Session: Full Paper

SPAA 20, July 15-17, 2020, Virtual Event, USA

Optimal Parallel Algorithms in the Binary-Forking Model

Guy E. Blelloch

guyb@cs.cmu.edu
Carnegie Mellon University

Jeremy T. Fineman

Georgetown University

ABSTRACT

In this paper we develop optimal algorithms in the binary-forking
model for a variety of fundamental problems, including sorting,
semisorting, list ranking, tree contraction, range minima, and or-
dered set union, intersection and difference. In the binary-forking
model, tasks can only fork into two child tasks, but can do so recur-
sively and asynchronously. The tasks share memory, supporting
reads, writes and test-and-sets. Costs are measured in terms of
work (total number of instructions), and span (longest dependence
chain).

The binary-forking model is meant to capture both algorithm
performance and algorithm-design considerations on many existing
multithreaded languages, which are also asynchronous and rely on
binary forks either explicitly or under the covers. In contrast to the
widely studied PRAM model, it does not assume arbitrary-way forks
nor synchronous operations, both of which are hard to implement in
modern hardware. While optimal PRAM algorithms are known for
the problems studied herein, it turns out that arbitrary-way forking
and strict synchronization are powerful, if unrealistic, capabilities.
Natural simulations of these PRAM algorithms in the binary-forking
model (i.e., implementations in existing parallel languages) incur
an Q(log n) overhead in span. This paper explores techniques for
designing optimal algorithms when limited to binary forking and
assuming asynchrony. All algorithms described in this paper are the
first algorithms with optimal work and span in the binary-forking
model. Most of the algorithms are simple. Many are randomized.

ACM Reference Format:

Guy E. Blelloch, Jeremy T. Fineman, Yan Gu, and Yihan Sun. 2020. Optimal
Parallel Algorithms in the Binary-Forking Model. In Proceedings of the 32nd
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA °20),
July 15-17, 2020, Virtual Event, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3350755.3400227

1 INTRODUCTION

In this paper we present several results on the binary-forking model.
The model assumes a collection of threads that can be created
dynamically and can run asynchronously in parallel. Each thread
acts like a standard random-access machine (RAM), with a constant
number of shared registers and sharing a common main memory.
The model includes a fork instruction that forks an asynchronous
child thread. A computation starts with a single thread and finishes

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SPAA 20, July 15-17, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6935-0/20/07.

https://doi.org/10.1145/3350755.3400227

jfineman@cs.georgetown.edu

89

Yan Gu Yihan Sun
ygu@cs.ucr.edu yihans@cs.ucr.edu
University of California, University of California,
Riverside Riverside

when all threads end. In addition to reads and writes to the shared
memory, the model includes a test-and-set (TS) instruction. Costs
are measured in terms of the work (total number of instructions
executed among all threads) and the span (the longest sequence of
dependent instructions).

The binary-forking model is meant to capture the performance
of algorithms on modern multicore shared-memory machines. Vari-
ants of the model have been widely studied [1, 3, 20, 23, 25, 27, 31—
35, 41, 42, 45, 50, 54, 89]. They are also widely used in practice,
and supported by programming systems such as Cilk [60], the Java
fork-join framework [74], X10 [40], Habanero [39], Intel Thread-
ing Building Blocks (TBB) [71], and the Microsoft Task Parallel
Library [91].

The binary forking model and variants are practical on multicore
shared-memory machines in part because they are mostly asynchro-
nous, and in part due to the dynamic binary forking. Asynchrony is
important because the processors (cores) on modern machines are
themselves highly asynchronous, due to varying delays from cache
misses, processor pipelines, branch prediction, hyper-threading,
changing clock speeds, interrupts, the operating system scheduler,
and several other factors. Binary forking is important since it al-
lows for efficient scheduling in both theory and practice, especially
in the asynchronous setting [2, 11, 26, 35]. Efficient scheduling
can be achieved even when the number of available processors
changes over time [11], which often happens in practice due to
shared resources, background jobs, or failed processors.

Due to these considerations, it would seem that these models
are more practical for designing parallel algorithms than the more
traditional PRAM model [86], which assumes strict synchroniza-
tion on each step, and a fixed number of processors. One can also
argue that they are a more convenient model for designing paral-
lel algorithms, allowing, for example, the easy design of parallel
divide-and-conquer algorithms, and avoiding the need to schedule
by hand [19]. The PRAM can be simulated on the binary-forking
model by forking P threads in a tree for each step of the PRAM.
However, this has a O(log n) overhead in span. This means that
algorithms that are optimal on the PRAM are not necessarily op-
timal when mapped to the binary-forking model. For example,
Cole’s ingenious pipelined merge sort on n keys and processors
takes optimal O(log n) parallel time (span) on the PRAM [43], but
requires O(log? n) span in the binary-forking model due to the
cost of synchronization. On the other hand a O(n log n) work and
O(log nloglogn) span algorithms in the binary-forking model is
know [45]. Therefore finding more efficient direct algorithms for
the binary-forking model is an interesting problem. Known results
are outlined in Section 1.1.

The variants of the binary-forking model differ in how they
synchronize. The most common variant is binary fork-join model
where every fork corresponds to a later join, and the fork and

https://doi.org/10.1145/3350755.3400227
https://doi.org/10.1145/3350755.3400227

Session: Full Paper

Problem Work Span
List Contraction Sec 3 O(n) O(log n)*
Sorting Sec 4 O(nlogn)f O(log n)*
Semisorting Sec 4 o)t O(log n)*
Random Permutation Sec 6 on)t O(log n)*
Range Minimum Query Sec 7 O(n) O(logn)
Tree Contraction Sec 8 O(n) O(log n)*
Ordered-Set Operations Secs n

(UNION, INTERSECT, DIFF.) ec O(mlog(7; +1)) O(logn)

Table 1: The bounds of our new algorithms in the binary-forking
model. For ordered-set operations, n and m < n are sizes of two sets.
«: with high probability (whp). f: in expectation. Bounds without
superscripts are worst-case bounds. The ordered-set algorithms can
work in binary-forking model only with join supported (either by
using TS or just as a default primitive), and the rest make use of TS.

corresponding joins are properly nested [1, 23, 27, 31, 34, 35, 45, 50].
Other models allow more powerful synchronization primitives [11,
32, 41, 42, 54, 89]. In this paper we allow a test-and-set (TS), which
is a memory operation that atomically checks if a memory location
is zero, returning the result, and sets it to one. This seems to give
some power over the pure fork-join model. We make use of the TS
in many of our algorithms. We justify including a TS instruction by
noting that all modern multicore hardware includes the instruction.
Furthermore all existing theoretical and practical implementations
of the fork-join model require the test-and-set, or equivalently
powerful operation to implement the join.

In this paper we describe several algorithms for fundamental
problems that are optimal in both work and span in the binary-
forking model. In particular, we show the following results.

THEOREM 1.1 (MAIN THEOREM). Sorting, semisorting, list/tree
contraction, random permutation, ordered-set operations, and range
minimum queries can be computed in the binary-forking model with
optimal work and span (O(log n)). In many cases the algorithms are
randomized, as summarized in Table 1.

To achieve these bounds, we develop interesting algorithmic
approaches. For some of them, we are inspired by recent results
on identifying dependences in sequential iterative algorithms [22,
28, 87]. This paper discusses a non-trivial approach to convert the
dependence DAG into an algorithm in the binary-forking model
while maintaining the span of the algorithm to be the same as
the longest chain in the DAG. This leads to particularly simple
algorithms, even compared to previous PRAM algorithms whose
span is suboptimal when translated to the binary-forking model.
For some other algorithms, we use the n€-way divide-and-conquer
scheme. By splitting the problem into n€ sub-problems and solving
them in parallel in logarithmic time, we are able to achieve O(log n)
span for the original problem. Our results on ordered sets are the
best known (optimal work in the comparison model and O(log n)
span) even when translated to other models such as the PRAM.

We note that for many of the problems we describe, it remains
open whether the same bounds can be achieved deterministically,
and also whether they can be achieved in the binary fork-join model
without a TS. One could argue that avoiding a TS is more elegant.

90

SPAA 20, July 15-17, 2020, Virtual Event, USA

1.1 Related Work

There have been many existing parallel algorithms designed based
on variants of the binary-forking model (e.g., [1, 3, 13, 14, 20, 23, 25,
27, 29-33, 41, 42, 45, 52-54, 89]). Many of the results are in the set-
ting of cache-efficient algorithms. This is because binary forking in
conjunction with work-stealing or space-bounded schedulers leads
to strong bounds on the number of cache misses on multiprocessors
with various cache configurations [1, 23, 42, 45].

In the binary fork-join model, Blelloch et al. [27] give work-
efficient O(log n) span algorithms for prefix sums and merging, and
a work-efficient randomized sorting algorithm with O(logg‘/ Zn)
span whp!. Cole and Ramachandran [45] improved this and gave
a deterministic algorithm with span O(log nloglog n). This is cur-
rently the best known result for sorting in the binary fork-join
model, without a test-and-set, and also for deterministic sorting
even with a test-and-set.

Allowing for more powerful synchronization, Blelloch et al. [31,
32] discussed how to implement futures using the TS instruction,
which leads to some low-span binary-forking algorithms Tang et
al. [41, 54, 89] described some dynamic programming algorithms, in
the setting of cache efficiency. They also use a TS for synchroniza-
tion. With this they can reduce the span of a variety of algorithms
over fork-join computations without the atomic synchronizations.
Without considering the additional support for cache efficiency, we
believe their model is equivalent to the binary-forking model.

2 MODELS AND SIMULATIONS

Here we describe the binary-forking model and its relationship
to more traditional models of parallel computing, including the
PRAM and circuit models. The binary-forking model falls into the
class of multithreaded models [11, 26, 34, 35, 44]. Multithreaded
computational models assume a collection of threads (sometimes
called processes or tasks) that can be dynamically created, and
generally run asynchronously. Cost is determined in terms of the
total work and the computational span (also called depth or critical
path length). There are several variants on multithreaded models
depending on how many threads can be forked, how they synchro-
nize, and assumptions about how the memory can be accessed. To
be concrete, we define a specific model in this paper.

The binary-forking model. The binary-forking model con-
sists of threads that share a common memory. Each thread acts
like a sequential RAM—it works on a program stored in the shared
memory, has a constant number of registers (including a program
counter), and has standard RAM instructions (including an end
instruction to finish the computation). The binary-forking model
extends the RAM with a fork instruction, which forks a child thread.
We also employ a special end instruction named endall to indicate
the completion of the whole computation. The fork instruction
sets the first register to zero in the parent (forking) thread and to
one in the child (forked) thread, to distinguish them. Otherwise the
states of the threads are identical, including the program counter to
the next instruction. As is standard with the sequential RAM [90],

1We use the term O(f(n)) with high probability (whp in n to indicate the bound
O(kf(n)) holds with probability at least 1 — 1/n* for any k > 1. With clear context
we drop “in n”.

