Efficient Construction of Directed Hopsets and Parallel
Approximate Shortest Paths

Nairen Cao
nairen@ir.cs.georgetown.edu
Georgetown University
Washington D.C., USA

ABSTRACT

The approximate single-source shortest-path problem is as fol-
lows: given a graph with nonnegative edge weights and a des-
ignated source vertex s, return estimates of the distances from s
to each other vertex such that the estimate falls between the true
distance and (1 + €) times the distance. This paper provides the first
nearly work-efficient parallel algorithm with sublinear span (also
called depth) for the approximate shortest-path problem on directed
graphs. Specifically, for constant € and polynomially-bounded edge
weights, our algorithm has work O(m) and span n!/2+°()_ Several
algorithms were previously known for the case of undirected graphs,
but none of the techniques seem to translate to the directed setting.

The main technical contribution is the first nearly linear-work al-
gorithm for constructing hopsets on directed graphs. A (8, €)-hopset
is a set of weighted edges (sometimes called shortcuts) which, when
added to the graph, admit f-hop paths with weight no more than
(1 + €) times the true shortest-path distances. There is a simple se-
quential algorithm that takes as input a directed graph and produces
a linear-cardinality hopset with § = O(+/n), but its running time
is quite high—specifically O(m+/n). Our algorithm is the first more
efficient algorithm that produces a directed hopset with similar
characteristics. Specifically, our sequential algorithm runs in O(m)
time and constructs a hopset with O(n) edges and g = n!/2+°()_A
parallel version of the algorithm has work O(m) and span n/2+0(1),

CCS CONCEPTS

Jeremy T. Fineman
jfineman@cs.georgetown.edu
Georgetown University
Washington D.C., USA

« Theory of computation — Parallel algorithms; Shortest paths.

KEYWORDS
Parallel algorithm, hopsets, shortest paths, shortcuts.

ACM Reference Format:

Nairen Cao, Jeremy T. Fineman, and Katina Russell. 2020. Efficient Con-
struction of Directed Hopsets and Parallel Approximate Shortest Paths.
In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing (STOC °20), June 22-26, 2020, Chicago, IL, USA. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3357713.3384270

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

STOC °20, June 22-26, 2020, Chicago, IL, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6979-4/20/06. .. $15.00
https://doi.org/10.1145/3357713.3384270

336

Katina Russell
katina.russell@.cs.georgetown.edu
Georgetown University
Washington D.C., USA

1 INTRODUCTION

The single-source shortest-path problem on graphs with nonneg-
ative edge weights is notoriously difficult to parallelize.! In the
sequential setting, the classic solution has running time O(m +
nlogn) [12], where throughout n denotes the number of vertices
and m the number of edges. Given that the sequential solution
has nearly linear runtime, an ideal parallel algorithm would run
in O(m/p) parallel time on p processors (for large p), where the O
notation suppresses logarithmic factors. Achieving such a bound
requires a parallel algorithm with nearly linear work and strongly
sublinear span; the work of a parallel algorithm is the total number
of primitive operations, and its span is the length of the longest
chain of sequential dependencies or equivalently the limit of the par-
allel time as p approaches infinity. The exact version of the shortest-
path problem is well-studied (see e.g. [2, 3, 8, 15, 17, 19, 20]), but no
ideal parallel solutions exist, especially when the graph is sparse.?
Even for the simplest case of a unweighted, undirected graph, all
algorithms to date either have linear span, meaning that they are
inherently sequential, or they reduce the span by increasing the
work. For example, when tuned to achieve span of O(+/n), Spencer’s
algorithm [19] has work O(m + n®) and Ullman and Yannakakis’s
algorithm [20] has work O(m+/n).

For undirected graphs at least, there has been more success on the
approximate version of the problem. In the approximate shortest-
path problem with source vertex s, the algorithm must output for
all vertices v an estimate d;, on the shortest path-distance such that
dist(s,v) < dy < (1 + €)dist(s, v), where dist(s,v) is the shortest-
path distance from s to v. Several algorithms have been designed
for this approximate problem on undirected graphs, see e.g., [1, 5,
9, 10, 16, 18]. Most of the results exhibit a tradeoff between work
and span (requiring either superlinear work or polynomial span),
but recent breakthroughs show that it is possible to simultaneously
achieve O(m) work and O(poly(log n)) span [1, 16].

A natural question is whether it is possible to achieve nearly
linear work and sublinear span for approximate shortest paths on
directed graphs. This paper answers the question in the affirmative:

we present an algorithm for directed graphs with O(m) work and
span n1/2+O(1/log logn).

Hopsets. While it is unknown how to efficiently compute shortest
paths in parallel on general directed graphs, it is known how to find
approximate shortest paths if the shortest paths consist of relatively

Perhaps counter-intuitively, achieving at least a reasonable level of parallelism when
the weights are both positive and negative is easier. This is in part because algorithms
for the general case have roughly the same inherent sequential dependencies but with
far more work that can be parallelized in each step.

2 Achieving parallelism p = O(m/n) is fairly straightforward.

https://doi.org/10.1145/3357713.3384270
https://doi.org/10.1145/3357713.3384270

STOC 20, June 22-26, 2020, Chicago, IL, USA

few hops. Specifically, Klein and Subramanian’s weighted breadth-
first search algorithm [15] gives a (1 + €) approximation of f-hop
distances in work O(m) and span O(f/¢). Given this algorithm, a
natural approach is to first preprocess the graph to produce a new
graph whose f-hop distances are not too much larger than the
actual unbounded distances; the preprocessing step amounts to
finding a good hopset.

A (B, €) hopset H is a set of weighted edges that, when added
to the original graph, approximates the shortest-path distances by
paths of at most hops, where f is called the hopbound. Formally,
let G = (V, E) be the original graph and G’ = (V, EUH) be the graph
with the hopset edges included. H is a (f, €) hopset if and only if (1)
for all edges (u,v) € H, the weight w(u, v) of the edge is no lower
than the shortest-path distance in G, ie., w(u,v) > distg(u,v),
and (2) for every u,v € V there exists a path p from u to v in G’
comprising at most § hops such that w(p) < (1+€)distg(u,v). (The
first constraint implies that w(p) > distg(u,v).) Although hopsets
were first formalized by Cohen [5], they were used implicitly in
many of the prior algorithms. Most algorithms for constructing
hopsets, including the one in this paper, are randomized and there
is some small chance that the weight of some f-hop path will be
too high.

There are several features characterizing the quality of a hopset:
the size or number of edges in the hopset, the hopbound S, the
approximation quality €, and the complexity of an algorithm for
constructing the hopset. When e = 0, the hopset produced is an
exact hopset, meaning that the -hop distances in the augmented
graph are the true shortest-path distances.

There is a simple folklore sequential algorithm for construct-
ing an exact hopset with hopbound f = O(+/n) and size O(n). The
algorithm is as follows. First sample each vertex with probabil-
ity O(1/+/n). Next, compute the single-source shortest-path dis-
tances from each sampled vertex to all other sampled vertices. For
samples s; and sj, add to hopset H the edge (s;,s;) with weight
w(si,sj) = dist(s;, sj). Since edges are only added between pairs
of sampled vertices, the hopset trivially contains O(n) edges with
high probability. To analyze the hopbound, consider a shortest path
from u to v. With high probability, the § hops nearest to u and
P hops nearest to v each contain at least one sampled vertex, so
the rest of the path can by bypassed using a hopset edge. Ullman
and Yannakakis [20] and Klein and Subramanian [15] give parallel
versions of this algorithm for the unweighted and integer-weighted
cases, respectively.

The preceding algorithm gives an exact hopset with small size
and reasonable hopbound, and it applies to directed graphs as well.
The problem is that the construction time is too high: the sequential
running time is O(my/n) to compute shortest paths from v/n sources.

For undirected graphs, when the exactness is relaxed and we
are willing to accept a (1 + €) approximation, there exist linear-size
hopsets with much smaller (subpolynomial) hopbound [10]. More-
over, there are more efficient algorithms [5, 9, 10, 18] for construct-
ing the hopsets. The algorithms employ clustering techniques that
strongly exploit the symmetry of distances in undirected graphs.

For directed graphs, a hopbound of O(+/n) is still the best known
for hopsets of linear size, even for approximate hopsets with large
€ and ignoring construction cost. In fact, if € > nW and all edge

337

Nairen Cao, Jeremy T. Fineman, and Katina Russell

weights are at least one, then distances themselves become irrelevant—
the problem reduces to the diameter-reduction or shortcutting prob-
lem: add edges to the graph, without changing the transitive closure,
to reduce the unweighted directed diameter, i.e., the number of
hops necessary to get from one vertex to another. It is yet unknown
whether it is always possible to achieve diameter better than O(~/n)
when restricted to add at most n edges. In fact, there is a lower
bound of Q(n!/%) on the diameter [13], which implies a separation
between the quality of hopsets on directed and undirected graphs.
Revisiting construction cost, there was no more efficient algorithm
known for any constant € before the current paper.

Our results. This paper presents the first efficient algorithm for
producing a hopset on directed graphs with sublinear hopbound.
Specifically, our algorithm produces a (f = n!/2+O(1/loglogn))
hopset with nearly linear size, which is close to matching the qual-
ity of the hopset produced by the highly inefficient folklore algo-
rithm. For unweighted graphs (Sections 3-4), the hopset has size
O(n/€?), and the algorithm runs in time O(m/e?). More generally
for weighted graphs (Section 5), the hopset has size O(n log(nW)/€)
and the algorithm runs in time O(m log(nW)/€?), where W is the
ratio between the maximum edge weight and the minimum strictly
positive edge weight. The construction is successful with high prob-
ability, and failure is one sided—i.e., the result is always a hopset,
but the question is whether it achieves the (1 + €) approximation.

Our parallel algorithm (Section 6) constructs a hopset with simi-
lar characteristics. The algorithm has work O(m logz(nW) /e*) and
span O(n1/2+O(l/loglog n)/€)‘

Using our parallel hopset construction then applying Klein and
Subramanian’s algorithm [15] to the augmented graph yields the
first nearly work-efficient parallel algorithm for finding approxi-
mate single-source shortest paths on directed graphs with low span.

More precisely, our algorithm has work O(mlog(nW)/e*) and span
O(n1/2+O(1/loglog n)/e).

