
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

REINFORCE: Achieving Efficient Failure

Resiliency for Network Function

Virtualization-Based Services
Sameer G. Kulkarni , Guyue Liu, K. K. Ramakrishnan , Fellow, IEEE, ACM, Mayutan Arumaithurai,

Timothy Wood, and Xiaoming Fu , Senior Member, IEEE, Member, ACM

Abstract— Ensuring high availability (HA) for software-based
networks is a critical design feature that will help the adoption of
software-based network functions (NFs) in production networks.
It is important for NFs to avoid outages and maintain mission-
critical operations. However, HA support for NFs on the critical
data path can result in unacceptable performance degradation.
We present REINFORCE, an integrated framework to support
efficient resiliency for NF service chains. REINFORCE includes
timely failure detection and consistent failover mechanisms.
REINFORCE replicates state to standby NFs (local and remote)
while enforcing correctness. It minimizes the number of state
transfers by exploiting the concept of external synchrony, and
leverages opportunistic batching and multi-buffering to optimize
performance. Experimental results show that, even at line-rate
packet processing (10 Gbps), REINFORCE achieves chain-level
failover across servers in a LAN within 10ms, incurring less than
10% performance overhead, and adds average latency only ∼400
µs, with a worst-case latency of less than 1ms. REINFORCE also
recovers from software failures within the same node in less than
100 µs, incurring less than 1% performance overhead and adds
less than 5 µs latency during normal operation.

Index Terms— Network function virtualization (NFV), service
function chaining (SFC), network functions (NF), service function
chains (SFC), fault-tolerance, availability, resiliency.

I. INTRODUCTION

FAULT Tolerance (FT) and High Availability (HA) are
important concerns for many network services. Studies

show that middleboxes fail [1], [2] and software failures [3],

[4] occur often. Recent work [1] estimates roughly 40% of
network failures are caused by middleboxes, and Gill et al. [2]

indicate that load balancers have the highest failure probability.

Manuscript received February 25, 2019; revised August 11, 2019 and
December 21, 2019; accepted January 21, 2020; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor P. P. C. Lee. This work was
supported in part by the EU FP7 Marie Curie Actions CleanSky ITN
Project under Grant 607584, in part by the U.S. NSF under Grant CRI-
1823270, Grant CNS-1763929, Grant CRI-1823236, and Grant CNS-1422362,
in part by the Department of the Army, U.S. Army Research, Devel-
opment and Engineering Command under Grant W911NF-15-1-0508, and
in part by a Futurewei Technologies Inc. grant. (Corresponding author:

Sameer G. Kulkarni.)

Sameer G. Kulkarni and K. K. Ramakrishnan are with the Department of
Computer Science and Engineering, University of California at Riverside,
Riverside, CA 92521 USA (e-mail: sameer.sameergk@gmail.com).

Guyue Liu is with Department of Computer Science, Carnegie Mellon
University, Pittsburgh, PA 15213 USA.

Mayutan Arumaithurai and Xiaoming Fu are with the Institut für Informatik,
University of Göttingen, 37073 Göttingen, Germany.

Timothy Wood is with the Department of Computer Science, The George
Washington University, Washington, DC 20052 USA.

Digital Object Identifier 10.1109/TNET.2020.2969961

Nearly a third (31%) of device failures are attributed to

software related issues. Since these middleboxes operate inline
with the network forwarding path, a software failure can

significantly disrupt network operations.

Failure recovery time and the overhead for providing
resiliency depends on the type of failure. E.g., a software

component crash can be quickly detected and fixed by the

host operating system (OS) within a few microseconds, while
recovery from OS failures may take at least a few milliseconds

(e.g., 10-50ms for lightweight unikernels like ClickOS [5] and
Mirage [6]) to reboot and restore the device. Hardware failures

such as link and node failures may take seconds or more.

Network Function Virtualization (NFV) implements net-
work services and middlebox functions (e.g., load balancers,

firewalls, NATs, caching proxies) in software which can then

be run on off-the-shelf commodity servers, avoiding the use
of dedicated purpose-built hardware. However, an NFV-based

data plane must compensate for the potential lower reliability

of commodity hardware [7]. In addition, the presence of
multiple layers of software including hypervisors or con-

tainer libraries, guest OSes, system and application soft-

ware, increase the chance of software failures. In this paper,
we present REINFORCE, an integrated framework to support

efficient resiliency for NFs and NF service chains.

Previous work such as FTMB [8] and Pico Replication [9]
have tried to address reliability challenges for individual

network functions. Such approaches introduce excessive over-
head when adopted for service chains. Some chain-level

approaches [10] seek to provide reliability guarantees across

several NFs, but incur high latency due to packet buffering
delays. Further, intra-node commit operations (such as the

evaluation with FTMB [8] where the logging and storage com-

ponents are co-located on the same node) may not factor the
network latency that can impact overall system performance.

Hence, a design choice that compensates for the network

round trip latency incurred for the inter-node (i.e., going to
a different physical node) commit operations is desirable.

CHC [11] addresses chain-wide failure resiliency with stateless

NFs and an externalized datastore. The chain-wide correctness
approach in CHC is operationally similar to our work, except

that we operate with traditional stateful NFs, while CHC relies
on the datastore to reliably maintain and update different

versions of the NF state.

The goal of REINFORCE is to design comprehensive
failover mechanisms that can efficiently provide fast failure

recovery for NFs and service chains. Note the service chain

can be either co-located on a single node or span multiple

1063-6692 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The George Washington University. Downloaded on March 16,2020 at 23:38:48 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4727-6875
https://orcid.org/0000-0003-1849-5155
https://orcid.org/0000-0002-8012-4753

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

nodes. Additionally, we aim to guarantee consistency prop-

erties for NF state and packet content under a variety of
failure conditions including software, hardware (single node),

and link failures. In order to ensure chain-wide correctness of

operation and to address non-determinism, we maintain two
distinct types of information for effective failure resiliency

in an NFV environment: the application state (state for an

NF or chain of NFs); and the packet processing progress
(which can be characterized by a per-flow logical timestamp,

as long as packets can be replayed after a failure). We employ

lazy checkpointing (periodic, coarse timescale commit) of
application state to reduce the overhead on normal operation

and buffer input packets at a predecessor node in-between

checkpointing instants. These input packets are replayed to
the standby (backup) node upon a failure. Keeping track of

packet processing progress of all the flows at least requires a

per-flow timestamp, which is the critical information necessary
to enforce correctness when the packets are replayed. The

application state (state of NF or chain of NFs) can then be
correctly recovered through replay. This allows us to com-

mit the minimum amount of lightweight per-flow timestamp

information at a finer timescale, while committing the more
heavyweight application state at a coarser timescale. This

distinction from prior work enables REINFORCE to achieve

high performance under normal, failure-free operation.
A key insight of our work is to carefully separate how

resiliency is provided for deterministic packet processing

(replay and lazy checkpoints) from non-deterministic behavior
(which requires full checkpoints to ensure consistency). Deter-

ministic packet processing occurs when replaying the same set

of input packets at an NF, or chain of NFs, has the same result,
in terms of both the state of NF(s) as well as packets that are

output on the wire from the NF (and/or NF chain). In contrast,
non-determinism (ND) may not produce the same result upon

replay. ND is not uncommon, e.g., a NAT or load balancer

may make a random choice for a flow’s first packet [12], [13].
We annotate code paths which exhibit ND, and only when

replay is not possible, trigger more expensive checkpoints.