Session: Full Paper

we assume that for input size n, all memory locations and registers
can hold O(log n) bits.

In addition to reads and writes, we include a test-and-set (TS)
instruction in the binary-forking model for accessing memory. The
TS is an atomic instruction that reads a memory location and if
the memory location is zero, sets it to one, returning zero. Oth-
erwise it leaves the value unchanged returning one. We note that
all currently produced processors support the TS instruction in
hardware.

In a binary-forking model, a computation starts with a single
initial thread and finishes when endall is called. The invocation
to an endall can be determined by the algorithm, for example,
through using TS instructions (e.g., to implement join instructions,
see below). A computation in the binary-forking model can there-
fore be viewed as a tree where each node is an instruction with
the next instruction as a child, and where the fork instruction has
two children corresponding to the next instruction of the original
forking thread and the first instruction of the forked thread. The
root of the tree is the first instruction of the initial thread. We define
the work of a computation as the size of the tree (total number of
instructions) and the span as the depth of the tree (longest path of
instructions). We assume the results of memory operations are con-
sistent with some total order (linearization) of the instructions that
preserves the partial order defined by the tree. For example, a read
will return the value of the previous write or TS to the same location
in the total order. The choice of total order can affect the results
of a program since threads can communicate through the shared
memory. In general, therefore, computations are nondeterministic.

To simplify issues of parallel memory allocation we assume
there is an allocate instruction that takes a positive integer n and
allocates a contiguous block of n memory locations, returning a
pointer to the block, and a free instruction that given a pointer to
an allocated block, frees it.

We use BF(W(n),S(n)) to denote the class of algorithms that
require O(W(n)) work and O(S(n)) span for inputs of size n in the
binary-forking model. We use BF* when S(n) = O(logk (n)) and
W (n) is polynomial in n, and BF* when the span is polylogarithmic
and the work is polynomial.

The binary-forking model can be extended to support arbitrary-
way forking instead of binary. In particular, the fork instruction
can take an integer specifying the number of threads to fork, and
each forked thread then gets a unique integer identifier in a register.
The focus of this paper, however, is on binary forking since there
are no known optimal scheduling results for arbitrary-way forking
(see below). The model can also be augmented with more powerful
atomic memory operation. For instance, some algorithms [3, 13,
14, 52, 53] use compare-and-swap (CAS) in addition to the above-
mentioned model. We refer to this model as the binary-forking
model with CAS. A TS is sufficient for our algorithms.

Joining. It can be useful to join threads after forking them, and
many models support such joining [11, 26, 35, 44]. This can be
implemented by adding a join instruction to the binary-forking
model. When reaching a join instruction in thread ¢t the forking
thread t must “wait” until its most recently forked child thread ¢,
ends. Specifically, in the partial order of the tree mentioned above,
it means the partial order is augmented with a dependence from the

91

SPAA 20, July 15-17, 2020, Virtual Event, USA

end instruction of t¢ to the join instruction of ¢. This partial order
is now a series-parallel DAG instead of a tree, and the total order
has to be consistent with it. As before, the work is the total number
of instructions, but now the span is the longest path of instructions
in the DAG instead of tree. We call this the binary fork-join model.

Joining can easily be implemented in the binary-forking model
without a built-in join instruction, but by using the TS instruction.
To implement a join, before each fork we initialize a “synchro-
nization” location to zero. For the forking and the forked threads,
whichever finishes later is responsible for processing the rest of
the computation after the join. This is determined by reaching con-
sensus through the synchronization location. When the forking
thread T reaches a join it saves its registers and then performs a
TS on the corresponding synchronization location. If the TS returns
one, this means that the other thread has already finished and set
it to one first, and T can continue to the next instruction in the
program. Otherwise, it means that the other thread has not finished
yet, and thus T ends because the other thread will take over the rest
of the computation later. When the forked thread reaches its end, it
also performs a TS on the synchronization location. Similarly, if the
TS returns zero it ends, otherwise it loads the registers saved by
the forking thread, and jumps to the stored program counter. This
implementation preserves work and span within a constant factor.
By using fork and join one can also simulate a regular parallel
for-loop of size n using divide-and-conquer, which takes ©(log n)
span to fork and synchronize.

The simulation implies that the binary-forking model is as least
as powerful as the binary fork-join model (with or without TS).
We note that unlike binary fork-join model, by using a general TS
instead of just a join, the parallelism supported by binary-forking
model is not necessary nested. We point out that to implement a
constant-time join seems to require an operation at least as pow-
erful as TS. In particular reads and writes by themselves are not
powerful enough to get consensus among even just two processes
in a wait-free manner, and TS is the seems to be the least powerful
memory operation that can achieve two process consensus [69].
This suggests a primitive as powerful as TS is necessary to effi-
ciently implement a join on an asynchronous machine since the
two joining threads need to agree (reach consensus) on who will
run the continuation.

PRAM. For background, we give a brief description of the PRAM
model [86]. A PRAM consists of p processors, each a sequential
random access machine (RAM), connected to a common shared
memory of unbounded size. Processors run synchronously in lock-
step. Although processors have their own instruction pointer, in
typical algorithms they all run the same program. There are several
variants of the model depending on how concurrent accesses to
shared memory are handled—e.g., CRCW allows concurrent reads
and writes, and EREW requires exclusive reads and writes. For
concurrent writes, in this paper we assume an arbitrary element is
written (the most standard assumption). A more detailed descrip-
tion of the model and its variants can be found in JaJa’s book on
parallel algorithms [73]. As with the binary-forking model, we as-
sume that for an input of size n, memory locations and registers
contain at most O(log n) bits. We use PRAM(W (n), S(n)) to indi-
cate PRAM algorithms that run in O(W(n)) work (processor-time

Session: Full Paper

product) and S(n) time, PRAMK when the time is O(logk n), and
PRAM* when it is polylogarithmic (both with polynomial work).

Relationship to the PRAM. There have been many scheduling
results showing how to schedule binary and multiway forking on
various machine models [11, 26, 35]. For example, the following
theorem can bound the runtime for programs in the binary-forking
model on a PRAM.

THEOREM 2.1 ([11, 34]). Any computation in the binary-forking
model that does W work and has S span can be simulated on P
processors of a loosely synchronous parallel machine or the CRCW

PRAM in
(S)
P

time whp in W.

This is asymptotically optimal (modulo randomization) since the
simulation must require the maximum of W /P (assuming perfect
balance of work) and S (assuming perfect progress along the critical
path). The result is based on a work-stealing scheduler. A slight
variant of the theorem applies in a more general setting where
individual processors can stop and start [11] and P is the average
number of processors available.

Importantly, in the other direction, simulating a p-processor
PRAM, even the weakest EREW PRAMg requires a ©(log p) factor
loss in span on the binary-forking model. This is a lower bound
for any simulation that is faithful to the synchronous steps since
just forking p parallel instructions (one step on a PRAM) requires
at least log p steps on the binary-forking model.

Relationship to Circuit Models. Beyond the PRAM we can
ask about the relationship to circuit models and to bounded space.
Here we use NC for Nick’s class, AC when allowing unbounded
in-degree, and £ for logspace [36, 75]. We first note that NC =
BJF*. This follows directly from the PRAM simulations since NC =
PRAM™ [75]. We also have the following more fine-grained results.
We show the proof in the full version of this paper [24].

THEOREM 2.2.

1 1 1 1 2
NC' € £ € BF! € AC" = PRAMLgeyy € NE

3 LIST CONTRACTION

List ranking [9, 12, 46, 72, 73, 75, 83, 84, 93-95] is one of the canon-
ical problems in the study of parallel algorithms. The problem is:
given a set of linked lists, compute for each element its position in
the list to which it belongs. The problem can be solved by list con-
traction, which contracts a list by following the pointers in the list.
After contraction one can rank the list by a second phase that ex-
pands it back out. The problem has received considerable attention
because of: (1) its fundamental nature as a pointer-based algorithm
that seems on the surface to be sequential; and (2) it has many appli-
cations as a subroutine in other algorithms. Wyllie [95] first gave an
O(nlog n) work and O(log n) time algorithm for the problem on the
PRAM over 40 years ago. This was later improved to a linear work
algorithm [47]. Although this problem has been extensively studied,
to the best of our knowledge, all existing linear-work algorithms
have Q(log? n) span in the binary-forking model because they are
all round-based algorithms and run in Q(log n) rounds. The main

92

SPAA 20, July 15-17, 2020, Virtual Event, USA

OpOn0n0n0a02020,

Figure 1: An example of an input list with 8 elements. The num-
ber in each element is the priority drawn from a random permu-
tation. The dependences of the contractions are shown as a binary
tree structure. In a round-based algorithm [87], the execution is in
4 rounds: {0, 1, 2, 3}, {4, 5}, then {6}, and finally {7}. In Algorithm 1,
the execution is asynchronous, and a possible tree-path decomposi-
tion is {0, 4}, {9}, {@}, {1}, {&}, {2,5,6,7}, {D}, and {3} for all 8
elements from left to right. The length of a tree-path is bounded by
the tree height.

result of this section is a randomized, linear work, logarithmic span
algorithm in the binary-forking model. Then we also describe how
to adapt Wyllie’s algorithm to the binary-forking model to achieve
O(nlogn) work and O(log n) span; while not work optimal, this
latter algorithm is deterministic. Both algorithms are the first in
the binary-forking model to achieve O(log n) span.

We now present a simple randomized algorithm (Algorithm 1)
for list contraction that is theoretically optimal (linear work, and
O(log n) span whp) in the binary-forking model. This algorithm is
inspired by the list contraction algorithm in [87], but it improves
the span by ©(log n), and is quite simple.

The main challenge in designing a work-efficient parallel list
contraction algorithm is to avoid simultaneously trying to splice-
out two consecutive elements. One solution is via assigning each
element a priority from a random permutation. An element can be
spliced out only when it has a smaller priority than its previous
and next elements, so the neighbor elements cannot be spliced
out simultaneously. If the splicing is executed in rounds (namely,
splicing out all possible elements in a round-based manner), Shun
et al. [87] show that the entire algorithm requires ©(log n) rounds
whp, leading to ©(log? n) span whp in the binary-forking model.
The dependence structure of the computation is equivalent to a
randomized binary tree. On each round we can remove all leaf nodes
so the full tree is processed in a number of rounds proportional to
the tree depth. An example is illustrated in Figure 1.

