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ABSTRACT
The approximate single-source shortest-path problem is as fol-

lows: given a graph with nonnegative edge weights and a des-

ignated source vertex s , return estimates of the distances from s
to each other vertex such that the estimate falls between the true

distance and (1+ϵ) times the distance. This paper provides the first

nearly work-efficient parallel algorithm with sublinear span (also

called depth) for the approximate shortest-path problem on directed

graphs. Specifically, for constant ϵ and polynomially-bounded edge

weights, our algorithm has work Õ(m) and span n1/2+o(1). Several
algorithms were previously known for the case of undirected graphs,

but none of the techniques seem to translate to the directed setting.

The main technical contribution is the first nearly linear-work al-

gorithm for constructing hopsets on directed graphs. A (β , ϵ)-hopset
is a set of weighted edges (sometimes called shortcuts) which, when

added to the graph, admit β-hop paths with weight no more than

(1 + ϵ) times the true shortest-path distances. There is a simple se-

quential algorithm that takes as input a directed graph and produces

a linear-cardinality hopset with β = Õ(
√
n), but its running time

is quite high—specifically Õ(m
√
n). Our algorithm is the first more

efficient algorithm that produces a directed hopset with similar

characteristics. Specifically, our sequential algorithm runs in Õ(m)

time and constructs a hopset with Õ(n) edges and β = n1/2+o(1). A

parallel version of the algorithm has work Õ(m) and span n1/2+o(1).
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1 INTRODUCTION
The single-source shortest-path problem on graphs with nonneg-

ative edge weights is notoriously difficult to parallelize.
1
In the

sequential setting, the classic solution has running time O(m +
n logn) [12], where throughout n denotes the number of vertices

and m the number of edges. Given that the sequential solution

has nearly linear runtime, an ideal parallel algorithm would run

in Õ(m/p) parallel time on p processors (for large p), where the Õ
notation suppresses logarithmic factors. Achieving such a bound

requires a parallel algorithm with nearly linear work and strongly

sublinear span; the work of a parallel algorithm is the total number

of primitive operations, and its span is the length of the longest

chain of sequential dependencies or equivalently the limit of the par-

allel time as p approaches infinity. The exact version of the shortest-

path problem is well-studied (see e.g. [2, 3, 8, 15, 17, 19, 20]), but no

ideal parallel solutions exist, especially when the graph is sparse.
2

Even for the simplest case of a unweighted, undirected graph, all

algorithms to date either have linear span, meaning that they are

inherently sequential, or they reduce the span by increasing the

work. For example, when tuned to achieve span of Õ(
√
n), Spencer’s

algorithm [19] has work Õ(m + n2) and Ullman and Yannakakis’s

algorithm [20] has work Õ(m
√
n).

For undirected graphs at least, there has beenmore success on the

approximate version of the problem. In the approximate shortest-

path problem with source vertex s , the algorithm must output for

all verticesv an estimate dv on the shortest path-distance such that

dist(s,v) ≤ dv ≤ (1 + ϵ)dist(s,v), where dist(s,v) is the shortest-
path distance from s to v . Several algorithms have been designed

for this approximate problem on undirected graphs, see e.g., [1, 5,

9, 10, 16, 18]. Most of the results exhibit a tradeoff between work

and span (requiring either superlinear work or polynomial span),

but recent breakthroughs show that it is possible to simultaneously

achieve Õ(m) work and O(poly(logn)) span [1, 16].

A natural question is whether it is possible to achieve nearly

linear work and sublinear span for approximate shortest paths on

directed graphs. This paper answers the question in the affirmative:

we present an algorithm for directed graphs with Õ(m) work and

span n1/2+O (1/log logn).

Hopsets. While it is unknown how to efficiently compute shortest

paths in parallel on general directed graphs, it is known how to find

approximate shortest paths if the shortest paths consist of relatively

1
Perhaps counter-intuitively, achieving at least a reasonable level of parallelism when

the weights are both positive and negative is easier. This is in part because algorithms

for the general case have roughly the same inherent sequential dependencies but with

far more work that can be parallelized in each step.

2
Achieving parallelism p = O (m/n) is fairly straightforward.
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few hops. Specifically, Klein and Subramanian’s weighted breadth-

first search algorithm [15] gives a (1 + ϵ) approximation of β-hop
distances in work Õ(m) and span Õ(β/ϵ). Given this algorithm, a

natural approach is to first preprocess the graph to produce a new

graph whose β-hop distances are not too much larger than the

actual unbounded distances; the preprocessing step amounts to

finding a good hopset.

A (β , ϵ) hopset H is a set of weighted edges that, when added

to the original graph, approximates the shortest-path distances by

paths of at most β hops, where β is called the hopbound. Formally,

letG = (V ,E) be the original graph andG ′ = (V ,E∪H ) be the graph
with the hopset edges included. H is a (β , ϵ) hopset if and only if (1)
for all edges (u,v) ∈ H , the weightw(u,v) of the edge is no lower

than the shortest-path distance in G, i.e., w(u,v) ≥ distG (u,v),
and (2) for every u,v ∈ V there exists a path p from u to v in G ′

comprising at most β hops such thatw(p) ≤ (1+ϵ)distG (u,v). (The
first constraint implies thatw(p) ≥ distG (u,v).) Although hopsets

were first formalized by Cohen [5], they were used implicitly in

many of the prior algorithms. Most algorithms for constructing

hopsets, including the one in this paper, are randomized and there

is some small chance that the weight of some β-hop path will be

too high.

There are several features characterizing the quality of a hopset:

the size or number of edges in the hopset, the hopbound β , the
approximation quality ϵ , and the complexity of an algorithm for

constructing the hopset. When ϵ = 0, the hopset produced is an

exact hopset, meaning that the β-hop distances in the augmented

graph are the true shortest-path distances.

There is a simple folklore sequential algorithm for construct-

ing an exact hopset with hopbound β = Õ(
√
n) and size O(n). The

algorithm is as follows. First sample each vertex with probabil-

ity O(1/
√
n). Next, compute the single-source shortest-path dis-

tances from each sampled vertex to all other sampled vertices. For

samples si and sj , add to hopset H the edge (si , sj ) with weight

w(si , sj ) = dist(si , sj ). Since edges are only added between pairs

of sampled vertices, the hopset trivially contains O(n) edges with
high probability. To analyze the hopbound, consider a shortest path

from u to v . With high probability, the β hops nearest to u and

β hops nearest to v each contain at least one sampled vertex, so

the rest of the path can by bypassed using a hopset edge. Ullman

and Yannakakis [20] and Klein and Subramanian [15] give parallel

versions of this algorithm for the unweighted and integer-weighted

cases, respectively.

The preceding algorithm gives an exact hopset with small size

and reasonable hopbound, and it applies to directed graphs as well.

The problem is that the construction time is too high: the sequential

running time is Õ(m
√
n) to compute shortest paths from

√
n sources.

For undirected graphs, when the exactness is relaxed and we

are willing to accept a (1 + ϵ) approximation, there exist linear-size

hopsets with much smaller (subpolynomial) hopbound [10]. More-

over, there are more efficient algorithms [5, 9, 10, 18] for construct-

ing the hopsets. The algorithms employ clustering techniques that

strongly exploit the symmetry of distances in undirected graphs.

For directed graphs, a hopbound ofO(
√
n) is still the best known

for hopsets of linear size, even for approximate hopsets with large

ϵ and ignoring construction cost. In fact, if ϵ ≥ nW and all edge

weights are at least one, then distances themselves become irrelevant—

the problem reduces to the diameter-reduction or shortcutting prob-

lem: add edges to the graph, without changing the transitive closure,

to reduce the unweighted directed diameter, i.e., the number of

hops necessary to get from one vertex to another. It is yet unknown

whether it is always possible to achieve diameter better thanO(
√
n)

when restricted to add at most n edges. In fact, there is a lower

bound of Ω(n1/6) on the diameter [13], which implies a separation

between the quality of hopsets on directed and undirected graphs.

Revisiting construction cost, there was no more efficient algorithm

known for any constant ϵ before the current paper.

Our results. This paper presents the first efficient algorithm for

producing a hopset on directed graphs with sublinear hopbound.

Specifically, our algorithm produces a (β = n1/2+O (1/log logn), ϵ)
hopset with nearly linear size, which is close to matching the qual-

ity of the hopset produced by the highly inefficient folklore algo-

rithm. For unweighted graphs (Sections 3–4), the hopset has size

Õ(n/ϵ2), and the algorithm runs in time Õ(m/ϵ2). More generally

for weighted graphs (Section 5), the hopset has size Õ(n log(nW )/ϵ)
and the algorithm runs in time Õ(m log(nW )/ϵ2), whereW is the

ratio between the maximum edge weight and the minimum strictly

positive edge weight. The construction is successful with high prob-

ability, and failure is one sided—i.e., the result is always a hopset,

but the question is whether it achieves the (1 + ϵ) approximation.

Our parallel algorithm (Section 6) constructs a hopset with simi-

lar characteristics. The algorithm has work Õ(m log
2(nW )/ϵ4) and

span O(n1/2+O (1/log logn)/ϵ).
Using our parallel hopset construction then applying Klein and

Subramanian’s algorithm [15] to the augmented graph yields the

first nearly work-efficient parallel algorithm for finding approxi-

mate single-source shortest paths on directed graphs with low span.

More precisely, our algorithm has work Õ(m log(nW )/ϵ4) and span

O(n1/2+O (1/log logn)/ϵ).

1.1 Overview of Diameter Reduction
Our algorithm and analysis builds on recent breakthroughs on the

diameter-reduction problem by Fineman [11] later improved by

Jambulapati, Liu, and Sidford [14], henceforth referred to as the JLS

algorithm. This section summarizes the previous algorithms and

key aspects of the analyses, highlights the difficulties in extending

the algorithms to hopsets, and gives an overview of our insights.

The bulk of this section focuses on the sequential versions of the

algorithms.

The diameter reduction problem is that of adding edges, or short-

cuts, to a directed graph to reduce its unweighted diameter without

changing the transitive closure. Fineman’s algorithm [11] is the

first nearly linear-time sequential algorithm with any nontrivial

diameter reduction. Specifically, his algorithm runs in Õ(m) time

and creates Õ(n) shortcuts that reduce the diameter of any directed

graph to Õ(n2/3), with high probability. The JLS algorithm [14]

achieves a diameter of n1/2+o(1), also with nearly linear running

time. Both algorithms also have parallel versions with span match-

ing the diameter achieved to within logarithmic factors.