REINFORCE guarantees correctness and achieves external
synchrony (i.e., Synchrony defined by externally observable

behavior) [14] by speculatively processing packets and com-

pactly committing per-flow timestamps to the standby node.
We precisely replay to the backup only those input packets that

had been processed by the primary between the checkpoint

instant and a failure and coordinate checkpointing with non-
deterministic actions to avoid inconsistencies. Thus, unlike

FTMB [8], REINFORCE incurs no overhead for deterministic

packet processing, eliminating the need for per-packet access
logs at NFs and strict orderings of packets while replaying at

the backup. Unlike Pico Replication [9], REINFORCE hides
the replication latency and improves throughput by batching

and overlapping multiple commit transactions, while allowing

NFs to continue speculative execution. These improvements
result in a dramatic performance improvement over existing

approaches. To summarize, our key contributions include:
• Integrated resiliency framework: We present an effi-

cient NFV resiliency framework for DPDK [15] based
network functions and service chains with distinct local

and remote redundancy schemes (§III-A).

• Lightweight NF checkpointing: We design mechanisms
to minimize the state that needs to be replicated to the

backup by taking advantage of logical clocks, external

synchrony, 2-phase commit, and dirty state tracking to

enforce correctness before releasing packets from an NF
service chain (§IV-A).

• Chain wide recovery: We develop low overhead

and low latency approaches for consistent recovery
of all network functions in a chain within or across

hosts (§III-B-§III-C).

• Fast failure detection: We devise ways to quickly detect
NF (of the order of µs), link and node failures (in ms)

(§III-D).

• Optimization techniques: We exploit non-blocking,
pipelined NF processing with judicious batching and

buffering to maximize throughput, minimize latency and

avoid overheads during the normal operation of NFs.

II. DESIGN CONSIDERATIONS

The key requirements for REINFORCE include:
Correctness and recovery transparency: NF state must be

preserved and consistently recovered across the replica nodes

in the event of a failure. In addition, for a service chain, it is
necessary to ensure that all the NFs in the chain are able to

process flows without interruption, by preserving the necessary

processing state of each of the NFs in the chain.
Low overhead: NFs are typically expected to process

millions of packets per second and serve large numbers of

flows. CPU cycles and memory bandwidth are at a premium.
Hence, it is necessary to minimize the performance impact of

resiliency.

Generality: Given the diversity of network services and
deployment patterns, it is necessary to ensure that the

resiliency solution can be easily adopted for different types of

NFs with minimal modifications to their code or infrastructure.

A. Deployment and State Management

Deployment: Our implementation focuses on NFs running
inside containers, although many of our techniques can be

generalized to other approaches. Containers enable low over-

head snapshots using tools like CRIU (Checkpoint Restore
In Userspace) [16]. Unfortunately, these cannot be trivially

applied to NFs because they do not interact cleanly with

user-space I/O frameworks like DPDK [8], [15]. Further, they
cannot provide consistent checkpoints across groups of NFs

run in different containers. For this reason, we develop a
resiliency abstraction that can identify just the key NF state

that needs to be backed-up for each container.
Service Chaining: NFs are typically chained, to efficiently

process flows through multiple functional components. For
example, we may have a Service Function Chain (SFC) for

HTTP traffic to be processed through a NAT, Firewall, IDS,

and Load-balancer NFs [17]. The ordering of NFs needs to be
preserved, even when failures cause flows to be routed to a

replica. The NF chain (ordered list) needs to be treated as a

unit of processing rather than as individual NFs in isolation.
State Characterization: NFs keep a variety of state infor-

mation, including configuration parameters, counters, flow

connection status, and application specific variables. We focus

on stateful NFs, e.g., NAT, DPI or IDS, which may main-
tain global configuration state, as well as per-flow or per-

connection state. We further classify state updates as either

deterministic or non-deterministic (refer §II-D). Although
many common middleboxes (e.g., firewall, IDS, IPS) do not

modify packet headers at all, or if they do, modifications are

Authorized licensed use limited to: The George Washington University. Downloaded on March 16,2020 at 23:38:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KULKARNI et al.: REINFORCE: ACHIEVING EFFICIENT FAILURE RESILIENCY FOR NFV-BASED SERVICES 3

Fig. 1. Comparison of NFV resiliency mechanisms.

deterministic for the given input packet headers [18], we must

also consider the packets traversing a service chain as state

themselves, because other NFs may modify the packet data
(e.g., NAT). Therefore we must track their progress through

the service chain. For correctness, all of this state must be

properly synchronized to a backup for every NF in the chain.

B. Failure Model and Detection Schemes

Fast failure detection is a key to providing fast failover.

Here, we only consider fail-stop software and hardware fail-

ures: software crashes, link status changes, power outages, etc.

Software Failures: We rely on low level kernel events like
signals, traps, and syslogs that can be effectively checked

(queried or polled) to determine the status of individual

software NFs. REINFORCE assumes that we can recover from
such failures by reloading the NF with a checkpoint of its

recent state and reprocessing any intermediate packets.
Link and Server Failures: For hardware failure detection,

we considered various state-of-the art Layer-2/Layer-3
schemes such as the Link Aggregation Control Protocol

(LACP) and Open Shortest Path First (OSPF), includ-
ing Software-defined networking (SDN) and Openflow-based

Echo and Fast Failover schemes. Ultimately, we selected Bidi-

rectional Forwarding Detection (BFD) [19], which is a light-
weight, protocol-independent liveness detection protocol that

can detect link failures at millisecond timescales. Although

the timers can be set as low as 1 µs, we observed that
such aggressive timeout values can result in excessive false-

positives. We experimented with the default BFD values across

a link connecting two nodes back-to-back with about 50%
background traffic and observed that a timeout value below

1000µs still resulted in occasional false-positives.

C. Recovery: Replay vs. No-Replay

Pico Replication [9] first proposed NF resiliency with a
pure checkpointing (i.e., no-replay) scheme that buffers all

the output and stops NF processing until the completion

of checkpointing (CP), to assure state consistency as shown
in Figure 1(a). However, this buffering results in high latency

and degraded throughput during normal operation. In order

to ensure correctness of the state replicated to the backup,
we need to pause NF packet processing and also hold the

processed buffer until the NF state gets replicated.

An alternative proposed in FTMB [8] is to maintain input
packet logs (at a predecessor node) and replay the log to

reconstruct lost state after a failure. With this approach, output

packets can be preemptively released before creating a full NF
checkpoint since the state can be recreated by replaying the

packets. However, to ensure state correctness during replay,

it becomes necessary to track and commit all possible source

of non-deterministic processing before releasing the packets.