1.1 Overview of Diameter Reduction

Our algorithm and analysis builds on recent breakthroughs on the
diameter-reduction problem by Fineman [11] later improved by
Jambulapati, Liu, and Sidford [14], henceforth referred to as the JLS
algorithm. This section summarizes the previous algorithms and
key aspects of the analyses, highlights the difficulties in extending
the algorithms to hopsets, and gives an overview of our insights.
The bulk of this section focuses on the sequential versions of the
algorithms.

The diameter reduction problem is that of adding edges, or short-
cuts, to a directed graph to reduce its unweighted diameter without
changing the transitive closure. Fineman’s algorithm [11] is the
first nearly linear-time sequential algorithm with any nontrivial
diameter reduction. Specifically, his algorithm runs in O(m) time
and creates O(n) shortcuts that reduce the diameter of any directed
graph to O(n?/?), with high probability. The JLS algorithm [14]
achieves a diameter of nl/ 2“’(1), also with nearly linear running
time. Both algorithms also have parallel versions with span match-
ing the diameter achieved to within logarithmic factors.

Our algorithm for hopsets most closely resembles the JLS algo-
rithm for diameter reduction.

Efficient Construction of Directed Hopsets and Parallel Approximate Shortest Paths

Previous algorithms for diameter reduction. Both Fineman’s algo-
rithm [11] and the JLS algorithm [14] operate roughly as follows.
Select a random set of pivots x;; how the pivots are selected varies
across the two algorithms and is discussed more later. Next per-
form a graph search forwards and backwards from each pivot to
identify the vertices reachable in either direction. Add shortcut
edges between the pivots and all vertices reached, i.e., if a vertex
u is reached in backward direction from pivot x;, then the edge
(u, x;) is added. Next partition the vertices into groups according
to the set of pivots that reach them. For example, a group could
consist of those vertices reached by x; in the forward direction, x3
in the backward direction, x4 in both directions, and unreached by
all other pivots. If a group is reached in both directions by the same
pivot (as with the preceding example and pivot x4), mark the group
as done. Finally, recurse on the subgraph induced by each group
that has not been marked as done.

The main difference between the algorithms is how pivots are
selected. Fineman’s algorithm [11] selects a single pivot uniformly
at random. JLS [14] instead samples vertices to select a set of piv-
ots. The algorithm is parameterized by a value k that controls the
sampling probability; k = ©(poly(logn)) is a good choice, so we
shall assume as much going forward to simplify the statement of
remaining bounds. Each vertex is a selected as a pivot with proba-
bility k”+©1) /n, where r is the recursion depth. The probability of
becoming a pivot thus increases by a factor of k with each level of
recursion, and it is possible to select many pivots. Beyond achieving
a better diameter, the JLS algorithm also has the advantage that the
recursion depth is trivially limited to logy n. Increasing k impacts
the total work as multiple overlapping searches are performed,
which is why k should not be too large. We shall not discuss the
analysis of the running time here, but suffice it to say that it is not
hard to show that these sequential algorithms have O(m) running
time.

The diameter analysis starts by fixing any long s-to-¢ path P to
analyze. The goal is to argue that with at least constant probability,
the addition of shortcuts introduces a short-enough s-to-t path
to the graph. The algorithm can be repeated to boost the success
probability.

One of the key setup ideas is classifying vertices according to
how they relate to the path P. We write v < P if it is possible to
get from v to some vertex on P by following directed edges and
P < vifitis possible to get from some vertex on P to v by following
directed edges. A vertex v is an ancestor of Pif v < Pand P £ v.
The vertex is a descendant of P if v £ P and P < v. It is a bridge
if v < P and P < v. The vertex is unrelated otherwise.

As the algorithm executes and partitions the graph, so too does it
partition the path being analyzed. An execution can be modeled by
a recursion tree where only the relevant subproblems, i.e., those
that contain subpaths of P, are included. The leaves of this relevant
subproblem tree occur when at least one of the pivots is a bridge;
if a bridge is selected, then edges are added between all vertices
on the subpath and the bridge in both directions, meaning that the
subpath has been shortened to two hops. The final path length from
s to v is thus upper bounded by the number of leaves in the tree of
relevant subproblems.

338

STOC 20, June 22-26, 2020, Chicago, IL, USA

For the case of a single pivot as in Fineman’s algorithm [11],
it is not hard to see that a relevant subproblem gives rise to at
most two recursive subproblems, and the two subproblems occur
only if the pivot is an ancestor or descendant. For example, if the
pivot is an ancestor, the path is partitioned at the first reachable
vertex on the path. If an unrelated pivot is selected, there is only
one relevant subproblem; informally, this case can be ignored in the
single pivot case as tree nodes with a single child can be contracted.
More generally, JLS show [14] that if ¢ ancestors/descendants are
selected, then the path is partitioned across at most ¢ + 1 relevant
subproblems.

A key component of the analysis is to show that the total number
of ancestors and descendants is likely to decrease each time an
ancestor or descendant pivot is selected. It thus becomes less and
less likely to partition the path further and more likely to select
a bridge. For concreteness, let us first consider a sketch of the
intuition for the single-pivot case. Fineman [11] proves that if a
random ancestor is selected as the pivot, then the total number of
ancestors across both recursive subproblems reduces by a factor of
1/2 in expectation. Similarly for descendants. We thus need roughly
(1/3)1g n levels of recursion to reduce the total number of ancestors
to n?/3 and another (1/3)1g n levels to similarly reduce the number
of descendants. At recursion depth (2/3) 1g n, there are thus at most
2@/3)lgn — p2/3 subproblems and at most O(n?/3) ancestors and
descendants. Even if all of the remaining ancestors and descendants
eventually become pivots, there can be at most O(n?/3) leaves in
the recursion tree, which yields the final path length.

If one could ensure that the algorithm always selects either
zero or t related pivots, then one could easily extend Fineman’s
analysis to the multi-pivot case. In particular JLS prove [14] that
with ¢ random ancestor/descendant pivots, the total number of
ancestors and descendants reduces by ¢/(t + 1) in expectation, for
some constant c. Consider the rth level of recursion assuming #
related pivots are always selected. The number of subproblems is
at most (¢ + 1)". The number of ancestors and descendants is upper
bounded by ¢"n/(t + 1)", which also upper bounds the number
of leaves that could arise lower in the recursion tree. Setting r =
(1/2)log;, n roughly balances these two terms and gives a path
length of at most y/ncl%8r+1 7 = p1/2+0(1/log(t+1),

Unfortunately, the algorithm is unaware of the path P, and it can-
not ensure that t of the pivots are related to the path. Nevertheless
it is still possible to obtain the same bound. The JLS analysis [14]
adopts a bottom-up approach, solving a recurrence on the short-
cutted path length for a given number of ancestors/descendants.

Parallel versions. The big challenge in parallelizing these al-
gorithms is performing the graph searches used to partition the
graph. To achieve low span both Fineman and JLS employ h-hop-
limited searches, i.e., only identifying vertices reachable from the
pivot within h hops. Fineman and JLS set h to h = é(nz/S) and
h = nl/2+o(1), respectively. As noted previously, there are par-
allel algorithms implementing h-hop limited searches with O(h)
span [15]. Unfortunately, using hop-limited searches it is no longer
immediately true that selecting t related pivots partitions the path
into at most t + 1 subpaths, which was crucial for the analyses. To
fix this issue, Fineman [11] and JLS [14] (1) only analyzes paths
with length ©(h), and (2) handle vertices near the boundary of the

STOC 20, June 22-26, 2020, Chicago, IL, USA

search, called fringe vertices, differently from other vertices. In
doing so, they are able to achieve the < ¢ + 1 relevant subproblems,
though the details become significantly more complicated.

1.2 Overview of the Hopset Algorithm

A natural first step to extend the diameter-reduction algorithms to
build hopsets is to add weights to any added shortcuts. Specifically,
perform a shortest-path algorithm from each pivot and augment
the shortcuts with weight equal to the shortest-path distances to
each vertex. Our algorithm includes weights on shortcuts, but this
change alone is not sufficient to achieve a good approximation.

The main challenge is that bridges do not necessarily make good
pivots. Specifically, consider any bridge x for an s-to-t path. If x is
selected as a pivot, then a 2-hop path is created from s to ¢, which is
enough for the diameter-reduction problem. For hopsets, however,
the weight of the path matters. If dist(s, x) + dist(x, t) > dist(s, t),
then the 2-hop path taking the shortcuts does not approximate
the shortest-path distance. It may thus be necessary to continue
recursing on subpaths in subproblems until better shortcuts are
found.

In both prior analyses [11, 14], it is crucial that selecting a bridge
acts as a base case to the recursion. Selecting a bridge that is too
far away here, however, is not a base case. Moreover, it does not
seem possible to argue that a far-away bridge yields any reason-
able reduction on the number of ancestors or descendants in the
resulting subproblems.

Our algorithm for hopsets. Our algorithm builds off the JLS algo-
rithm, also parameterized by sampling parameter k, but with several
key modifications. The goal is to circumvent the preceding chal-
lenge by ensuring, at least in effect, that shortcuts added to or from
bridges are good enough for the approximation. We first summarize
the differences in the algorithm before revisiting the analysis.

(1) Pivots and shortcutters. In the previous algorithms, pivots
are used both to partition the graph and to add shortcuts.
Here, we split the roles; we use some vertices, called pivots
to establish the partition of the graph, and other vertices,
called shortcutters, to add edges to the hopset. Pivots are
selected analogously to JLS, but we sample a larger set of
shortcutters. More precisely, if a vertex becomes a pivot
at recursion depth r, then it first becomes a shortcutter at
recursion depth r — f(e, n) for some function f. Larger f
improves the approximation quality but increases the work
of the algorithm.

(2) Weighted shortcuts. From each shortcutter s, we com-

pute the single-source shortest paths from s to all other

vertices in both the forwards (and backwards) directions. We
then add the weighted edges (s, v) (and (v, s)) with weight

w(s,v) = dist(s,v) (and w(v,s) = dist(v,s)) to the hopset.

Using weighted shortcuts is the obvious modification neces-

sary for a hopset.

Decreasing distance-limited searches from pivots. To

establish the graph partition, we perform graph searches

from each pivot as before, but the searches are now limited to

a bounded distance. Moreover, the search distances decrease

by a factor of AVk with each level of recursion, for constant

339

Nairen Cao, Jeremy T. Fineman, and Katina Russell

A. The initial distance is important—the algorithm only well-
approximates paths if the initial search distance is similar to
the shortest-path distance—so we run the algorithm at all
relevant initial-distance scales.