Our algorithm for hopsets most closely resembles the JLS algo-

rithm for diameter reduction.
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Previous algorithms for diameter reduction. Both Fineman’s algo-

rithm [11] and the JLS algorithm [14] operate roughly as follows.

Select a random set of pivots xi ; how the pivots are selected varies

across the two algorithms and is discussed more later. Next per-

form a graph search forwards and backwards from each pivot to

identify the vertices reachable in either direction. Add shortcut

edges between the pivots and all vertices reached, i.e., if a vertex

u is reached in backward direction from pivot xi , then the edge

(u,xi ) is added. Next partition the vertices into groups according

to the set of pivots that reach them. For example, a group could

consist of those vertices reached by x1 in the forward direction, x3
in the backward direction, x4 in both directions, and unreached by

all other pivots. If a group is reached in both directions by the same

pivot (as with the preceding example and pivot x4), mark the group

as done. Finally, recurse on the subgraph induced by each group

that has not been marked as done.

The main difference between the algorithms is how pivots are

selected. Fineman’s algorithm [11] selects a single pivot uniformly

at random. JLS [14] instead samples vertices to select a set of piv-

ots. The algorithm is parameterized by a value k that controls the

sampling probability; k = Θ(poly(logn)) is a good choice, so we

shall assume as much going forward to simplify the statement of

remaining bounds. Each vertex is a selected as a pivot with proba-

bility kr+Θ(1)/n, where r is the recursion depth. The probability of

becoming a pivot thus increases by a factor of k with each level of

recursion, and it is possible to select many pivots. Beyond achieving

a better diameter, the JLS algorithm also has the advantage that the

recursion depth is trivially limited to logk n. Increasing k impacts

the total work as multiple overlapping searches are performed,

which is why k should not be too large. We shall not discuss the

analysis of the running time here, but suffice it to say that it is not

hard to show that these sequential algorithms have Õ(m) running
time.

The diameter analysis starts by fixing any long s-to-t path P to

analyze. The goal is to argue that with at least constant probability,

the addition of shortcuts introduces a short-enough s-to-t path
to the graph. The algorithm can be repeated to boost the success

probability.

One of the key setup ideas is classifying vertices according to

how they relate to the path P . We write v ⪯ P if it is possible to

get from v to some vertex on P by following directed edges and

P ⪯ v if it is possible to get from some vertex on P tov by following

directed edges. A vertex v is an ancestor of P if v ⪯ P and P ⪯̸ v .
The vertex is a descendant of P if v ⪯̸ P and P ⪯ v . It is a bridge
if v ⪯ P and P ⪯ v . The vertex is unrelated otherwise.

As the algorithm executes and partitions the graph, so too does it

partition the path being analyzed. An execution can be modeled by

a recursion tree where only the relevant subproblems, i.e., those
that contain subpaths of P , are included. The leaves of this relevant
subproblem tree occur when at least one of the pivots is a bridge;

if a bridge is selected, then edges are added between all vertices

on the subpath and the bridge in both directions, meaning that the

subpath has been shortened to two hops. The final path length from

s to v is thus upper bounded by the number of leaves in the tree of

relevant subproblems.

For the case of a single pivot as in Fineman’s algorithm [11],

it is not hard to see that a relevant subproblem gives rise to at

most two recursive subproblems, and the two subproblems occur

only if the pivot is an ancestor or descendant. For example, if the

pivot is an ancestor, the path is partitioned at the first reachable

vertex on the path. If an unrelated pivot is selected, there is only

one relevant subproblem; informally, this case can be ignored in the

single pivot case as tree nodes with a single child can be contracted.

More generally, JLS show [14] that if t ancestors/descendants are
selected, then the path is partitioned across at most t + 1 relevant
subproblems.

A key component of the analysis is to show that the total number

of ancestors and descendants is likely to decrease each time an

ancestor or descendant pivot is selected. It thus becomes less and

less likely to partition the path further and more likely to select

a bridge. For concreteness, let us first consider a sketch of the

intuition for the single-pivot case. Fineman [11] proves that if a

random ancestor is selected as the pivot, then the total number of

ancestors across both recursive subproblems reduces by a factor of

1/2 in expectation. Similarly for descendants. We thus need roughly

(1/3) lgn levels of recursion to reduce the total number of ancestors

to n2/3 and another (1/3) lgn levels to similarly reduce the number

of descendants. At recursion depth (2/3) lgn, there are thus at most

2
(2/3) lgn = n2/3 subproblems and at most O(n2/3) ancestors and
descendants. Even if all of the remaining ancestors and descendants

eventually become pivots, there can be at most O(n2/3) leaves in
the recursion tree, which yields the final path length.

If one could ensure that the algorithm always selects either

zero or t related pivots, then one could easily extend Fineman’s

analysis to the multi-pivot case. In particular JLS prove [14] that

with t random ancestor/descendant pivots, the total number of

ancestors and descendants reduces by c/(t + 1) in expectation, for

some constant c . Consider the r th level of recursion assuming t
related pivots are always selected. The number of subproblems is

at most (t + 1)r . The number of ancestors and descendants is upper

bounded by crn/(t + 1)r , which also upper bounds the number

of leaves that could arise lower in the recursion tree. Setting r =
(1/2) logt+1 n roughly balances these two terms and gives a path

length of at most

√
nc logt+1 n = n1/2+O (1/log(t+1)).

Unfortunately, the algorithm is unaware of the path P , and it can-
not ensure that t of the pivots are related to the path. Nevertheless

it is still possible to obtain the same bound. The JLS analysis [14]

adopts a bottom-up approach, solving a recurrence on the short-

cutted path length for a given number of ancestors/descendants.

Parallel versions. The big challenge in parallelizing these al-

gorithms is performing the graph searches used to partition the

graph. To achieve low span both Fineman and JLS employ h-hop-
limited searches, i.e., only identifying vertices reachable from the

pivot within h hops. Fineman and JLS set h to h = Θ̃(n2/3) and

h = n1/2+o(1), respectively. As noted previously, there are par-

allel algorithms implementing h-hop limited searches with Õ(h)
span [15]. Unfortunately, using hop-limited searches it is no longer

immediately true that selecting t related pivots partitions the path

into at most t + 1 subpaths, which was crucial for the analyses. To

fix this issue, Fineman [11] and JLS [14] (1) only analyzes paths

with length Θ̃(h), and (2) handle vertices near the boundary of the
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search, called fringe vertices, differently from other vertices. In

doing so, they are able to achieve the ≤ t + 1 relevant subproblems,

though the details become significantly more complicated.

1.2 Overview of the Hopset Algorithm
A natural first step to extend the diameter-reduction algorithms to

build hopsets is to add weights to any added shortcuts. Specifically,

perform a shortest-path algorithm from each pivot and augment

the shortcuts with weight equal to the shortest-path distances to

each vertex. Our algorithm includes weights on shortcuts, but this

change alone is not sufficient to achieve a good approximation.

The main challenge is that bridges do not necessarily make good

pivots. Specifically, consider any bridge x for an s-to-t path. If x is

selected as a pivot, then a 2-hop path is created from s to t , which is

enough for the diameter-reduction problem. For hopsets, however,

the weight of the path matters. If dist(s,x) + dist(x , t) ≫ dist(s, t),
then the 2-hop path taking the shortcuts does not approximate

the shortest-path distance. It may thus be necessary to continue

recursing on subpaths in subproblems until better shortcuts are

found.

In both prior analyses [11, 14], it is crucial that selecting a bridge

acts as a base case to the recursion. Selecting a bridge that is too

far away here, however, is not a base case. Moreover, it does not

seem possible to argue that a far-away bridge yields any reason-

able reduction on the number of ancestors or descendants in the

resulting subproblems.

Our algorithm for hopsets. Our algorithm builds off the JLS algo-

rithm, also parameterized by sampling parameterk , but with several
key modifications. The goal is to circumvent the preceding chal-

lenge by ensuring, at least in effect, that shortcuts added to or from

bridges are good enough for the approximation. We first summarize

the differences in the algorithm before revisiting the analysis.

(1) Pivots and shortcutters. In the previous algorithms, pivots

are used both to partition the graph and to add shortcuts.

Here, we split the roles; we use some vertices, called pivots
to establish the partition of the graph, and other vertices,

called shortcutters, to add edges to the hopset. Pivots are

selected analogously to JLS, but we sample a larger set of

shortcutters. More precisely, if a vertex becomes a pivot

at recursion depth r , then it first becomes a shortcutter at

recursion depth r − f (ϵ,n) for some function f . Larger f
improves the approximation quality but increases the work

of the algorithm.

(2) Weighted shortcuts. From each shortcutter s , we com-

pute the single-source shortest paths from s to all other

vertices in both the forwards (and backwards) directions. We

then add the weighted edges (s,v) (and (v, s)) with weight

w(s,v) = dist(s,v) (and w(v, s) = dist(v, s)) to the hopset.

Using weighted shortcuts is the obvious modification neces-

sary for a hopset.

(3) Decreasing distance-limited searches from pivots. To
establish the graph partition, we perform graph searches

from each pivot as before, but the searches are now limited to

a bounded distance. Moreover, the search distances decrease

by a factor of λ
√
k with each level of recursion, for constant

λ. The initial distance is important—the algorithm only well-

approximates paths if the initial search distance is similar to

the shortest-path distance—so we run the algorithm at all

relevant initial-distance scales.

It is worth noting that the distance-limited searches here are

not analogous in purpose to the hop-limited searches used by the

prior [11, 14] parallel algorithms for diameter reduction. (Our par-

allel version also imposes a hop limit.) Here the distance-limited

searches are important even for the sequential algorithm in order

to obtain a good approximation. Moreover, the distances decrease

significantly with each level of recursion, whereas the hop-limited

searches use roughly the same number of hops at all levels. Nev-

ertheless, some of the technical machinery (e.g., fringe vertices) is

similar.

Because our sequential algorithm for hopsets uses distance-

limited searches, the details of both the algorithm and analysis

are more complicated than the sequential algorithms for diameter

reduction.