After a more careful investigation, we note that the splicing can
proceed asynchronously, and not necessarily based on rounds. For
example, the last spliced node with priority 7 separates the list
into two disjoint sublists, and the contractions on the two sides
are independent and can run asynchronously. Conceptually we can
do this recursively, and the recursion depth is ©(log n) whp [87].
Unfortunately, we cannot directly apply the divide-and-conquer
approach since L is stored as a linked list and deciding the elements
within sublists is as hard as the list contraction algorithm itself.

We present our algorithm in Algorithm 1. Starting from the
leaves, Algorithm 1 performs equivalent steps to the algorithm
in [87], but its span is ©(log n) in the binary-forking model; this
improvement is achieved by allowing the splicing in each round
to run asynchronously. The key idea is that, instead of checking
all element for readiness in each round, as long as two children

Session: Full Paper

Algorithm 1: LisT-CONTRACTION(L)

Input: A doubly-linked list L of size n. Each element /; has a random
priority (I;.p), next pointer (I; . next), previous pointer (I;. prev)
and flag (I; . flag).

1 parallel foreach element /; in L do

// set flag if zero or one child

2 li.flag — (pri(l;) < pri(l;.prev)) or (pri(l;) < pri(l;.next))
3 parallel foreach element /; in L do

4 ce—1;

// Execute only if ¢ is a leaf node

5 if ((pri(c) < pri(c.prev)) and (pri(c) < pri(c.next))) then

// Stop when list is contracted into one node
6 while not (c.prev = null and c.next = null) do
7 Splice ¢ out
8 Let ¢’ be c.prev or c.next with a smaller priority
// If ¢ is not the last child of ¢/, quit
9 if TEST-AND-SET(c’.flag) then break
10 cec

11 Function pri(v)
12 ‘ if v = null then return co else return v.p

of a node c finished contracting, we trigger c to start contracting
immediately. The child of ¢ that finished later is responsible for take
over ¢, and thus can start immediately. In particular, in the algorithm,
a parallel-for loop (Line 3) generates n tasks (threads) each for a
node in the list. The loop can be implemented by binary forking
for log, n levels. Only leaf nodes start the execution, and non-leaf
nodes quit immediately (Line 5. These leaves will splice themselves
out (Line 7), and then try to move upward and splice its parent
(Line 8). We note that a node ¢ cannot be contracted until both of
its children have been spliced out. Thus we make the child of ¢ that
finishes its splicing later to take over c. This is achieved by letting
the two children compete through TEST-AND-SET the flag field in ¢
(Line 9). Whichever arrives later takes over and contracts the parent
¢’ (Line 10), and the first one simply terminates its computation
(Line 9) and let the second one to take continuation. As an example
in Figure 1, the threads for nodes 1 and 2 will both try to work on
node 5 after they finish their first splicings. They will both attempt
to TEST-AND-SET the flag of node 5. The one coming first succeeds
and terminates, and the later one will fail and continue splicing
node 5. We initialize the flag for each node to be 0, except for those
with 0 or 1 child (Line 2), for which we set flag directly to 1 (they
do not need to wait for two children).

THEOREM 3.1. Algorithm 1 for list contraction does O(n) work
(worst case) and has O(logn) span whp in n in the binary-forking
model.

Proor. The correctness of this algorithm can be shown as it ap-
plies the same operations as the list contraction algorithm in [87],
although Algorithm 1 runs in a much less synchronous manner. The
execution of each thread corresponds to a tree-path in the depen-
dence structure starting from a leaf node and ending on either the
root or when winning a TEST-AND-SET. A possible decomposition
of the example is shown in the caption of Figure 1. This observation
also indicates that the number of iterations of the while-loop on

93

SPAA 20, July 15-17, 2020, Virtual Event, USA

line 9 for any task is O(log n) whp, bounded by the tree height. The
span is therefore O(log n) whp. The work is linear because every
time Line 7-9 is executed, one element will be spliced out. [m]

It is worth noting that, even disregarding the improved span for
the binary-forking model, we believe this algorithm is conceptually
simpler and easier to implement compared to existing linear-work,
logarithmic-time PRAM algorithms [9, 48]. Our algorithm requires
starting with a random permutation (discussed further in Section 6).
We note that it is straightforward to extend the analysis to using
integer priorities instead of random permutations, where the integer
priorities are chosen independently and uniformly from the range
[1, nk], for k > 2, with ties broken arbitrarily.

Binary Forking Wyllie. Here we outline a binary forking version
of Wyllie’s algorithm with O(n log n) work and O(log n) span, both
in the worst case. It is useful for our simulation of logspace in
BJF!. The idea is to allocate an array of log, n cells per node of
the list, each containing two pointers and a boolean value used for
TS. At the end of the algorithm the two pointers in the i-th cell
(level) will point to the element 2! links forward and 2¢ backward
in the list (or a null pointer if fewer than 2! before or after). The
algorithm initially forks off a thread for each node at level 1 in the
list. A thread is responsible for splicing out its link at the current
level. It does this by writing a pointer to the other neighbor to the
corresponding pointer cells of its two neighbors (i.e., splicing itself
out), then doing a TS on the boolean flag of each neighbor. For each
flag on which it gets a 1 (i.e., it is the second thread to write the
pointer at this level), it forks a thread to splice out that neighbor
at the next level. Since this fork at the next level only occurs on
the second update to the node, both links at the next level must
already be available. In general, each splicing step may create 0,
1, or 2 child threads, depending on the timing of arrivals at the
neighbors. The first and last element in each list must start with its
flag set and writes a null pointer to its one neighbor. As in Wyllie’s
original algorithm, it is easy to keep counts to generate the ranks
of each node in a list. The total work is proportional to the number
of cells, O(nlog n) since each cell gets processed once. Since each
fork corresponds to performing a splice at a strictly higher level,
the span is proportional to the number of levels, i.e., O(log n).

4 SORTING

In this section we discuss optimal parallel algorithms to compar-
ison sort and semisort [92] n elements using O(nlogn) and O(n)
expected work respectively, and O(log n) span whp. For comparison
sort, the best previous work-efficient result in the binary-forking
model requires O(log nlog log n) span [45]. In this paper, we discuss
a relatively simple algorithm (Algorithm 2) that sorts n elements in
O(nlog n) expected work and O(log n) span whp.

Our algorithm, given in Algorithm 2, is based on sample sort-
ing [59]. It runs recursively. In the base case when the subproblem
size falls below a constant threshold, it sorts sequentially. Other-
wise, for a subproblem of size n, the algorithm selects nl/3 log, n
samples uniformly at random, and uses the quadratic-work sorting
algorithms to sort these samples (i.e., by making all pairwise com-
parisons). These two steps can be done in o(n) work and O(log n)
span in the binary-forking model. Then the algorithm subselects

Session: Full Paper

Algorithm 2: COMPARISON-SORT(A)

Letn = |A]
if n is a constant then Sort the base case and return
Randomly select n'/3 log, n samples

1

2

3

4 Use quadratic sorting algorithm to sort the samples
5 Subsample n'/ pivots from the samples

6

Distribute all elements in A to n!/3 + 1 buckets based on the samples
(to form a partition of A to Ay, A, . .
Line 3

parallel foreach i < 0 to n'/3 do CoMPARISON-SORT(A;)

., Anl/g). If failed, restart from

g

every log, n-th sample to be a pivot, and use these nl/3 pivots to
partition all elements into n!/3 + 1 buckets.

LEMMA 4.1. In the distribution step on Line 6 in Algorithm 2, the
number of elements falling into one bucket is no more than crrn®3
with probability at least 1 — n=“! for certain constant r and any
constant c1 > 1.

This follows from Chernoff bound. The algorithm then allocates
nl/3 41 arrays, one per bucket, each with size 201rn2/3. Then in
parallel, each element uses binary search to decide its corresponding
bucket. It then tries to add itself to a random position in the bucket
by using a TS on a flag to reserve it. If the TS fails, it tries again since
the slot is already taken. We limit the number of retries for each
element to be no more than c; log, n. If any element cannot find
an available slot in this number of retries, the algorithm restarts
the process from the random-sampling step (Line 3). Otherwise,
after all elements are inserted, the algorithm packs the buckets into
contiguous elements for input to the next recursive calls.

THEOREM 4.2. Algorithm 2 sorts n elements in O(nlog n) expected
work and O(log n) span whp in the binary-forking model.

To bound span, we need to consider the number of retries and the
cost of each retry along any path to a leaf in the recursion tree. The
number of retries is upper bounded by a geometric distribution since
each retry is independent, but the probability of that distribution

depends on the level of recursion since problem sizes get smaller.

Furthermore the span of a try also depends on the level of recursion
(it is bounded by O(log n;), where n; is the input size of level i). To
help analyze the span, we will use the following Lemma.

LEmMMA 4.3. Let X7 -

variables, and X; has success probability p; = 1 — 275" \wherek > 1
is a constant. Then 2,72, k' - X; < O(ck™) holds with probability at
least 1 — 27¢k™ for any given constant ¢ > 1.

-+, Xm be independent geometric random

Proor. We view the contribution from each term k' - X; to the
sum based on a series of independent unbiased coin flips. The
term k’ - X; can be considered as the event that we toss k! coins
simultaneously, and if all k' coins are heads we charge k! to the sum
and this process repeats (corresponding to the geometric random
variable with probability p; = 1 - 27%"). However, in this analysis,
we toss one coin at a time until we get a tail, and we charge 1
to the sum for each head before the tail. In this way we can only
overestimate the sum. Hence, 12, k' - X; can be upper bounded
by the number of heads when tossing an unbiased coin until we see

94

SPAA 20, July 15-17, 2020, Virtual Event, USA

m tails. We use Chernoff bound? Pr(X < (1-8)u) < 8_52”/2, where
X is the sum of indicator random variables, and y = E[X]. Now let’s
consider the probability that we see more than gk™ heads before
m tails. Since m < k™, we analyze the probability to see no more
than k™ tails, which only increases the probability. In this case, we
make (q + 1)k™ tosses,so g =(q+ 1)k™/2and § = (g —1)/(qg + 1).
The probability is therefore no more than:

g-1* (g+ k"™ (g - %"
xp|-|——| - ——— | = exp| - ———
P q+1 4 P 4(qg+1)
(¢* - 2q + DK™ (¢° —3q - k™
=exp|—-——"F"—— <xp|-——F— -
S ITPEY © ig+1)
=exp ——(q + 1)(q — 4)km = e_(%_l)km < 2_(%_1)](”1
4(qg+1)
This proves the lemma by setting ¢ = 4(c + 1). O

Proor oF THEOREM 4.2. The main challenge is to analyze the
work and span for the distribution cost (Line 6), especially to bound
the cost of restarting the distribution step. There are two reasons
that the call return to Line 3: badly chosen pivots such that some
buckets contain too many elements and become overfull (defined
later), or unlucky random number sequences such that the positions
tried by a particular element are all occupied (for more than c; logn
consecutive slots). We say a bucket is overfull if it has more than
¢1rn?/? elements (more than half of the allocated space). From
Lemma 4.1, the probability of this event is no more than n™“1. We
pessimistically assume that the distribution step restarts once a
bucket is overfull. Therefore, for the latter case with a bad random
number sequence, the allocated array is always no more than half-
full, which is useful in analyzing this case.