FTMB logs each access to every shared variable in a packet
access log (PAL), and a vector clock (VOR) of PALs across

all the threads to ensure the correct ordering of accesses to

the shared variables during replay, as shown in Figure 1(b).
FTMB can output packets without waiting for NF state to be

checkpointed. By replaying the log of input packets, and the

packet-access logs, the replica can recover the lost state and
be reinstated correctly in the role of the primary NF. This

approach overcomes the latency impact for a majority of the

packets, but adds complexity to NF development and can incur
high overhead to enforce sequential ordering. FTMB needs to

do full system CP periodically and halt processing for the

duration of CP (order of a few milliseconds), which is shown
to result in high tail latencies and impact overall throughput.

REINFORCE uses a combination of infrequent (lazy) CP

and replay of packets. The key is to maintain external syn-
chrony: i.e., rather than strict synchronization where NFs

block until replication completes, REINFORCE allows NFs to
continue speculative execution while replication is performed.

Relaxing the constraint of synchronous replication and adopt-

ing external synchrony means that processing can continue
through the service chain, and for subsequent packets in the

flow, while still providing consistency guarantees to clients

receiving the packets. When a failure occurs, the backup node
can replay packets that have to be processed since the last

checkpoint snapshot and update the NF application state on

the backup. A logical timestamp is used to determine the
packets that have been released since the checkpoint so that the

replay process does not transmit those packets unnecessarily

as duplicates downstream, while updating the backup state.

D. Non-Determinism

Let us examine the impact of non-determinism (ND) in

some more detail. NFs operating on the same input (flow of

packets) can still diverge in their internal state across multiple
executions due to implicit or explicit ND in the processing [8],

[20]. ND can occur due to i) dependence on hardware whose

outcome cannot be predicted, such as hardware clocks, random
number generators, etc. , ii) race conditions in accessing shared

variables among NF threads, or iii) when the intermittent

packets are marked for ECN/lost/dropped; then the order
of packet arrival and subsequent processing may become

nondeterministic [21]. For example, a load balancer (even with

the “Active:Active” redundancy configuration) that assigns one
server from a pool of backend servers for each TCP connection

can end up choosing different backend servers for the same
flow when the selection logic is based on system specific calls

like random(). Similarly, during replay, a rate limiter that

restricts the number of maximum sessions for a given client
can end up rejecting different connections due to races in the

NF threads accessing a shared connection variable.

FTMB [8] overcomes ND by rigorously tracking and
ensuring that all the events that can potentially lead to

non-determinism (any shared state access and outcomes of

unpredictable system calls) are captured and committed to
a stable log before releasing the packets. This way, even

benign accesses to shared variables or non-deterministic calls

(e.g., shared counters) whose impact is unrelated to packet
processing (i.e., do not impact the external view) are logged

and enforced at the replay node. The result is not only

excessive logging overheads but also a limit on an NF’s

Authorized licensed use limited to: The George Washington University. Downloaded on March 16,2020 at 23:38:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 2. Architecture of REINFORCE: Each NFV node hosts multiple NFs (i.e., entire or part of NF chain) Memory pool is shared across NF Manger, active
and local standby NFs. Operational symmetry is retained across all the nodes in the chain.

throughput during normal, failure-free operation. Further, with
multi-threaded NFs, during replay FTMB enforces a strict

ordering for accesses to any shared resources across multiple

processing threads. Enforcing this ordering requires more
intricate instrumentation of the NF’s code and affects both

normal and recovery mode performance.
To address ND, we present an alternative simpler approach

without the need for per packet access logs or the need to

enforce strict ordering of packet access to the shared variables.
We exploit the fact that non-deterministic updates may typi-

cally be tied to specific packets, e.g., the first packet in a flow

that causes non-deterministic updates at several NFs, while
subsequent packets do not. However, we do not make any

assumption on when non-determinism can occur. For example,

L4-L7 NFs (say load balancing) may exhibit non-determinism
after receiving/processing a specific byte stream and can be

anywhere in the middle of the flow. Regardless, when an NF

performs any non-deterministic state update (for which we
require the programmer to annotate such operations) we link it

to the packet (batch) which triggered it. Then, taking advantage

of external synchrony, we only need to ensure that by the time
the packet reaches the end of the service chain and is ready

to be sent out, all of its dependent non-deterministic state has
been checkpointed to the standby, avoiding the need to replay

it after a failure. For example, in the load balancer example,

it is sufficient to track the initial connection state update at
the start of the flow, rather than tracking and enforcing the

access to shared global counters for every packet processed

by load balancer NF threads. Through timely checkpointing
of the non-deterministic state updates, we eliminate the need

to maintain per-packet access logs.

III. ARCHITECTURE AND DESIGN

We present the key components of REINFORCE shown

in Fig. 2, and briefly discuss their roles. We describe how
REINFORCE performs failure detection and handles both

local and remote failures while guaranteeing correctness.

A. REINFORCE Components

The NF Orchestrator is responsible for provisioning the

NF Manager nodes and designating the active and standby

nodes for different service chains. It also configures the BFD
settings on each of the NF Managers in the cluster.

The SDN Controller is responsible for populating the flow

entries and forwarding rules at each node’s NF Manager.
It pro-actively configures the back-up path options: a) with

multiple links, it configures the alternate output ports on
the predecessor nodes of the designated active node; and b)

configures the flow rules on designated replica standby nodes.

The NF Manager is the core component of REINFORCE.
It acts as the in-host controller for coordinating NF functional-

ity, using DPDK’s framework for zero-copy delivery of packet
data to and between NFs of a service chain within the host.

The NF manager tracks the liveness of associated network

ports (links) and the NFs provisioned on it. It also provisions
and provides the shared memory pools to the NFs to exchange

packets, shared memory state, and message notifications. In

addition, NF manager implements the “packet logger” module
to log and timestamp all incoming packets, and “RSync”

module to provide consistent state replication service to the

NFs. We leverage both proactive and reactive configuration
schemes along the lines of [7], [22].

Active NFs process incoming packets delivered to NFs

via the NF Manager. Each NF is integrated with a “libnf”
library that provides the necessary hooks to facilitate state

checkpointing and recovery, thus minimizing changes required

on the NF.
NF Standbys can be run on either the primary host (for

local failover) or a secondary host (for remote failover).
We choose an “Active–Hot Standby” configuration for NF

resiliency, where the state updates from the active NFs are

consistently committed on the corresponding standby NFs.
Software failures that can be recovered by NF instances within

the same host can be provisioned for 1:1 redundancy of

active:standby NFs. We protect each individual NF instance in
a chain, thus allowing REINFORCE to be resilient to multiple

NF failures on the same node. We also support failures at the

chain level, where all network function standbys of a chain are
provisioned on a remote node (which can also host other active

NFs). This supports link and node failures for both hardware

and software. Multiple NF chains on different active nodes
can be configured to share the same standby node.

The Predecessor Node is a server prior to the node hosting
active NFs, which is responsible for logging the incoming

packet stream. This is used to handle server or link failures

that require the packets to be replayed to the standbys on
a remote node for recovery. When the NF chain spans more

than one node, the symmetry in our design allows for multiple

predecessor nodes similar to the one shown in Figure 2. But
this does not incur any additional inter-node communication

overheads, as chain management and routing is governed

locally by the NF managers on each of the nodes. Also, only
the first predecessor node in the chain timestamps the packets.

