zr+q+n(K+1),n,K .

and apply Theorem 1. We do this in parts by reformulating
each element separately and then summing up. The first term
is complicated, but has been well-studied [3].

〈e,PAe〉Zn,K
+ 〈Ae,Pe〉Zn,K

=
〈
h,P{D1,E1i,F1i,G1ij}h

〉

Zr+q+n(K+1),n,K

,

where

D1 =












0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 ∆0 ∆1 · · · ∆K

0 0 ∆T
1 S1(−τ1) 0 0

...
...

... 0
. . . 0

0 0 ∆T
K 0 0 SK(−τK)












,

∆0 = PA0 +AT
0 P +

K∑

k=1

Qk(0) +Qk(0)
T + Sk(0),

∆j = PAj −Qj(−τj),

E1i(s) =
[
0 0 Π0,i(s)

T . . . ΠK,i(s)
T
]T
,

Π0j(s) = AT
0 Qj(s) +

1

τK

K∑

k=1

RT
jk(s, 0)− Q̇j(s),

Πij(s) = AT
i Qj(s)−

1

τK
RT

ji(s,−τi),

F1i = Ṡi(s)

G1ij(s, θ) = −
∂

∂s
Rij(s, θ)−

∂

∂θ
Rij(s, θ).

For the second term, we have

ZC2

[
e0
ei

]

(s) :=

[
g0

τKgi(s)

]

,

where

g0 = Z0C2e0 +

K∑

i=1

Z2iC2ei(−τi)

+

K∑

i=1

∫ 0

−τi

Z3,i(θ)C2ei(θ)dθ,

gi(s) = Z4i(s)C2e0 +
∑

j

Z5ij(s)C2ej(−τj)

+ Z6i(s)C2ei(s) +
∑

j

∫ 0

−τj

Z7ij(s, θ)C2ej(θ)dθ.

Hence

〈e,ZC2e〉Zn,K
+ 〈ZC2e, e〉Zn,K

=
〈
h,P{D2,E2i,F2i,G2ij}h

〉

Zr+q+n(K+1),n,K

,
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where

D2 =












0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 Z0C2 + CT

2 Z
T
0 Z2,1C2 . . . Z2,KC2

0 0 CT
2 Z

T
2,1 0 . . . 0

...
...

...
...

. . .
...

0 0 CT
2 Z

T
2,K 0 . . . 0












,

E2i(s) =
[
0 0 Z4i(s)C2 + CT

2 Z3i(s)
T Z5i1(s)C2 · · · Z5iK(s)C2

]T
,

F2i = Z6i(s)C2 + CT
2 Z6i(s)

T ,

G2ij(s, θ) = Z7ij(s, θ)C2 + CT
2 Z7ji(θ, s)

T .

For the third term, we have

PB

[
e0
ei

]

(s) :=

[
PBw

τKQi(s)
TBw

]

.

Hence

〈e,PBw〉Zn,K
+ 〈PBw, e〉Zn,K

=
〈
h,P{D3,E3i,0,0}h

〉

Zr+q+n(K+1),n,K
,

where

D3 =












0 0 BTP 0 . . . 0
0 0 0 0 . . . 0

PB 0 0 0 . . . 0
0 0 0 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 0












,

E3i(s) =
[
Qi(s)

TB 0 0 0 . . . 0
]T

.

Finally, we have −γ ‖w‖2 − γ ‖v‖2 + 〈v, C1e〉+ 〈C1e, v〉.
First,

〈v, C1e〉 = vT (C0e0 +
K∑

i=1

Ciei(−τi))

hence

− γ ‖w‖
2
− γ ‖v‖

2
+ 〈v, C1e〉+ 〈C1e, v〉

= τKhT
0

1

τK












−γI 0 0 0 . . . 0
0 −γI C0 C1 . . . CK

0 CT
0 0 0 . . . 0

0 CT
1 0 0 . . . 0

...
...

...
...

. . .
...

0 CT
K 0 0 . . . 0












︸ ︷︷ ︸

D4

h0

=
〈
h,P{D4,0,0,0}h

〉

Zr+q+n(K+1),n,K
.