Key ideas of the analysis. Our analysis has two main novelties,

summarized next. Note that the bounds stated here are correct in

spirit but imprecise in that that they omit some lower-order terms

in favor of conciseness.

For the following discussion, it is important to interpret the

vertex classifications (ancestor, descendant, and bridge) to be with

respect to the bounded distances, analogous to the hop-limited

searches in prior work [11, 14]. For example, a vertex is only a

bridge if it can reach the path in both directions by an appropriate

distance-limited search.

The first technical contribution can be viewed as an alterna-

tive way of analyzing the JLS algorithm, but this version makes

it easier to cope with the new features of the hopset algorithm.

Specifically, we show that the number of subproblems increases

by at most O(
√
k) on average with each level of recursion. For any

constant in the big-O, it follows that there be at most (O(
√
k))r =

(k1/2+O (1/logk))r relevant subproblems at recursion depth r . Look-
ing at the maximum recursion depth r = logk n gives a direct

bound of n1/2+O (1/logk ) on the number of relevant subproblems,

and hence the length in hops of the shortcutted path.

Now consider what happens if we augment the JLS algorithm

with decreasing distance-limited searches. Letw(P) be the weight
of the path P being analyzed, and assume that the initial search dis-

tance is roughlyw(P). The general issue when decreasing the search
distance is that when searches do not reach the end of the path, the

path may be partitioned into more pieces than desired.
3
We circum-

vent the issue by logically dividing any long paths into subpaths of

length roughlyw(P)/(λ
√
k))r (proportional to the search distance),

where r is the recursion depth. In this way, the searches can now

traverse the full length of the path. It is easy to see that there can be

at most O((λ
√
k)r ) logical subproblems created. For large-enough

λ, this term dominates the number of subproblems arising from

the previous level of recursion, so we have a total of O(λrkr/2)
subproblems at recursion depth r . Again, this bound readily implies

3
The use of “fringe vertices” suffices if the search distance is sufficiently long with

respect to the path length. The new issue that arises here is that the search distance

can be significantly shorter than the path length.
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a hop bound for the shortcutted path of n1/2+O (1/logk ), albeit with
a larger constant in the big-O.

The second new idea is in analyzing the approximation fac-

tor achieved by the hop set, which requires all three algorith-

mic modifications. Let us first consider only the shortcuts gen-

erated by “nearby” bridges. For an s-to-t subpath at recursion

depth r , we say that a bridge x is nearby if dist(s,x) + dist(x , t) =

dist(s, t)+O((ϵ/logn)w(P)/(λrkr/2)). Since the total number of sub-

problems is O(λrkr/2), shortcuts from nearby bridges contribute a

total of O(ϵw(P)/logn) additive error to the path length. Summing

across all O(logn) levels of recursion gives a total additive error of

O(ϵw(P)), and hence a multiplicative error of (1 +O(ϵ)).
The goal is thus to show that all bridges are effectively nearby

bridges. This statement seems implausible, but we can achieve

it by leveraging both the bounded search distance as well as the

oversampling of shortcutters. In fact, for ϵ = Ω(logn), we can imme-

diately see that all bridges are nearby—the additive error is bounded

by twice the maximum search distance, i.e., O(w(P)/(λrkr/2)) =

O((ϵ/logn)w(P)/(λrkr/2)). We thus achieve a hopset with ϵ =
O(logn) even setting the shortcutters and pivots to be identical.

To achieve a better approximation, we leverage the oversam-

pling of shortcutters. Observe that moving the shortcutters to a

higher level of recursion can only improve the length in hops of

the shortcutted path, as strictly more edges are added. To analyze

quality of the approximation, we consider the recursion tree of

relevant subproblems, but we now have a base case whenever a

nearby bridge is selected as a shortcutter.

Since moving shortcutters higher in the recursion only helps, it

suffices to show that the pivots selected in relevant subproblems

are never bridges, i.e., that all shortcuts important to the hopbound

also have small additive error. We prove the claim that pivots are

never bridges by contradiction. Suppose that a pivot x is a bridge in

a relevant subproblem at recursion depth r . Then it must be within

a distance O(w(P)/(λrkr/2)) of both the start and end of the path,

as that is both the search distance and the path length. The additive

error contributed by this bridge is thus at most O(w(P)/(λrkr/2)).
While x would not be considered a nearby bridge at level r , recall
that x is first selected as a shortcutter at recursion depth r − f (ϵ,n).

For appropriate choice of f , i.e., (λ
√
k)f (ϵ,n) = Ω(logn/ϵ), x is a

nearby bridge at depth r − f (ϵ,n), constituting a base case of the
recursion. Thus the subproblem in which x is selected as a pivot is

not a relevant subproblem.

2 PRELIMINARIES
A directed weighted graph is a pair (G,w) where G = (V ,E) is
a graph and w : E → R is a weight function. In this paper, we

treat w as an attribute of E. Hence, we refer G as the weighted

graph and ignorew . For a weighted directed graph G = (V ,E), the
number of vertices and edges are |V | = n and |E | =m, respectively.

For e ∈ E, we denote the weight as wE (e) and we write wE (e)
as w(e) for simplicity. If e < E, then w(e) = +∞. If the graph is

unweighted, then w(e) = 1 for all e ∈ E. For a subset V ′ ⊂ V , we
denote the induced graph onV ′ asG[V ′]. For any vertices u,v ∈ V ,

define dist
(β )
G (u,v) to be the minimum weight of a path from u

to v containing at most β edges. If there is no path containing at

most β edges from u to v , then dist
(β )
G (u,v) = +∞. We also refer

to distG (u,v) as the shortest path distance from u to v . For a set of
edges E and a constant c , we define c · E to be E where the weight

of each edge in E is multiplied by c . For two sets of edges E and E ′,
the union of E and E ′ is denoted as E ∪ E ′ = {e |e ∈ E or e ∈ E ′}
and the weight of e ∈ E ∪ E ′ is the minimum weight ofwE (e) and
wE′(e), i.e,wE∪E′(e) =min(wE (e),wE′(e)). We assume the lightest

non-zero edge weight is 1, and the heaviest edge weight isW . If

the lightest non-zero edge weightw(e) is less than 1, then all edges

are scaled by 1/w(e).

Paths. A path P = ⟨v0,v1, . . .vℓ⟩ is a sequence of constituent
vertices such that (vi ,vi+1) is an edge in the graph, for all i ∈ [0, ℓ−
1]. We denote the length of path P as |P | and |P | = ℓ is the number

of edges on P . We also call |P | the number of hops of P . The first and
the last vertex of the path are head(P) = v0 and tail(P) = vℓ . For
a vertex v , we say v ∈ P if v = vi for some i ∈ [0, ℓ]. We consider

the weight of path P to be the sum of the weights of the edges that

make up the path,w(P) =
∑ℓ
i=1w(vi−1,vi ). A path P ′ is a (1 + ϵ)-

approximation path for another path P , if head(P) = head(P ′),
tail(P) = tail(P ′), andw(P) ≤ w(P ′) ≤ (1 + ϵ)w(P).

Hopsets. A (β , ϵ)−hopset for directed graph G = (V ,E) is a

set of weighted edges H , such that for any vertices u and v in

V , distG (u,v) ≤ dist
(β )
G′ (u,v) ≤ (1 + ϵ)distG (u,v), where G ′ =

(V ,E ∪H ). β is considered the hopbound of the hopset, and |H | is
the size of the hopset.

Related nodes. For nodes u,v define the relation u ⪯d v if and

only if distG (u,v) ≤ d . We say u can reach v within d-distance
or v can be reached by u within d-distance if u ⪯d v . If u ⪯d
v or v ⪯d u, then u and v are d-related. For a directed graph

G = (V ,E) and vertices u,v ∈ V , denote R+d (G,v) = {u |v ⪯d u}

and R−d (G,v) = {u |u ⪯d v} to be the set of nodes which can be

reached by v , and which can reach v within d-distance. We denote

the set Rd (G,v) = R+d (G,v) ∪ R
−
d (G,v) be v’s related nodes within

d-distance. If d = n, we will ignore d . Similarly, we can define

R+d (G, P) = {u |vi ⪯d u,vi ∈ P}, R
−
d (G,v) = {u |u ⪯d vi ∈ P} and

Rd (G, P) = R+d (G, P) ∪ R
−
d (G, P). If v ∈ Rd (G, P), then v and P are

d-related.

Path related nodes. For a vertex x and a path P , vertex x is a

d-descendant of P if and only if x ∈ R+d (G, P)\R
−
d (G, P). Vertex x a

d-ancestor of P if and only if x ∈ R−d (G, P)\R
+
d (G, P). x a d-bridge

of P if and only if x ∈ R−d (G, P) ∩ R
+
d (G, P). Notice that these sets

are all disjoint by definition.

Binomial distribution. In the paper, denote binomial variables

with n independent experiments and probability p as B(n,p). For a
random variableX , ifX ∼ B(n,p), the following holds by a Chernoff
bound,

Pr [X ≥ (1 + δ )np ] ≤ exp(−
δ2

2 + δ
np).

If X ∼ B(n,p), then

E[
1

X + 1
] ≤

1

E[X ]
.
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3 ALGORITHM
In this section, we describe the hopset algorithm Hopset(G). The
algorithm takes as input graphG = (V ,E), and has parameters k, λ
and L. The goal of the algorithm is to output a set of edges E ′ that

is a ((n1/2+o(1)), ϵ)-hopset of G.
At a high level, the algorithm chooses vertices, called pivots,

to search forwards and backwards adding labels to each reached

vertex. The labels are used to partition the graph into subgraphs for

recursion. There is another set of vertices, called shortcutters that
search forwards and backwards adding edges to the hopset for each

reached vertex. The edges that are added to the hopset are weighted

by the distance between the shortcutter and the reached vertex.

The search is limited in distance, so vertices on the boundary of the

search, called fringe vertices, are replicated and put into multiple

subproblems. With each level of recursion, the number of pivots

increases, while the search distance decreases. The union of the

edges added in each level of recursion is returned as the hopset.

Next, we will describe some components of the algorithm and then

describe the details of the algorithm.

