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Estimator-Based Output-Feedback Stabilization of Linear Multi-Delay

Abstract—1In this paper, we investigate the estimator-based
output feedback control problem of multi-delay systems. This
work is an extension of recently developed operator-value LMI
framework for infinite-dimensional time-delay systems. Based
on the optimal convex state feedback controller and generalized
Luenberger observer synthesis conditions we already have,
the estimator-based output feedback controller is designed to
contain the estimates of both the present state and history of
the state. An output feedback controller synthesis condition is
proposed using SOS method, which is expressed in a set of
LMI/SDP constraints. The simulation examples are displayed
to demonstrate the effectiveness and advantages of the proposed
results.

I. INTRODUCTION

Time delay widely exists in natural and engineered sys-
tems, often as a source of instability. Many works have been
done on the study and control of time-delay systems during
the last decades [1], [2], mainly focusing on stability anal-
ysis, such as [3] and [4]. Despite the considerable advances
that have been made in the area of stability analysis, the
problem of stabilization of time-delay systems has been rel-
atively neglected [2], [5]. The primary problem in feedback
stabilization of time-delay systems is the bilinearity between
the controller and the Lyapunov certificate of stability. This
bilinearity implies that combining parameterized controllers
with standard approaches to Lyapunov-Krasovskii functional
construction will result in Bilinear Matrix Inequalities — a
problem for which no efficient optimization algorithms exist.
Faced with this bilinearity, some papers use iterative methods
to alternately optimize the Lyapunov functional and then the
controller as in [6], [7]. However, this iterative approach
is not guaranteed to converge. Recently, however, duality-
based methods have been proposed within the SOS-based
operator-theoretic framework — resulting in an LMI-based
solution to the problem of H.-optimal full-state-feedback
control of multi-delay systems [8]. The primary disadvantage
of the full-state feedback controllers proposed in [8] is that
they assume accurate knowledge of all states of the system
and moreover knowledge of the history of these states.
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Specifically, the controllers have the form

u(t) = Kox(t +ZKM t—7;) +Z KZz Ja(t+s)ds
(1

where the H.,-optimal controller gains K, Kq;, Ko; are
polynomials chosen to minimize the closed-loop Lo-gain
bound 71 := sup,, LQ% This formulation specifically
precludes output-feedback controllers of the form u(t) =
Ky(t) or even u(t) = Kz(t). In most practical cases such
detailed measurements are not available.

The question of how to use measured outputs to recon-
struct the full state is that of estimator design and is itself
an area of active study (e.g. the Smith predictor can be
thought of as an estimator using delayed output signals [10]).
The H..-optimal estimator design problem for multi-delay
systems was itself directly addressed in the SOS-operator
framework in [9], wherein the observer is a simulated PDE
running parallel to the real system which corrects both the
present states and the history of the states. This observer
minimizes an Lo-gain bound on the effect of disturbances
on a regulated error signal.

In this paper, we propose a framework for using controllers
of the form in Eqn. (1) where the controller acts not on
the full state, but the state estimate derived from a dynamic
estimator constructed using the algorithm proposed in [9].
Specifically, the closed-loop dynamics have the form

( ) :AQ.T +ZA1-T1 t—Ti) +B1w(t)+32u(t)
i(t) ) + ZA@
+ZL22 (t, —7i +Z/ Lsi(s)bi(t, s)ds

6i¢(ta S) =

(t) + Z Lsijb;(t

+ Lei(s t5+2/ Lzij(s,0)b;(t,0)do
$i(t,0) = &(t) bi(t,s) = Cagi(t,s) — y(t+s)
bo(t) = Ca2(t) — y(t)

u(t) z(t -I-ZKuIt—ﬂ —‘,—Z Koi(s)Z(t + s)ds

—7;

—73) + L1bo(t)