Summing all the terms and noting the D = 0, we have

〈(PA+ ZC2)e, e〉Z + 〈e, (PA+ ZC2)e〉Z
− 〈e, (PB + ZD)w〉Z − 〈(PB + ZD)w, e〉Z

−γ‖w‖
2
+

1

γ
‖C1e‖

2
=
〈
h,P{D,Ei,Fi,Gij}h

〉

Zr+q+n(K+1),n,K

where

D = D1 +D2 −D3 +D4,

Ei = E1i + E2i − E3i,

Fi = F1i + F2i,

Gij = G1ij +G2ij .

Numerical implementation of the conditions of Theorem 3
using the DELAYTOOLS mod pack for SOSTOOLS is
relatively straightforward. An implementation of this test,
the estimator reconstruction, and simulations keyed to this
paper can be found at [4].

VII. INVERTING THE OPERATOR

Now that we have an observer synthesis condition, we
address the question of reconstructing the observer which
attains the desired H∞ gain condition. Recall the observer
gain is of the form L = P−1Z . Clearly, we need an expres-
sion for the inverse of an operator of the form P{P,Qi,Si,Rij}.
Such an inverse was presented in Part 1 [1] for the case where
Qi, Rij , Si are polynomials as a generalization of the result
in [5] to the case of multiple delays. This inverse is also of
the form P{P̂ ,Q̂i,Ŝi,R̂ij}

where expressions for the matrix P̂

and functions Q̂i, R̂ij , Ŝi are given in the following theorem,
which is repeated here for convenience as it is used in the
following section.

Theorem 4: Suppose that Qi(s) = HiZ(s) and
Rij(s, θ) = Z(s)TΓijZ(θ) and P := P{P,Qi,Si,Rij} is a
coercive operator where P : X → X and P = P∗. Define

H =
[
H1 . . . HK

]
and Γ =






Γ11 . . . Γ1K

...
...

ΓK,1 . . . ΓK,K




 .

Now let Ki =
∫ 0

−τi
Z(s)Si(s)

−1Z(s)Tds,

K = diag(K1, · · · ,KK),

Ĥ = P−1H
(
KHTP−1H − I −KΓ

)−1
,

Γ̂ = −(ĤTH + Γ)(I +KΓ)−1,

[

Ĥ1 . . . ĤK

]
= Ĥ,






Γ̂11 . . . Γ̂1K

...
...

Γ̂K,1 . . . Γ̂K,K




 = Γ̂.

Then if we define

P̂ =
(

I − ĤKHT
)

P−1, Q̂i(s) = ĤiZ(s)Si(s)
−1,

Ŝi(s) = Si(s)
−1, R̂ij(s, θ) = Ŝi(s)Z(s)T Γ̂ijZ(θ)Ŝj(θ),

then for P̂ := P{

P̂ , 1
τK

Q̂i,
1

τ2
K

Ŝi,
1

τK
R̂ij

}, we have P̂ = P̂∗,

P̂ : X → X , and P̂Px = PP̂x = x for any x ∈ Zm,n,K .
Proof: See [6] for the proof.

VIII. CONSTRUCTING THE OBSERVER GAINS

Armed with this inverse, we may define the observer gains.
Lemma 5: Let L = P̂Z where P̂ is as in Theorem 4 and

Z is as in Eqn. (10) with polynomial representation of the
Zi as Z4i(s) = Z(s)TW4i, Z5ij(s) = Z(s)TW5ij , Z6i(s) =

3874



Z(s)TW6i, and Z7ij(s, θ) = Z(s)TW7ijZ(θ). Then L is as
in Eqn. (9) where

L0 = P̂Z0 +

K∑

i=1

ĤiTiW4i,

L2i = P̂Z2i +

K∑

j=1

ĤjTjW5ji,

L3,i(θ) = P̂Z3,i(θ) + ĤiVi(θ)W6i +
∑

j

ĤjTjW7jiZ(θ),

L4i(s) = Xi(s)



ĤT
i Z0 +W4i +

K∑

j=1

Γ̂ijTjW4j



 ,

L5ij(s) = Xi(s)

(

ĤT
i Z2j +W5ij +

K∑

k=1

Γ̂ikTkW5kj

)

,

L6i(s) = X(s)W6i,

L7ij(s, θ) = Xi(s)

(

ĤT
i Z3,j(θ) +W7ijZ(θ)

+ Γ̂ijVj(θ)W6j +

K∑

k=1

Γ̂ikTkW7kjZ(θ)

)

,

Xi(s) = Ŝi(s)Z(s)T , Vi(s) = Z(s)Ŝi(s)Z(s)T ,

Ti =

∫ 0

−τi

Z(s)Ŝi(s)Z(s)T ds.