It is worth noting that the distance-limited searches here are
not analogous in purpose to the hop-limited searches used by the
prior [11, 14] parallel algorithms for diameter reduction. (Our par-
allel version also imposes a hop limit.) Here the distance-limited
searches are important even for the sequential algorithm in order
to obtain a good approximation. Moreover, the distances decrease
significantly with each level of recursion, whereas the hop-limited
searches use roughly the same number of hops at all levels. Nev-
ertheless, some of the technical machinery (e.g., fringe vertices) is
similar.

Because our sequential algorithm for hopsets uses distance-
limited searches, the details of both the algorithm and analysis
are more complicated than the sequential algorithms for diameter
reduction.

Key ideas of the analysis. Our analysis has two main novelties,
summarized next. Note that the bounds stated here are correct in
spirit but imprecise in that that they omit some lower-order terms
in favor of conciseness.

For the following discussion, it is important to interpret the
vertex classifications (ancestor, descendant, and bridge) to be with
respect to the bounded distances, analogous to the hop-limited
searches in prior work [11, 14]. For example, a vertex is only a
bridge if it can reach the path in both directions by an appropriate
distance-limited search.

The first technical contribution can be viewed as an alterna-
tive way of analyzing the JLS algorithm, but this version makes
it easier to cope with the new features of the hopset algorithm.
Specifically, we show that the number of subproblems increases
by at most O(Vk) on average with each level of recursion. For any
constant in the big-O, it follows that there be at most)4
(k1/2+O0/log k)yr relevant subproblems at recursion depth r. Look-
ing at the maximum recursion depth r = log; n gives a direct

bound of n!/2t01/1gk) o1 the number of relevant subproblems,
and hence the length in hops of the shortcutted path.

Now consider what happens if we augment the JLS algorithm
with decreasing distance-limited searches. Let w(P) be the weight
of the path P being analyzed, and assume that the initial search dis-
tance is roughly w(P). The general issue when decreasing the search
distance is that when searches do not reach the end of the path, the
path may be partitioned into more pieces than desired.> We circum-
vent the issue by logically dividing any long paths into subpaths of
length roughly w(P)/ (AVk))" (proportional to the search distance),
where r is the recursion depth. In this way, the searches can now
traverse the full length of the path. It is easy to see that there can be
at most O((AVk)") logical subproblems created. For large-enough
A, this term dominates the number of subproblems arising from
the previous level of recursion, so we have a total of O(A"k" /2y
subproblems at recursion depth r. Again, this bound readily implies

3The use of “fringe vertices” suffices if the search distance is sufficiently long with
respect to the path length. The new issue that arises here is that the search distance
can be significantly shorter than the path length.

Efficient Construction of Directed Hopsets and Parallel Approximate Shortest Paths

a hop bound for the shortcutted path of n!/2+O1/108k) alheit with
a larger constant in the big-O.

The second new idea is in analyzing the approximation fac-
tor achieved by the hop set, which requires all three algorith-
mic modifications. Let us first consider only the shortcuts gen-
erated by “nearby” bridges. For an s-to-t subpath at recursion
depth r, we say that a bridge x is nearby if dist(s, x) + dist(x, t) =
dist(s, t)+O((e/log n)w(P)/(/Vkr/Z)). Since the total number of sub-
problems is O(A"k" 12), shortcuts from nearby bridges contribute a
total of O(ew(P)/log n) additive error to the path length. Summing
across all O(log n) levels of recursion gives a total additive error of
O(ew(P)), and hence a multiplicative error of (1 + O(¢)).

The goal is thus to show that all bridges are effectively nearby
bridges. This statement seems implausible, but we can achieve
it by leveraging both the bounded search distance as well as the
oversampling of shortcutters. In fact, for e = Q(log n), we can imme-
diately see that all bridges are nearby—the additive error is bounded
by twice the maximum search distance, i.e., O(w(P)/(A"k" / 2y =
O((e/log n)w(P)/(A"k"/2)). We thus achieve a hopset with € =
O(log n) even setting the shortcutters and pivots to be identical.

To achieve a better approximation, we leverage the oversam-
pling of shortcutters. Observe that moving the shortcutters to a
higher level of recursion can only improve the length in hops of
the shortcutted path, as strictly more edges are added. To analyze
quality of the approximation, we consider the recursion tree of
relevant subproblems, but we now have a base case whenever a
nearby bridge is selected as a shortcutter.

Since moving shortcutters higher in the recursion only helps, it
suffices to show that the pivots selected in relevant subproblems
are never bridges, i.e., that all shortcuts important to the hopbound
also have small additive error. We prove the claim that pivots are
never bridges by contradiction. Suppose that a pivot x is a bridge in
a relevant subproblem at recursion depth r. Then it must be within
a distance O(w(P)/(A"k"/2)) of both the start and end of the path,
as that is both the search distance and the path length. The additive
error contributed by this bridge is thus at most O(w(P)/(ATkT/2)).
While x would not be considered a nearby bridge at level r, recall
that x is first selected as a shortcutter at recursion depth r — f(e, n).
For appropriate choice of f, ie., (AVk) (€™ = Q(logn/e), x is a
nearby bridge at depth r — f(e, n), constituting a base case of the
recursion. Thus the subproblem in which x is selected as a pivot is
not a relevant subproblem.

2 PRELIMINARIES

A directed weighted graph is a pair (G, w) where G = (V,E) is
a graph and w : E — R is a weight function. In this paper, we
treat w as an attribute of E. Hence, we refer G as the weighted
graph and ignore w. For a weighted directed graph G = (V, E), the
number of vertices and edges are |V| = n and |E| = m, respectively.
For e € E, we denote the weight as wg(e) and we write wg(e)
as w(e) for simplicity. If e ¢ E, then w(e) = +co. If the graph is
unweighted, then w(e) = 1 for all e € E. For a subset V/ C V, we
denote the induced graph on V”’ as G[V']. For any vertices u,v € V,
define dist(Gﬁ)(u,v) to be the minimum weight of a path from u
to v containing at most f§ edges. If there is no path containing at

most S edges from u to v, then dist(Gﬁ)(u, v) = 4co. We also refer

STOC 20, June 22-26, 2020, Chicago, IL, USA

to distg(u, v) as the shortest path distance from u to v. For a set of
edges E and a constant ¢, we define ¢ - E to be E where the weight
of each edge in E is multiplied by c. For two sets of edges E and E’,
the union of E and E’ is denoted as EU E’ = {ele € Eore € E’}
and the weight of e € E U E’ is the minimum weight of wg(e) and
wgr(e), i.e, wgup/(e) = min(wg(e), wgr(e)). We assume the lightest
non-zero edge weight is 1, and the heaviest edge weight is W. If
the lightest non-zero edge weight w(e) is less than 1, then all edges
are scaled by 1/w(e).

Paths. A path P = (vg,vy,...vp) is a sequence of constituent
vertices such that (v;, vj+1) is an edge in the graph, for all i € [0, —
1]. We denote the length of path P as |P| and |P| = ¢ is the number
of edges on P. We also call |P| the number of hops of P. The first and
the last vertex of the path are head(P) = vy and tail(P) = vg. For
a vertex v, we say v € P if v = v; for some i € [0, £]. We consider
the weight of path P to be the sum of the weights of the edges that
make up the path, w(P) = Z'le w(vj-1,v;). A path P’ isa (1 + ¢€)-
approximation path for another path P, if head(P) = head(P’),
tail(P) = tail(P’), and w(P) < w(P’) < (1 + €)w(P).

Hopsets. A (B, e)-hopset for directed graph G = (V,E) is a
set of weighted edges H, such that for any vertices u and v in

V, distg(u,v) < dist(Gﬁ,)(u, v) < (1 + e)distg(u,v), where G’ =
(V,EUH). f is considered the hopbound of the hopset, and |H| is

the size of the hopset.

Related nodes. For nodes u, v define the relation u <; v if and
only if distg(u,v) < d. We say u can reach v within d-distance
or v can be reached by u within d-distance if u <5 v. If u <4
vorv =<4 u, then u and v are d-related. For a directed graph
G = (V,E) and vertices u,v € V, denote R;(G, v) = {ulv 24 u}
and R;(G, v) = {ulu <4 v} to be the set of nodes which can be
reached by v, and which can reach v within d-distance. We denote
the set Ry(G,v) = R; (G,v)U R, (G, v) be v’s related nodes within
d-distance. If d = n, we will ignore d. Similarly, we can define
RY(G,P) = {ulv; 24 u,v; € P}, R(G,v) = {ulu 24 v; € P} and
R,4(G,P) = R;(G, P)uU R;(G, P).If v € Ry(G, P), then v and P are
d-related.

Path related nodes. For a vertex x and a path P, vertex x is a
d-descendant of P if and only if x € R; (G, P)\R;(G, P). Vertex x a
d-ancestor of P if and only if x € R, (G, P)\R; (G, P). x ad-bridge
of P if and only if x € R}(G, P) N R’ (G, P). Notice that these sets
are all disjoint by definition.

Binomial distribution. In the paper, denote binomial variables
with n independent experiments and probability p as B(n, p). For a
random variable X, if X ~ B(n, p), the following holds by a Chernoff
bound,

2

Pr(X > (1+8)np] < exp(— J

2+5np).

If X ~ B(n, p), then

X+1

=
>

STOC 20, June 22-26, 2020, Chicago, IL, USA

3 ALGORITHM

In this section, we describe the hopset algorithm HopseT(G). The
algorithm takes as input graph G = (V, E), and has parameters k, A
and L. The goal of the algorithm is to output a set of edges E’ that
is a ((n!/27°W), ¢)-hopset of G.

At a high level, the algorithm chooses vertices, called pivots,
to search forwards and backwards adding labels to each reached
vertex. The labels are used to partition the graph into subgraphs for
recursion. There is another set of vertices, called shortcutters that
search forwards and backwards adding edges to the hopset for each
reached vertex. The edges that are added to the hopset are weighted
by the distance between the shortcutter and the reached vertex.
The search is limited in distance, so vertices on the boundary of the
search, called fringe vertices, are replicated and put into multiple
subproblems. With each level of recursion, the number of pivots
increases, while the search distance decreases. The union of the
edges added in each level of recursion is returned as the hopset.
Next, we will describe some components of the algorithm and then
describe the details of the algorithm.