We now analyze the additional costs for the restarts. For the
latter case, with probability at most nl=c at least one element
retries more than c; log, n times. For the first case, the probability
that any bucket is oversize is n!~¢!. By setting c¢; and c; to be at least
2, the expected work including restarts is asymptotically bounded
by the first round of selecting pivots and distributing the elements.
The work of the first round is bounded by O(nlog n) since there
are n elements, each doing a binary search and then each trying
at most O(log n) locations. Therefore the expected work for each
distribution is O(n; log n;), where n; is the size of the input.

The total number of elements across any level of recursion is at
most n since every element goes to at most one bucket. Also the size
of each input reduces to at most kn?/3 from level to level, for some
constant k. The total expected work across each level of recursion
therefore decreases geometrically from level to level. Hence the
total work is asymptotically bounded by the work at the root of the
recursion, which is O(n log n) in expectation.

We now focus on the span, and first analyze the case for the
chain of subproblems for one element. The number of recursive
levels is O(loglog n). For each level with subproblem size n’, let
¢ = c1 = ¢z > 2. The probability for a restart is less than 2(n”)1~¢,
and the span cost for a restart is clog, n. Treating the number of
restarts in each level as a random variable, we can plug in Lemma 4.3
with k = 1.5 and m = log; 5log, n, and show that the span of this
chain is O(ck™) = O(c log n) with probability at least 1 —27¢ logn —

2https://en.wikipedia.org/wiki/Chernoff_bound.

https://en.wikipedia.org/wiki/Chernoff_bound

Session: Full Paper

1 - n~°. Then by taking a union bound for the n chains to all leaves
of the recursion, the probability is at least 1 — n!~¢. Combining the
analyses of the work and the span proves the theorem. O

Semisorting. Semisorting reorders an input array of n keys such
that equal keys are contiguous but different keys are not necessarily
in sorted order. It can be used to implement integer sort with a
small key range. Semisorting is a widely-used primitive in parallel
algorithms (e.g., the random permutation algorithm in Section 6).

We note that with the new comparison sorting algorithm with
optimal work and span, we can plug it in the semisorting algorithm
by Gu et al. [65] (Step 3 in Algorithm 1). The rest of the algorithm
is similar to the distribution step but just run for one round, so it
naturally fits in the binary-forking model with no additional cost.
Hence, this randomized algorithm is optimal in the binary-forking
model—O(n) expected work and O(log n) span whp.

5 ORDERED SET-SET OPERATIONS

In this section, we show deterministic algorithms for ordered set-
set operations (UNION, INTERSECTION and DIFFERENCE) based on
weight-balanced binary search trees. In particular we prove the
following theorem.

THEOREM 5.1. UNION, INTERSECTION and DIFFERENCE of two
ordered sets of size n and m < n can be solved in O(m log(& + 1))
work and O(log n) span in the binary-forking model. This is optimal
for comparison-based algorithms.

Our approach is based on a (roughly vn-way) divide-and-conquer
algorithm with lazy reconstruction-based rebalancing. At a high-
level, for two sets of size n and m (< n), we will split both trees with
d — 1 pivots equally distributed among the m + n elements, where
d = ©(VYm + n) is a power of 2. The algorithm runs recursively until
the base case when m’ < Vm’ + n’, where m’ and n’ are the sizes
of the two input trees in the current recursive call, respectively.
For the base cases, we apply a weaker (work-inefficient) algorithm
discussed in the full version of this paper [24]. The work-inefficient
approach will not affect the overall asymptotic bound because of
the criterion at which the base cases are reached. After that, the
d pieces are connected using the pivots. At this time, rebalancing
may occur, but we do not handle it immediately. Instead, we apply
a final step at the end of the algorithm to recursively rebalance the
output tree based on a reconstruction-based algorithm discussed
in Section 5.4. The high-level idea is that, whenever a subtree has
two children imbalanced by more than some constant factor (i.e.,
one subtree is much larger than the other one), the whole subtree
gets flattened and reconstructed. Otherwise, the subtree can be
rebalanced using a constant number of rotations. An illustration
of our algorithm is shown in Figure 2. Due to page limitation, we
put the algorithm description of base case algorithms, and the cost
analysis of the algorithm in the full version of the paper [24], and
only briefly show some intuition in Section 5.5.

5.1 Background and Related Work

Ordered set-set operations UNION, INTERSECTION and DIFFERENCE
are fundamental algorithmic primitives, and there is a rich literature
of efficient algorithms to implement them. For two ordered sets of
size n and m < n, the lower bound on the number of comparisons

95

SPAA 20, July 15-17, 2020, Virtual Event, USA

(and hence work or sequential time) is Q(mlog(Z + 1)) [70]. The
lower bound on span in the binary-forking model is Q(log n). Many
sequential and parallel algorithms match the work bound [5, 21,
31, 38]. In the parallel setting, some algorithms achieve O(log n)
span on the PRAM [80, 81]. However, they are not work-efficient,
requiring O(m log n) work. There is also previous work focusing on
1/O efficiency [15] and concurrent operations [37, 57] for parallel
trees, and parallel data structures supporting batches [4, 64, 78].
Some previous algorithms achieve optimal work and polylog-
arithmic span. Blelloch and Reid-Miller proposed algorithms on
treaps with optimal expected work and O(log n) span whp on an
EREW PRAM with scan operations, which translates to O(log? n)
span in the binary-forking model. Akhremtsev and Sanders [5]
described an algorithm for array-tree UN1ON based on (a, b)-trees
with optimal work and O(log n) span on a CRCW PRAM. Blelloch
et al. [31] proposed ordered set algorithms for a variety of bal-
ancing schemes [21] with optimal work. All the above-mentioned
algorithms have O(log mlog n) span in the binary-forking model.
There have also been parallel bulk operations for self-adjusting data
structures [4]. As far as we know, there is no parallel algorithm
for ordered set functions (UNTON, INTERSECTION and DIFFERENCE)
with optimal work and O(log n) span in the binary-forking model.

5.2 Preliminaries

Given a totally ordered universe U, the problem is to take the union,
intersection, and difference of two subsets of U. We assume the
comparison model over the elements of U, and require that the
inputs and outputs can be enumerated in-order with no additional
comparison (i.e., no cheating by being lazy).

We assume the two inputs have sizes m and n > m stored
in weight-balanced binary trees [79] with balancing parameter
a (WBB[«] tree). The weight of a subtree is defined as its size plus
one, such that the weight of a tree node is always the sum of the
weights of its two children. WBB[«] trees maintain the invariant
that for any two subtrees of a node, the weights are within a factor
of @ (0 < @ < 1—1/42) of each other. For the two input trees,
we refer to the tree of size n as the large tree, denoted as Tp, and
the tree of size m as the smaller tree, denoted as Ts. We present
two definitions as follows. Note that these two definitions are more
general than the definitions of ancestors and descendants, since k
may or may not appear in T.

DEFINITION 1. In a tree T, the upper nodes of an element k € U,
are all the nodes in T on the search path to k (inclusive).

DEFINITION 2. In a tree T, an element k € U falls into a subtree
Ty €T, if the search path to k in T overlaps the subtree Ty.

Persistent Data Structures. In this section, we use underlying
persistent [55] (and actually purely functional) tree structure, which
uses path-copying to update the weight-balanced trees. This means
that when a change is made to a node v in the tree, a copy of the
path to v is made, leaving the old path and old value of v intact.
Figure 3 shows an example of inserting a new element into the tree.
Such a persistent insertion algorithm also copies nodes that are
involved in rotations since their child pointers change.

In particular, our algorithm will use a persistent SpLIT(T, k) func-
tion on WBB|«] trees as discussed in [21, 88]. This function splits

Session: Full Paper

1. Find d — 1 splitters
S1,Sg, - Sq—1, Which are the b-th, T:
2b-th, ..., elements globally. In this T.
. m+n . * 2
example b |sTand disd".
*: In general both b and d are

G)(\/m + n). bd=m+nanddis
a power of 2.

Dividing

2. Split the two trees using
the d splitters

Recursively
Combining

3. Whenm < /m + n (i.e., m < b), base case algorithms are applied.

Figure 2: An illustration of the set-set algorithms. We first split both trees into chunks by the glaobally b-th, 2b-th, ..., elements. Here b =

T = set_set(T,T,) i i

Connecting

SPAA 20, July 15-17, 2020, Virtual Event, USA

5. Rebalance and fill in
the tombs.

4. Connect combined
trees from recursive calls
using splitters. Some of
the splitters (in the
skeleton) can be tombs
(grey).

The Sketch T’

m+n
]

but in general b = (n + m)/d should be ©(vm + n) where d = ©(vm + n) is a power of 2. We then recursively sketch each pair of chunks, until
we reach the base case and call the base case algorithms. We then connect the results with pivots, and get the sketch of the result tree. Finally

we rebalance the tree structure and fill in all tombs.

T' = insert(T, 6)

r 7 Figure 3: A persistent insertion on a
tree. The algorithm basically copies all

)7 tree nodes on the insertion path, such

that the new (copied) root represents the

a 3 output tree, and the input tree is intact

represented by the old root pointer. This
61 (9 algorithm costs O(log n) time for an in-
put tree of size n.

Algorithm 3: T « Set_SET(T}, T2), the main algorithm for
ordered set-set operations

Input: Two weight-balanced trees storing two ordered sets.
Output: A weight-balanced tree T storing the
union/intersection/difference of the two input sets.
1 if |T1| < |T3| then return SET_SET(T3, T1)
T’ « SkeTcH(Ty, T>)

2 // Algorithm 4
3 T « REBALANCE(T’, FALSE)
4

// Algorithm 5
return T

tree T by key k into two trees and a bit, such that all keys smaller
than k and larger than k will be stored the two output trees, respec-
tively, and the bit indicates if k € T. Because of path-copying, the
persistent SPLIT returns two output trees and leaves the input tree
intact. This algorithm costs O(log n) work on a tree of size n.