0:d(t, s) + La(s)

y(t) = Cax(t) +D2w( )
Z(t) = C1o$ + Z Cul'i t— Ti) + Dlw(t)

ze(t) = Caoe(t) + Z Csiei(t, —7i) + Daw(t) @



where z(t) € R™ is the state, £(t) € R™ is the estimate of
state, ¢(t,s) € R™ is the estimate of history of state, w € L}
is an external disturbance input, u(t) € R™ is the actuated
input, y(t) € R? is the measured output, z(t) € R? is the
regulated output, z.(t) € RP* is the estimated error of regu-
lated output (not need to be z(t) defined above). The delays
7, >0 for ¢ € [1,..., K] are ordered by increasing magni-
tude and Ao, Ai7 B1, 327 0107 Cli» CQ, 030, 037;, Dl, DQ, D3
are constant matrices with appropriate dimensions. We as-
sume z(0) = &(t) = 0 for all s € [—7x,0]. The gains
Ky, K1;, K3; come from [8] and the gains Lg, L1;, Loj,
L3;, Ly;, Ls;j come from [9]. By exploiting the properties
of the gains and examining the dynamics of the closed-loop
system, we show that the resulting dynamics are stable and
establish a bound on the H..-gain of the resulting closed-
loop system. We furthermore propose a scheme for real-time
numerical implementation of the observer-based controller
and use numerical simulation to show that the resulting
closed-loop system achieves internal stabilization.

A. Notation

Shorthand notation used throughout this paper includes the
Hilbert spaces L5'[X] := Lo(X;R™) of square integrable
functions from X to R™ and W' [X] := W12(X;R™) =
HYX;R™) = {z : z,& € LP'[X]}. We use L3, Wi
when domains are clear from context. We also use the
extensions Ly ™ [X] := Lo(X;R™ ™) and W3 [X] :=
WL2(X; R™™™) for matrix-valued functions. S* C R” x n
denotes the symmetric matrices. An operator P : Z — Z is
positive on a subset X of Hilbert space Z if (x, Px) > 0 for
all z € X. P is coercive on X if (z, Pz) > €||z|% for some
e > 0 for all z € X. Given an operator P : Z — Z and a set
X — Z, we use the shorthand P(X) to denote the image
of P on subset X. I, € S™ denotes the identity matrix.
0, xm € R™ ™ is the matrix of zeros matrix with shorthand

0, = Opxn. We will occasionally denote the intervals
T; := [-m;,0]. For a natural number, K € N, we adopt the
index shorthand notation which denotes [K] = 1,--- , K.

The symmetric completion of a matrix is denoted *”.
II. PREVIOUS WORK ON STATE ESTIMATION AND
STATE-FEEDBACK CONTROL OF DPS
In this section, we consider the a general class of
distributed-parameter system (DPS) given as

x(t) = Ax(t) + Biw(t) + Bou(t)

2(t) = C1x(t) + Drw(t)

y(t) = Cox(t) + Daw(t) 3)
where A: X - Z, B R—Z,B,:U—Z,C; : X - R,
Co: X =Y, D;:R—->RandDy:R—Y.

A. Full State feedback controller design

x(0) =0

Theorem 1: [8] Suppose P; is a bounded, coercive linear
operator P; : X — X with P1(X) = X and which is
self-adjoint with respect to the Z inner product. Then P; !
exists; is bounded; is self-adjoint; P; L X 5 X ; and Py !
is coercive.

Theorem 2: [8] Suppose there exists a scalar €; > 0, an
operator P; : Z — Z which satisfies the conditions of
Theorem 1, and an operator H : X — U such that

(AP1ih,hy, + (h, AP1h), + (B2Hh,h), + (h, B2Hh),

+ (Biw, ), + (b, Biw) ; = iflw]|* = y1l|v]|* + 0" (C1Ph)

+ (CiPh) v + 0" (DoHh) + (DoHh) v + 0" (D1w)

+ (D1w) v < —ei||h|? 4

for all h € X, w € R" and v € RP. Then if w and z
satisfy Eqn. (3) and u(t) = Kx(t) where K = HP' we
have 2]z, <1[wlL,-

B. Estimator design

In [9], a H. optimal estimator based on the traditional
Luenberger structure is given for Eqn. (3), which can correct
both the present states and history of the states and give a
real-time estimate of the history of states. This estimator has
the following dynamics

k() = AR(1) + LICX(E) — (1)) 5)

for a given operator £ : Y — Z. By defining e(t) = x(t) —
x(t), one obtains the error dynamics as

é(t) = (A+ LCo)e(t) — (By + LD2)w(t)
ze(t) = Cse(t) + Daw(t) e(0) =0 (6)

where C3: X -+ R and D3 : R — R.