Parameters. The algorithms HopseT and HSRECURSE have pa-
rameters k, A and L. The parameter k controls the probability that a
vertex is chosen as a pivot in each level of recursion. The parameter
L controls the number of shortcutters in each level of recursion. A
higher value for L gives a better approximation but also increases
the runtime. Finally, the parameter A, which is a constant and con-
trols the probability the algorithm succeeds. The algorithm requires
that k > 2,and A > 8.

Pivots and shortcutters. Each vertex v is assigned a level, £(v) that
is used to determine at what level of recursion it becomes a pivot or
a shortcutter. A vertex v is a pivot at recursive level r if £(v) = r. A
vertex u is a shortcutter at recursive level r if £(u) < r + L. Since
each vertex v is assigned £(v) at the onset of the algorithm and not
changed, we can note that if v becomes a pivot at level r, then it
was a shortcutter at level max(0,r — L). Pivots search the graph
and add labels to reached vertices that used to partition the graph
in subgraphs for recursion. Shortcutters searc the graph and add
hopset edges but do not add labels, and therefore do not affect the
partitioning of the graph at that level.

Search distances. Each level of recursion has a range for search
distances. The ranges are disjoint and decreasing with each level of
recursion. For a level of recursion r and vertex v, the search distance
is py Dy where D, = D/(Arkr/z) is the basic search distance and py,
is the scalar. The range of search distances is (pminDr, PmaxDr),
where pmin = 16A%k*log?n — 1 and pmax = 32A%k? log? n. The
search distance range is divided into 412k log? n disjoint subinter-
vals, each with length 4k. A subinterval is chosen uniformly at
random, which is represented by ¢y, in the algorithm. Finally, the
scalar p;, is chosen from within the subinterval to minimize the
number of fringe vertices when using search distance p,,D,. We
use these search distances to guarantee that there are not too many
fringe vertices.

Explanation of Algorithm 1 and Algorithm 2. HopseT(G), shown
in Algorithm 1, repeats log n times to make the probability of suc-
cess high. It assigns {(v) = i for each vertex v with probability

341

Nairen Cao, Jeremy T. Fineman, and Katina Russell

(Ak™*1log n)/n. The £(v) is the level of recursion that v becomes a
pivot. The probability increases by k with each level of recursion.
The recursive subroutine HSRECURSE(G, D, r) is called for D set to
2 /k€ for j € [log n/2,log n]. This ensures that a path of any length
in n'/2 to n is shortcutted. For each vertex v, after assigning £(v), if
£(v) < L, search forwards and backwards for 2/*! and add an edge
to the hopset for each reached vertex with weight equal to the dis-
tance from the shortcutter to the reached vertex. Call the recursive
subroutine HSRECURSE(G, D = 2/k~¢, r = 0) on the whole graph G
with D set to 2/k¢ for j € [log n/2,log n]. Return the set of edges
added to the hopset in all recursive executions.

HSRECURSE(G, D, r) is the recursive subroutine shown in Algo-
rithm 2. It takes graph G, distance D, and level of recursion r as
input. For each pivot at level r, i.e. each vertex v where £(v) = r,
choose a o, uniformly at random from [1, 41k log? n]. Next, search
from v to distance 164%k? log n+4ka,, and find the distance p,, that
has the minimal number of vertices exactly p,, distance away, where
py is restricted to [16A%k? log? n+4k(oy, — 1), 16A%k? log? n+4koy,).
Search forwards and backwards from v to distance p, D, and add
labels €% and vA"€ to the vertices reached in the forwards and
backwards directions, respectively. Add the label X on any vertex
that is reached in both directions. Next define the fringe vertices

V{ri"ge for vertex v as R(,,+1)p, (G, v)\R(p,-1)p, (G, v), and re-

curse on the induced subgraph G[Vz{rmge].

Next for each shortcutter, i.e. each vertex v where £(v) < r + L,
search forwards and backwards from v for distance 32A2k%D, log® n
and for each reached vertex u, add edge (u, v) for ancestors (or (v, u)
for descendants) with weight dist(u, v) (or dist(v, u) to the hopset.
Next, remove any vertices that received a label X from the pivots.
Finally, partition the vertices into groups as described in the next
section, and recurse on the subgraph induced on each group of
vertices.

Partition based on labels. Line 15 from Algorithm 2 is as follows.
Partition the graph such that two vertices u and v are in the same
group V;, if and only if u and v receive the same labels from all
pivots. There could be a group of vertices that receives no labels
from any pivots. Notice that any vertices that received a X label
from a pivot are removed in the step before. Therefore, none of the
subgraphs contain vertices that received a X label. Finally, the pivots
themselves are removed from the graph, as each pivot receives the
X label from itself.

4 ANALYSIS

The goal of this section is to prove the following theorem.

THEOREM 4.1. There exists a randomized sequential algorithm
that takes a directed graph G = (V,E) wheren = |V| and m = |E|,
computes a (n}/2+o(), €)-hopset of size O(n/€?) with high probability,
and runs in O(m/e?) time.

We start by proving the runtime and the size of the hopset in Section
4.1. Then we show the hopbound in Section 4.2, and finally, the
approximation in Section 4.3.

Efficient Construction of Directed Hopsets and Parallel Approximate Shortest Paths

STOC 20, June 22-26, 2020, Chicago, IL, USA

Algorithm 1 Hopset algorithm for unweighted directed graphs. k, A and L are parameters.

function HoprseT(G = (V, E))
H<0
repeat Alogn times
for each j € [logn/2,logn]
for eachv e V
for each i € [0,log n]

1:
2
3
4
5:
6
7
8 if {(v) < L then
9

for eachu € R
H « H UHSRECURSE(G, D = 2/k™¢,r = 0)

return H

10:

11:
12:

With probability (Aki*! log n)/n, set £(v) to i, break if setting successful.

for eachu € R;’j+1 (G,v) add edge (v, u) to H with weight distg(v, u)
(G,v) add edge (u,v) to H with weight distg(u, v)

Algorithm 2 Recursive subroutine for HopseT Algorithm. k, A and L are parameters.

1: function HSRECURSE(G, D, r)
2 Dy« D/AK"/2),H — 0
3 for each v € V with {(v) =r
4: Choose oy, uniformly at random from [1, 4%k log2 n]
5 Minimize [R(,, +1)p, (G, ©)\R(p,-1)p, (G, v)| such that p,, € [16A2k? log® n + k(o — 1),162%k? log? n + 4ka,)
6 for each u € R;vDr (G,v) add label vPes 1o vertex u
7: for each u € R; p.(G,v) add label A" to vertex u
8: for each u € R;vDr (G,v)n R;vDr (G,v) add label X to vertex u
fri

5 Vo " — Ripy+1)D, (G 0)\R(y,-1)p, (G.0)
10: H«—HU HSRECURSE(G[Vlfrmge], D,r+1)
11: for eachv € V with {(v) =r + L

_ " . . .
12: for eachu € R32/12k2D, log? n(G, v) add edge (v, u) to H with weight distg(v, u)
13: for eachu € R;ZAZkZD, log? n(G, v) add edge (u, v) to H with weight distg(u, v)
14: for each u € V that has a X label, remove u
15: V1, Va, ..., Vi « partition based on labels
16: for each i € [1,¢]
17: H < H UHSRecurse(G[V;],D,r + 1)
18: return H

4.1 Running Time and Hopset Size

In this section we bound the runtime of the algorithm and the size
of the hopset the algorithm returns.

THEOREM 4.2. One execution of HoprseT(G = (V, E)) with param-
eterk, where n = |V|, m = |E|, runs in O(mkL+1) time and produces
a hopset of size O(nk+1).

The proof of Theorem 4.2 follows the same structure as the
runtime proof from JLS [14]. First, we bound the related vertices
in each recursive subproblem in Lemma 4.3. Then we show the
number of times a vertex is added to the fringe problem is small in
Lemma 4.4. Since only fringe vertices are duplicated, we can bound
the total number of vertices and edges in all recursive subproblems
in Lemma 4.5. This allows us to prove the number of edges added
to the hopset and the cost of all recursive executions. The runtime
differs from JLS [14] because of the extra searches from shortcutters.

342

For the same reason, the size of the hopset is larger than the number
of shortcutters added in JLS [14].

We start by bounding the number of related vertices in recursive
subproblems. In each level of recursion, the probability of being a
pivot increases. With more pivots, the graph is partitioned into more
subproblems, and the number of related vertices in each subproblem
decreases. The proof of vertices in core problems is the same as
JLS [14]. Our algorithm differs from JLS [14] for the fringe problem
because we increase r as we recurse on fringe problems. Since the
search distance is chosen to minimize the number of vertices on
the fringe, the number of vertices in the fringe problem is small,
and therefore each vertex does not have too many related nodes.
The upper bound for the vertices in the fringe problem is needed
for the hopbound in Section 4.2. The proof of the following lemma
is in the full version of the paper [4].

STOC 20, June 22-26, 2020, Chicago, IL, USA

LemMA 4.3. Consider an execution of HSREcUrSE(G', d, 0) on n-
node m-edge graph G. With probability at least 1 — n~0-7A+3 in each
recursive call of HSRECURSE(G’, D, r) the following holds for all v €
GI

IR,

Pmax

D,(G,’ v)| < nk™", |R;maxDr(G’,v)| <nk™".

Next, we consider the expected number of nodes added to fringe
problems. JLS [14] has a similar lemma, where they consider the
expected number of times a vertex is added to a fringe problem.
Since we choose a search distance to minimize fringe vertices, we
cannot get the same expectation. Instead, we count the number of
vertices each pivot adds to its fringe problem, and get the same
result.

The basic search distance D, for a pivot v is scaled by a factor
po that is chosen from an interval to minimize the number of
vertices in the fringe problem. The interval that p;, is chosen from
is selected uniformly at random from a larger interval. By using a
scaling factor that minimizes the number of vertices on the fringe,
and chosen from a random interval, we can guarantee that the
number of vertices added to each fringe problem is small. See the
full version of the paper for the proof of Lemma 4.4 [4].

LEMMA 4.4. Consider a call to HSRECURSE(G’, D, r) and any vertex
v € G’. The expected number of nodes added to v’s fringe problem i.e.
[R(p+1)D, (G".v)\R(p_1)p, (G’, v)| is 1/(4Ak log n).