5.3 The Main Algorithms

We first give a high-level description of our algorithms for the
three set-set functions. As mentioned, we denote the larger input
tree as Tr, and the smaller input tree as Ts. We use two steps,
sketching and rebalancing. The sketching step aims at combining
the elements in the two input trees in-order into one tree, which
is not necessarily balanced. The rebalancing step will apply a top-
down algorithm to rebalance the whole tree by the WBB[«] criteria.

Our sketching algorithm is based on a d-way divide-and-conquer
scheme, where d = ©(\/n + m) is a power of 2. It is a recursive

96

Algorithm 4: T’ « Sketcu(Ty, Tz)

Input: Two WBBJ[«] trees. T is from the original larger tree Ty, and
T, is from the original smaller tree Ts.
Output: A binary tree sketch T’ representing the
union/intersection/difference of the two input sets.

[

Let n’ « |T;y| and m’ « |T3|

)

if n’ is 0 then return T,

if m’ is 0 then return T;

4 if m’ < V' + m’ then return Base_Case(Ty, T)
d « ollogy Vm'+n"]

w

5

6 b— (m +n’)/d

7 Let splitter, « —oo and splitter ; « +oo

8 parallel fori < 1tod —1do

9 Find splitter;, which is the (i - b)-th element in T; and T,
(duplicate value counts twice) by dual-binary search

10 Let f; indicate if splitter; is a tomb

11 parallel for i < 1to d do

12 Split Ty using splitter;_; and splitter;, output tree Ty ;

13 Split T, using splitter;_; and splitter;, output tree Ty ;

14 T] « SkeTcH(TY, 1, To, 1)

15 Connect T}, . . ., T/, using splitter,, . . ., splitter;_;

16 return the result tree

algorithm, for which the two input trees are denoted as T; and T>.
In particular, T; contains a subset of Ty and T contains a subset
of Ts. The algorithm will combine the two subsets and return one
result tree. Note that even though T; € Ty and T, C Ty, the sizes
of Tj is not necessarily larger than T,. Throughout the recursive
process, we track the following quantities for each tree node v:

(1) The size of the subtree, noted as size(v).

(2) The number of elements originally from Ty, noted as large(v).

(3) The number of elements originally from T, noted as small(v).

(4) The number of elements appearing both in Ty and Ts, noted
as common(v).

Session: Full Paper

Algorithm 5: (T, e) <« ReBaLaNce(T’, last)

Input: A tree sketch 77, and a boolean flag last indicating if the last
element should be extracted.
Output: A valid weight-balanced tree T with no tombs. If last is true,
e is the last element extracted from 7”.
Note : EFFECTIVESIZE(T) returns the number of non-tombs in T.

if EFFECTIVESIZE(T”) is 0 then return (&, &)

if T’ is obtained by base cases (Line 4 in Algorithm 4 then
‘ if last then return (REMOVELAST(T”), LAsT(T’))

[

else return (T’, &)
if no nodes in Ts fall into T’ (by checking small(T”)) then
if last then return (REMOVELAST(T”), LAsT(T’))
‘ else return (T’, &)
if last then b «— lelse b «— 0
if EFFECTIVESIZE(LEFTTREE(T”)) + 1 and
EFrFeCTIVESIZE(RIGHTTREE(T”)) — b + 1 differs by more than a factor
of 2/« then
10 Flatten T’ and reconstruct it (if last then extract the last element
in T')
11 return the new tree

© ® N U oA W N

12 if the root of T’ is a tomb then ¢ « true else ¢ « false
13 In parallel:

14 (Ty, ;) = REBALANCE(LEFTTREE(T”), t)

15 (T, e,) = REBALANCE(RIGHTTREE(T’), last)

16 if EFFECTIVESIZE(RIGHTTREE(T”)) is 0 and last then
17 T<T

18 if the root of T’ is a tomb then e «— ¢;

19 else e «— T’.root

20 else

21 e« e,

22 if the root of T” is a tomb then T « ConNEecT(T}, ej, Ty)
23 else T « ConNEcT(T}, T’ .root, Ty)

24 return (REBALANCEBYROATATION(T), €)

The tree size size(v) is required by the WBB[«] invariant. The other
three are used for Ty — Ts, Ts — T1, and Ts N Ty, respectively. The
generic algorithm for all three operations is given in Algorithms 3, 4,
and 5. An illustration is shown in Figure 2. The difference between
the three set-set functions is only in the base cases.

We now present the two steps of the algorithm in details:

(1) Sketching (Algorithm 4). This step generates an output tree T’
with all elements in the result, although not rebalanced. There
are three subcomponents in this step. Denote n’ = |Ty| and
m’ = |Tz|, which means the number of tree nodes handled by
this recursive call that are originally from the larger and smaller
tree, respectively. As mentioned, m’ can be even larger than n’
in some of the recursive calls.

(a) Base Case. When m’ < Vn’ + m’, the algorithm reaches the
base case. It calls the work-inefficient algorithm to generate a
balanced output tree in O(m’ log n”) work and O(log n’) span,
which are presented in the full version of this paper [24].

(b) Dividing. We then use d — 1 pivots to split both input trees
into d chunks, and denote the partitioning of Ty as Ty {1, .. d}»
and Tz as Ty (1, ... q}- The d — 1 pivots are the global b-th, 2b-
th, ...elements in the two trees, where b = (n + m)/d, so
that |Ty,;| + |T,;| for all i have the same value (or differ by

97

SPAA 20, July 15-17, 2020, Virtual Event, USA

at most 1). All the splits (Line 12-13) can be done in paral-
lel using a persistent split algorithm on weight-balanced
trees [21]. We then apply the algorithm recursively on each
pair of chunks.

Note that not all the pivots should appear in the output tree
of the entire algorithm, depending on the set function. For
example, for INTERSECTION, those pivots that only appear
in one tree will not show up at the end. In this case, in the
SKETCH step, we will mark such pivot nodes as tombs, and
filter them out later in the rebalancing step.

Connecting. After the dividing substep and recursive calls,
we have d — 1 pivots (including tombs), and d combined
chunks returned by the recursive calls. In the connecting
substep, we directly connect them regardless of balance. Since
d is a power of 2, the d — 1 pivots will form a full balanced
binary tree structure on the top log, d levels, and all the
chunks output from recursive calls will dangle on the d pivots.
This process is shown in Line 15.

The output T’ of the SKETCH step is a binary tree, which may
or may not be balanced. We will call T’ the sketch of the final
output of the algorithm. We also call the top log, d levels in
T’ consists of pivots the skeleton of T’. We note that T’ may
contain tombs, and we will filter them out in the next step.
Rebalancing. We will use a reconstruction-based rebalancing
algorithm to remove the tombs and rebalance the sketch tree T’
(Algorithm 5, see more details in Section 5.4). This rebalancing
algorithm is stand-alone, and is of independent interest.

—
e]
~

@

5.4 The Rebalancing Algorithm

We now present the reconstruction-based rebalancing algorithm.
A similar idea was also used in [29]. In this paper, we use this
technique to support better parallelism instead of write-efficiency.

We use the effective size of a subtree as the number of elements
in this subtree excluding all tombs. The effective size for a tree
node v can be computed based on size(v), large(v), small(v) and
common(v), depending on the specific set operation. It is used to
determine if two subtrees will be balanced after removing all tombs.

The rebalancing algorithm is given in Algorithm 5. The algo-
rithm recursively settles each level top-down. For a tree node, we
check the effective sizes of its two children and decide if they are
almost-balanced. Here almost-balanced indicates that sizes of the
two subtrees differ by at most a factor of 2/ a3 If not, we flatten
the subtree and re-build it. Otherwise, we recursively settle its two
children, and after that we re-connect the two subtrees back and
rebalance using at most a constant number of rotations.

We also need to filter out tombs, since they should not appear in
the output tree. We do this recursively. If the current subtree root
of T” in Algorithm 5 is a tomb, we will need to fill it in using the
last element in its left subtree. We note that the effective size of the
left subtree cannot be 0 (otherwise the algorithm returns at Line
11). To do this, the algorithm will take an extra boolean argument
last denoting if the last element of the result needs to be extracted
(returned as e in the output of Algorithm 5). In this case, if the root

3Generally speaking, the constant 2 here can be any value, but here we use 2 for
convenience.

Session: Full Paper

of T’ is a tomb, the algorithm simply passes a true value to the left
recursive call, getting the last element to replace the tomb.

For computing the last value (denoted as r), there are two cases.
First, if the subtree needs rebalancing, then after flattening the
elements into an array, we simply take out the last element in
the array as r and return. Extracting the last element is inlined in
the process of reconstruction (Line 10). Otherwise, we recursively
deal with the two subtrees. If 1ast is true, we also extract the last
element in its right subtree.

Multiple base cases apply to this rebalancing algorithm. If the
effective size of T’ is 0, the algorithm directly returns an empty
tree and an empty element. The second case is when no element
in Ts falls into T’. This can be determined by looking at small(T").
Note that all the chunks in the sketching algorithm is designed to
be the same size. Therefore, in this case, the whole subtree should
be (almost) perfectly balanced, so we directly return it. These base
cases are essential in bounding the work of rebalancing, since we
do not need to traverse the whole subtree for these special cases.

5.5 Base Case Algorithms and Cost Analysis

Due to page limitation, we put the algorithm description of base
case algorithms and the cost analysis of the algorithm in the full
version of this paper [24]. Here we show a very brief description
about the intuition.

Base case algorithms. The base case algorithms BAse_CasE(Ty, Tz)

in Algorithm 4 use an work-inefficient version (O(m’ log n”) work
and O(log(n’ + m’)) span) of the set-set algorithms. These algo-
rithms are applied when m’ < Vn’ + m’, which guarantees the
total base case cost is O(mlog(Z + 1)). The intuition of the base
case algorithms is to search all m’ elements from Ty in T2, and based
on the set operation being performed, add (remove) the m” elements
into (from) Tz. The same rebalancing algorithm as in Section 5.4 is
applied to guarantee a balanced output tree. Detailed description is
in the full version of this paper [24].

Span. We will show that all base cases, SKETcH, and REBALANCE
algorithms have span O(log(n + m)). We first prove that the height
of the sketch T’ is O(log(n + m)) in the full version of this paper
[24]. The span of the base cases is straight-forward. For SKETCH,
this bound holds because of the vm + n-way divide-and-conquer.
For REBALANCE, the span holds because the algorithm settles each
node top-down, and settling each level in the skeleton only costs
a constant span. For the skeleton of the returned tree, if a node
is nearly-balanced, then a constant number of rotations settles it.
Otherwise, flattening and reconstructing a tree of height h takes
O(h) span, which is also equivalent to a constant per level. In all, the
span is O(log(n + m)). We formally prove the span of the algorithm
in the full paper [24].