Proof: The proof is a straightforward composition of
operators and is omitted for brevity.
Note that if we constrain Qi = 0 and Z3i = Z4i = Z5ij =
Z6i = Z7ij = 0, we recover an observer with corrections
only to the present state.

The advantage of this representation is that there is only a
single integration to find the matrices Ti and Ŝ only appears
in the auxiliary functions Xi and Vi. This significantly
improves numerical reliability and decreases computational
complexity of implementation.

IX. NUMERICAL IMPLEMENTATION
In this section, we address two issues significant for the

efficient construction and implementation of the observers.
The first is numerical computation of the inverse. The second
is real-time simulation of the observer dynamics.
A. Computing the Inverse

There are two steps to computing the inverse which may be
difficult for the reader. Both steps are implemented in the m-
file P PQRS Inverse joint sep in the Matlab package
associated with this paper. The first step is to calculate
the uniquely defined Hi and Γij matrices. Each element
of these matrices is defined by a single coefficient in the
matrix-valued polynomials Qi(s) and Rij(s, θ). This can be
cumbersome in the pvar framework, so we have constructed
Matlab functions decomposition multiplier.m and
decomposition kernel.m which automate this process
(See Code available from [4]).

The next step is to Calculate S−1(s). However, because of
the representation in Lemma 5, we do not need a polynomial
formulation of this inverse. Rather, we evaluate S(s) at
discrete points where the value is needed, and invert the
matrix at each point. This results in a reliable computation
of the integral Ti.

B. Implementation of the Observer
The PDE governing the observer dynamics is a generaliza-

tion of the transport equation. Therefore, we use a forward
difference approximation based on a number of lumped
states, N . Typically 20 states is more than sufficient to obtain
accurate results. In the code associated with this paper, we
verified the observers and H∞-gain bounds using several
different methods. A complete description is not given here
due to space limitation, however, and hence we refer to that
code for additional details.

X. NUMERICAL EXAMPLES

Significant care must be taken in the choice of numerical
examples to correctly demonstrate the advantages and lim-
itations of the proposed observer design. Specifically, most
examples in the literature are 2-state and have disturbance

inputs of the form B =

[
1
1

]

. That is, a single disturbance

affects both states equally. In such cases our observers can
achieve very small H∞ norms — typically less than .001 (we
do not test smaller gains due to potential numerical difficul-
ties in verification). We can achieve these gains because the
observers we design can indirectly observe the disturbance
through the measured output and use this information to
correct the state estimate. However, we feel that this approach
is not fair or realistic and hence use independent channels
to disturb all states. For this reason, several of the examples
given below have been modified from their original form.
Because most codes are not available online, the result is
that we only include numerical comparisons for the results
in [7], for which we were able to reproduce the tests given
in that paper. However, the readers should bear in mind
that using the original systems and results from, e.g. [8],
[9], the observers in we provide improve the achieved H∞

gains by several orders of magnitude (Specifically, the H∞

gains using our algorithm can be made arbitrarily (< .001)
small) and their omission is not due to poor performance
with respect to these earlier works.

In all cases, in order to show that the observers we design
are not significantly conservative, we have used a 10th order
Padé approximation to construct an ODE approximation of
the original multi-delay system. We then applied the LMI in
Equation (3) to obtain an estimate of the minimal achievable
closed-loop H∞ norm bound. These results are indicated in a
table associated with each numerical example and compared
to results obtained through implementation of Theorem 3
using the value of d indicated in the table.

a) Example 1: In this example, we consider the unsta-
ble system with τ = .3

ẋ(t) =

[
−3 4
2 0

]

x(t) +

[
0 0
1 0

]

x(t− τ) +

[
1 0
0 1

]

w(t),

y(t) =
[
0 7

]
x(t), z(t) =

[
1 0
0 1

]

x(t).