Now that the number of vertices in fringe problems is bounded,
we can bound the total number of vertices in all recursive subprob-
lems. Lemma 4.5 is based on Lemma 5.3 and Corollary 5.5 from
JLS [14]. The vertices in the core problem form a partition of the
vertices in the level before. The vertices in the fringe problem are
copies of vertices in the core problem, which means the total num-
ber of vertices increases with each level. However, since we just
showed the number of vertices in the fringe problem is small, the
total number of vertices in all recursive subproblems can still be

bounded.

LEMMA 4.5. Consider one execution of HopseT(G = (V, E)) where
n = |V| and m = |E|. The expected number of vertices in all recursive
executions of HSRECURSE(G’, D, r) is 2nlog n. The expected number of
edges in all recursive executions of HSRECURSE(G’, D, r) is 2mlog n.

ProOF. In one execution of HSREcURSe(G’ = (V’,E’), D, r), the
number of vertices called in recursive subproblems is the number

called in the fringe problem, HSRECURSE(G[V,{ "9 D, r + 1), and
the number of vertices called in HSRECURSE(G[V;], D, r + 1) for
i € [1,t]. By Lemma 4.4, the expected number of nodes added to
one vertex’s fringe problem is 1/(4Ak log n). The vertices in V; are a
partition of the vertices in G’. Therefore the total expected number
of vertices in the following subproblem is |V’| (1 + 1/(4Ak log n)).
The total number of levels of recursion is at most logy. n. Therefore
over all levels of recursion, the expected number of vertices in all
subproblems is

1+log n

Z n(1+

1 r
— Y <
Tiklogn) < 2nlogn

for k > log n. The edge case can be proved in the same way. O

343

Nairen Cao, Jeremy T. Fineman, and Katina Russell

Next, we bound the number of related pivots each vertex has.
This will set up for the proof of the runtime and size of the hopset.

LEMMA 4.6. Consider a call to HopseT(G) and all recursive calls
of HSRecurse(G’, D, r). For all v € V, the number of pivots u, such

that v € R(G’, (py + 1)Dy, u) is 6Ak logn with probability at least
1= p0.74+4

Proor. To bound the number of pivots u, where v € R(G’, (py, +
1)Dy, u), we will slightly overcount the pivots, by extending p,, +
1 to pmax. This will only increase the pivots we are counting.
Observe that all pivots u such that v € R(G’, pmaxDr,u) are in
R(G’, pmaxDr,v). By Lemma 4.3, [R(G’, pmaxDr, v)| < 2nk™" with
probability 1 — n~%-7443_The number of pivots is a binomial distri-

r+1
bution of B(|R(G’, pmaxDr, v)|, /\k—nlogn) and therefore,
/UCr+1 1
PI‘[B('R(G” PmaxDr, ’U)‘ , Togn) > 6Aklogn] < e—Z)Lk logn
<n %,

By taking a union bound over all v € V and all r, the claim holds

with probability at least 1 — n~0-74*4, m|

LEMMA 4.7. Consider a call to HopseT(G = (V, E). For all nodes
v € V, the number of shortcutters u, such that v € R(G, 2j+1,u)
is 6AkL log n with probability at least 1 — n=0-7A+4_ Consider all
recursive calls of HSRECURSE(G’, D, r). For allv € V, the number of
shortcutters u, such thatv € R(G’, pmaxDr,u) is 6L+ log n with
probability at least 1 — n0-7A+4,

Proor. We will prove each of the two cases separately, starting
with the second case of the shortcutters in HSRECURSE(G’, D, r).
This case is almost the same as Lemma 4.6 except for the probability
of being a shortcutter at level r is AkL+"*1 log n/n. Therefore, the
expected number of shortcutters u such that u € R(G’, pmaxDr,v)
is 2AkL*1 log n, and with probability 1 — n=%-74*4, the number of
shortcutters u is at most 6Ak"*1 log n.

For the first case, only vertices v where £(v) < L are shortcutters,
and there are at most n vertices. Hence, one vertex is a shortcutter
with probability at most 3\%) Aki*1log n/n < 2AkE+! log n/n, for
k > 2. The number of shortcutters in HOPSET(G) is a binomial
distribution B(n, Ln“l) and by a Chernoff bound,

2kX logn
’ n

Pr[B(n) > 6AkE+ logn] < e?Aklogn < =24

O

Now we can prove Theorem 4.2, the runtime of the algorithm,
and the size of the hopset. The runtime is different from the JLS algo-
rithm because of the additional shortcutters that perform searches.

Proor or THEOREM 4.2. Assigning probabilities to vertices can
be done in linear time. The searches from pivots and shortcutters
can be implemented using breadth-first search. The cost of the
searches by pivots is the number of edges explored in the breadth-
first searches times the number of edges in all recursive subprob-
lems. This is O(mk log? n) by Lemma 4.5 and Lemma 4.6. Similarly,
the cost of searches for shortcutters is the edges explored in the
breadth-first searches, which is 6AkL*1 log n by Lemma 4.7, times
the number of edges in all recursive subproblems, which is 2mlogn

Efficient Construction of Directed Hopsets and Parallel Approximate Shortest Paths

by Lemma 4.5. Finally, the partition step can be implemented to
run in O(nlog nk) by sorting different labels. In total the runtime is
O(mkI*11og* n). The number of hopset edges added is, at most, the
number of vertices explored in the searches. The total number of
vertices searched is the expected number of vertices in all recursive
subproblems times the number of times each vertex is searched
over all levels of recursion. By Lemma 4.7 and Lemma 4.5, this is
O(nk™*1log* n) total hopset edges. m]

4.2 Hopbound

Our goal in this section is to show the hopbound of the hopset pro-
duced by the HopseT(G) algorithm is nztO(1/logk) e+ 15 log? n.
The main idea comes from Fineman [11] and JLS [14]. We consider
the shortest path P from u to v through the full execution of the algo-
rithm. If a bridge is selected as a pivot, then the path is shortcutted
to two hops. If no bridges are selected as pivots, then the pivots are
ancestors, descendants, or unrelated the path. When an ancestor or
a descendant is a pivot, it splits that path into subpaths that are con-
tained in different recursive subproblems. Define a path-relevant
subproblem (G, P, r) as a call to HSRECURSE(G, D, r) that contains
anonempty subpath of P. Splitting the path makes it more challeng-
ing to shortcut because a bridge is needed for each subpath in its
path-relevant subproblem. However, we are still making progress
because the number of nodes in path-relevant subproblems is re-
duced. Hence, we would like to track the collection of path-relevant
subproblems throughout the execution of the algorithm.

The path-relevant subproblems form a path-relevant subprob-
lem tree defined as follows. The root of the tree, called level 0,
is the whole path P. If a bridge is selected as a pivot in a path-
relevant subproblem, then the node is a leaf and has no children.
If no bridges are selected in a path-relevant subproblem (G’, P’,r),
then the path-relevant subproblems containing subpaths of P’ are
the children. At the end of the execution of the algorithm, the leaves
of path-relevant subproblems tree represent the entire path P. The
path consists of at most two hops for each leaf node in the tree
and the edges that go between subproblems. Our goal is to bound
the number of nodes in the path-relevant tree to provide an upper
bound of the hopbound. The idea of the path-relevant subprob-
lems tree comes from Fineman [11]. However, ours becomes more
complicated because we use multiple pivots, and fringe and core
problems.

In Lemma 4.8, we will construct the path-relevant subproblem
tree. The proof relies on a helper lemma to show that choosing
ancestor and descendant pivots will decrease the number of path-
related nodes. We will show this claim after Lemma 4.8 in Lemma 4.9.
The construction of the path-relevant subproblems tree becomes
more complicated for two reasons. First, the basic search distance
D, decreases with each level of recursion, which means that a pivot
may not reach the end of the path in its search. This splits the path
into an additional subpath. Second, the algorithm calls core and
fringe problems from each pivot. It creates many subproblems, so
we must choose which of these subproblems to consider in the
analysis.

To resolve the first difficulty, we will logically split certain path-
relevant subproblems to create logical path-relevant subprob-
lems. The path is split logically for the sake of analysis. However,

344

STOC 20, June 22-26, 2020, Chicago, IL, USA

the algorithm is unaware of these splits. This means that some logi-
cal subproblems are in the same call of HSRECURSE(G, D, r), but this
will not change our analysis. Notice that between two consecutive
levels, the basic search distance will decrease by a O(Vk) factor. The
pieces of the subpath are split such that the length of each piece is
less than the next level’s search distance. This guarantees that the
search distance in the next level is long enough to reach the end of
the subpath in the logical path-relevant subproblem. The ancestors
and descendants of each piece of the subpath are copied and added
to each relevant subproblem. By splitting subproblems, we intro-
duce an additional O(Vk) subproblems, as well as multiple copies
of many nodes. Fortunately, since we have already shown that
path related nodes in one subproblem are bounded, this increase in
vertices is tolerable.

More specifically, each call to HSRECURSE(G, D, r) is associated
with path P where |P| = ¢ € (k°D/2, k°D). If a path-relevant sub-
problem (G’, P, r) at level r contains a subpath P = (v;, vj11, ..., v})
with j —i > Dy = D/(A"k"/?), then we will split P into q =
[j —1/Dy] disjoint subpaths P = Py, Py, ...Pg, such that every sub-
path except the last one has length D, This partition splits the path
into at most A"k"/2 subpaths where each subpath has length at
most Dy, which is less than the length of the basic search distance
at level r. Each related vertex to a path vertex v; in G’ is copied to
v;’s new logical path-relevant subproblem. From Lemma 4.3, each
subpath P; at level r contains at most 2nk™" related vertices. We
have at most A"k¢*"/2 new logical nodes since we have at most
ATkC*7/2 subpaths of length D/(A"k*"/2). Hence, we only dupli-
cate 21" nk¢~"/? additional vertices in this procedure. Next, we will
construct the path-relevant subproblem tree based on the logical
path-relevant subproblems in the following lemma, and show how
to create the next level of subproblems from the logical subproblems
layer. Let p,, be the scalar of the searching distance for pivot v. The
proof of Lemma 4.8 is in the full version [4].