Theorem 3: [9] Suppose there exist a scalar e; > 0 and
bounded linear operators Py : Z — Z and Z : Y — Z such
that P is coercive and

((P2A+ Z2Ca)e,e), + (e, (P2 A+ ZCa)e),

— (e, (P2B1 + ZD2)w) , — ((P2B1 + ZD2)w, €) ,

= y2llwll* = y2llvel* + (ve, Cse) + (Cze, ve)

+ (Ve, Daw) + (Dsw, ve) < —eallel? (7)

foralle € X, w € R" and v, € RP. Then 732_1 is a
bounded linear operator and for £ = P, 1z , the solution of
Eqn. (6) satisfies ||z¢||z, < Y2llw||L,-

III. MAIN RESULTS

In this section, we give conditions under which the dy-
namics of the estimator-based controller is stable and give
an expression for the Ly-gain of the closed-loop system. The
conditions are given in abstract form. Later, in Theorem 6,
we will given LMI-based sufficient conditions under which
the conditions of Theorem 4 is satisfied.

A. Estimator-Based Control for DPS
Combining Eqn. (3), Eqn. (5), and Eqn. (6) with u(t) =
Kx, the closed-loop DPS dynamics are given as follows

x(t) = (A + BaK)x(t) + Biw(t) + B2Ke(t)

(
é(t) = (A+ LCo)e(t) — (By + LD2)w(t)
z(t) = C1x(t) + Dyw(t)
y(t) = Cax(t) + Daw(t) (8)
ze(t) = Cse(t) + Dsw(t)



where K : Z — U and £ : Y — Z. We assume x(0) =
e(0) =0.

Theorem 4: Suppose there exist positive scalars €1, €,
operators H : Z — U and P; : Z — Z which satisfy the
conditions of Theorem 1 with ~;, and operators Ps : Z — Z,
and Z : Y — Z which satisfy Theorems 2 and 3 with 7.
Then if there exists positive scalar r such that

(e fe]) =0 0

for all h,e € X, where

_ —61[
M= i
Then for any z(t), z.(t) and w(t) which satisfy Eqn. (8)
with K = HP ! and £ = P~ 'Z, we have ||z, <

Vi +re)llwllz, and fze)|z, <A2flwllz,.

Proof: Suppose z(t), z.(t), y(t) w(t), e(t), x(t) satisfy
Eqn. (8). Since z.(t) is only affected by w(t), we have by
Theorem 3 that ||z¢|/z, < Y2|lw||L,. Define

V(t) = Va(t) + rVa(t) (10)

where Vi(t) = (x(t),P'x(t)), and Va(t) =
(e(t),P2e(t)) ,. If we define expand V> (t) and apply Theo-
rem 3, we have

BoHP; ! ]

—7“62]

Va(t) = y2llw(®)||* < —ezlle(®)].
If we define h(t) = P; 'x(t) € X and differentiate V;(t),
we have
Vi(t) = (AP1h(t), h(t)) ; + (h(t), AP1h(t)) ,

+ (B2Hh(t), h(t)) ,
<Bg7-[771 e(t),h(t )>
+ (Biw(t),h(t)) ; + (h(t), Biw(t)) 4
Applying Theorem 2, if we define v(t) = %
Vi(t) = llw®)® +mllo@)]
< —a|h(t)|* + (BHP; 'e(t), h(t)),
+ <h(t),BgHPf1e(t)>Z .
Combining the results above, we have
V(t) = (m + rm)llw@®)® + v llo@)]?
< —a|h®)]* - 7"€2He( ol
<B2’H’P1 e(t >Z <

_ [/ [h@®) h(t)
= {[els] - La) |
Then if there exist a positive scalar r such that Eqn. (9) is

satisfied, it follows

V(t) —

+ (h(t), ByHh(t))
+ (h(t), ByHP; e(t)),

z(t), one gets

), BoHP; et )>Z

(1 +r)lw®]? + lo@®]* < 0.

Integrating in time and using V' (0) = 0, we have

vV +rv2)|wl iz, -

The proof is completed. [ ]

I2llz, <

B. Expressing Multi-delay system into DPS

In this section, we apply Theorem 4 to the case of multi-
delay systems. Specifically, we consider solutions to the
system of equations given by Eqn. (2).

Firstly, considering e(t) = &(t) — z(t), we write Eqn. (2)
into the form in Eqn. (3). Following the mathematical
formalism developed in [2], define the inner-product space
Zym, ik ={R™x L3[—71,0] X --- x LE[—7k,0]} and for
{z, 1, - , 0K} € Zm.n, K> We use the following notation

)= o o)

and we define the inner product on Z,, ,, x as

<[1ﬂ ’ [(ﬂ >ZK = TKY “’+Z/ﬂ ¢i(s)ds.