Parameters. The algorithms Hopset and HSRecurse have pa-

rameters k , λ and L. The parameter k controls the probability that a

vertex is chosen as a pivot in each level of recursion. The parameter

L controls the number of shortcutters in each level of recursion. A

higher value for L gives a better approximation but also increases

the runtime. Finally, the parameter λ, which is a constant and con-

trols the probability the algorithm succeeds. The algorithm requires

that k ≥ 2, and λ ≥ 8.

Pivots and shortcutters. Each vertexv is assigned a level, ℓ(v) that
is used to determine at what level of recursion it becomes a pivot or

a shortcutter. A vertexv is a pivot at recursive level r if ℓ(v) = r . A
vertex u is a shortcutter at recursive level r if ℓ(u) ≤ r + L. Since
each vertex v is assigned ℓ(v) at the onset of the algorithm and not

changed, we can note that if v becomes a pivot at level r , then it

was a shortcutter at level max(0, r − L). Pivots search the graph

and add labels to reached vertices that used to partition the graph

in subgraphs for recursion. Shortcutters searc the graph and add

hopset edges but do not add labels, and therefore do not affect the

partitioning of the graph at that level.

Search distances. Each level of recursion has a range for search

distances. The ranges are disjoint and decreasing with each level of

recursion. For a level of recursion r and vertexv , the search distance
is ρvDr whereDr = D/(λrkr/2) is the basic search distance and ρv
is the scalar. The range of search distances is (ρminDr , ρmaxDr ),

where ρmin = 16λ2k2 log2 n − 1 and ρmax = 32λ2k2 log2 n. The
search distance range is divided into 4λ2k log2 n disjoint subinter-

vals, each with length 4k . A subinterval is chosen uniformly at

random, which is represented by σv in the algorithm. Finally, the

scalar ρv is chosen from within the subinterval to minimize the

number of fringe vertices when using search distance ρvDr . We

use these search distances to guarantee that there are not too many

fringe vertices.

Explanation of Algorithm 1 and Algorithm 2. Hopset(G), shown
in Algorithm 1, repeats logn times to make the probability of suc-

cess high. It assigns ℓ(v) = i for each vertex v with probability

(λki+1 logn)/n. The ℓ(v) is the level of recursion that v becomes a

pivot. The probability increases by k with each level of recursion.

The recursive subroutine HSRecurse(G,D, r ) is called for D set to

2
j/kc for j ∈ [logn/2, logn]. This ensures that a path of any length

in n1/2 to n is shortcutted. For each vertex v , after assigning ℓ(v), if
ℓ(v) ≤ L, search forwards and backwards for 2

j+1
and add an edge

to the hopset for each reached vertex with weight equal to the dis-

tance from the shortcutter to the reached vertex. Call the recursive

subroutine HSRecurse(G,D = 2
jk−c , r = 0) on the whole graph G

with D set to 2
jk−c for j ∈ [logn/2, logn]. Return the set of edges

added to the hopset in all recursive executions.

HSRecurse(G,D, r ) is the recursive subroutine shown in Algo-

rithm 2. It takes graph G, distance D, and level of recursion r as
input. For each pivot at level r , i.e. each vertex v where ℓ(v) = r ,
choose a σv uniformly at random from [1, 4λk log2 n]. Next, search
fromv to distance 16λ2k2 logn+4kσv and find the distance ρv that

has theminimal number of vertices exactly ρv distance away, where

ρv is restricted to [16λ2k2 log2 n+4k(σv −1), 16λ
2k2 log2 n+4kσv ).

Search forwards and backwards from v to distance ρvDr and add

labels vDes and vAnc to the vertices reached in the forwards and

backwards directions, respectively. Add the label X on any vertex

that is reached in both directions. Next define the fringe vertices

V
f r inдe
v for vertex v as R(ρv+1)Dr (G,v)\R(ρv−1)Dr (G,v), and re-

curse on the induced subgraph G[V
f r inдe
v ].

Next for each shortcutter, i.e. each vertex v where ℓ(v) ≤ r + L,
search forwards and backwards fromv for distance 32λ2k2Dr log

2 n
and for each reached vertexu, add edge (u,v) for ancestors (or (v,u)
for descendants) with weight dist(u,v) (or dist(v,u) to the hopset.

Next, remove any vertices that received a label X from the pivots.

Finally, partition the vertices into groups as described in the next

section, and recurse on the subgraph induced on each group of

vertices.

Partition based on labels. Line 15 from Algorithm 2 is as follows.

Partition the graph such that two vertices u and v are in the same

group Vi , if and only if u and v receive the same labels from all

pivots. There could be a group of vertices that receives no labels

from any pivots. Notice that any vertices that received a X label

from a pivot are removed in the step before. Therefore, none of the

subgraphs contain vertices that received aX label. Finally, the pivots

themselves are removed from the graph, as each pivot receives the

X label from itself.

4 ANALYSIS
The goal of this section is to prove the following theorem.

Theorem 4.1. There exists a randomized sequential algorithm

that takes a directed graph G = (V ,E) where n = |V | andm = |E |,

computes a (n1/2+o(1), ϵ)-hopset of size Õ(n/ϵ2)with high probability,
and runs in Õ(m/ϵ2) time.

We start by proving the runtime and the size of the hopset in Section

4.1. Then we show the hopbound in Section 4.2, and finally, the

approximation in Section 4.3.
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Algorithm 1 Hopset algorithm for unweighted directed graphs. k, λ and L are parameters.

1: function Hopset(G = (V ,E))
2: H ← ∅
3: repeat λ logn times

4: for each j ∈ [logn/2, logn]
5: for each v ∈ V
6: for each i ∈ [0, logk n]

7: With probability (λki+1 logn)/n, set ℓ(v) to i , break if setting successful.

8: if ℓ(v) ≤ L then
9: for each u ∈ R+

2
j+1 (G,v) add edge (v,u) to H with weight distG (v,u)

10: for each u ∈ R−
2
j+1 (G,v) add edge (u,v) to H with weight distG (u,v)

11: H ← H ∪ HSRecurse(G,D = 2
jk−c , r = 0)

12: return H

Algorithm 2 Recursive subroutine for Hopset Algorithm. k , λ and L are parameters.

1: function HSRecurse(G,D, r )
2: Dr ← D/(λrkr/2),H ← ∅
3: for each v ∈ V with ℓ(v) = r
4: Choose σv uniformly at random from [1, 4λ2k log2 n]
5: Minimize |R(ρv+1)Dr (G,v)\R(ρv−1)Dr (G,v)| such that ρv ∈ [16λ

2k2 log2 n + 4k(σv − 1), 16λ
2k2 log2 n + 4kσv )

6: for each u ∈ R+ρvDr
(G,v) add label vDes to vertex u

7: for each u ∈ R−ρvDr
(G,v) add label vAnc to vertex u

8: for each u ∈ R+ρvDr
(G,v) ∩ R−ρvDr

(G,v) add label X to vertex u

9: V
fringe
v ← R(ρv+1)Dr (G,v)\R(ρv−1)Dr (G,v)

10: H ← H ∪ HSRecurse(G[V
fringe
v ],D, r + 1)

11: for each v ∈ V with ℓ(v) = r + L
12: for each u ∈ R+

32λ2k2Dr log
2 n
(G,v) add edge (v,u) to H with weight distG (v,u)

13: for each u ∈ R−
32λ2k2Dr log

2 n
(G,v) add edge (u,v) to H with weight distG (u,v)

14: for each u ∈ V that has a X label, remove u

15: V1,V2, ...,Vt ← partition based on labels

16: for each i ∈ [1, t]
17: H ← H ∪ HSRecurse(G[Vi ],D, r + 1)

18: return H

4.1 Running Time and Hopset Size
In this section we bound the runtime of the algorithm and the size

of the hopset the algorithm returns.

Theorem 4.2. One execution of Hopset(G = (V ,E)) with param-

eter k , where n = |V |,m = |E |, runs in Õ(mkL+1) time and produces

a hopset of size Õ(nkL+1).

The proof of Theorem 4.2 follows the same structure as the

runtime proof from JLS [14]. First, we bound the related vertices

in each recursive subproblem in Lemma 4.3. Then we show the

number of times a vertex is added to the fringe problem is small in

Lemma 4.4. Since only fringe vertices are duplicated, we can bound

the total number of vertices and edges in all recursive subproblems

in Lemma 4.5. This allows us to prove the number of edges added

to the hopset and the cost of all recursive executions. The runtime

differs from JLS [14] because of the extra searches from shortcutters.

For the same reason, the size of the hopset is larger than the number

of shortcutters added in JLS [14].

We start by bounding the number of related vertices in recursive

subproblems. In each level of recursion, the probability of being a

pivot increases.Withmore pivots, the graph is partitioned intomore

subproblems, and the number of related vertices in each subproblem

decreases. The proof of vertices in core problems is the same as

JLS [14]. Our algorithm differs from JLS [14] for the fringe problem

because we increase r as we recurse on fringe problems. Since the

search distance is chosen to minimize the number of vertices on

the fringe, the number of vertices in the fringe problem is small,

and therefore each vertex does not have too many related nodes.

The upper bound for the vertices in the fringe problem is needed

for the hopbound in Section 4.2. The proof of the following lemma

is in the full version of the paper [4].
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Lemma 4.3. Consider an execution of HSRecurse(G ′,d, 0) on n-

nodem-edge graph G . With probability at least 1 − n−0.7λ+3 in each

recursive call of HSRecurse(G ′,D, r ) the following holds for all v ∈
G ′,

|R+ρmaxDr
(G ′,v)| ≤ nk−r , |R−ρmaxDr

(G ′,v)| ≤ nk−r .

Next, we consider the expected number of nodes added to fringe

problems. JLS [14] has a similar lemma, where they consider the

expected number of times a vertex is added to a fringe problem.

Since we choose a search distance to minimize fringe vertices, we

cannot get the same expectation. Instead, we count the number of

vertices each pivot adds to its fringe problem, and get the same

result.

The basic search distance Dr for a pivot v is scaled by a factor

ρv that is chosen from an interval to minimize the number of

vertices in the fringe problem. The interval that ρv is chosen from

is selected uniformly at random from a larger interval. By using a

scaling factor that minimizes the number of vertices on the fringe,

and chosen from a random interval, we can guarantee that the

number of vertices added to each fringe problem is small. See the

full version of the paper for the proof of Lemma 4.4 [4].