Work. For work, we will prove that all base cases, SKETCH,
and REBALANCE algorithms cost work O(mlog(Z + 1)). We first
show that the number of pivots is O(m). Most interestingly, for
REBALANCE, the optimality in work lies in the reconstruction-based
algorithm. For all pivots in the skeleton, if it is nearly balanced,
the rebalancing cost is a constant. Therefore the total work is
proportional to the size of the skeleton, which is no more than
O(mlog(f +1)).

98

SPAA 20, July 15-17, 2020, Virtual Event, USA

To show the total reconstruction work, in the sketch T’, we
mark all upper nodes of the elements in Ts as red. There are at
most O(m Iog(% + 1)) red nodes in T’. We will show that the re-
construction work averaged to each red node is a constant. The key
observation is that, rebalancing for a subtree Tyx € T’ happens only
when there are my > ¢|Ty| red nodes in Ty, where c is a constant.
This is because the two subtrees of Ty are supposed to have the
same size (Vn’ + m’) due to the selection of pivots. However there
can be duplicates in UNION; also INTERSECTION and DIFFERENCE
do not keep all input elements in the output. Therefore there can
be imbalanced in size. We will show that the size of either subtree
changes by no more than my. Therefore, to make them unbalanced,
my has to be at least ¢|Ty| for some constant c. This makes the
average cost per red node to be O(1). Adding the cost of all red
nodes gives the stated optimal work bound. We will formally prove
the work of the algorithm in the full version of this paper [24].

6 RANDOM PERMUTATION

Generating random permutation in parallel is useful in parallel
algorithms, and is used in the list and tree contraction algorithms in
this paper. Hence it has been well-studied both theoretically [6, 8, 51,
61-63, 66, 68, 77, 82, 87] and experimentally [49, 67, 87]. To the best
of our knowledge, none of these algorithms can be implemented
in the binary-forking model using linear work and O(log n) span.
We now consider the simple sequential algorithm of Knuth [76]
(Durstenfeld’s [56]) shuffle that iteratively decides each element:

1 Function KNUTHSHUFFLE(A, H)

2 Ali] « iforalli=0,...,n—1
3 fori—n-1to0do

4 ‘ swap(Ali], A[H[i]])

where H[i] is an integer uniformly drawn between 0 and i — 1, and
A[-] is the output random permutation.

A recent paper [87] shows that this sequential iterative algorithm
is readily parallel. The key idea is to apply multiple swaps in parallel
as long as the sets of source and destination locations of the swaps
are disjoint. Figure 4 shows an example, and we can swap location
5and 2, 7 and 1, 6 and 3 simultaneously in the first round, and the
three swaps do not interfere each other. If the nodes pointing to
the same node are chained together and the self-loops are removed,
we get the dependences of the computation. An example is given
in Figure 4(b). Similar to list contraction, we can execute the swaps
for all leaf nodes and remove them from the tree in a round-based
manner. It can be shown that the modified dependences by chaining
all the roots in the dependence forest (as shown in Figure 4(c))
correspond to a random binary search tree, and the tree depth
is again bounded by O(log n) whp. The span of this algorithm is
therefore O(log? n) whp in the binary-forking model.

Similar to the new list contraction algorithm discussed in Sec-
tion 3, the computation can be executed asynchronously. Namely,
the swaps in different leaves or subtrees are independent. Therefore,
once the dependence structure is generated, we can apply a similar
approach as in Algorithm 1, but instead of splicing out each node,
we swap the values for the pair of nodes.

Session: Full Paper

@D @\ @
@ ®
@ ® O O—©
® (c) The corresponding

(a) The swaps (b) The dependences binary tree

Figure 4: An example when H = [0, 0, 1, 3, 1, 2, 3, 1]. Figure (a) indi-
cates the destinations of the swaps shown by H. The dependences of
the swaps are shown by Figure (b), indicating the order of the swaps.
Figure (c) links the roots of the forest to make it a binary tree.

The remaining question is how to generate the dependence struc-
ture. We do this in two steps. We first semisort all nodes based on
the destination locations (grouping the nodes on all the horizontal
chains in Figure 4(b) or right chains in Figure 4(c)). Then we use an
algorithm that takes quadratic work to sort the nodes within each
group, and connect the nodes as discussed.

THEOREM 6.1. The above algorithm generates a random permu-
tation of size n using O(n) expected work and O(log n) span whp in
the binary-forking model.

ProoF. Similar to the list contraction algorithm in Section 3, this
algorithm applies the same operations as the random permutation
algorithm in [87], and the swaps obey the same ordering for any
pair of nodes with dependency. The improvement for span is due
to allowing asynchrony for disjoint subtrees.

The cost after the construction of dependence tree is the same
as the list contraction algorithm (Algorithm 1), which is O(n) work
and O(log n) span whp. For constructing the dependence tree, the
semisort step takes O(n) expected work and O(log n) span whp
using the algorithm in Section 4. The quadratic work sorting can
easily be implemented in O(log n) span whp, as in Section 4. We
now analyze the work to sort the chains.

Let a 0/1 random variable A; ; is 1if H[i] = j for j < i, and the
probability Pr[A; j = 1] is 1/i. Pr[A; jAy ; = 1] is then 1/(ik) for
J < i < k since they are independent. The expected overall work
for sorting is (omitting constant in front of A; ;).

n n

2
E[WRandPerm(n)] =E Z ZAi,j

=1\i=j

Combining all results gives the stated theorem. O

7 RANGE MINIMUM QUERIES

Given an array A of size n, the range minimum query (RMQ) takes
two input indices i and j, and reports the minimal value within
this range. RMQ is a fundamental algorithmic building block that is
used to solve other problems such as the lowest common ancestor

99

SPAA 20, July 15-17, 2020, Virtual Event, USA

(LCA) problem on rooted trees, the longest common prefix (LCP)
problem, and lots of other problems on trees, strings and graphs.

An optimal RMQ algorithm requires linear preprocessing work
and space, and constant query time. It can be achieved by a variety
of algorithms (e.g., [7, 10, 16, 17, 58]). These algorithms are based
on the data structure referred to as the sparse table that can be pre-
computed in O(nlog n) work where n is the input size, and constant
RMQ cost. To further improve the work, the high-level idea in these
algorithms is to chunk the array into O(n/log n) groups each with
size O(log n), find the minima of the groups, and only preprocess
the sparse table for the minima. Within each group, these algo-
rithms use different techniques to preprocess in O(log n) work per
group, and support constant query cost within each group. Then
for a range minimum query (i, j), the minimum can be answered by
combining by the query for the sparse table for the whole groups
in this range, and the query for the boundary groups that contain
elements indexed at i and j. These algorithms can be trivially par-
allelized in the PRAM model using O(log n) span (time), but when
translating to the binary-forking model, the span becomes O(log? n)
in preprocessing the sparse table, and needs to be improved.

For simplicity, we first assume the number of groups n’ is a
power of 2. In the classic sparse table, we denote T; j as the minimal
value between group range i and i + 2K — 1. It can be computed

as min{Ti’k_l, Ti+2k*1,k—1}' Let k = [log, (j — i)]. Then for query

from group i to j(> i), we have RMQ(i, j) = min{T,-’k, 7}_2k+1’k}.
Directly parallelizing the construction for the sparse table uses
O(log? n) span—O(log n) levels in total and O(log n) span within
each level. We now consider a variant of the sparse table which is
easier to be generated in the binary-forking model and equivalently
effective.

In the modified version, we similarly have log, n’ levels, and in
k-th level we partition the array into n’/ 2k subarrays each with
size 2X . For each subarray, we further partition it to two parts with
equal size, and compute the suffix minima for the left side, and
prefix minima for the right side. We denote Tl.’ « as such value with
index i in the k-th level. For each query (i,]), we find the highest
significant bit that is different for i and j > i. If this bit is the k-th
bit from the right, then we have RMQ(i, j) = min{Titk, T]’k} An
illustration is shown in Figure 6.

We now describe how to compute Tl.’, - We note that the compu-
tation for each subarray is independent, and each takes linear work
and logarithmic span proportional to the subarray size [18]. Since
each element corresponds to log, n’ computed values, the overall
cost is therefore O(n’ - log, n”) = O(n) work and O(log n) span.

THEOREM 7.1. The range minimum queries for an array of size n
can be preprocessed in O(n) work and O(log n) span in the binary-
forking model, and each query requires constant cost.

8 TREE CONTRACTION

Parallel algorithms for tree contraction have received considerable
interest because of its ample applications for many tree and graph
applications [13, 73, 77, 85, 87]. There are many variants of parallel
tree contraction. Here we will assume we are contracting rooted
binary trees in which every internal node has exactly two children.

Session: Full Paper

(a) Leaf nodes
with priorities

(b) Interior nodes with M values in
blue, indicating the subtree maxima

(c) L values in red, computed by
L(v) = min{M(v.1C),M(v.7C)}

SPAA 20, July 15-17, 2020, Virtual Event, USA

(d) The tree after one
round of contraction

(2] (1)
@ & ® O
OO,
® ©

Figure 5: An example of the tree contraction algorithm. It first generates the priority of the leaf node from a random permutation, as shown
in Figure (a). Then every interior node computes the highest priority label in the subtree, and the computed values are shown as the blue
numbers in Figure (b). Then each interior node v is paired with the leaf node that has the priority which is stored in the child node different
from the priority of v. Taking the root node as an example, the priority 5 is different from the right node which has priority 4, so the root
node is paired with the leaf node with priority 4. The pairing results are shown as the red numbers in Figure (c). In this example, leaf nodes
0, 1, and 2 can be contracted simultaneously, and the contracted tree is shown in Figure (d).

Figure 6: An illustration of the modified sparse table in Section 7.

The range is hierarchically partitioned into logarithmic number of
levels, and the prefix and suffix minima are computed as the arrows
indicate. For each query range shown as the red segment, we can
locate a unique level such that the minimum of the range can be
answered by the suffix and the prefix minima (the shaded range).

Any rooted tree can be reformatted to this shape in linear work
and logarithmic span. We assume the tree T has n leaf nodes (and
n — 1 interior nodes). We use v.IC and v.rC to denote the left and
the right child of a node v, respectively.

List contraction can be considered as a degenerated case of tree
contraction when all interior nodes are chained up. As a result, we
do not know an optimal parallel algorithm for tree contraction with
O(n) work and O(log n) span. Similarly, the difficulty in designing
such an algorithm remains in using no synchronization.