Applying the Ricatti approach in [10] with ǫ = .001 we
obtain a L2-gain of γ = .580. Applying the conditions
of Theorem 3, we obtain an L2-gain of .2357. Of all the
systems we tested, this one showed the least improvement
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Fig. 1. A Matlab simulation of the error dynamics of System 12 coupled
with the observer from Theorem 3 with gain 2.33 and delay τ = 1s. The
image displays w(t) and e1(t) = x̂(t) − x(t).

in performance. Note, however, that the lack of improvement
is due to the fact that a lower H∞ bound is not achievable
(See comparison with Padé).

d = 1 d = 2 d = 3 Padé [10]
γmin .2357 .2357 .2357 .2357 .580

CPU sec .433 .918 2.29 2.92 N/A

b) Example 2: In this example, we consider the fol-
lowing unstable system which is modified from the result
in [8].

ẋ(t) =

[
0 0
0 1

]

x(t) +

[
−1 −1
0 −.9

]

x(t− τ) +

[
1 0
0 1

]

w(t),

y(t) =
[
0 1

]
x(t), z(t) =

[
1 0

]
x(t) (11)

Using the original system with τ = 1, a closed-loop gain of
22.8 was obtained in [8]. For this problem, the Ricatti ap-
proach in [10] was infeasible for any value of gain. Applying
the conditions of Theorem 3, we obtained a closed-loop gain
of 2.327 using polynomials of degree 4. A Simulation of the
error and disturbance dynamics is shown in Figure 1. Note
that only the values of w(t) and e1(t) = x̂(t) − x(t) are
shown in this figure. The input is a sinc function and the
numerically calculated L2 gain for this observer using the
sinc function is 1.186.

d = 1 d = 2 d = 3 Padé [8]
γmin 2.3323 2.3270 2.3270 2.3270 22.8

CPU sec .968 .668 1.99 2.98 N/A

c) Example 3: In this example, we further modify the
problem in [8] to obtain a 2-delay system.

ẋ(t) =

[
0 0
0 1

]

x(t) +

[
−1 −1
0 −.9

]
x(t − .5) + x(t− 1)

2

+

[
1 0
0 1

]

w(t),

y(t) =
[
0 1

]
x(t), z(t) =

[
1 0

]
x(t) (12)

d = 1 d = 2 d = 3 Padé
γmin 1.3511 1.3501 1.3501 1.3501

CPU sec 4.77 7.57 33.59 5.45

K ↓ n → 1 2 3 5 10
1 .516 .218 .375 2.203 24.094
2 .219 .547 2.141 19.282 875.137
3 .3910 1.782 9.484 113.236 4742.7
5 1.375 12.454 109.939 1859.9 62069
10 18.406 582.945 4717.2 66033 N/A

TABLE I

CPU SEC INDEXED BY # OF STATES (n) AND # OF DELAYS (K )

d) Example 4: In this example, we examine the com-
putational complexity of the proposed algorithm using an
unstable n-D system with K delays, a single disturbance
w(t), a single regulated output and a single sensed output.

ẋ(t) =− J
K∑

i=1

x(t− i/K)

K
+ 1w(t)

y(t) =z(t) = 1Tx(t)

where J is the n-dimensional Jordan block and 1 ∈ Rn

is the vector of all ones. The resulting computation time is
listed in Table I as CPU sec on a Intel i7-5960X processor
and omits preprocessing and postprocessing times. Note that
computational complexity is approximately a function of the
product of the number of delays and number of states.

XI. CONCLUSION

We have proposed an LMI approach to H∞-optimal
observer design for systems with multiple time delays. These
observers correct both the estimates of present state and
history. Given a solution to the LMI, the observer gains can
be reconstructed using algebraic techniques and implemented
using discretization.

The Matlab code associated with this paper performs all
these tasks and is freely available online. The numerical
testing and validation indicates little if any conservatism
in the H∞ bound. The observers in this paper outperform
existing observers, often by several orders of magnitude –
to the extent that new test cases had to be created to fully
understand the limitations of the approach.
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