Authorized licensed use limited to: The George Washington University. Downloaded on March 16,2020 at 23:38:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KULKARNI et al.: REINFORCE: ACHIEVING EFFICIENT FAILURE RESILIENCY FOR NFV-BASED SERVICES 5

Fig. 3. On the left side is the local failover of NF Instance. Upon NF1 failure in Node-1, NF Manager initiates failover seamlessly to local replica NF1’.
The right side represents the remote failover of NF chain (NF3, NF4, NF5) to the remote standby node. Upon failure of Primary (Node-2), the predecessor
nodes (Node-1) initiates failover by replaying the packets from its logged buffer and also redirects the subsequent packets to the standby node.

The libnf routine exports the necessary interfaces and

provides the common state replication/management functions

to NF developers. NF developers need to annotate/set a
bit field in packet headers to indicate the occurrence of a

non-deterministic update (pkt->header.nd = 1) for any

packet(s) in a batch. libnf checks for non-deterministic updates
and correspondingly updates the NF processing state machine

to decide whether to continue the NF processing or block/stall

the processing. NF processing is blocked if there is another
non-deterministic state update while an outstanding non-

deterministic state update remains to be committed. Further,
libnf combines the batch processing of packets to the NFs

and handles the selective NF state synchronization (i.e., only

the dirtied memory is copied) to a local standby NF at the
end of processing the batch of packets. NFs only need to

specify the memory size and offset for the state update, then

the libnf routine updates the corresponding bitmap (64-bit
integer) indicating the dirtied/updated NF state. We expend

additional CPU cycles in the active NF to synchronize the

modified NF state to the local standby NF. Nevertheless, this
is transparent to the NF and is completely handled by a set of

library functions implemented in libnf.

B. Local Resiliency

In scenarios where only software crashes have to be tol-

erated, the standby NF (a.k.a local replica) is provisioned
locally by the NF Manager to provide resiliency from NF

instance failures as shown in the left part of Figure 3. After
initialization, the standby NF remains in ‘Paused’ state until

the NF Manager signals to wake it up. For more details refer

to our work [23].

C. Remote Resiliency

We employ both checkpointing and packet “replay” to pro-
vide resiliency from host node failures and link failures (that

result in loss of connectivity) when the backup is on another

node, as shown at right in Figure 3. Note that our remote
resiliency solution builds on top of the local resiliency and

leverages the consistent state replicated at the local standby

NFs for the state replication on remote node.
Standby server: The NF Orchestrator designates a standby

node and notifies the NF Managers at both the node with the

active NFs of the chain (Primary) and the predecessor node
serving the NF chain. The node with the Active NFs and the

predecessor node monitor the liveness status using BFD (more

detail in §III-D). If an alternate route to the primary server

exists after a link failure (i.e., an alternate output port has been

configured by SDN controller), the predecessor node simply
redirects the traffic. If a link or node failure makes the primary

unreachable, the predecessor node initiates the replay mode on

the designated standby/backup node.
Chain-wide state checkpointing: REINFORCE relies on five

key concepts, i.e., i) Packet logging with timestamps, ii)

Pipelined replication, iii) Latch buffers for external synchrony,
iv) Atomic state updates and v) Replay-based recovery to

assure consistent and efficient failure resiliency of chains
replicated to a secondary host. We describe these now.

1) Packet logging with logical time stamping: In REIN-

FORCE, all the incoming packets at the first predecessor
node are appended with a logical timestamp (e.g., sim-

ple 64 bit packet counter).1 All the outgoing packets

are logged in per-port rotating log buffers at each of
the predecessors. The packet log at the predecessor

node is used to replay packets to the standby node

when an active node fails. At the active NFV node,
the timestamped value of each packet is used to track the

packet-processing progress for a flow. This information
is maintained in a Transmit Timestamp (TxTs) table

replicated across the primary and backup nodes. The

buffered packets are flushed upon notification by the
active node’s NF Manager (after being successfully sent

out).

2) Pipelined replication: Our remote replication scheme
simplifies consistency and improves performance by

leveraging the local checkpoints that we already pro-

vide for software failures on the primary host. The
local replicas have their state updated at the end of

each batch of packets, as described in Section III-B,

which gives a consistent version of the state that can
be copied to the remote server without any need to

pause the primary replica. As discussed previously,
an important feature is that REINFORCE differentiates

between deterministic and non-deterministic updates to

either NF state or packet data. Deterministic updates
can be recovered via replay on the remote host, so state

checkpoints can be replicated in a lazy fashion to reduce

overhead. On the other hand, non-deterministic state
updates cannot be replayed, so packet batches with any

1A single non-decreasing counter is sufficient on the Logger to provide
monotonic per-flow counters on the primary node

Authorized licensed use limited to: The George Washington University. Downloaded on March 16,2020 at 23:38:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

non-determinism need to have a checkpoint replicated

to the backup before they are released from the pri-
mary. Fortunately, this replication can be parallelized.

There are two possible ways. First, it can be performed

concurrently with subsequent packet processing in the
remainder of the chain. Second, as shown in Figure 1(c),

an NF can continue to speculatively execute batches of

deterministic packets as the checkpoint completes. It will
only stall its processing if a second batch with a non-

deterministic packet is executed before the checkpoint

completes. To maintain packet ordering, deterministic
packets that are processed after the non-deterministic

packets are also not released until the non-deterministic

packets are released. This gives us the ability to con-
tinue making progress subsequent to a non-deterministic

packet processing as long as no other non-deterministic

packet processing occurs before state corresponding to
the first non-deterministic packet processing is repli-

cated. Otherwise, we have to stall packet processing
to ensure correct recovery of the state at the remote

replica in the event of failures while the state is being

checkpointed and copied to the replica.
3) Transmit latch buffers: In order to provide consistent

state update with external synchrony, packets processed

on the primary node are buffered (not released) until
sufficient state related to packets has been replicated to

the backup. To this end, we employ latch buffers at the

end of service chain to store the processed packets. If
all packets processed within a batch are deterministic

(which is often the case), then they can be released

more quickly since the standby must only be updated
with the TxTs table in order to know which packets

must be replayed in the event of a failure. Once a
TxTs table ‘commit’ acknowledgment arrives from the

standby’s RSync component indicating the timestamps

for deterministic packet batches are recorded, packets
are released to downstream external nodes. On the other

hand, replay is unsafe for packets with ND, so REIN-

FORCE proactively pushes checkpoints for any batch
that contains non-determinism.

4) Atomic State Updates: REINFORCE follows a 2-phase

commit protocol to provide atomicity between state
updates at the backup and packets released at the pri-

mary. Our commit protocol begins when the primary

sends its updated Transmit Timestamp counters and
any necessary non-deterministic state updates. The sec-

ondary associates the logical clock values (flow-specific

Transmit Timestamps) with the arriving checkpoint state,
and ensures that both of these are fully received for

all NFs in the chain before acknowledging back to the
primary. Then, the primary can release packets in its

Latch Buffer to be transmitted towards their destination.

The primary then notifies the secondary, so that the latter
can commit the checkpoint state. State updates resulting

from deterministic operations are transmitted periodi-

cally; once this state has been received, the predecessor
node can be notified to clear its input log.