LEMMA 4.8. Consider a logical path-relevant subproblem (G’,P =
(v, V1, ..., V), T) corresponding to a call to HSRECURSE(G', D, r). Let
pr = (Ak""logn)/n be the probability a vertex is a pivot at level
r.LetS = {v | {(v) = r,v € Ry p,(G’,P)} be the set of pivots
at level r related to P within distance p, D, . There exists subpaths
Py, P1, Ps, ...,P2|5‘ such that,

(1) If a vertexv € S is a py, D, -bridge, there are no path-relevant
subproblems.

(2) If no vertexv € S is a py Dy -bridge, then the vertex union of
all P; for0 < i <2|S|isP.

(3) Po,P1, Py, ..., Ps|41 are in core problems and each P; is con-
tained in some Vg, .

(4) P|s|+1, -+ Pyys| are called in fringe problems and each P; is

contained in some Vlfringe, whereu € S.
Additionally, with probability 1 — n~0-7A+4 e have that

S|

3
D EllRp i, (G Ve P < =
i=0 pbr
and
2|S| o 1
D EllRppin, (G1V, g1 POIl < —.
i=|S|+1 pr

STOC 20, June 22-26, 2020, Chicago, IL, USA

Now we will show the helper lemma for the case the pivots are
ancestors and descendants. The proof is in the full version of the
paper [4]. Fineman [11] shows a similar result when there is just
one pivot, and JLS [14] extends this to ¢ pivots. In our case, we
have the additional difficulty that each pivot searches for a different
distance, but we are able to get the same result.

LEMMA 4.9. Consider the path P = (vg,v1,..,v¢), where { <
minDr(G’ P) in the r'h
level of recursion. Let I be the set containing all possible values of
interval scalar. Choose t ancestor pivots uniformly at random from

D,, and its pminDyr-distance ancestor set R;

R,DmtnD (G, P). Let P; be the path defined in Lemma 4.8. If the chosen
interval |I| > 4t, then

S| 15

ZEHR‘ 0, G WVa Pl < == R, 1, (G'.P)].

i=0

Notice that each subpath P; will be contained in a subproblem,
which means all P; are valid in subproblems even if they were split
in the logical layer. There might be some path-relevant subproblems
replicated multiple times, so the path-relevant subproblems are
no longer independent. Each subpath is limited in length |P;| <
D/(A"k"/2). We construct new logical layer based on the rule we
mentioned before. Next, based on the path-relevant subproblem
tree, we will give a lemma about the expected number of related
nodes and subproblems in each level of recursion.

LEMMA 4.10. Consider the path-relevant subproblem tree for one
execution of HopSET(G). Let Z, be the number of subproblems in the
rth level of recursion. For allr > 0,

Pr [Zr < 327k 5 log?n | = <,
r<log; n—L 2
Proor. To show the claim, we will first show the expectation of
Z,. Let Y, be the number of path related vertices in the r? h level of
recursion. Our target is to show the following formula holds with
probability 1 — n=0-7A+4 for all r,

E[Y,] < 4\ nk®"%
E[Z,] < 1507k logn.

If the expectation of Z, in the above formula holds, then by Markov’s
inequality,

P [z > 3007k]
T 2 og " 2logn’

and by a union bound, the following holds if A > 8,

Pr [Zr > 32Tk log? n]
r<log; n—L

< login—L 40T l

2logn 2

Next we will show the expectation of Z, and Y, by induction on
the level of recursion. When r = 0, the claim is trivial since there
is one subproblem and at most n path-related vertices. Assume for
level r, the formulas hold. Then we will construct the logical layer.
Let Y/ be the number of path-related nodes in the logical layer at
level r. Let Z] be the number of subproblems in the logical layer at

345

Nairen Cao, Jeremy T. Fineman, and Katina Russell

level r. The search distance for level r is D/A"k"/2 and subproblem
is duplicated if the path length in the subproblem is greater than
£/(A"k°*7/2) Thus, at most A”k°*"/2 subproblems are duplicated
and Z] = Z, + ATk€+7/2 On the other side, from Lemma 4.3, the
number of related nodes in each subproblem at level r is less than
or equal to 2nk™" with probability 1 — n~0-74+3_ Therefore,

Y, = Yy + ATkST2 20k = Y, + 2270k

Next we can count Z,;1 and Y4 based on the logical layer. By
Lemma 4.8, for each subproblem at level r, the number of related
nodes at level r + 1 can be bounded. For a logical subproblem s at
level r, let Y be the number of path-related nodes in s’s subproblem
at level r + 1. The expectation of Y41 is,

Z Y] = Z E[Ys] = > > ElYs | Z]]Pr(Z]]
Z, s

Yr+1

4

Z/Pr] B[z]+ ATk
G LA = iy H1 :
<64AInk¢ T < 4 ke

for A > 4. For the Z,,4, if there are ¢ pivots, there will be at most
2t + 1 subproblems. To count Z, 1, split 2t + 1 subproblems to two
parts, 2t subproblems and 1 subproblem. The 2t part will contribute
to the total number of pivots. On the other hand, each subproblem
at level r will have 1 additional subproblem, which implies another
7! item. Therefore, if k > 2 then,

=py - Z 2Y/Pr[Y,

=D ElZear | Y1 P,

2Ak" 1 logn , ,

EE B By + Bl

2k logn
n

E[Zr41] E[Z;]

(AN nkCTTI2 4 oA nkeT/2)

+ 1507k logn + ATkCT?
15/1r+1kc+1+r/2

IA

logn.
o

Lastly, we will show the hopbound based on the path-relevant
subproblem tree.

LEMMA 4.11. Consider any graph G = (V, E) and any shortest path
P with |P| > n'/? and let u = head(P) and v = tail(P). Consider
an execution of Algorithm 1. Let E’ be the hopset produced, and
let Zy, Z1, ..., Zy be the number of corresponding path-relevant tree
subproblems at level r, then there is a u-to-v path in G’ = (V,E’ UE)
containing at most 3 ZrSIng n—L Zr edges.

PRrOOF. A path-relevant subproblem tree node will have no chil-
dren if the subproblem contains a path-relevant pivot that is a
bridge. If any pivots w, are bridges at or before level L, then w will
be a shortcutter in Algorithm 1. Notice that w is pmqxDr-related
to P forr < L. We require that pyaxDo < € since we only search
for additional ¢ distance. The new path will be u to w to v.

Otherwise, there are no bridges in the first L levels. Consider a
path-relevant subproblem at level r’ > L. If there is a pivot w at
level r’ that is a bridge, then at level r’ — L w was a shortcutter in a
path-relevant subproblem (G, P/, r’ — L). In Lemma 4.8 we showed

Efficient Construction of Directed Hopsets and Parallel Approximate Shortest Paths

that P’ < D,. Since shortcutters search for pp,qx Dy, W reaches
head(P’) and the edges tail(P"), (head(P’), w) and (w, tail(P")) are
added to E’, creating a two hop path from u to v in G’. At level
logy n, all vertices are pivots, and therefore the path must have
a bridge pivot. In total there are at most 2 3’ <jog, n—1 Zr hopset
edges that shortcut path-relevant subproblems, and there are at
most X, <log, n-L Zr edges between subproblems. Adding these
together completes the proof. O

LEMMA 4.12. Consider any graph G’ = (V,E) and an execution
of HopseT(G') with parameters k, A and L. The hopset produced

has hopbound n'/2+0(1/l0g k) jc+(1=L)/2 1602 1 \yith probability 1 —
—A+2
n~*e,

Proo¥. Consider any shortest path P with |P| > n'/2 and let
u = head(P) and v = tail(P). By Lemma 4.11, there is a path from u
to v with at most 3 3, <jog, n-1 Zr edges where Z, is the number
of path-relevant subproblems in the path-relevant subproblem tree
at level r. Since the algorithm is repeated A log n times, there exists

r+1
a path relevant tree such that (, <jog, n-1 Zr < 3207k T log? n

holds with probability 1 — n~*, by Lemma 4.10. Therefore the hop-
bound is,

37, = 9617k "2 log? n

r<log; n-L r<log; n—L

_ /2400 /log k) e+(1-1)/2 142 .
with probability 1 - n~A*2 where the probability comes from taking
a union bound over all possible shortest paths. O

4.3 Approximation

In this section, we will show the approximation that the algorithm
acheives. We have already showed that the path-relevant tree has
1

1 L
n2*O/logk) e+ 1062 n nodes, which means there exist a path

P’ that contains at most n3 *O(1/log)+ 5= log? n hops. Now we
want to show that P’ is an good approximation of the original path
P. Notice that in the path-relevant tree, a path-relevant problem
has no subproblems if one of the pivots at that level is a bridge.

Consider the following two cases:

(1) If there is a bridge u with £(u) < L, then we stop the path-
relevant tree at level 0. In this case, the search distance is
at most D € [(k™¢, 2k™€), so the bridge will have at most
2-32A%k% log? n- D < 128)%k* =€ log? n- £ error. The 2 comes
from the forward and backward searches, the second item
3242k? log? n comes from the scaling factor.

Consider the path-relevant tree after level 0. If a path-relevant
subproblem selects a shortcutter that is a bridge at level
r + L, then the path-relevant subproblem will end at level
r. The error for this subproblem is at level r is at most
2 - 32A%k%log® n - Dy,1. Summing up all possible bridges,
we have the error

@

r=log; n—L

2,

r=1

Zyr - 642%k%log? n - Dypyp < 40962% LkGD/2 1065 n . ¢,

The accumulating error will be 409612 Lk (5-L)/2 log’n-¢.

346

STOC 20, June 22-26, 2020, Chicago, IL, USA

ALE@-D/2

32log’n
If k = Q(logn) and the desired error is ef, set L = 15 — 2logy €.
The hopbound f is at most 6A1°8k "n1/2 /log n. The running time
is O(mk1® log* n/e®) and the hopset size is O(nk'® log* n/e?). Com-
bining all this together, the following corollary holds.

To make the first error equal to second error, set k¢ =

COROLLARY 4.13. For any unweighted directed graph G = (V, E),
HoprseT(G) with above parameter returns a (ff = nl/2+0(1/logk) o).
hopset of size O(nk'® log* n/e?) in running time O(mk'® log* n/e%)
with probability 1 — n=**2.

ProoF oF THEOREM 4.1. From Theorem 4.2 and Corollary 4.13,
Theorem 4.1 follows directly. O

5 WEIGHTED GRAPHS

This section presents an algorithm for hopsets for weighted di-
rected graphs. The algorithm is almost the same as the unweighted
case, so most of the analysis still holds. Our goal is to show that
for graph G, the algorithm returns a (nt/2ro(D) €)-hopset of size
O(nk'® log® nlog(nW)/e€?), and runs in O(mk® log* nlog(nW)/e?)
time. Next we will present the algorithm, and in Section 5.2 we
provide the analysis.