Lemma 4.4. Consider a call to HSRecurse(G ′,D, r ) and any vertex
v ∈ G ′. The expected number of nodes added to v’s fringe problem i.e.

|R(ρ+1)Dr (G
′,v)\R(ρ−1)Dr (G

′,v)| is 1/(4λk logn).

Now that the number of vertices in fringe problems is bounded,

we can bound the total number of vertices in all recursive subprob-

lems. Lemma 4.5 is based on Lemma 5.3 and Corollary 5.5 from

JLS [14]. The vertices in the core problem form a partition of the

vertices in the level before. The vertices in the fringe problem are

copies of vertices in the core problem, which means the total num-

ber of vertices increases with each level. However, since we just

showed the number of vertices in the fringe problem is small, the

total number of vertices in all recursive subproblems can still be

bounded.

Lemma 4.5. Consider one execution of Hopset(G = (V ,E)) where
n = |V | andm = |E |. The expected number of vertices in all recursive

executions of HSRecurse(G ′,D, r ) is 2n logn. The expected number of

edges in all recursive executions of HSRecurse(G ′,D, r ) is 2m logn.

Proof. In one execution of HSRecurse(G ′ = (V ′,E ′),D, r ), the
number of vertices called in recursive subproblems is the number

called in the fringe problem, HSRecurse(G[V
f r inдe
u ],D, r + 1), and

the number of vertices called in HSRecurse(G[Vi ],D, r + 1) for

i ∈ [1, t]. By Lemma 4.4, the expected number of nodes added to

one vertex’s fringe problem is 1/(4λk logn). The vertices inVi are a
partition of the vertices inG ′. Therefore the total expected number

of vertices in the following subproblem is |V ′ | (1 + 1/(4λk logn)).
The total number of levels of recursion is at most logk n. Therefore
over all levels of recursion, the expected number of vertices in all

subproblems is

1+logk n∑
r=0

n(1 +
1

4λk logn
)r ≤ 2n logn

for k ≥ logn. The edge case can be proved in the same way. □

Next, we bound the number of related pivots each vertex has.

This will set up for the proof of the runtime and size of the hopset.

Lemma 4.6. Consider a call to Hopset(G) and all recursive calls
of HSRecurse(G ′,D, r ). For all v ∈ V , the number of pivots u, such
that v ∈ R(G ′, (ρu + 1)Dr ,u) is 6λk logn with probability at least

1 − n−0.7λ+4.

Proof. To bound the number of pivots u, wherev ∈ R(G ′, (ρu +
1)Dr ,u), we will slightly overcount the pivots, by extending ρu +
1 to ρmax . This will only increase the pivots we are counting.

Observe that all pivots u such that v ∈ R(G ′, ρmaxDr ,u) are in

R(G ′, ρmaxDr ,v). By Lemma 4.3, |R(G ′, ρmaxDr ,v)| ≤ 2nk−r with

probability 1 − n−0.7λ+3. The number of pivots is a binomial distri-

bution of B(|R(G ′, ρmaxDr ,v)| ,
λkr+1 logn

n ) and therefore,

Pr[B(
��R(G ′, ρmaxDr ,v)

�� , λkr+1 logn
n

) > 6λk logn] ≤ e−2λk logn

≤ n−2λ .

By taking a union bound over all v ∈ V and all r , the claim holds

with probability at least 1 − n−0.7λ+4. □

Lemma 4.7. Consider a call to Hopset(G = (V ,E). For all nodes
v ∈ V , the number of shortcutters u, such that v ∈ R(G, 2j+1,u)

is 6λkL+1 logn with probability at least 1 − n−0.7λ+4. Consider all
recursive calls of HSRecurse(G ′,D, r ). For all v ∈ V , the number of

shortcutters u, such that v ∈ R(G ′, ρmaxDr ,u) is 6λk
L+1

logn with

probability at least 1 − n−0.7λ+4.

Proof. We will prove each of the two cases separately, starting

with the second case of the shortcutters in HSRecurse(G ′,D, r ).
This case is almost the same as Lemma 4.6 except for the probability

of being a shortcutter at level r is λkL+r+1 logn/n. Therefore, the
expected number of shortcutters u such that u ∈ R(G ′, ρmaxDr ,v)

is 2λkL+1 logn, and with probability 1 − n−0.7λ+4, the number of

shortcutters u is at most 6λkL+1 logn.
For the first case, only verticesv where ℓ(v) ≤ L are shortcutters,

and there are at most n vertices. Hence, one vertex is a shortcutter

with probability at most

∑L
i=0 λk

i+1
logn/n ≤ 2λkL+1 logn/n, for

k ≥ 2. The number of shortcutters in Hopset(G) is a binomial

distribution B(n, 2λk
L+1

n ) and by a Chernoff bound,

Pr[B(n,
2λkL+1 logn

n
) > 6λkL+1 logn] ≤ e−2λk logn ≤ n−2λ .

□

Now we can prove Theorem 4.2, the runtime of the algorithm,

and the size of the hopset. The runtime is different from the JLS algo-

rithm because of the additional shortcutters that perform searches.

Proof of Theorem 4.2. Assigning probabilities to vertices can

be done in linear time. The searches from pivots and shortcutters

can be implemented using breadth-first search. The cost of the

searches by pivots is the number of edges explored in the breadth-

first searches times the number of edges in all recursive subprob-

lems. This is O(mk log2 n) by Lemma 4.5 and Lemma 4.6. Similarly,

the cost of searches for shortcutters is the edges explored in the

breadth-first searches, which is 6λkL+1 logn by Lemma 4.7, times

the number of edges in all recursive subproblems, which is 2m logn
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by Lemma 4.5. Finally, the partition step can be implemented to

run inO(n lognk) by sorting different labels. In total the runtime is

O(mkL+1 log4 n). The number of hopset edges added is, at most, the

number of vertices explored in the searches. The total number of

vertices searched is the expected number of vertices in all recursive

subproblems times the number of times each vertex is searched

over all levels of recursion. By Lemma 4.7 and Lemma 4.5, this is

O(nkL+1 log4 n) total hopset edges. □

4.2 Hopbound
Our goal in this section is to show the hopbound of the hopset pro-

duced by the Hopset(G) algorithm is n
1

2
+O (1/logk )kc+

1−L
2 log

2 n.
The main idea comes from Fineman [11] and JLS [14]. We consider

the shortest path P fromu tov through the full execution of the algo-

rithm. If a bridge is selected as a pivot, then the path is shortcutted

to two hops. If no bridges are selected as pivots, then the pivots are

ancestors, descendants, or unrelated the path. When an ancestor or

a descendant is a pivot, it splits that path into subpaths that are con-

tained in different recursive subproblems. Define a path-relevant
subproblem (G, P , r ) as a call to HSRecurse(G,D, r ) that contains
a nonempty subpath of P . Splitting the path makes it more challeng-

ing to shortcut because a bridge is needed for each subpath in its

path-relevant subproblem. However, we are still making progress

because the number of nodes in path-relevant subproblems is re-

duced. Hence, we would like to track the collection of path-relevant

subproblems throughout the execution of the algorithm.

The path-relevant subproblems form a path-relevant subprob-
lem tree defined as follows. The root of the tree, called level 0,

is the whole path P . If a bridge is selected as a pivot in a path-

relevant subproblem, then the node is a leaf and has no children.

If no bridges are selected in a path-relevant subproblem (G ′, P ′, r ),
then the path-relevant subproblems containing subpaths of P ′ are
the children. At the end of the execution of the algorithm, the leaves

of path-relevant subproblems tree represent the entire path P . The
path consists of at most two hops for each leaf node in the tree

and the edges that go between subproblems. Our goal is to bound

the number of nodes in the path-relevant tree to provide an upper

bound of the hopbound. The idea of the path-relevant subprob-

lems tree comes from Fineman [11]. However, ours becomes more

complicated because we use multiple pivots, and fringe and core

problems.

In Lemma 4.8, we will construct the path-relevant subproblem

tree. The proof relies on a helper lemma to show that choosing

ancestor and descendant pivots will decrease the number of path-

related nodes.Wewill show this claim after Lemma 4.8 in Lemma 4.9.

The construction of the path-relevant subproblems tree becomes

more complicated for two reasons. First, the basic search distance

Dr decreases with each level of recursion, which means that a pivot

may not reach the end of the path in its search. This splits the path

into an additional subpath. Second, the algorithm calls core and

fringe problems from each pivot. It creates many subproblems, so

we must choose which of these subproblems to consider in the

analysis.

To resolve the first difficulty, we will logically split certain path-

relevant subproblems to create logical path-relevant subprob-
lems. The path is split logically for the sake of analysis. However,

the algorithm is unaware of these splits. This means that some logi-

cal subproblems are in the same call of HSRecurse(G,D, r ), but this
will not change our analysis. Notice that between two consecutive

levels, the basic search distance will decrease by aO(
√
k) factor. The

pieces of the subpath are split such that the length of each piece is

less than the next level’s search distance. This guarantees that the

search distance in the next level is long enough to reach the end of

the subpath in the logical path-relevant subproblem. The ancestors

and descendants of each piece of the subpath are copied and added

to each relevant subproblem. By splitting subproblems, we intro-

duce an additional O(
√
k) subproblems, as well as multiple copies

of many nodes. Fortunately, since we have already shown that

path related nodes in one subproblem are bounded, this increase in

vertices is tolerable.

More specifically, each call to HSRecurse(G,D, r ) is associated
with path P̂ where |P̂ | = ℓ ∈ (kcD/2,kcD]. If a path-relevant sub-
problem (G ′, P , r ) at level r contains a subpath P = ⟨vi ,vi+1, ...,vj ⟩

with j − i > Dr = D/(λrkr/2), then we will split P into q =
⌈j − i/Dr ⌉ disjoint subpaths P = P1, P2, ...Pq , such that every sub-

path except the last one has length Dr . This partition splits the path

into at most λrkr/2 subpaths where each subpath has length at

most Dr , which is less than the length of the basic search distance

at level r . Each related vertex to a path vertex vi in G
′
is copied to

vi ’s new logical path-relevant subproblem. From Lemma 4.3, each

subpath Pi at level r contains at most 2nk−r related vertices. We

have at most λrkc+r/2 new logical nodes since we have at most

λrkc+r/2 subpaths of length D/(λrkc+r/2). Hence, we only dupli-

cate 2λrnkc−r/2 additional vertices in this procedure. Next, we will

construct the path-relevant subproblem tree based on the logical

path-relevant subproblems in the following lemma, and show how

to create the next level of subproblems from the logical subproblems

layer. Let ρv be the scalar of the searching distance for pivot v . The
proof of Lemma 4.8 is in the full version [4].