Here we consider parallelizing the sequential iterative algorithm
that “rakes” one leaf node at a time. A rake operation removes a
leaf node and its parent node v, and if v is not the root, it sets the
other child of v to replace v as the child of v’s parent. We assign
each leaf node a priority drawn from a random permutation, so
the priority defines a global ordering of the nodes to be removed,
and eventually only one node with the lowest priority remains. By
maintaining some additional information on the tree nodes, we can
apply a variety of tree operations such as expression evaluation,
roofix or leafix, which are useful in many applications [85].

Similar to list contraction, we want to avoid applying two rake
operations simultaneously such that one of the interior nodes is
the parent of the other. Beyond that, we can rake a set of leaf nodes
in parallel. For instance, in Figure 5(a), we can contract leaf nodes
0, 1, 2, and their parents together, as shown in Figure 5(d).

To decide the nodes that can be processed together, we define
M(v) of each interior node v as the lowest priority (maximum value)
of any of the leaves in its subtree (blue numbers in Figure 5(b)).
Based on M(+), we further define L(v) = min{M(v.IC, v.rC)} (red

100

numbers in Figure 5(c)) if v is an interior node, or its own priority
if v is a leaf node. L(v) defines a one-to-one mapping between the
interior nodes and the leaf nodes (except for one leaf node that
stays at the end), and L(v) = u indicates that v will be raked by the
leaf node u. Based on the labeling, the parallel algorithm in [87]
checks every node v, and it can be raked immediately if v’ parent
has an L value smaller than those of v’s sibling and v’s grandparent
(if it exists). Otherwise the node waits for the next round. If we
rake all possible leaf nodes in a round-based manner, the number
of rounds is O(log n) whp, leading to an O(log? n) span whp in the
binary-forking model.

Assuming L(-) has already been computed, we can change the
round-based algorithm to an asynchronous divide-and-conquer
algorithm similar to the list contraction algorithm (Algorithm 1) in
Section 3. The only difference is when setting the flags, since now
there can be 1, 2, or 3 directions that may activate a postponed node
(in list contraction it is either 1 or 2, depending on the initialization
of the flag array). This however, can be easily decided by checking
the number of neighbor interior nodes. Similarly, the last thread
corresponding to the contraction of a neighbor node that reaches
a postponed node activates it and apply the rake operation. Since
the longest possible path has length O(log n), the algorithm for the
contraction phase uses O(n) work, and O(log n) span whp.

The last challenge is computing L(-). As shown in Figure 5(b),
computing M(-) is a leafix operation on the tree (analogy to prefix
minima but from the leaves to the root), which can be solved by the
standard range minimum queries as discussed in Section 7, based
on Euler-tour of the input tree. In Section 3, we discussed the list
ranking algorithm to generate the Euler tour. As a result, computing
M(-) and L(-) uses O(n) work and O(log n) span whp. In summary,
we have the following theorem.

THEOREM 8.1. Tree contraction uses O(n) work and O(log n) span
whp in the binary-forking model.

ACKNOWLEDGEMENT

This work was supported in part by NSF grants CCF-1408940,
CCF-1629444, CCF-1718700, CCF-1910030, CCF-1918989, and CCF-
1919223.

Session: Full Paper

REFERENCES

[1] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. 2002. The Data Locality

(2]

[12

[13

[14

[15

[16

(7

[18

[19

[20

[21

[22

[23

[24

[25

[26

]

]

]

]

]

]

]

]

]

of Work Stealing. Theoretical Computer Science (TCS) 35, 3 (2002).

Umut A. Acar, Arthur Charguéraud, Adrien Guatto, Mike Rainey, and Filip
Sieczkowski. 2018. Heartbeat Scheduling: Provable Efficiency for Nested Paral-
lelism. In ACM Conference on Programming Language Design and Implementation
(PLDI). 769-782.

Kunal Agrawal, Jeremy T. Fineman, Kefu Lu, Brendan Sheridan, Jim Sukha, and
Robert Utterback. 2014. Provably Good Scheduling for Parallel Programs That Use
Data Structures Through Implicit Batching. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA).

Kunal Agrawal, Seth Gilbert, and Wei Quan Lim. 2018. Paralle] Working-Set
Search Structures. In ACM Symposium on Parallelism in Algorithms and Architec-
tures (SPAA).

Yaroslav Akhremtsev and Peter Sanders. 2016. Fast Parallel Operations on Search
Trees. In IEEE International Conference on High Performance Computing (HiPC).
Laurent Alonso and Ren Schott. 1996. A parallel algorithm for the generation of
a permutation and applications. Theoretical Computer Science (TCS) 159, 1 (1996).
Stephen Alstrup, Cyril Gavoille, Haim Kaplan, and Theis Rauhe. 2004. Nearest
common ancestors: A survey and a new algorithm for a distributed environment.
Theory of Computing Systems (TOCS) 37, 3 (2004), 441-456.

Richard J. Anderson. 1990. Parallel Algorithms for Generating Random Per-
mutations on a Shared Memory Machine. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA).

Richard J Anderson and Gary L Miller. 1990. A simple randomized parallel
algorithm for list-ranking. Inform. Process. Lett. 33, 5 (1990), 269-273.

Lars Arge, Johannes Fischer, Peter Sanders, and Nodari Sitchinava. 2013. On (dy-
namic) range minimum queries in external memory. In Workshop on Algorithms
and Data Structures. Springer, 37-48.

N. S. Arora, R. D. Blumofe, and C. G. Plaxton. 2001. Thread Scheduling for
Multiprogrammed Multiprocessors. Theory of Computing Systems (TOCS) 34, 2
(01 Apr 2001).

Sara Baase. 1993. Introduction to Parallel Connectivity, List Ranking, and Euler
Tour Techniques. In Synthesis of Parallel Algorithms, John Reif (Ed.). Morgan
Kaufmann, 61-114.

Naama Ben-David, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan
Gu, Charles McGuffey, and Julian Shun. 2016. Parallel Algorithms for Asym-
metric Read-Write Costs. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA).

Naama Ben-David, Guy E. Blelloch, Jeremy T Fineman, Phillip B Gibbons, Yan
Gu, Charles McGuffey, and Julian Shun. 2018. Implicit Decomposition for Write-
Efficient Connectivity Algorithms. In IEEE International Parallel and Distributed
Processing Symposium (IPDPS).

Michael A. Bender, Alex Conway, Martin Farach-Colton, William Jannen, Yizheng
Jiao, Rob Johnson, Eric Knorr, Sara McAllister, Nirjhar Mukherjee, Prashant
Pandey, et al. 2019. Small refinements to the DAM can have big consequences
for data-structure design. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA). 265-274.

Michael A. Bender and Martin Farach-Colton. 2000. The LCA problem revisited.
In Latin American Symposium on Theoretical Informatics (LATIN). Springer, 88-94.
Omer Berkman and Uzi Vishkin. 1993. Recursive star-tree parallel data structure.
SIAM §. Scientific Computing 22, 2 (1993), 221-242.

Guy E. Blelloch. 1993. Prefix Sums and Their Applications. In Synthesis of Parallel
Algorithms, John Reif (Ed.). Morgan Kaufmann.

Guy E. Blelloch. 1996. Programming Parallel Algorithms. Commun. ACM 39, 3
(March 1996).

Guy E. Blelloch, Rezaul Alam Chowdhury, Phillip B. Gibbons, Vijaya Ramachan-
dran, Shimin Chen, and Michael Kozuch. 2008. Provably good multicore cache
performance for divide-and-conquer algorithms. In ACM-SIAM Symposium on
Discrete Algorithms (SODA).

Guy E. Blelloch, Daniel Ferizovic, and Yihan Sun. 2016. Just Join for Parallel
Ordered Sets. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA).

Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Julian Shun. 2012.
Internally deterministic parallel algorithms can be fast. In ACM Symposium on
Principles and Practice of Parallel Programming (PPOPP).

Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Harsha Vardhan
Simhadri. 2011. Scheduling Irregular Parallel Computations on Hierarchical
Caches. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).
Guy E. Blelloch, Jeremy T. Fineman, Yan Gu, and Yihan Sun. 2019. Optimal
parallel algorithms in the binary-forking model. In arXiv preprint:1903.04650.
Guy E. Blelloch and Phillip B. Gibbons. 2004. Effectively sharing a cache among
threads. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA).

Guy E. Blelloch, Phillip B. Gibbons, and Yossi Matias. 1999. Provably Efficient
Scheduling for Languages with Fine-grained Parallelism. J. ACM 46, 2 (March
1999).

101

[27

[28

[29

[30

)
=

[32

[33

(34

[35

(36]

@
=

[38

[39

[40

[41

~
2

N
=

(48

[49

(50

[51]

[54

[55

SPAA 20, July 15-17, 2020, Virtual Event, USA

Guy E. Blelloch, Phillip B. Gibbons, and Harsha Vardhan Simhadri. 2010. Low
depth cache-oblivious algorithms. In ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA).

Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. 2016. Parallelism in Random-
ized Incremental Algorithms. In ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA).

Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. 2018. Parallel Write-
Efficient Algorithms and Data Structures for Computational Geometry. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA).

Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. 2020. Randomized Incre-
mental Convex Hull is Highly Parallel. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA).

Guy E. Blelloch and Margaret Reid-Miller. 1998. Fast Set Operations Using Treaps.
In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).

Guy E. Blelloch and Margaret Reid-Miller. 1999. Pipelining with futures. Theory
of Computing Systems (TOCS) 32, 3 (1999).

Guy E. Blelloch, Harsha Vardhan Simhadri, and Kanat Tangwongsan. 2012. Par-
allel and I/O efficient set covering algorithms. In ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA).

Robert D. Blumofe and Charles E. Leiserson. 1998. Space-Efficient Scheduling of
Multithreaded Computations. SIAM . Scientific Computing 27, 1 (1998).

Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling multithreaded
computations by work stealing. . ACM 46, 5 (1999), 720-748.

Allan Borodin. 1977. On Relating Time and Space to Size and Depth. SIAM j.
Scientific Computing 6, 4 (1977), 733-744.

Anastasia Braginsky and Erez Petrank. 2012. A lock-free B+ tree. In ACM Sym-
posium on Parallelism in Algorithms and Architectures (SPAA). 58-67.

Mark R. Brown and Robert Endre Tarjan. 1980. Design and Analysis of a Data
Structure for Representing Sorted Lists. SIAM J. Scientific Computing 9, 3 (1980),
594-614.