5.1 Weighted Hopsets Algorithm

Algorithm 3 shows the hopsets algorithms for weighted directed
graphs. The algorithm is the same as the unweighted algorithm
with one exception. Namely, WHoPsET(G) searches all possible path
weights from —1 to nW where W is the maximum weight of an
edge in the graph, whereas HorseT(G = (V, E)) only searches over
path weights from n1/2 to n. This difference is Line 4. The weighted
algorithm extends the searches because the maximum shortest path
distance in a weighted graph is nW. In the unweighted case, the
maximum shortest path was at most n. WHoPsET(G) searches from
—1 to account for edges with weight zero.

5.2 Analysis

The goal of this section is to prove Theorem 5.1.

THEOREM 5.1. For any weighted directed graph G = (V, E), there
exists a randomized algorithm that computes a (f = n'/%to(1) ¢)-
hopset of size O(nk® log® nlog(nW)/€?). The randomized algorithm
runs in O(mk' log? nlog(nW)/e?) time with probability 1 — nA+2,

Most of the analysis from the weighted case holds for the un-
weighted case. First, we will show the difference in the runtime in
Lemma 5.2 and then the hopbound and approximation.

LEMMA 5.2. One execution of WHopseT(G = (V, E)) with parame-
tersk and L, wheren = |V|, m = |E|, runs in O(mk™*1 log(nW)) time
and returns a hopset of size O(nk™+1 log(nW)) with high probability.

Proor. The running time proof follows from the proof of Theo-
rem 4.2. The only comes from performing the searches. Breadth-first
search can no longer be used because the graph is weighted. In-
stead Dijkstra’s algorithm for shortest paths can be used which
has cost O(m + nlogn) [7]. This increases the runtime from the
unweighted case by a O(log(nW)) factor resulting in a runtime of
O(mk*11og? nlog(nW)). For the same reason the size of hopset is
O(nk*11og? nlog(nW)). o

STOC 20, June 22-26, 2020, Chicago, IL, USA

Nairen Cao, Jeremy T. Fineman, and Katina Russell

Algorithm 3 Hopset algorithm for weighted directed graphs. k, A and L are parameters.

function WHoprseT(G = (V, E))
H<0
repeat Alogn times
for each j € [-1,log(nW)]
for eachv e V
for each i € [0,log; n]

1:
2
3
4
5
6
7
8 if {(v) < L then
9
10:
H « H UHSRECURSE(G, D = 2/k™¢,r = 0)
return H

11:
12:

With probability (Aki*! log n)/n, set £(v) to i, break if setting successful.

for eachu € R;’j+1 (G,v) add edge (v, u) to H with weight distg(v, u)
for eachu € R;jH(G, v) add edge (u, v) to H with weight distg(u, v)

Next, we consider the hopbound of the weighted case. We again
consider the path-relevant subproblems and construct the logical
path-relevant subproblems. The only difference comes in how the
logical path-relevant subproblems are constructed. Consider a path
P from u to v, where |w(P)| € (kD/2, kD). If a path-relevant sub-
problem (G, P, r) at level r contains a subpath P = (v;, vj41, ...,),
with w(P) > D, = # then split P into g disjoint subpaths
P = Py, P,,...,Pg such that (head(P;), tail(P;+1)) € P for i € [1,q)
and maximize each subpath P; such that w(P;) < D, except for the
last subpath. Here the path is split based on weight rather than the
number of hops. Since w(P;) + w(head(P;), tail(Pj+1) > Dy, there
are at most A"k*"/2 new logical nodes. Since the rest of the num-
ber of logical nodes introduced is the same, the rest of the analysis
is unaffected.

Lastly, we show the approximation of the hopsets. For paths
P where w(P) > 0, the analysis is the same. However for a path
P where w(P) = 0, the analysis changes. Recall that the lightest
non-zero edge weight is 1. The algorithm is run with j = —1 for this
case. When j = —1, we are considering the path p with w(p) < 1/2.
However, there is only € error and the approximate path weight
will be less than (1 + €)w(p) < 1. Therefore, the approximate path
weight is 0 since the graph has no non-zero edge weight less than
1. By setting appropriate ¢, WHorseT(G = (V,E)) will return a
(n!/2ro) &) hopset for G. For the final error to be €, set L =
15 — 2log;. €. Combining the above analysis, gives us Theorem 5.1.

6 PARALLEL ALGORITHM

In this section, we show how to extend the weighted hopsets al-
gorithm to a work-efficient, low span parallel algorithm. First, we
will explain the difficulties of the hopsets algorithm in the parallel
setting and give the high-level idea of overcoming these difficulties.
Then we describe the details of our parallel algorithm for hopsets
in Section 6.1. Finally, in Section 6.2, we provide an analysis of the
work and span.

There are two main difficulties in making the weighted algo-
rithm work in a parallel setting. First, Dijkstra’s algorithm is used
to perform the searches, but Dijkstra’s algorithm is expensive in the
parallel setting. To resolve this problem, we use the rounding tech-
nique from Klein and Subramanian [15]. Consider a path from vy to
vg, P = (vg, 01, ..., vp). For each edge e € P, w(e) is rounded up to

347

the nearest integer multiple of Sw(P)/¢, where & is a small number
to be set later. Since P contains ¢ edges, each edge has at most
Sw(P)/¢ error. The whole path has at most Sw(P)/ - € = 5w(P) er-
ror. The error is tolerable if § is set to be small enough. Now consider
the path with the rounded weights, but treating Sw(P)/¢ as one unit.
Since all rounded edge weights are integer multiples of Sw(P)/¢, the
w(P)+Sw(P

W =(1+8)L/8.
Therefore, the algorithm can use breadth first search with depth
at most O(¢/8) to compute R;vDr (G,v) and R;‘UDr (G,v) in a call
to HSRECURSE(G, D = O(£/8), r). The cost of the depth-first search
depends only on ¢ instead of w(P).

The second difficulty is that searching the entire path can be
too expensive, even after the rounding step because a path may
contain too many hops. The key idea is to run HSRECURSE(G, D, r)
with limited hops D. Then add the edges produced by the HSRE-
cUrsE(G, D, r) to the graph. Consider HSRECURSE(G, D, r) searches
for at most 2/ hops, where f is the hopbound HSRECURSE(G, D, r)
achieves, and a path P with |P| = 4f. After the first execution of
HSRECURSE(G, D, r), there will be an approximate path P’ for P
such that [P’| < 2 and w(P’) < (1 + e)w(P) < (1 + 6)(1 + e)w(P).
By repeating these steps, we can ensure that a path of any length
gets approximated, and the hopbound is limited by the previous
executions of HSRECURSE(G, D, r). Moreover, for a path P of any
length, run HSRECURSE(G, D, r = 0) log(|P|/(2)) times. This gives
a (1+ 8)0elP1/28)(1 + ¢)log(IP1/2B) approximation, with hopbound
2f. One more execution gives the hopbound.

new weight of path P is at most w(P) =

6.1 Algorithm Description

In this section, we describe the parallel algorithm, PHopseT(G),
shown in Algorithm 4. The parallel algorithm extends the hopsets
algorithm for weighted graphs in Section 5. There are two main
differences. First, the parallel algorithm will round the weights
of edges. Second, the parallel algorithm will execute the recurse
subroutine HSRECURSE(G’, D, r) and then add the edges returned
from the subroutine to the graph before executing the recursive
subroutine again. We will describe these two steps in more detail.

One key modification to Algorithm 4 is as follows. In Lines 16-17,
if the weight of an edge is less than 1, then set the weight to 0. Also,
notice that the algorithm searches from i = —2. These steps are
both done to account for zero weighted paths.

Efficient Construction of Directed Hopsets and Parallel Approximate Shortest Paths

STOC 20, June 22-26, 2020, Chicago, IL, USA

Algorithm 4 Parallel hopset algorithm for weighted directed graphs. 8, k, A, ¢, L are parameters.

With probability (Ak+1 log n)/n, set £(v) to i’, break if setting successfully.

for eachu € R§(1+5)ﬁ/5(G’ v) add edge (v, u) to H’ with weight dist 5 (v, u)
5(G,v) add edge (u,v) to H’ with weight dist 5 (u, v)

1: function PHoprseT(G = (V, E))
2 He«0
3 B — 6M18k "p1/2 flog n
4 repeat Alog? n times
5 for each i € [-2,log(n®W)]
6 w=35-2"1/8,H" 0
7 Construct a new graph G=(V=V,E=E)
8 for eache € E
+00 if w(e) > 211
5 e = {[4] it wie) < 21+
1 if w(e) =0
10: for eachv € V
1 for each i’ € [0,log; n]
12:
13: if {(v) < L then
14:
15: for eachu € Rg(1+§)ﬁ/
16: H — HU (w-H’)U (W - HSRECURSE(G, D = 4(1 + 8)/(8k°), r = 0))
17: E—EUH
18: return H

Rounding the edge weights. The algorithm starts by rounding
up the weights of edges. This is Lines 6-9 in PHOPSET(G = (V, E)).
Recall that the lightest non-zero edge weight is 1, and the heaviest
edge weight is W. f§ is the hopbound of the hopset produced by the
sequential algorithm HopseT(G) in Section 4.2.

Consider a path P = (vg, vy, ..., v¢) and suppose £ € (8, 28] and
w(P) € [2!,2!*1) for integer i. Let § be a small number. Define
w = 2i715/B. Round the weight of each edge e to the following
integers,

w if w(e) =0,
We) = [Wg’)] S ifw(e) < 204,
+00 if w(e) > 2i+1,

By construction each edge has at most w error. Therefore, the
rounded weight of the path, w(P) has at most £ < % 2B < 4d

error. By treating W as one unit, P is in the range of

— - w, W
w
H@ MD ¥ C [K°D/(2 + 26).K°D] -

é
if k°D = 4(1 + §)f/65. Since w is treated as one unit, breadth-first
search can be run to depth at most 4(1 +)/ to search the whole
path, which is independent of d. In the algorithm, w is ignored
in the rounding step and added back when HSRECURSE(G, D, r)
returns the hopset.