Lemma 4.8. Consider a logical path-relevant subproblem (G ′, P =
⟨v0,v1, ...,vℓ⟩, r ) corresponding to a call to HSRecurse(G

′,D, r ). Let
pr = (λk

r+1
logn)/n be the probability a vertex is a pivot at level

r . Let S = {v | ℓ(v) = r ,v ∈ RρvDr (G
′, P)} be the set of pivots

at level r related to P within distance ρvDr . There exists subpaths

P0, P1, P2, ..., P2 |S | such that,

(1) If a vertex v ∈ S is a ρvDr -bridge, there are no path-relevant

subproblems.

(2) If no vertex v ∈ S is a ρvDr -bridge, then the vertex union of

all Pi for 0 ≤ i ≤ 2 |S | is P .
(3) P0, P1, P2, ...., P |S |+1 are in core problems and each Pi is con-

tained in some Vai .
(4) P |S |+1, ..., P2 |S | are called in fringe problems and each Pi is

contained in some V
Fringe

u , where u ∈ S .

Additionally, with probability 1 − n−0.7λ+4, we have that

|S |∑
i=0

E[|RρminDr (G
′[Vai ], Pi )|] ≤

3

pr

and

2 |S |∑
i= |S |+1

E[|RρminDr (G
′[V

Fringe

u ∈S ], Pi )|] ≤
1

pr
.
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Now we will show the helper lemma for the case the pivots are

ancestors and descendants. The proof is in the full version of the

paper [4]. Fineman [11] shows a similar result when there is just

one pivot, and JLS [14] extends this to t pivots. In our case, we

have the additional difficulty that each pivot searches for a different

distance, but we are able to get the same result.

Lemma 4.9. Consider the path P = ⟨v0,v1, ..,vℓ⟩, where ℓ ≤

Dr , and its ρminDr -distance ancestor set R
−
ρminDr

(G, P) in the r th

level of recursion. Let I be the set containing all possible values of

interval scalar. Choose t ancestor pivots uniformly at random from

R−ρminDr
(G, P). Let Pi be the path defined in Lemma 4.8. If the chosen

interval |I | ≥ 4t , then

|S |∑
i=0

E[|R−ρminDr
(G ′[Vai ], Pi )|] ≤

1.5

t + 1

���R−ρminDr
(G ′, P)

��� .
Notice that each subpath Pi will be contained in a subproblem,

which means all Pi are valid in subproblems even if they were split

in the logical layer. There might be some path-relevant subproblems

replicated multiple times, so the path-relevant subproblems are

no longer independent. Each subpath is limited in length |Pi | ≤

D/(λrkr/2). We construct new logical layer based on the rule we

mentioned before. Next, based on the path-relevant subproblem

tree, we will give a lemma about the expected number of related

nodes and subproblems in each level of recursion.

Lemma 4.10. Consider the path-relevant subproblem tree for one

execution of Hopset(G). Let Zr be the number of subproblems in the

r th level of recursion. For all r ≥ 0,⋂
r ≤logk n−L

Pr
[
Zr ≤ 32λrkc+

r+1
2 log

2 n
]
≥

1

2

.

Proof. To show the claim, we will first show the expectation of

Zr . Let Yr be the number of path related vertices in the r th level of

recursion. Our target is to show the following formula holds with

probability 1 − n−0.7λ+4, for all r ,

E[Yr ] ≤ 4λrnkc−
r
2

E[Zr ] ≤ 15λrkc+
r+1
2 logn.

If the expectation ofZr in the above formula holds, then byMarkov’s

inequality,

Pr
[
Zr ≥ 30λrkc+

r+1
2 log

2 n
]
≤

1

2 logn
,

and by a union bound, the following holds if λ ≥ 8,⋃
r ≤logk n−L

Pr
[
Zr ≥ 32λrkc+

r+1
2 log

2 n
]

≤
logk n − L

2 logn
+ n−0.7λ+4 ≤

1

2

.

Next we will show the expectation of Zr and Yr by induction on

the level of recursion. When r = 0, the claim is trivial since there

is one subproblem and at most n path-related vertices. Assume for

level r , the formulas hold. Then we will construct the logical layer.

Let Y ′r be the number of path-related nodes in the logical layer at

level r . Let Z ′r be the number of subproblems in the logical layer at

level r . The search distance for level r is D/λrkr/2 and subproblem

is duplicated if the path length in the subproblem is greater than

ℓ/(λrkc+r/2). Thus, at most λrkc+r/2 subproblems are duplicated

and Z ′r = Zr + λ
rkc+r/2. On the other side, from Lemma 4.3, the

number of related nodes in each subproblem at level r is less than

or equal to 2nk−r with probability 1 − n−0.7λ+3. Therefore,

Y ′r = Yr + λ
rkc+r/2 · 2nk−r = Yr + 2λ

rnkc−r/2

Next we can count Zr+1 and Yr+1 based on the logical layer. By

Lemma 4.8, for each subproblem at level r , the number of related

nodes at level r + 1 can be bounded. For a logical subproblem s at
level r , letYs be the number of path-related nodes in s’s subproblem
at level r + 1. The expectation of Yr+1 is,

E[Yr+1] =E[
∑
s
Ys ] =

∑
s

E[Ys ] =
∑
Z ′r

∑
s

E[Ys | Z
′
r ]Pr[Z

′
r ]

≤
4

pr

∑
Z ′r

Z ′rPr[Z
′
r ] =

4

λkr+1 logn/n
· (E[Zr ] + λ

rkc+r/2)

≤64λr−1nkc−
r+1
2 ≤ 4λr+1nkc−

r+1
2

for λ ≥ 4. For the Zr+1, if there are t pivots, there will be at most

2t + 1 subproblems. To count Zr+1, split 2t + 1 subproblems to two

parts, 2t subproblems and 1 subproblem. The 2t part will contribute
to the total number of pivots. On the other hand, each subproblem

at level r will have 1 additional subproblem, which implies another

Z ′r item. Therefore, if k ≥ 2 then,

E[Zr+1] =
∑

E[Zr+1 | Y
′
r ] · Pr[Y

′
r ] = pr ·

∑
2Y ′r Pr[Y

′

r ] + E[Z
′
r ]

=
2λkr+1 logn

n
· E[Y ′r ] + E[Z

′
r ]

≤
2λkr+1 logn

n
· (4λrnkc−r/2 + 2λrnkc−r/2)

+ 15λrkc+
r+1
2 logn + λrkc+r/2

≤ 15λr+1kc+1+r/2 logn.

□

Lastly, we will show the hopbound based on the path-relevant

subproblem tree.

Lemma 4.11. Consider any graphG = (V ,E) and any shortest path

P̂ with |P̂ | ≥ n1/2 and let u = head(P̂) and v = tail(P̂). Consider
an execution of Algorithm 1. Let E ′ be the hopset produced, and

let Z0,Z1, ...,Zr be the number of corresponding path-relevant tree

subproblems at level r , then there is a u-to-v path inG ′ = (V ,E ′ ∪ E)
containing at most 3

∑
r ≤logk n−L Zr edges.

Proof. A path-relevant subproblem tree node will have no chil-

dren if the subproblem contains a path-relevant pivot that is a

bridge. If any pivotsw , are bridges at or before level L, thenw will

be a shortcutter in Algorithm 1. Notice thatw is ρmaxDr -related

to P̂ for r ≤ L. We require that ρmaxD0 ≤ ℓ since we only search

for additional ℓ distance. The new path will be u tow to v .
Otherwise, there are no bridges in the first L levels. Consider a

path-relevant subproblem at level r ′ > L. If there is a pivot w at

level r ′ that is a bridge, then at level r ′ − L w was a shortcutter in a

path-relevant subproblem (G, P ′, r ′ − L). In Lemma 4.8 we showed
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that P ′ ≤ Dr . Since shortcutters search for ρmaxDr , w reaches

head(P ′) and the edges tail(P ′), (head(P ′),w) and (w, tail(P ′)) are
added to E ′, creating a two hop path from u to v in G ′. At level
logk n, all vertices are pivots, and therefore the path must have

a bridge pivot. In total there are at most 2

∑
r ≤logk n−L Zr hopset

edges that shortcut path-relevant subproblems, and there are at

most

∑
r ≤logk n−L Zr edges between subproblems. Adding these

together completes the proof. □

Lemma 4.12. Consider any graph G ′ = (V ,E) and an execution

of Hopset(G ′) with parameters k , λ and L. The hopset produced

has hopbound n1/2+O (1/logk )kc+(1−L)/2 log2 n with probability 1 −

n−λ+2.

Proof. Consider any shortest path P̂ with |P̂ | > n1/2 and let

u = head(P̂) and v = tail(P̂). By Lemma 4.11, there is a path from u
to v with at most 3

∑
r ≤logk n−L Zr edges where Zr is the number

of path-relevant subproblems in the path-relevant subproblem tree

at level r . Since the algorithm is repeated λ logn times, there exists

a path relevant tree such that

⋂
r ≤logk n−L Zr ≤ 32λrkc+

r+1
2 log

2 n

holds with probability 1 − n−λ , by Lemma 4.10. Therefore the hop-

bound is, ∑
r ≤logk n−L

3Zr =
∑

r ≤logk n−L

96λrkc+
r+1
2 log

2 n

= n1/2+O (1/logk )kc+(1−L)/2 log2 n,

with probability 1−n−λ+2, where the probability comes from taking

a union bound over all possible shortest paths. □

4.3 Approximation
In this section, we will show the approximation that the algorithm

acheives. We have already showed that the path-relevant tree has

n
1

2
+O (1/logk )kc+

1−L
2 log

2 n nodes, which means there exist a path

P ′ that contains at most n
1

2
+O (1/logk)kc+

1−L
2 log

2 n hops. Now we

want to show that P ′ is an good approximation of the original path

P̂ . Notice that in the path-relevant tree, a path-relevant problem

has no subproblems if one of the pivots at that level is a bridge.

