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and 

ωm =
ρm

ρc
vm (4)  

where ρf , ρm and ρc are the densities of fiber, matrix, and composite, 
respectively. Also, the density of a composites can be estimated through 
volume fractions and densities of the constituent materials [6,10,18], 
which leads us to the following expression (“rule of mixtures”): 

ρc = ρf vf + ρmvm (5) 

Having all the parameters, ρf , ρm, ρc, νf , and νm, Eq. (3) and Eq. (4) 
were used to calculate the corresponding weight fraction of the fibers 
and resin matrix. 

5. Experimental results and discussion 

The average constituent volume percentages by region for each type 
of GFRP bars acquired by the DIP method are shown in Table 2. 
Considering the four types of GFRP bars, the mean fiber volume ranges 
from 55.45 to 72.64%, which is within the typical values for continuous 
fiber composite materials [6,19] and is above standard limit (CAN/CSA 
S807) for use in non-prestressed internal FRP reinforcement for concrete 
structures [14]. The standard deviation values reveal that in regions 
closer to the edge, the amount of fibers differs noticeably. For this 
reason, the fiber volume fraction in region X (edge) for GFRP bar 
Type-A, B and C was the smallest among the three regions, this can be 
attributed to the outer bar resin coating, while for GFRP bar Type-D was 
slightly higher indicating a more equal distribution of fibers along the 
edge and a smaller outer resin layer. 

The average void content by region, among the four types of GFRP 
bars, varies from 0.02 to 0.92%. This broad range can be attributed to 
the irregular presence of voids within the cross-section. For instance, 
Fig. 4 (image B1Z) shows a considerable amount of manufacturing de
fects (voids) at a specific location. This is considered a “location-bias 
error” [20] and explains the high standard deviation of void content for 
GFRP bar Type-B. Despite the broad range, all GFRP bars had less than 
1% of void content, which is ideal for the use of FRP bars as specified in 
CAN/CSA S807 [14]. 

Using Eq. (3) and Eq. (4), the average constituent volume fractions 
from region X, Y, and Z for each GFRP bar type obtained from the DIP 
method were converted to weight fraction. The equation to determine 
the composite densities, using the corresponding average constituent 
volume fraction obtained from the DIP method, is given in Eq. (5). In the 
BO method, the remnant inorganic fillers will alter the weight fraction 
values; therefore, to account for this, the established percentage (17.5% 
by weight of the neat resin) regarding the fillers was subtracted from the 
weight of fibers. The average fiber and resin matrix fraction by weight 
obtained from both methods, BO and DIP, as well as the difference be
tween these two methods, are shown in Table 3 and are plotted in Fig. 5. 

The highest difference between the fiber weight fraction obtain from 
BO and DIP was 3.27% points for GFRP bar Type-B, while the smallest 
was 0.83% points for GFRP bar Type-A. These differences can be 
attributed to the use of typical constituent properties instead of the 
precise values used by the each pultruders in the fabrication of the GFRP 
bars. This issue highlights the importance of the availability of product- 
specific information related to each lot supplied by the manufacturer. 
Also, since the fiber and resin weight fraction values obtained by the BO 
method are calculated as the ratio of remaining fibers with respect to the 
original weight of the composite, voids are neglected in this method. 
Considering the four GFRP bars tested in this study, the average fiber 
and resin weight fraction values agree within 1.69% between the two 
methods. 

To date, only a handful of studies have been published on the eval
uation of fiber content in composites using image analysis compared to 
conventional methods. Viens [21] investigated the fiber volume per
centage of graphite/epoxy specimens by analyzing optical images 
(threshold technique) and implementing the standard acid digestion 
technique. He concluded that the results were within a 5% agreement 
between the two methods. Waterbury and Drzal [22] conducted a study 
on the fiber volume fraction of unidirectional graphite composite panels 
evaluated by optical image analysis (area method) and the chemical 
matrix digestion approach. They found that the results agree within 
better than 2.5% between the two methods. In another study, carried out 
by Cilley et al. [23], graphite/epoxy laminates were evaluated through 
different methods including acid digestion test and various quantitative 
microscopy techniques. The results indicated that the values between 
the acid digestion method and the areal analysis of micrographs agree 
within 2.16%. 