5) Replay: The use of latch buffers and atomic state

updates guarantees “external synchrony,” i.e., the state
maintained at the standby can be made consistent with

the output packets released from the primary server.

Note: since deterministic application-level state is only

replicated periodically, it is possible for the standby
to recover to a state where the TxTs table says that

some packets have been released, but the standby’s

state does not yet reflect the deterministic updates they
should have caused. Thus, upon a failure, the standby

NF chain must rollback to the last checkpoint and

replay any subsequent packets so that the standby’s
state matches the external view of the system (outside

the chain) irrespective of the failure. However, since

a chain has multiple NFs and their state updates may
arrive at different times, it is possible for a packet

to be replayed through some NFs which have already

processed it. We believe that NFs are already designed
to be robust to receiving duplicate packets–duplicate

transmissions are not uncommon in networks, and thus

this does not require special handling. The exception
to this is processing packets involving non-determinism,

which is why we ensure tight state consistency for them–
such packets are only released once their state has been

confirmed by the standby, avoiding replay.

D. Failure Detection

NF Instance Failure Detection: NF Managers are responsi-

ble to track the liveness of all provisioned NF instances. The

NF manager detects NF instance failures in two ways. First,
it captures ’voluntary’ NF instance failures, by registering

for event notification and messages that are triggered via OS

(Linux) signals and NF instance-specific messages, when any
catchable exception occurs at an NF instance. Second, for

involuntary NF terminations, the NF manager performs peri-

odic (every 100 µseconds) checks via the kill(nf_pid,0)
signal to check and deduce the status of all the registered

active NFs. This operation is carried out by the NF Manager’s
“Monitor thread” which is also responsible for other tasks such

as NF registration, de-registration and logging of statistics. The

100 µseconds probe interval is system configurable and can be
tuned with a REINFORCE macro at the time of compilation.

Even at this frequency, the CPU overhead is less than 1%,

to track the liveness of 64 NFs.
Link and Node Failure Detection: We improve BFD [19]

and adapt its parameters for both link and host failure detec-

tion. For more details refer to our work [23]. (refer §3.4.)

E. Chain-Wide Correctness

The goal of REINFORCE is to ensure external synchrony

and enforce chain-wide correctness. Here we briefly describe
how correctness is ensured and provide the formal proof of

REINFORCE in §VII.
We consider two distinct modes of operation to ensure

remote state consistency. For deterministic packet processing,

packets from the primary are released only after committing
updates of packet-processing progress to the standby’s Trans-

mit Timestamps (TxTs table). However, the remote standby’s

NF chain state can be out-of-sync and lag the primary state.
Upon failure, replaying of the packets from predecessor node

makes the standby NFs’ state roll-forward and be synchro-

nized to what was in the primary before the failure. All
the NFs process the packets to update their state. Based on

the committed TxTs table, the NF Manager on the standby

Authorized licensed use limited to: The George Washington University. Downloaded on March 16,2020 at 23:38:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KULKARNI et al.: REINFORCE: ACHIEVING EFFICIENT FAILURE RESILIENCY FOR NFV-BASED SERVICES 7

discards duplicate packets that have already been sent. Thus,

the standby node’s NFs are synchronized to the external view
of the state, which was that of the primary at the time of the

failure.

If a batch of packets results in non-deterministic processing,
then the packets from primary are released only when both

the TxTs table and NF state checkpoint are committed to the

remote standby for the entire chain. This ensures the external
view to be in sync with the state at both the primary and

standby nodes across the NF chain. Note that when any NF in

the chain results in non-deterministic state updates, the state
for the entire NF chain is committed before releasing the

packets. Thus standby NFs are always in sync with the primary

for released packets.

IV. IMPLEMENTATION

REINFORCE (source [24]) is built on OpenNetVM [25],

a DPDK [15] based NFV platform that enables to run the

NFs in containers or as separate processes. We implemented
the following modules i) Packet logging: to add a logical

timestamp to all input packets and to log all outgoing packets

to a stable store; ii) RSync: to enforce external synchrony
and perform the two-phase commit transaction using multiple

latch buffers; and iii) Liveness Monitoring: to monitor the

liveness of locally provisioned NFs and BFD sessions across
the configured links. These functions use 1 CPU core each.

The control framework coordinates failover via pause and

resume event notifications to active and standby NFs, and
performs failover actions for remote link failures. To account

for the transmit state timestamp of each flow and enforce

2 phase commit transactions, packets leaving the last NF in
a chain are stored in latch buffers in the RSync component

before being released to the DPDK NIC ports.

A. Remote Failover

Atomic Two-Phase Commit Transaction: We use a simple

UDP transport to deliver updates to the backup and use

sequence numbers to identify any missing packets (reliable
transport like TCP can also be used). We use a custom Ethernet

type to differentiate state update packets from regular NF

destined packets. If packets are lost, we abort the transaction
and resend new updates. State transfer information is included

in the header fields to indicate the type of packet trans-

ferred (either state transfer or acknowledgement packet), type
of state (NF state, service configuration information, or Tx

Timestamp), packet size, base offset address, packet sequence

number, and ‘last packet’ flags.
Accounting for Failed Transactions: When the acknowl-

edgement for Tx state update commit is not delivered to
primary, the NF manager may get blocked resulting in port

buffers getting full and subsequent processing by NFs being

discarded. To avoid this, we have a transaction timeout after
which the NF manager aborts the current transaction and

continues to process subsequent packets and send new updates.

To ensure continuity, we choose to continue processing subse-
quent packets and drop the packets corresponding to the failed

transaction. End-to-end retransmission of these dropped pack-

ets is expected to update the standby NF state appropriately.
Tx Timestamp State Update Overhead: We opportunistically

perform the transmit timestamp (TxTs) table state updates as

TABLE I

NFS AND NF CHAINS USED IN EXPERIMENTS

often as possible. The frequency of operation is limited by the

RTT and number of configured latch buffers on the system.

Assuming a best case RTT (between two directly connected
nodes) of 100µ seconds, performing each Tx timestamp check-

point in the worst case needs to transfer the entire TxTs table

of 64KB (64 1KB packets). This is an overhead of less than
5.25% on the 10Gbps link. For checkpointing, using large latch

buffers (8K), we can checkpoint at a slow rate (roughly once
every 5 RTTs) i.e., performing checkpoints once every 500µ
seconds, reducing the 10Gbps link overhead to less than 1.05%

at the cost of added latency.

V. EVALUATION

Our experimental testbed used five Intel(R) Xeon(R) CPU
E5-2697 v3 @ 2.60GHz servers, each with 157GB RAM, two

sockets with 28 cores each, running Ubuntu SMP Linux kernel
3.19.0-39-lowlatency. The topology for the primary, standby

and predecessor nodes is as shown in Figure 3. In addition,

we have a source and sink node at the two ends. Table I lists
the NFs and NF chain used in evaluations. For the NF chain

scenario, we deploy the entire NF chain on single (primary)

node.2 For these experiments, nodes were connected back-to-
back with dual-port 10Gbps DPDK compatible NICs. We use

the DPDK-based high speed traffic generator, Moongen [26] to

generate line rate traffic consisting of UDP and TCP packets,
apache-bench [27], and wrk [28] to flood HTTP download

requests. We vary the number of flows and the NF chain setup

as needed for each experiment. We configured the number of
stages of latch buffers (i.e., multiple transaction buffers) to 3,

with each stage having 4K packet buffers.