Consider the following two cases:

(1) If there is a bridge u with ℓ(u) ≤ L, then we stop the path-

relevant tree at level 0. In this case, the search distance is

at most D ∈ [ℓk−c , 2ℓk−c ), so the bridge will have at most

2 · 32λ2k2 log2 n ·D ≤ 128λ2k2−c log2 n · ℓ error. The 2 comes

from the forward and backward searches, the second item

32λ2k2 log2 n comes from the scaling factor.

(2) Consider the path-relevant tree after level 0. If a path-relevant

subproblem selects a shortcutter that is a bridge at level

r + L, then the path-relevant subproblem will end at level

r . The error for this subproblem is at level r is at most

2 · 32λ2k2 log2 n · Dr+L . Summing up all possible bridges,

we have the error

r=logk n−L∑
r=1

Zr · 64λ
2k2 log2 n · Dr+L ≤ 4096λ2−Lk(5−L)/2 log5 n · ℓ.

The accumulating error will be 4096λ2−Lk(5−L)/2 log5 n · ℓ.

To make the first error equal to second error, set kc = λLk (L−1)/2

32 log
3 n

.

If k = Ω(logn) and the desired error is ϵℓ, set L = 15 − 2 logk ϵ .

The hopbound β is at most 6λlogk nn1/2/logn. The running time

isO(mk16 log4 n/ϵ2) and the hopset size isO(nk16 log4 n/ϵ2). Com-

bining all this together, the following corollary holds.

Corollary 4.13. For any unweighted directed graph G = (V ,E),

Hopset(G) with above parameter returns a (β = n1/2+O (1/logk), ϵ)-
hopset of size O(nk16 log4 n/ϵ2) in running time O(mk16 log4 n/ϵ2)

with probability 1 − n−λ+2.

Proof of Theorem 4.1. From Theorem 4.2 and Corollary 4.13,

Theorem 4.1 follows directly. □

5 WEIGHTED GRAPHS
This section presents an algorithm for hopsets for weighted di-

rected graphs. The algorithm is almost the same as the unweighted

case, so most of the analysis still holds. Our goal is to show that

for graph G, the algorithm returns a (n1/2+o(1), ϵ)-hopset of size
O(nk16 log3 n log(nW )/ϵ2), and runs inO(mk16 log4 n log(nW )/ϵ2)
time. Next we will present the algorithm, and in Section 5.2 we

provide the analysis.

5.1 Weighted Hopsets Algorithm
Algorithm 3 shows the hopsets algorithms for weighted directed

graphs. The algorithm is the same as the unweighted algorithm

with one exception. Namely,WHopset(G) searches all possible path
weights from −1 to nW whereW is the maximum weight of an

edge in the graph, whereas Hopset(G = (V ,E)) only searches over

path weights from n1/2 to n. This difference is Line 4. The weighted
algorithm extends the searches because the maximum shortest path

distance in a weighted graph is nW . In the unweighted case, the

maximum shortest path was at most n. WHopset(G) searches from
−1 to account for edges with weight zero.

5.2 Analysis
The goal of this section is to prove Theorem 5.1.

Theorem 5.1. For any weighted directed graph G = (V ,E), there

exists a randomized algorithm that computes a (β = n1/2+o(1), ϵ)-
hopset of sizeO(nk16 log3 n log(nW )/ϵ2). The randomized algorithm

runs in O(mk16 log4 n log(nW )/ϵ2) time with probability 1 − n−λ+2.

Most of the analysis from the weighted case holds for the un-

weighted case. First, we will show the difference in the runtime in

Lemma 5.2 and then the hopbound and approximation.

Lemma 5.2. One execution of WHopset(G = (V ,E)) with parame-

ters k and L, where n = |V |,m = |E |, runs in Õ(mkL+1 log(nW )) time

and returns a hopset of size Õ(nkL+1 log(nW )) with high probability.

Proof. The running time proof follows from the proof of Theo-

rem 4.2. The only comes from performing the searches. Breadth-first

search can no longer be used because the graph is weighted. In-

stead Dijkstra’s algorithm for shortest paths can be used which

has cost O(m + n logn) [7]. This increases the runtime from the

unweighted case by a O(log(nW )) factor resulting in a runtime of

O(mkL+1 log4 n log(nW )). For the same reason the size of hopset is

O(nkL+1 log3 n log(nW )). □
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Algorithm 3 Hopset algorithm for weighted directed graphs. k, λ and L are parameters.

1: functionWHopset(G = (V ,E))
2: H ← ∅
3: repeat λ logn times

4: for each j ∈ [−1, log(nW )]
5: for each v ∈ V
6: for each i ∈ [0, logk n]

7: With probability (λki+1 logn)/n, set ℓ(v) to i , break if setting successful.

8: if ℓ(v) ≤ L then
9: for each u ∈ R+

2
j+1 (G,v) add edge (v,u) to H with weight distG (v,u)

10: for each u ∈ R−
2
j+1 (G,v) add edge (u,v) to H with weight distG (u,v)

11: H ← H ∪ HSRecurse(G,D = 2
jk−c , r = 0)

12: return H

Next, we consider the hopbound of the weighted case. We again

consider the path-relevant subproblems and construct the logical

path-relevant subproblems. The only difference comes in how the

logical path-relevant subproblems are constructed. Consider a path

P̂ from u to v , where |w(P̂)| ∈ (kcD/2,kcD]. If a path-relevant sub-
problem (G ′, P , r ) at level r contains a subpath P = ⟨vi ,vi+1, ...,vj ⟩,

with w(P) > Dr =
D

λr kr /2
then split P into q disjoint subpaths

P = P1, P2, ..., Pq such that (head(Pi ), tail(Pi+1)) ∈ P for i ∈ [1,q)
and maximize each subpath Pi such thatw(Pi ) ≤ Dr except for the

last subpath. Here the path is split based on weight rather than the

number of hops. Sincew(Pi ) +w(head(Pi ), tail(Pi+1) > Dr , there

are at most λrkc+r/2 new logical nodes. Since the rest of the num-

ber of logical nodes introduced is the same, the rest of the analysis

is unaffected.

Lastly, we show the approximation of the hopsets. For paths

P where w(P) > 0, the analysis is the same. However for a path

P where w(P) = 0, the analysis changes. Recall that the lightest

non-zero edge weight is 1. The algorithm is run with j = −1 for this
case. When j = −1, we are considering the path p withw(p) < 1/2.

However, there is only ϵ error and the approximate path weight

will be less than (1 + ϵ)w(p) < 1. Therefore, the approximate path

weight is 0 since the graph has no non-zero edge weight less than

1. By setting appropriate c , WHopset(G = (V ,E)) will return a

(n1/2+o(1), ϵ)- hopset for G. For the final error to be ϵ , set L =
15 − 2 logk ϵ . Combining the above analysis, gives us Theorem 5.1.

6 PARALLEL ALGORITHM
In this section, we show how to extend the weighted hopsets al-

gorithm to a work-efficient, low span parallel algorithm. First, we

will explain the difficulties of the hopsets algorithm in the parallel

setting and give the high-level idea of overcoming these difficulties.

Then we describe the details of our parallel algorithm for hopsets

in Section 6.1. Finally, in Section 6.2, we provide an analysis of the

work and span.

There are two main difficulties in making the weighted algo-

rithm work in a parallel setting. First, Dijkstra’s algorithm is used

to perform the searches, but Dijkstra’s algorithm is expensive in the

parallel setting. To resolve this problem, we use the rounding tech-

nique from Klein and Subramanian [15]. Consider a path fromv0 to
vℓ , P̂ = ⟨v0,v1, ...,vℓ⟩. For each edge e ∈ P̂ ,w(e) is rounded up to

the nearest integer multiple of δw(P̂)/ℓ, where δ is a small number

to be set later. Since P̂ contains ℓ edges, each edge has at most

δw(P̂)/ℓ error. The whole path has at most δw(P̂)/ℓ · ℓ = δw(P̂) er-
ror. The error is tolerable if δ is set to be small enough. Now consider

the path with the rounded weights, but treating δw(P̂)/ℓ as one unit.
Since all rounded edge weights are integer multiples of δw(P̂)/ℓ, the

new weight of path P is at most w̃(P̂) = w (P̂ )+δw (P̂ )
δw (P̂ )/ℓ

= (1 + δ )ℓ/δ .

Therefore, the algorithm can use breadth first search with depth

at most O(ℓ/δ ) to compute R+ρvDr
(G,v) and R−ρvDr

(G,v) in a call

to HSRecurse(G,D = O(ℓ/δ ), r ). The cost of the depth-first search
depends only on ℓ instead ofw(P̂).

The second difficulty is that searching the entire path can be

too expensive, even after the rounding step because a path may

contain too many hops. The key idea is to run HSRecurse(G,D, r )
with limited hops D. Then add the edges produced by the HSRe-

curse(G,D, r ) to the graph. Consider HSRecurse(G,D, r ) searches
for at most 2β hops, where β is the hopbound HSRecurse(G,D, r )
achieves, and a path P̂ with |P̂ | = 4β . After the first execution of

HSRecurse(G,D, r ), there will be an approximate path P ′ for P
such that |P ′ | ≤ 2β andw(P ′) ≤ (1 + ϵ)w̃(P) ≤ (1 + δ )(1 + ϵ)w(P).
By repeating these steps, we can ensure that a path of any length

gets approximated, and the hopbound is limited by the previous

executions of HSRecurse(G,D, r ). Moreover, for a path P of any

length, run HSRecurse(G,D, r = 0) log(|P |/(2β)) times. This gives

a (1 + δ )log( |P |/2β )(1 + ϵ)log( |P |/2β ) approximation, with hopbound

2β . One more execution gives the β hopbound.

6.1 Algorithm Description
In this section, we describe the parallel algorithm, PHopset(G),
shown in Algorithm 4. The parallel algorithm extends the hopsets

algorithm for weighted graphs in Section 5. There are two main

differences. First, the parallel algorithm will round the weights

of edges. Second, the parallel algorithm will execute the recurse

subroutine HSRecurse(G ′,D, r ) and then add the edges returned

from the subroutine to the graph before executing the recursive

subroutine again. We will describe these two steps in more detail.