We simplify the notation Z,, ,, , when m =n as Z,, ;.
Then the state-space for system (8) is defined as

X':{H ez . 0iEWE[T,0] and ¢i(0) = }
- oY AR .

for all 4 € [K]
We now represent the infinitesimal generator, A : X — Z,, i
of Eqn. (8) as

L

Furthermore, By : R" = Z, g, Bz : R™ = Z,, i, C; :
ZnK%RpCQ X—>ZqK,Cg nK—>Rp1 Dl R" —
RP, D3 : R" — ZP' are defined as

Bro(t) — {Blcg(t)] Byu(t) — [32%@)]

Cj Lﬂ( ) == Cjox(t

e [7] 0= [E50)
Djw(t) := Djw(t) j=1,3.

+Zcﬂ¢z -m) j=1,3

(1)

Here we assume D, = 0. Note for any solution z(t) of
Eqn. (2), using the above notation

SOICE AU

then x(t) satisfies Eqn. (8). The converse statement is also
true. The same is true for e(t), y(t).
C. The operators framework

A class of operators P{P’thi)Rij} Zmn, K — Lmon,K 18
introduced which is parameterized by matrix P and matrix-
valued functions Q; € W3"*"[—7;,0], S; € W3'*"[—7;, 0],
Rij S W2n><n[_7_i70] X [ TJ,O] as

(P{P,Qi,si,Rij} Lﬂ) (s) ==

Pr+ 5 [ Qi(s)di(s)ds
QT (s) + i Si(s)i(s) + I f,OTj Ri;(s,0)¢;(0)d0

(12)



Lemma 5: [8] Suppose that P € R"*", S; € W3 [T;],
Rij S W;XTL[TZ* XTj] satisfying Si(S) = S;T(S), Rij(S, 0) =
R1(0,5), P = 7xQF(0) and Q;(s) = Ri;(0,s) for all
i,j € [K]. Moreover suppose P(p q,,s, Rr;;} IS coercive on
Zn,i- Then Prp g, s, r,;} 1s a self-adjoint bounded linear
operator with respect to the inner product defined on Z,, ;
P:X — X;and Prpg, s, r,;}(X) = X.

Now let us turn to the operators used in Theorem 4. We
define 731 =P {P1,Q1:,51i,R1i; and PQ =P {Ps, Qm Sai,Raij}
and we parameterlze the decmon variable 7—[ Zn g — R™
using matrices Hy, H;; and functions Hy; as

#laf -

Similarly, the decision variable Z is parameterized as

Z {y} (s) = {Zlyo + 22 Zaays(—7i) + 2, fET Z3i(5)yi(5)d81|

Yi TKZZ'(S)
2i(s) = Zai(s)yo + >, Zsij (8)ys(—75) + Zos(s)yi(s)

J

+Z/ Z1i5(s,0)y;(0)do.

—7;

—7;

13)

(14)

In [9], it was shown that for Z as parameterized above,
if £ = P;'Z, then the error injection operator L
Zq.k — Zn,k corresponds to the estimator structure defined
in Eqn. (2). The same is true for K = HPy*

To simplify presentation, we do not present the LMI
constraints on the coefficients of {P,Q;,S;, R;;} which
ensure Pyp g, s;.r;;} = 0. Rather, we simply represent these
constraints using the following notation.

Zd,m,n,K =

. {P,Q;,R;;,S;} satisfy the conditions of Corollary 4
{{P7Q17RZJ7SI} { @i-RijSi} Y Y }

in [9]

By Theorem 8 in [8], if {P — €I,Q;,R;;,S; — eI} €
Ed,m,n, K> then P{ P.Q:.5:, R”} is coercive and has an inverse
of the form P := P{P Qi 8L Ry} In this paper, we

do not explicitly represent the map to {P, Qi, Si, Rij}, but
rather combine it into a single map from { P, Q;, S;, R;; } and
{21, Zai, Z3i, Zai, Zsijy Zoi, Zrij } (vesp. {Hy, Hoy, Hzi}) to
{L1, La;, L3i, L4, Ls;j, Lei, L7i; ) (resp.  {Ko, K13, Ko;})
which we then denote using the following.
Definition of £,:
{L1,Lai, -, Lrij} = Lo({P, Qi, Ss, Rij },{Z1, Z2,- - -, Z7sj})
to indicate that if {1—:’7 Q:, S;, R,J} are as defined in Theo-
rem 8 in [8], then {Ll, Lgi, s ,L7ij}, {P, Qi, Si, Rij}, and
{Z1,Zs,--- , Z7;} satisfy Lemma 7 in [9].
Definition of L. : Likewise, we say