A. Overhead Analysis

Our profiling indicates the cost of memory scan and updat-

ing of the dirty state for a 64KB memory and 1KB chunks to

be 55-80 CPU ticks; and the copy overhead for a 4KB page
is CPU ticks. Copy operation for a batch of processed packets

drastically reduces the overhead during normal processing.

Next, we consider DPI, a compute-intensive NF, and light-
weight monitor (MON) NFs, and subject them to line rate

traffic for different packet sizes. We observe from Figure 4
that REINFORCE is able to achieve performance identical to

baseline for all DPI. For MON, even the worst case perfor-

mance impact is less than 15% (12.6 Mpps with REINFORCE
compared to 14.88Mpps baseline).

2We observed similar results with the NF chain setup across two nodes.

Authorized licensed use limited to: The George Washington University. Downloaded on March 16,2020 at 23:38:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 4. Throughput of different packet sizes.

TABLE II

PERFORMANCE IMPACT OF NON-DETERMINISM

Impact of Non-Determinism Rate: REINFORCE performs a
2-phase commit of the chain-wide packet-processing progress

and NF states. To ensure correctness, any non-deterministic

updates result in chain-wide NF state checkpointing. Table II
shows the impact on performance (throughput and maximum

latency) for different ND rates, which is varied from 1 pkt.

every nano second up to one pkt. every second. REINFORCE
is able to provide near line-rate processing for the non-

deterministic rate that is less frequent than one every 250µsec,

while more frequent non-determinism reduces the throughput,
eventually dropping to 0.22Mpps. This is due to the round-

trip latency of 2-phase commit, causing the NF processing to
stall if a previous non-deterministic batch of packets has to be

processed and state committed to the standby.

B. Operational Correctness and Performance

We assess the application level of failover through the fol-

lowing end-to-end tests. i) DPI based protocol detection: We
feed a set of PCAP traces (MPEG, Hangout, Youtubeupload,

Snapchat, QUIC) available at NTOP [29], [30] to the DPI NF.

We observe that the DPI NF identifies the protocols correctly
both when there are no failures and when the primary fails

and REINFORCE fails over to the standby NF.

ii) HTTP Downloads: We route HTTP downloads through
a service chain of 2 NFs (QoS and MON). We start repeated

HTTP download requests for a period of 60 seconds, and

trigger failures at the 30 second mark. a) We induce a QoS
NF instance failure to account for local NF failover, and

b) we induce, NF MGR failure on the primary node to

trigger a chain-wide remote failover. We compare the baseline

operation i.e., failure-free operation with both NF instance

failure (local failover) and node failure (remote failover) cases.
We observe with REINFORCE that HTTP downloads succeed

for both the NF instance failure (local failover) and node-

failure (remote failover) cases. We also observe very little
impact on the application, resulting in just 3-4% reduction

in the total number of requests serviced per second, and a

negligible reduction in throughput as shown in Table III. Note:
In Resiliency mode, with no failures, we observed similar

results as reported in Baseline w/o failure in Table III.

Failover Times: We measured the time for local and
remote failovers from the instant we induce a failure. For

local failover: mean = 56µs and maximum = 114µs over

TABLE III

EFFECT OF FAILURE ON HTTP DOWNLOADS

Fig. 5. Performance impact of different FT systems on the normal operation
for different NFs.

100 iterations. For remote failover: mean = 3280µs and

maximum = 3517µs over 10 iterations. This includes failure
detection time with BFD and for the predecessor node to

initiate the failover at the backup by starting replay of buffered

packets. We do not account for the time needed to complete the
replay and send the first new packet, as it varies based on the

processing chain and non-determinism intervals. But, we did

measure the time needed to initiate and prepare for replay at
the predecessor node (i.e., to notify the standby node, open

a pcap file and start replay). The average time taken was 60-

100µs, and just below 2ms to replay approximately 3K packets
from the predecessor node to the standby. Replay execution of

the 3K packets (20Mbits) on the standby took approximately

2ms.

C. Failure-Free Operation

We compare REINFORCE with CHC [11], FTMB [8]

and Pico Replication [9]. Note: We implement: a) simplified
version of CHC, where the NF state is externalized to a Redis

datastore [31]. The NFs cache the state locally and perform

asynchronous state update operations after processing a batch
of 256 packets3 ; b) simplified FTMB logic with parallel

releases, by storing packet access logs (PALs) per shared
variable i.e., NFs transmit all the associated PALs before

releasing packets to the NF manager; the NF manager simply

transmits the packets without blocking for output commit;
and c) Pico Replication: NF state checkpointing with output

commit policy. For a number of different NFs, we compare:

i) the overhead during normal operation by measuring the
throughput; and ii) additional latency of packet processing (for

state update operation), for individual NF instances. Figure 5

shows throughput for normal operation, in Mpps (with error
bars showing the standard deviation in throughput). REIN-

FORCE performs almost as well as baseline (no resiliency

case), achieving near line rate (∼13.5Mpps) throughput for
most NFs. REINFORCE’s remote replication outperforms Pico

3All our experiments with REINFORCE use a small batch size of 32 pack-
ets. However for CHC, we set batch size to 256 packets, as the smaller batch
(32) limited CHC’s throughput to less than 3Mpps. Note: Our results are better
than those presented in the CHC paper [11], and the results may depend on
the actual CHC implementation and its optimized datastore.

Authorized licensed use limited to: The George Washington University. Downloaded on March 16,2020 at 23:38:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KULKARNI et al.: REINFORCE: ACHIEVING EFFICIENT FAILURE RESILIENCY FOR NFV-BASED SERVICES 9

Fig. 6. RTT with different FT Systems.

TABLE IV

MULTITENANCY AND RESILIENCY MODES. (a) LATENCY (µ) WITH DIF-
FERENT RESILIENCY MODES. (b) RATE OF ND FOR NF1 AND NF2 AT

DIFFERENT TIME INTERVALS

replication by 2 orders of magnitude. Fig. 6 shows the impact

on packet latency for two selected NFs as well as for Chain3.

The median and 99%ile latency for REINFORCE and CHC
are comparable, and is better than Pico and FTMB. Also,

both REINFORCE and CHC have comparable throughput

for a lightweight Monitor NF. But, for heavier-weight NFs,
REINFORCE outperforms all the alternatives. In particular,

the throughput of CHC drops for heavy-weight NFs and for
a NF chain, likely due to the overhead of frequent context

switches from user-space to kernel space. This overhead is

avoided for the user-space DPDK NFs in REINFORCE.

D. Multi-Tenancy and Resiliency Levels

We demonstrate the benefits of REINFORCE in support-

ing multi-tenant NF execution and in providing performance
isolation for flows configured with different resiliency levels.