It should be noted that the presented studies were conducted more 
than 30 years ago using optical imaging techniques that at this time 
would be considered obsolete. Thus, sharpness and resolution of images, 
that is of great importance in image processing, may have influenced the 
outcomes. While this may be true, the operational ease and readily 
available of more powerful equipment nowadays facilitate digital image 
acquisition and processing. Although SEM is the norm for performing 
microstructural characterization of FRP bars [24], optical microscopes 
with sufficient capability to capture high-resolution images, such as 
confocal laser scanning microscope, have been used [15]. 

In this study, taking into account that the analyzed micrographs had 
an area of 1137.8 μm × 763.9 μm (cropped data zone parameters), the 
average evaluated area at 100 × among all the GFRP bars (9 images per 
GFRP bar type) was 11% with respect to the total cross-sectional area of 
the composite. It can be interpreted that the more images that are 
captured and analyzed, the more accurate results will be obtained, but 
the purpose of this study, for practical reasons, was to evaluate repre
sentative values with reasonable quantities of images. 

Table 2 
Measured SEM DIP constituent volume percentages.    

Average SD Average SD Average SD 

Bar type SEM image region Fiber, vf (%)  Matrix, vm (%)  Voids, vv (%)  
A X 68.02 7.44 31.09 7.21 0.89 0.27 

Y 72.63 1.17 26.88 1.21 0.49 0.09 
Z 72.64 1.29 26.73 1.38 0.63 0.10 

B X 60.34 5.07 39.24 5.35 0.42 0.30 
Y 62.85 2.09 37.05 2.10 0.10 0.05 
Z 62.88 3.35 36.20 1.95 0.92 1.42 

C X 55.45 5.28 44.28 5.29 0.27 0.23 
Y 61.31 0.38 38.67 0.37 0.02 0.01 
Z 59.03 0.73 40.95 0.73 0.02 0.01 

D X 67.60 3.94 32.28 3.95 0.12 0.01 
Y 66.79 0.78 33.16 0.79 0.05 0.01 
Z 66.32 3.37 33.61 3.39 0.06 0.03  
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limit of 70% by weight commonly specified in standards such as 
ASTM D7957-17 and CSA S807-10 [14,25].  

• Comparable results were obtained from the two methods, which are 
in agreement with those reported in the literature. The differences 
can be credited to the use of assumed typical constituent properties 
and contents instead of the actual values used by the manufacturers.  

• Analysis of 11% (9 images per GFRP type at 100 × ) of the total cross- 
sectional area of the GFRP bar using the DIP method was sufficient to 
obtain representative results when compared to the BO method. 
However, the random nature of clustered voids and defects can lead 
to an under/over-assessment of their volume fractions.  

• The weight fraction values obtained from the DIP method depend on 
the quantity and density of the individual constituents; in fact, 
perhaps the actual volume fraction of fibers, resin matrix, and voids 
obtained directly from the DIP method are more relevant and reliable 
to assess mechanical properties than the percentages of constituent 
content obtained by weight (BO method). 

The conclusions reached in this study using the DIP method 
emphasize the relevance and practicality of obtaining direct quantifi
cation of fiber, resin matrix and voids volume as opposed to fiber and 
resin content by weight. Furthermore, the DIP method could be useful 
when additional microstructural evaluations are required. 

CRediT authorship contribution statement 

Carlos N. Morales: Conceptualization, Methodology, Validation, 
Formal analysis, Investigation, Writing - original draft, Visualization. 
Guillermo Claure: Conceptualization, Methodology, Writing - review & 
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