(1 + 85)w(P)
W

w(P) e

Adding hopset edges to the graph. After a recursive call to HSRE-
cURSE(G, D, r), Line 17 in Algorithm 4 adds the edges returned by

348

HSRECURSE(G, D, r) to the original graph G. HSRECURSE(G, D, r) re-
turns a (f, €)-hopset for any path with length at most 2 with proba-
bility at least 1/2. Therefore, for any path P with |P| > 2, there will
be a path P’ approximating P, with length |P’| = max(|P|/2, 2p).

6.2 Parallel Hopbound and Hopset Size

LEMMA 6.1. Consider any graph G’ = (V,E) and an execution
of PHopseT(G’). For any P where |P| < 2f3, after the rounding code
in Lines 6-9, suppose HSRECURSE(G, D, r 0) returns a (1 + €’)
approximate path P’ containing at most § hops with probability at
least 1/2. If Lines 5-16 in PHoPSET(G’) are repeated jAlog n times, then
for any u-to-v path P with |P| = 2/ B, there will be an approximate
path P’ in E with probability 1 — (2 — 1)n~* such that |P’| < § and
w(P’) < (1+ 81 + €’ Yw(P).

Proor. Proof by induction on j. When j = 1, then for b with
|P| < 2p, after Alog n repetitions of Lines 5-17, with all possible val-

zﬂﬁ =1-n"2, HSREcUrsg(G, D, R)

ues of D, with probability 1 -
returns a (1 + €)-approximate path for P. When the edges of P are
rounded, there is at most 5w(f’) error for P. Therefore, the final
approximation ratio is (1 + §)(1 + €’).

For the inductive step, we will show that for P with |P| < 2718,
the claim holds. Split P into two subpaths, 131 and 132, where each
of Py and P, contains no more than 2/ edges. By the inductive
hypothesis, with probability 1—(2/*1 —2)n=4, there exists f’; and f’;
such that 13; and ﬁé are (1+ &) (1 + €’) -approximations for P, and
Py, respectively. Furthermore, |}3/1| < fand |P;| < B. Hence, after
log n repetitions, with probability 1 —n~?, there will be a (1+8)(1 +

. P,), which

€’) approximate path P’ with at most H edges for (Pl

STOC 20, June 22-26, 2020, Chicago, IL, USA

implies the approximate path for P. By taking a union bound over
the existence of P;, P; and P', the probability is 1 —(2j +1_ l)n_/l. O

For a path P with |P| < 23, HSRECURSE(G, D, r) with correspond-

ALk(L_D/Z

2% —— and
32log’ n

L = 15 - 2log; €/, the hopbound is § = 6A1°8k "n'/2/log n. By
repeating Lines 5-16 Alog? n times, Lemma 6.1 can be applied to
all possible paths. The maximum path weight will increase each
round, but it will be no greater than (1 +)8 W < n?W. Thus
a maximum path weight of n?W covers all possible paths. Finally,
to get a (B, €)-hopset, set § = €/(8logn) and €’ = €¢/(8logn). If
k = Q(logn), then L = 17 — logy € is sufficient. The constant
1/8 in €’ will cancel out with the A=L in the error formula. Re-
call that HSRECURSE(G, D,r = 0) will returns a hopset of size
O(nk™11og? n). Summing up all items, the final hopset size is
O(nk'®log® nlog(nw)/e?).

COROLLARY 6.2. For any weighted directed graph G = (V,E),
PHopseT(G) with above parameter returns a (f§ = nl/2+o(1/logk) €)-
hopset of size O(nk'8 log4 n log(nW)/ez) with probability 1 — n=A+3,

ing W returns a (f, €’)-hopset for P. By setting k¢ =

6.3 Work and Span

Here we consider PHopSET(G) in the work-span model [7]. Recall
that the work is the total number of operations that the algorithm
performs while the span is the longest chain of sequential dependent
operations.

Work. The work of the algorithm is dominated by the cost of
the searches. Updating the graph, and adding the edges back to the
graph can be done using parallel merge sort [6]. See Fineman [11]
and JLS [14] for details of the parallel implementation. From the
proof of Theorem 4.2, the total amount of work to compute the set
of related nodes in a call of HSRECURSE(G, D, r) is O(mkE*1 log? n).
In the parallel algorithm, the m term increases as more edges are
added to the graph. When Lines 5-14 are repeated j times, there are
at most O(jnk!® log2 nlog(nW)/e?) edges in H. The total work is,

Alog? n
O(Z (m + jnk'® log2 nlog(nW)/ez)k18 log2 nlog(nW)/ez)
j=1
=0(mk8 log? nlog(nW)/e? + nk® log® nlog?(nw)/e?).

Span. The searches dominate the span. In each call to HSRE-
CURSE(G, D, r = 0), the maximum search distance is 4(1 + §)f/d.
On each recursive call, the search distance decreases by at least
1/2. Therefore the span in one call to HSRECURSE(G, D, r = 0) is
O(p/d). Since the algorithm is run O(log2 n) times, the span is
O(Blog? n/8) = n'/2+o(1/logk) 1og2 1 /¢

Summing up all these together, allows us to prove the following
theorem.

THEOREM 6.3. For any weighted directed graph G = (V, E), there
exists a randomized parallel algorithm for weighted graphs that com-
putes a (n1/2+o(), €)-hopset of size O(nlog®? nlog(nW)/e?). The al-
gorithm has O(mlog? nlog(nW)/e? + nlog*! nlog?(nW)/e*) work
and n'/2+°M) /¢ span with high probability.

349

Nairen Cao, Jeremy T. Fineman, and Katina Russell

Proor. Combining above analysis and Corollary 6.2, the theo-
rem holds with k = ©(log n) and appropriate A. O

THEOREM 6.4. There exists a parallel algorithm that takes as input
a graph G with non-negative edge weights and computes approximate
single-source shortest paths in O(m log(nW)/e® + nlog?(nW)/e*)
work and n'/2+°() /¢ span.

Proor. By Theorem 6.3, PHoPSET(G) produces a (n/2+o(D)).
hopset with the desired work and span. Then running Klein and
Subramanian’s hop-limited parallel algorithm for shortests paths
[15] completes the proof. O

REFERENCES

[1] Alexandr Andoni, Clifford Stein, and Peilin Zhong. Parallel approximate undi-
rected shortest paths via low hop emulators. In Proceedings of the 52nd ACM
Symposium on Theory of Computing, 2020.

Guy E. Blelloch, Yan Gu, Yihan Sun, and Kanat Tangwongsan. Parallel shortest
paths using radius stepping. In Proceedings of the 28th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA ’16, pages 443-454, New York,
NY, USA, 2016. ACM.

Gerth Stelting Brodal, Jesper Larsson Tréff, and Christos D. Zaroliagis. A parallel
priority queue with constant time operations. J. Parallel Distrib. Comput., 49(1):4-
21, February 1998.

Nairen Cao, Jeremy T. Fineman, and Katina Russell. Efficient construction of
directed hopsets and parallel approximate shortest paths. CoRR, abs/1912.05506,
2019.

Edith Cohen. Polylog-time and near-linear work approximation scheme for
undirected shortest paths. 7. ACM, 47(1):132-166, January 2000.

Richard Cole. Parallel merge sort. SIAM J. Comput., 17(4):770-785, August 1988.
] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. MIT Press, Cambridge, MA, USA, 2nd edition, 2001.
James R. Driscoll, Harold N. Gabow, Ruth Shrairman, and Robert E. Tarjan.
Relaxed heaps: An alternative to fibonacci heaps with applications to parallel
computation. Commun. ACM, 31(11):1343-1354, November 1988.

M. Elkin and O. Neiman. Hopsets with constant hopbound, and applications
to approximate shortest paths. In 57th Annual Symposium on Foundations of
Computer Science (FOCS), pages 128-137, Los Alamitos, CA, USA, oct 2016. IEEE
Computer Society.

Michael Elkin and Ofer Neiman. Linear-size hopsets with small hopbound, and
constant-hopbound hopsets in rnc. In The 31st ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA 19, pages 333-341, New York, NY, USA,
2019. ACM.

Jeremy T. Fineman. Nearly work-efficient parallel algorithm for digraph reacha-
bility. In Proceedings of the 50th Annual ACM SIGACT Symposium on the Theory
of Computation, pages 457-470, 2018.

Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in
improved network optimization algorithms. . ACM, 34(3):596-615, July 1987.
Shang-En Huang and Seth Pettie. Lower bounds on sparse spanners, emulators,
and diameter-reducing shortcuts. ArXiv e-prints, February 2018.

Arun Jambulapati, Yang P. Liu, and Aaron Sidford. Parallel reachability in almost
linear work and square root depth. In David Zuckerman, editor, 60th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland,
USA, November 9-12, 2019, pages 1664-1686. IEEE Computer Society, 2019.
Philip N Klein and Sairam Subramanian. A randomized parallel algorithm for
single-source shortest paths. J. Algorithms, 25(2):205-220, November 1997.
Jason Li. Faster parallel algorithm for approximate shortest path. In Proceedings
of the 52nd ACM Symposium on Theory of Computing, 2020.

U. Meyer and P. Sanders. A-stepping: A parallelizable shortest path algorithm. J.
Algorithms, 49(1):114-152, October 2003.

Gary L. Miller, Richard Peng, Adrian Vladu, and Shen Chen Xu. Improved parallel
algorithms for spanners and hopsets. In Proceedings of the 27th ACM Symposium
on Parallelism in Algorithms and Architectures, pages 192-201, 2015.

Thomas H. Spencer. Time-work tradeoffs for parallel algorithms. J. ACM,
44(5):742-778, September 1997.

Jeffrey D. Ullman and Mihalis Yannakakis. High probability parallel transitive-
closure algorithms. SIAM J. Comput., 20(1):100-125, February 1991.

2

—_
A

(10]

[12

[13

[14

[15

[16

(17]

[18

[19]

[20]

	Abstract
	1 Introduction
	1.1 Overview of Diameter Reduction
	1.2 Overview of the Hopset Algorithm

	2 Preliminaries
	3 Algorithm
	4 Analysis
	4.1 Running Time and Hopset Size
	4.2 Hopbound
	4.3 Approximation

	5 Weighted Graphs
	5.1 Weighted Hopsets Algorithm
	5.2 Analysis

	6 Parallel Algorithm
	6.1 Algorithm Description
	6.2 Parallel Hopbound and Hopset Size
	6.3 Work and Span

	References