1) Multi-Tenancy: In a typical multi-tenant environment,

network functions from different tenants can be co-located

and share the same CPU. We expect that NFs from different
tenants see different workloads and are consequently sub-

ject to different rates of non-deterministic at different time

intervals. When the non-deterministic rate is high, the CPU
may be idle/underutilized because of frequent stalls. But,

REINFORCE takes advantage of efficiently multiplexing NFs

that exhibit non-determinism to improve CPU utilization and
overall system throughput. We multiplex 2 NFs, NF1 and NF2,

from different tenants on the same core. They exhibit different
non-deterministic rates at different time intervals as shown

in Table IVb. Figure 7 shows the ability of REINFORCE to

efficiently multiplex these 2 NFs, resulting in the improvement
in both the CPU utilization and aggregate throughput.

2) Differing Resiliency Levels: We demonstrate the benefit

of REINFORCE’s ability to support different flows configured

with different resiliency levels. REINFORCE provides the
desired resiliency while isolating the flows from each other.

We have two Monitor NF instances, configured as: (a) one

NF instance with only local resiliency (backup on the same
node) for flow-1; and (b) a second NF instance with node-

level resiliency (remote standby) for flow-2. We also perform

Fig. 7. Two isolated NFs with varying Non-Determinism rates, running on
the same CPU core.

Fig. 8. Different NF Chain processing performance.

a similar experiment with the Simple Forward NF as well.

The latencies for the two flows differ, as shown in Table IVa.
We observe the impact on latency is minimal for the flows

configured with only local resiliency (less than 30ms in the
worst case). But, flows configured with remote resiliency (local

+ remote) incur nearly 2x higher latency for both the Simple

Forward and Basic Monitor cases. This shows the ability of
REINFORCE in providing different levels of resiliency while

isolating one flow from another – an essential and desirable

characteristic for multi-tenancy.

E. Impact of Chain Length

We consider experiments with multiple chains having differ-

ent lengths as described in Table I. We compare the following
cases: baseline (no resiliency), REINFORCE, CHC, FTMB,

and Pico Replication4. Figure 8 shows that performance of

REINFORCE remains consistent with the baseline for varying
chain lengths, unlike FTMB and Pico. In fact, with increased

chain lengths, the overheads of REINFORCE are amortized

allowing the throughput to be closer to the baseline. With
FTMB and Pico, to ensure correctness, the output commit must

be performed individually for each NF in the chain. In fact,

the throughput we show for FTMB and Pico is likely to be
optimistically high compared to a full implementation.

VI. RELATED WORK

NF state migration: Split/Merge [32] defines state access
APIs to read and update the internal state of virtualized NFs

being moved across hosts. It relies on the ability to identify

per-flow state to provide consistent migration. Stratos [33]
provides an orchestration layer for NFs by using an SDN

4For both FTMB and Pico Replication, we implement the state replication
only at the end of the chain, rather than at every NF. Also, with CHC, we do
not implement the version control for the state variables. This serves as a
simplified, optimized approach, but does not ensure correctness.

Authorized licensed use limited to: The George Washington University. Downloaded on March 16,2020 at 23:38:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

controller to migrate the instances and redistribute the traf-

fic to less congested nodes. Likewise, we take advantage
of SDN controller to set up the forwarding rules but rely

on NF Managers to efficiently migrate the NF instances.

OpenNF [10] presents a control plane architecture to have loss-
free transfer of NF state. Unlike OpenNF’s controller-based

orchestration and event buffering mechanism, REINFORCE

relies on the NF manager to perform state migration across
the designated active and standby NF nodes while allowing

NFs to simultaneously process packets. This results in lower

latency and less performance impact on normal processing.
Unlike [32], REINFORCE does not require the NFs to depend

on specific state update APIs, but only requires the NFs to

annotate the state updates sufficiently to distinguish between
deterministic and non-deterministic changes. StateAlyzr [34]

complements our work by enabling the NF developers to

analyze programmatically and to identify just the right amount
(minimal) of NF state, and correctly annotate the NF state that

needs to be migrated to ensure consistent state replication.
S6 [35] provides a framework for elastic scaling of NFs.

It implements NF state as distributed shared state objects, and

supports object replication to facilitate NF state sharing across
multiple NF instances.

Fault tolerance and high availability: Pico Replication [9]

is an application level NF state checkpointing based high
availability framework built on top of Split/Merge. It pro-

vides fine-grained flow level state replication and employs

flow group-based NF state transfers. To enforce correctness,
it buffers all output packets during NF state checkpoint-

ing, thus delaying outputs even during failure-free operation.

FTMB [8] is a replay based framework that logs all input
packets and the per packet access log of all the compo-

nents (i.e., the shared variables in NF that account for non-
determinism) that are necessary to restore the state on the

replica during replay. In addition, to amortize the cost of input

logging, it also employs periodic check-pointing of NFs. Thus,
FTMB guarantees correctness of operation during replay mode

by ensuring strict ordering of packet processing (guided by the

packet access logs) at the replay node. In essence, FTMB’s
notion of correctness emulates strict idempotent per packet

behavior across the active and replica nodes. This comes at

the cost of maintaining multiple per packet access logs, which
becomes a potential bottleneck for NFs with 5+ shared vari-

ables, for packet rates of 1.25Mpps (ref. §5 of [8]), resulting in

more than ∼30% overhead traffic. In addition, due to periodic
VM checkpointing, the tail latencies drastically increase from

less than 100µs, at the 50th%-ile, to nearly 810 µs, at 95th%-

ile and 18ms at 99th%-ile. Also, both of these works don’t
account for chains of network functions. REINFORCE fills

this gap with an efficient chain level replication mechanism
that does not excessively impact (add latency) normal opera-

tion, nor does it place limits on processing rates to enforce cor-

rectness of the replica state. Plover [36] presents a virtualized
state machine replication system to address general VM fault

tolerance. By enforcing the same total order of inputs for a

VM replicated across hosts, it can keep most memory pages
updated and only transfer the few divergent pages between

primary and secondary. This is effective in alleviating check-

pointing overhead, while maintaining external consistency.
Alternative architectures: StatelessNF [37] and CHC [11]

are alternative approaches that externalize NF state to

Fig. 9. NF Packet processing and state machine abstraction.

in-memory databases like Redis [31]. Such an approach

intends to enable scaling of NF instances and failover to
different NF instances without replicating the NF state to a

distinct apriori selected replica. Additionally, it does not need

to distinguish and treat deterministic vs. non-deterministic
state updates differently. However, a major challenge arises

especially with cached state and asynchronous updates in

ensuring the correctness and consistency of the externalized
state w.r.t. the failed NFs that might have partially processed

the packets and updated the states, before crashing. In such a

scenario with CHC [11], both the NFs and the database need to
maintain additional version control for each state update vari-

able, so that the state updates can be validated before commit,

which might further impact the NF throughput. Architecturally
and conceptually having externalized state for NFs may be

well-suited for micro-services, but the challenges highlighted
above in terms of performance and complexity of operation

require careful consideration of its applicability for high

performance NFs.