Zoran Budimli¢, Vincent Cavé, Raghavan Raman, Jun Shirako, Sagnak Tasirlar,
Jisheng Zhao, and Vivek Sarkar. 2011. The design and implementation of the
habanero-java parallel programming language. In Symposium on Object-oriented
Programming, Systems, Languages and Applications (OOPSLA). 185-186.
Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan
Kielstra, Kemal Ebcioglu, Christoph Von Praun, and Vivek Sarkar. 2005. X10: an
object-oriented approach to non-uniform cluster computing. In ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and Applications
(OOPSLA). 519-538.

Rezaul Chowdhury, Pramod Ganapathi, Yuan Tang, and Jesmin Jahan Tithi. 2017.
Provably Efficient Scheduling of Cache-oblivious Wavefront Algorithms. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA). 339-350.
Rezaul A. Chowdhury, Vijaya Ramachandran, Francesco Silvestri, and Brandon
Blakeley. 2013. Oblivious algorithms for multicores and networks of processors.
J. Parallel and Distrib. Comput. 73, 7 (2013), 911-925.

Richard Cole. 1988. Parallel Merge Sort. SIAM ¥. Scientific Computing 17, 4 (1988).
Richard Cole and Vijaya Ramachandran. 2017. Bounding Cache Miss Costs of
Multithreaded Computations Under General Schedulers: Extended Abstract. In
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).
Richard Cole and Vijaya Ramachandran. 2017. Resource Oblivious Sorting on
Multicores. ACM Transactions on Parallel Computing (TOPC) 3, 4 (2017).
Richard Cole and Uzi Vishkin. 1986. Deterministic Coin Tossing and Accelerating
Cascades: Micro and Macro Techniques for Designing Parallel Algorithms. In
ACM Symposium on Theory of Computing (STOC). 206-219.

Richard Cole and Uzi Vishkin. 1988. Approximate Parallel Scheduling. Part
I: The Basic Technique with Applications to Optimal Parallel List Ranking in
Logarithmic Time. SIAM . Scientific Computing 17 (1988), 128-142.

Richard Cole and Uzi Vishkin. 1989. Faster optimal parallel prefix sums and list
ranking. Information and computation 81, 3 (1989), 334-352.

Guojing Cong and David A. Bader. 2005. An Empirical Analysis of Parallel
Random Permutation Algorithms ON SMPs. In Parallel and Distributed Computing
and Systems (PDCS).

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2009. Introduction to Algorithms (3rd edition). MIT Press.

Artur Czumaj, Przemyslawa Kanarek, Miroslaw Kutylowski, and Krzysztof Lo-
rys. 1998. Fast generation of random permutations via networks simulation.
Algorithmica (1998).

Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2018. Theoretically Efficient
Parallel Graph Algorithms Can Be Fast and Scalable. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA).

Laxman Dhulipala, Charlie McGuffey, Hongbo Kang, Yan Gu, Guy E Blelloch,
Phillip B Gibbons, and Julian Shun. 2020. Semi-Asymmetric Parallel Graph
Algorithms for NVRAMs. Proceedings of the VLDB Endowment (PVLDB) 13, 9
(2020).

David Dinh, Harsha Vardhan Simhadri, and Yuan Tang. 2016. Extending the
nested parallel model to the nested dataflow model with provably efficient sched-
ulers. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).
James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan. 1989.
Making data structures persistent. J. Computer and System Sciences 38, 1 (1989),

Session: Full Paper

86-124.

[56] Richard Durstenfeld. 1964. Algorithm 235: Random Permutation. Commun. ACM

7,7 (1964), 420.

Panagiota Fatourou, Elias Papavasileiou, and Eric Ruppert. 2019. Persistent

non-blocking binary search trees supporting wait-free range queries. In ACM

Symposium on Parallelism in Algorithms and Architectures (SPAA). 275-286.

[58] Johannes Fischer and Volker Heun. 2006. Theoretical and practical improvements

on the RMQ-problem, with applications to LCA and LCE. In Symposium on

Combinatorial Pattern Matching (CPM). Springer, 36-48.

W Donald Frazer and Archie C McKellar. 1970. Samplesort: A sampling approach

to minimal storage tree sorting. J. ACM 17, 3 (1970), 496-507.

[60] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. 1998. The imple-

mentation of the Cilk-5 multithreaded language. ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI) 33, 5 (1998), 212-223.

Phillip B. Gibbons, Yossi Matias, and Vijaya Ramachandran. 1996. Efficient

Low-Contention Parallel Algorithms. J. Computer and System Sciences 53, 3

(1996).

[62] Joseph Gil. 1991. Fast load balancing on a PRAM. In IEEE International Parallel
and Distributed Processing Symposium (IPDPS).

[63] Joseph Gil, Yossi Matias, and Uzi Vishkin. 1991. Towards a theory of nearly

constant time parallel algorithms. In IEEE Symposium on Foundations of Computer

Science (FOCS).

Seth Gilbert and Wei Quan Lim. 2019. Parallel Finger Search Structures. arXiv

preprint arXiv:1908.02741 (2019).

[65] Yan Gu, Julian Shun, Yihan Sun, and Guy E Blelloch. 2015. A top-down parallel
semisort. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA).

[66] Jens Gustedt. 2003. Randomized permutations in a coarse grained parallel en-
vironment. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA).

[67] Jens Gustedt. 2008. Engineering Parallel In-place Random Generation of Integer

Permutations. In Workshop on Experimental Algorithmics.

Torben Hagerup. 1991. Fast parallel generation of random permutations. In Intl.

Collog. on Automata, Languages and Programming (ICALP). Springer.

[69] Maurice Herlihy. 1991. Wait-Free Synchronization. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS) 13, 1 (1991), 124aA$149.

[70] Frank K. Hwang and Shen Lin. 1972. A simple algorithm for merging two disjoint
linearly ordered sets. SIAM J. Scientific Computing 1, 1 (1972), 31-39.

[71] Intel Threading Building Blocks [n.d.]. https://www.threadingbuildingblocks.org.

[72] Riko Jacob, Tobias Lieber, and Nodari Sitchinava. 2014. On the complexity of list
ranking in the parallel external memory model. In International Symposium on
Mathematical Foundations of Computer Science. Springer, 384-395.

[73] J.JaJa. 1992. Introduction to Parallel Algorithms. Addison-Wesley Professional.

[74] JavaFork-Join [n.d.]. http://docs.oracle.com/javase/tutorial/essential/concurrency

/forkjoin.html.

Richard M. Karp and Vijaya Ramachandran. 1990. Parallel Algorithms for Shared-

Memory Machines. In Handbook of Theoretical Computer Science, Volume A:

Algorithms and Complexity (A). MIT Press.

[57

[59

[61

[64

[68

[75

SPAA 20, July 15-17, 2020, Virtual Event, USA

Donald E. Knuth. 1969. The Art of Computer Programming, Volume II: Seminu-
merical Algorithms. Addison-Wesley.

Gary L. Miller and John H. Reif. 1985. Parallel tree contraction and its application.
In IEEE Symposium on Foundations of Computer Science (FOCS). 478-489.

Gal Milman, Alex Kogan, Yossi Lev, Victor Luchangco, and Erez Petrank. 2018. Bq:
A lock-free queue with batching. In ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA). 99-109.

Jirg Nievergelt and Edward M Reingold. 1973. Binary search trees of bounded
balance. SIAM . Scientific Computing 2, 1 (1973).

Heejin Park and Kunsoo Park. 2001. Parallel Algorithms for Red-Black Trees.
Theoretical Computer Science (TCS) 262, 1-2 (2001), 415-435.

Wolfgang J. Paul, Uzi Vishkin, and Hubert Wagener. 1983. Parallel Dictionaries
in 2-3 Trees. In Intl. Colloq. on Automata, Languages and Programming (ICALP).
597-609.

Sanguthevar Rajasekaran and John H. Reif. 1989. Optimal and sublogarithmic
time randomized parallel sorting algorithms. SIAM 7. Scientific Computing 18, 3
(1989).

Abhiram Ranade. 1998. A simple optimal list ranking algorithm. In IEEE Interna-
tional Conference on High Performance Computing (HiPC).

Margaret Reid-Miller, Gary L. Miller, and Francesmary Modugno. 1993. List
Ranking and Parallel Tree Contraction. In Synthesis of Parallel Algorithms, John
Reif (Ed.). Morgan Kaufmann, 115-194.

John H. Reif. 1993. Synthesis of Paralell Algorithms. Morgan Kaufmann.

Yossi Shiloach and Uzi Vishkin. 1981. Finding the Maximum, Merging, and
Sorting in a Parallel Computation Model. 7. Algorithms 2, 1 (1981).

Julian Shun, Yan Gu, Guy E. Blelloch, Jeremy T Fineman, and Phillip B Gibbons.
2015. Sequential random permutation, list contraction and tree contraction
are highly parallel. In ACM-SIAM Symposium on Discrete Algorithms (SODA).
431-448.

Yihan Sun, Daniel Ferizovic, and Guy E Blelloch. 2018. PAM: Parallel Augmented
Maps. In ACM Symposium on Principles and Practice of Parallel Programming
(PPOPP).

Yuan Tang, Ronghui You, Haibin Kan, Jesmin Jahan Tithi, Pramod Ganapathi, and
Rezaul A Chowdhury. 2015. Cache-oblivious wavefront: improving parallelism
of recursive dynamic programming algorithms without losing cache-efficiency.
In ACM Symposium on Principles and Practice of Parallel Programming (PPOPP).
Robert Endre Tarjan. 1983. Data Structures and Network Algorithms. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA.

Task Parallel Library (TPL) [n.d.]. https://msdn.microsoft.com/en-
us/library/dd460717%28v=vs.110%29.aspx.

Leslie G. Valiant. 1990. General Purpose Parallel Architectures. In Handbook of
Theoretical Computer Science (Vol. A), Jan van Leeuwen (Ed.). MIT Press, 943-973.
Uzi Vishkin. 1984. Randomized Speed-Ups in Parallel Computation. In ACM
Symposium on Theory of Computing (STOC). 230-239.

Uzi Vishkin. 1993. Advanced Parallel Prefix-sums, List Ranking and Connectivity.
In Synthesis of Parallel Algorithms, John Reif (Ed.). Morgan Kaufmann, 215-257.
James C. Wyllie. 1979. The Complexity of Parallel Computations. Technical Report
TR-79-387. Department of Computer Science, Cornell University, Ithaca, NY.

	Abstract
	1 Introduction
	1.1 Related Work

	2 Models and Simulations
	3 List Contraction
	4 Sorting
	5 Ordered Set-set Operations
	5.1 Background and Related Work
	5.2 Preliminaries
	5.3 The Main Algorithms
	5.4 The Rebalancing Algorithm
	5.5 Base Case Algorithms and Cost Analysis

	6 Random Permutation
	7 Range Minimum Queries
	8 Tree Contraction
	References