{Ko, K13, K3} = L.({P,Qi, Si, Rij }, {Ho, His, Ha; })

to indicate that if {fD QZ,SZ,R”} are as defined in The-
orem 8 in [8], then {Ky, K1, Ka;}, {P QZ,SZ,R”} and
{Hy, Hy;, Hy;} satisfy Lemma 9 in [8].

Hoy-l-ZHuyz -7 +Z/ Hai(8)yi(s ds}

D. Theorem 4 applied to Multi-delay systems

In this section, we formulate the conditions of Theorem
4 into multi-delay systems as a linear operator inequality
where all operators are the form of Eqn. (12).

Theorem 6: Suppose there exist d € N, positive scalars
€, €1,€2, V1,72, {P1,Qui, 514, Ruij} satisfying Lemma 5,
matrices P, € R™™", polynomials Sz;,Q2; € W3 "[T}],
Rgi]‘ S W;XTL[TZ X Tj], matrices Hy, Hi; € RPX™,
polynomial Ho; € WLY*™[T;], matrices Zy, Zy; € R™ 4,
polynomials Z3i, Lai, Z5ij’ Zei € W;Xq[Tz] and Z7ij S
W3 ™[T; x Ty] for all i, j € [K] such that

{P1 — €I, Qni, 514, Riij} € Eanni
—{E1 + eilh, Fii, Nui + e11,Grij} € Edmon, i
{P> — €I,Q2;, 5%, Roij} € Zanni
—{Ey + €215, Fo;, Noj + €21, G5} € Eqmy o,k
where
{Ey, Fri, Hyi, G}
= L1({Pr1, Qui, S1i, Ruij} {Ho, Hyi, Hoi })
{Es, Fy, Hai, Goij}
= ‘CZ({Plv Q2i7 Sin RQij}a {ZO; Zlia Z2i7 Tty })
and mo = p+r+n(K+1), m =p+r+n(K+1), Ly and
Lo are as defined in Appendix, Iy = diag(0y4p, In,Onk)

and Iy = diag(0yyp,, I, Opic).-
Let

{Ly,Lai,
and
{Ko, K1i, K2i} = Lc({P, Qi, S, Ri; }, { Ho, H1i, H2: }).

7L7ij} = ‘CO({Pv Q’hSiaRij}?{ZhZQa e aZ7ij})

Now further suppose that » > 0 and

—{ B3 + €313, F3i, N34, 0} € Eg 0 (Kk+2),2n,K (15)
where
-1 B:Ko B2Kn Ba Kk
* —r2] 0 0
Ey = *T *QK 0 0
*T *7 *7 x7 0
Ry~ [ER)BT 0 0 0]”
¢ 0 0 O 0
—r2J 0
Noi = { 0" —ell]'

and I3 = diag(l,,,0p,0pk). Then if w, z and z. sat-
isfy Eqn (2) for some x and %X, we have |z|r, <

V7l + e IIMA %and IIZeIILz < 2wz,

Proof: By, Cq, 1,CQ,D2 be as defined in
Eqn. (11) Now define C as

Yi

li(s) =

—7)+ 3 7, Lai(s)y
ll(s)

yi(—=75) + Lei(s)yi(s)

i(s)ds

L4z y() + Z Lozg

J

+Z/ L7i;(s,0)y;(0)d6.

-7

(16)



and IC as
u(t) = Kx(t)
= K().’E(t

amn

+Z/ Koi(s)x(t + s)ds.

)+ Z Kyx(t

Since {Pl —el, QM‘, S1i—el, Rlij} € Ed,n,n,K and {P2 —
el,Qai—el, Sai, Raij} € Egnn x> P1i= P(p,,Q1i,51:,Ruiy}
and Py := P(p, Qu:,5:,R;,;} ar€ coercive. Let Z be as
defined in (14) and H be as defined in (13). Now by Theorem
5 and Lemma 10 in [8], K = HP; L and by Theorem 5 and
Lemma 9 in [9], £ = 731_12.