One key modification to Algorithm 4 is as follows. In Lines 16-17,

if the weight of an edge is less than 1, then set the weight to 0. Also,

notice that the algorithm searches from i = −2. These steps are
both done to account for zero weighted paths.
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Algorithm 4 Parallel hopset algorithm for weighted directed graphs. δ ,k, λ, c,L are parameters.

1: function PHopset(G = (V ,E))
2: H ← ∅
3: β ← 6λlogk nn1/2/logn
4: repeat λ log2 n times

5: for each i ∈ [−2, log(n2W )]
6: ŵ = δ · 2i−1/β, Ĥ ′ ← ∅
7: Construct a new graph Ĝ = (V̂ = V , Ê = E)
8: for each e ∈ Ê

9: w̃(e) =


+∞ ifw(e) ≥ 2

i+1⌈
w (e)
ŵ

⌉
ifw(e) < 2

i+1

1 ifw(e) = 0

10: for each v ∈ V̂
11: for each i ′ ∈ [0, logk n]

12: With probability (λki
′+1

logn)/n, set ℓ(v) to i ′, break if setting successfully.

13: if ℓ(v) ≤ L then
14: for each u ∈ R+

8(1+δ )β/δ (G,v) add edge (v,u) to Ĥ ′ with weight distĜ (v,u)

15: for each u ∈ R−
8(1+δ )β/δ (G,v) add edge (u,v) to Ĥ ′ with weight distĜ (u,v)

16: H ← H ∪ (ŵ · Ĥ ′) ∪ (ŵ · HSRecurse(Ĝ,D = 4(1 + δ )β/(δkc ), r = 0))

17: E ← E ∪ H
18: return H

Rounding the edge weights. The algorithm starts by rounding

up the weights of edges. This is Lines 6-9 in PHopset(G = (V ,E)).
Recall that the lightest non-zero edge weight is 1, and the heaviest

edge weight isW . β is the hopbound of the hopset produced by the

sequential algorithm Hopset(G) in Section 4.2.

Consider a path P̂ = ⟨v0,v1, ...,vℓ⟩ and suppose ℓ ∈ (β , 2β] and
w(P̂) ∈ [2i , 2i+1) for integer i . Let δ be a small number. Define

ŵ = 2
i−1δ/β . Round the weight of each edge e to the following

integers,

w̃(e) =


ŵ ifw(e) = 0,⌈
w (e)
ŵ

⌉
· ŵ ifw(e) < 2

i+1,

+∞ ifw(e) ≥ 2
i+1.

By construction each edge has at most ŵ error. Therefore, the

rounded weight of the path, w̃(P̂) has at most ℓŵ ≤ 2
i−1δ
β · 2β ≤ δd

error. By treating ŵ as one unit, P̂ is in the range of

w̃(P̂) ∈

[ ⌈
w(P̂)

ŵ

⌉
· ŵ,

⌈
(1 + δ )w(P̂)

w̃

⌉
· ŵ

)
⊂

[ ⌈
2β

δ

⌉
,

⌈
4(1 + δ )β

δ

⌉ )
· ŵ ⊂ [kcD/(2 + 2δ ),kcD] · ŵ,

if kcD = 4(1 + δ )β/δ . Since ŵ is treated as one unit, breadth-first

search can be run to depth at most 4(1 + δ )β/δ to search the whole

path, which is independent of d . In the algorithm, ŵ is ignored

in the rounding step and added back when HSRecurse(G,D, r )
returns the hopset.

Adding hopset edges to the graph. After a recursive call to HSRe-

curse(G,D, r ), Line 17 in Algorithm 4 adds the edges returned by

HSRecurse(G,D, r ) to the original graphG . HSRecurse(G,D, r ) re-
turns a (β , ϵ)-hopset for any path with length at most 2β with proba-

bility at least 1/2. Therefore, for any path P with |P | > 2β , there will
be a path P ′ approximating P , with length |P ′ | =max(|P |/2, 2β).

6.2 Parallel Hopbound and Hopset Size
Lemma 6.1. Consider any graph G ′ = (V ,E) and an execution

of PHopset(G ′). For any P where |P | ≤ 2β , after the rounding code
in Lines 6-9, suppose HSRecurse(G,D, r = 0) returns a (1 + ϵ ′)
approximate path P ′ containing at most β hops with probability at

least 1/2. If Lines 5-16 in PHopset(G ′) are repeated jλ logn times, then

for any u-to-v path P̂ with |P̂ | = 2
jβ , there will be an approximate

path P̂ ′ in E with probability 1 − (2j − 1)n−λ such that |P̂ ′ | ≤ β and

w(P̂ ′) ≤ (1 + δ )j (1 + ϵ ′)jw(P).

Proof. Proof by induction on j. When j = 1, then for P̂ with

|P̂ | ≤ 2β , after λ logn repetitions of Lines 5-17, with all possible val-

ues ofD, with probability 1− 1

2
λ logn = 1−n−λ , HSRecurse(G,D,R)

returns a (1 + ϵ)-approximate path for P̂ . When the edges of P̂ are

rounded, there is at most δw(P̂) error for P̂ . Therefore, the final
approximation ratio is (1 + δ )(1 + ϵ ′).

For the inductive step, we will show that for P̂ with |P̂ | ≤ 2
j+1β ,

the claim holds. Split P̂ into two subpaths, P̂1 and P̂2, where each
of P̂1 and P̂2 contains no more than 2

jβ edges. By the inductive

hypothesis, with probability 1−(2j+1−2)n−λ , there exists P̂
′

1
and P̂

′

2

such that P̂
′

1
and P̂

′

2
are (1 + δ )j (1 + ϵ ′)j -approximations for P̂1 and

P̂2, respectively. Furthermore, |P̂
′

1
| ≤ β and |P̂

′

2
| ≤ β . Hence, after

logn repetitions, with probability 1−n−λ , there will be a (1+δ )(1+

ϵ ′) approximate path P̂
′

with at most H edges for ⟨P̂
′

1
, P̂
′

2
⟩, which
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implies the approximate path for P̂ . By taking a union bound over

the existence of P̂
′

1
, P̂
′

2
and P̂

′

, the probability is 1−(2j+1−1)n−λ . □

For a path P with |P | ≤ 2β , HSRecurse(G,D, r )with correspond-

ing ŵ returns a (β , ϵ ′)-hopset for P . By setting kc = λLk (L−1)/2

32 log
3 n

and

L = 15 − 2 logk ϵ
′
, the hopbound is β = 6λlogk nn1/2/logn. By

repeating Lines 5-16 λ log2 n times, Lemma 6.1 can be applied to

all possible paths. The maximum path weight will increase each

round, but it will be no greater than (1 + ϵ)lognnW ≤ n2W . Thus

a maximum path weight of n2W covers all possible paths. Finally,

to get a (β, ϵ)-hopset, set δ = ϵ/(8 logn) and ϵ ′ = ϵ/(8 logn). If
k = Ω(logn), then L = 17 − logk ϵ is sufficient. The constant

1/8 in ϵ ′ will cancel out with the λ−L in the error formula. Re-

call that HSRecurse(G,D, r = 0) will returns a hopset of size

O(nkL+1 log2 n). Summing up all items, the final hopset size is

O(nk18 log4 n log(nW )/ϵ2).

Corollary 6.2. For any weighted directed graph G = (V ,E),

PHopset(G) with above parameter returns a (β = n1/2+o(1/logk), ϵ)-

hopset of sizeO(nk18 log4 n log(nW )/ϵ2) with probability 1−n−λ+3.

6.3 Work and Span
Here we consider PHopset(G) in the work-span model [7]. Recall

that the work is the total number of operations that the algorithm

performswhile the span is the longest chain of sequential dependent

operations.

Work. The work of the algorithm is dominated by the cost of

the searches. Updating the graph, and adding the edges back to the

graph can be done using parallel merge sort [6]. See Fineman [11]

and JLS [14] for details of the parallel implementation. From the

proof of Theorem 4.2, the total amount of work to compute the set

of related nodes in a call of HSRecurse(G,D, r ) isO(mkL+1 log4 n).
In the parallel algorithm, them term increases as more edges are

added to the graph. When Lines 5-14 are repeated j times, there are

at most O(jnk18 log2 n log(nW )/ϵ2) edges in H . The total work is,

O(

λ log2 n∑
j=1
(m + jnk18 log2 n log(nW )/ϵ2)k18 log2 n log(nW )/ϵ2)

=O(mk18 log4 n log(nW )/ϵ2 + nk36 log8 n log2(nW )/ϵ4).

Span. The searches dominate the span. In each call to HSRe-

curse(G,D, r = 0), the maximum search distance is 4(1 + δ )β/δ .
On each recursive call, the search distance decreases by at least

1/2. Therefore the span in one call to HSRecurse(G,D, r = 0) is

O(β/δ ). Since the algorithm is run O(log2 n) times, the span is

O(β log2 n/δ ) = n1/2+o(1/logk ) log2 n/ϵ .
Summing up all these together, allows us to prove the following

theorem.

Theorem 6.3. For any weighted directed graph G = (V ,E), there
exists a randomized parallel algorithm for weighted graphs that com-

putes a (n1/2+o(1), ϵ)-hopset of size O(n log22 n log(nW )/ϵ2). The al-
gorithm hasO(m log

22 n log(nW )/ϵ2 +n log44 n log2(nW )/ϵ4) work

and n1/2+o(1)/ϵ span with high probability.

Proof. Combining above analysis and Corollary 6.2, the theo-

rem holds with k = Θ(logn) and appropriate λ. □

Theorem 6.4. There exists a parallel algorithm that takes as input

a graphG with non-negative edge weights and computes approximate

single-source shortest paths in Õ(m log(nW )/ϵ2 + n log2(nW )/ϵ4)

work and n1/2+o(1)/ϵ span.

Proof. By Theorem 6.3, PHopset(G) produces a (n1/2+o(1), ϵ)-
hopset with the desired work and span. Then running Klein and

Subramanian’s hop-limited parallel algorithm for shortests paths

[15] completes the proof. □
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