Next, if we define

M= gy = @t

and for h,e € X, we expand the expression

(le] 4[e])

ByHP;!
—7"62_[

BaK }

—regd

= (ByKe, h) + (h, BoKe) , — e1 |h]* = rez e
Now let b
_ 1 o €1
h(s) = [h%(s)] efs) = [()}
We have

(o] 4[e])

= 27chT (ByKoey + Z ByKyieqi(—Ti)

+Z/

—TK

By Ksieqi(s)ds) — elhfhl — 7”626{61

—€ Z/ hQTl Yhoi(s)ds — reg Z/ 621 )eai(s)ds.
—TK —TK
If we define f; = [hT el el.(—71), -+ ,ed (—7x)T]" and

i) = e (5). P ()]
(e [el)

~(atta] Prevrneor [01))
fQZ(S) s i N3 0} f2i(3) Zn(K+2),2n,K.

Since —{E3 + €313, F3;, N3;,0} € Eg5,(k 42,20,k WE CON-
clude that M < 0 and hence all the conditions of Theorem 4
are satisfied. Finally, suppose that y(t), z(t), z.(t), and z(t)
satisfy Eqn. (2). If we define y = y, and

)6 = | L¢Py | e =0 Y1)

then w(t) y(t), z(t), z.(t), e(t) and x(t) satisfy (8)
and hence by Theorem 4, we have that |z| <
V0 +72) lwll and Jlzl, < v lwlly,. =

Theorem 7 provides a method for using LMIs to construct
estimator-based output feedback controllers for systems with
multiple delays, including a bound on the closed loop Lo-
gain.

, then we obtain

IV. NUMERICAL IMPLEMENTATION, TESTING,
VALIDATION

The algorithms described in this paper have been imple-
mented in Matlab within the DelayTOOLs framework, which
is based on SOSTOOLS and the pvar framework. All the
tools needed are available online for validation or download
on Code Ocean [3].

For simulation, a fixed-step forward-difference-based dis-
cretization method is used, with a different set of states
representing each delay channel. In the simulation results
given below, 20 spatial discretization points are used for each
delay channel.

A. Example 1

In this example, we consider the unstable system modified
from the result in [12] which is in the form of Eqn. (2) with

B o wef ]
BFM Co=[1 0] Di=[1 0

C30 = Cy =
and 7 = 0.99.

(1.5 05] Ds=[1 0] 1 0]

B. Example 2

This example is given by modifying the result from [10]
which is in the form of Eqn. (2) with

~10 10 11 0
Sl B B

By = H u(t) Cio= B (1)] Cz0 = [1{)2 1(.)2}

Cy=1[0 10] and 7=0.3.
C. Example 3

This example considers the 2-delay case as a modified
version of Example 1, which is in the form of Eqn. (2) with

00 -05 —0.5
Ao = {0 1] A = [ 0 —045
100 1
B = {0 ) 0} By = M Cio=[1 0

Capo=[L1 02] Cy=[0 1]

—_

} i=1,2

and ™ = 0.5,7'2 =1.

These three numerical examples are used to validate and
test the accuracy of the algorithm defined in Theorem 6.
In each instance, we find a state feedback controller, an
observer, and construct observer-based controller. In Table I,
we find the vy, 2 obtained from Theorem 7 as compared to
an H, optimal output feedback controller obtained by using
a 10th order Padé approximation of the delay terms in Table
1. We also give a lower bound on the real Lo gain rea
by numerically simulating the effect of a disturbance w(t)
on the Lo-norm of the regulated output z(¢) and comparing
to the Lo-norm of the input. The closed-loop dynamics are
validated in Figs. 1-6 where we see the estimator-based
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controller is effective in stabilization of systems that are
open-loop unstable.

V. CONCLUSION

In this paper, we have proposed a method for designing
estimator-based output feedback controllers for systems with
multiple delays. This approach combines an H,-optimal
estimator with an H,-optimal full-state feedback controller
and proves a bound on the Ly-norm of the resulting dynam-
ics. These controllers are applicable to systems with multiple
known delays and consider process noise, but not sensor
noise. Furthermore, we have developed an efficient numer-
ical implementation of the observer-based controller and
have posted this implementation online. Numerical examples
indicate that the Lo-gain of the resulting estimator-based
controllers is relatively close to, but does not exactly achieve
the minimum possible closed-loop Lo-gain as estimated
using a Padé approximation.
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