VII. PROOF OF CORRECTNESS OF REINFORCE

A. NF Packet Processing Model

We represent NFs as finite state machines that process a

stream of incoming packets pij (i.e. ith packet of jth flow).
When the NFs process packets, they update and transition their

internal state and output one or more packets p0ij , as shown

in Fig. 9. For the NF Chain, packets are sequentially processed
by distinct NFs in the chain resulting in state update(s) at each

of the NFs. Packets are then output from the chain.

B. Definitions

Based on previous literature [8], [14], we provide some of
the basic definitions for NF packet processing (deterministic

and non-deterministic) and external synchrony.

Definition 1 (Deterministic Processing): In a given NF
state, processing a packet pi always results in same determin-

istic state transition P ∗ Si 7→ Sj and deterministic output p0i.
Definition 2 (Non-Deterministic Processing): In a given

NF state, processing a packet pi each time may result in

different a state transition, P ∗ Si 7→ {Si} and yield different
a output, {p0i} ⊆ (p0

0
, p0

1
, p0

2
, . . . , p0i).

Definition 3 (External Synchrony): NF state synchrony is

defined by the externally observable behavior and not by the
actual internal system (NF or Chain of NFs) state. On failover,

the externally observable state remains consistent and indepen-

dent of the actual NF state across the replicas.

C. Operational Correctness and Proof

Theorem 1 (Correctness of Operation): For remote repli-

cation, REINFORCE preserves external synchrony and ensures
correctness of operation for NF chains.

Authorized licensed use limited to: The George Washington University. Downloaded on March 16,2020 at 23:38:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KULKARNI et al.: REINFORCE: ACHIEVING EFFICIENT FAILURE RESILIENCY FOR NFV-BASED SERVICES 11

TABLE V

NOTATIONS USED FOR CORRECTNESS ANALYSIS

We prove Theorem 1 by the methods of “Proof by case”

and “proof by contradiction”. We know that the processing of a

packet by an NF can result in either non-deterministic or deter-
ministic state updates in an NF. Accordingly, in REINFORCE

the state replication is based on the following two propositions:

Proposition 1 (Packet Processing Progress): To preserve
external synchrony, in the case of only deterministic state

updates, it is sufficient to track and update the packet process-

ing progress information across the NF chain.
This implies that REINFORCE only updates the packet

processing progress information Tj before releasing the pack-
ets that update the external view and then lazily (periodically)

updates the NF state to the replica node later, as shown in the

right side of the Figure 10. Hence,

S.Vi ⊆ E .V i 3 E .Vi ⊆ P .ViandPi ⊆ B (VII.1)

Proposition 2 (External Synchrony with ND): In order to

preserve, external synchrony in the event of non-deterministic

packet processing, it is necessary to synchronize and commit
the NF state at replica P .Vi before releasing the packet p0i.
This implies that REINFORCE first updates the NF state to

the replica node and only then releases the packets. Hence as
shown in the left side of the Figure 10,

E .Vi = S.V i 3 S.Vi ⊆ P .V i (VII.2)

Case 1: Let us consider the case when the primary node

fails, given that packet processing (initial or after the last
packet processing progress commits) update Tj resulted in

only deterministic state updates in any of the NFs in the chain.
In such case, by Definition 1, reprocessing of any tij ∈ T
packets in B only updates the NF state at the secondary NF,

but these packets are subsequently dropped by the replica node
and hence do not modify the external view, E .V . However,

when the secondary NF(i) processes the packets, this implies:

S.V i = Pi ∗ Si 7→ S0

i resulting in S.V i = P .Vi If we
consider the contradiction that S.V i 6= P .Vi, then that violates

Definition 1, and thus cannot be true.

Moreover, for the remaining [B−{Tij}] packets, the P .V =
∅ and as per Proposition 1 E .V ⊆ P .V = ∅. Hence, in either

case, external synchrony E .V is preserved.

Fig. 10. Relationship of NF States across Primary (PV), Secondary/Replica
(SV), and External view (EV).

Case 2: Consider the case when the primary node fails given

that packet processing (initial or after last packet processing

progress commit) updates timestamp Tj results in ND at any
NF in the chain. Then, the initial condition (at the time of

failure) is: S.V ⊆ E .V ⊆ P .V. By Proposition 2 for the
replay condition, we have, E .V ⊂ P .V 3 E .V

⋂
P .Vi =

∅, i.e., External view does not contain any ND updates of

the Primary NFs which are not synced to secondary. Fur-
ther, by Definition 1, reprocessing of any packet in B with

timestamp tij ∈ T only updates the NF state at the secondary

NF, but the packets Pi < T are subsequently dropped by the
replica node and hence do not modify E .V . However, as the

secondary NF(i) processes these replayed packets, their state

rolls forward to the external state, i.e., S.V i = Pi ∗ Si 7→ S0

i

resulting in S.V i = E .V i Hence, the final status is: S.V =
E .V 3 S.V 6= P .V Thus, external synchrony is preserved, but

the Primary (failed) and Secondary NFs may differ in internal
states due to possible different outcomes, because of ND.

Case 3: Let us consider the case when the packet processing

results in both deterministic and non-deterministic updates in
any of the NF(s) in the chain. Here, B may contain packets

that result in ND. For Pi ∈ B:

if Pi <= T =⇒ Duplicate packet

else Pi > T =⇒ New packet

This is equivalent to Case 1 for deterministic processing and
Case 2 for ND updates. For Pi <= T i.e., duplicate packet

processing S.V i = Pi ∗ Si 7→ S0

i results in Secondary state

update S.V i = E .V i for all deterministic packets. However,
if Pi results in ND, then by Proposition 2 it must already be

committed to secondary. Otherwise, the Pi > T must be a
new packet which updates S.V i and also E .V i

Note: As, we commit state for the entire NF chain i.e., all

the NFs in the chain get to commit the NF state during the
periodic state transfer or in the event of any non-determinism

that necessitates explicit state update for any NF in the chain.

Hence, with duplicate packet processing, only the secondary
gets updated without impacting the EV, while the new packets

result in updates to both SV and EV.

VIII. REINFORCE WORK-FLOW

Figure 11 illustrates the workflow for updating and main-
taining both the local and remote replicas for the two failover

schemes. To summarize, we expect an SDN controller and

the NFV orchestrator to configure the resiliency mode (local
only or remote), BFD, and the role setting for the predecessor,

active, and standby nodes for the NF chain.

Authorized licensed use limited to: The George Washington University. Downloaded on March 16,2020 at 23:38:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 11. Work-flow for local and remote NF replication and failover.

Predecessor node: it time-stamps the incoming packets and

logs all the outgoing packets in a per-port rotating log buffer

before forwarding the packets to the active node. The rotating
log buffers are recycled periodically. Additionally, it monitors

the liveness of the link through BFD and performs replay in

the event an active node failures. To initiate the replay, it first

notifies the remote standby to take-over as the active node

and then replays the packets from the rotating log buffers.
Until the replay is complete, the new incoming packets are

temporarily buffered, and if this buffer overflows, subsequent

Authorized licensed use limited to: The George Washington University. Downloaded on March 16,2020 at 23:38:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KULKARNI et al.: REINFORCE: ACHIEVING EFFICIENT FAILURE RESILIENCY FOR NFV-BASED SERVICES 13

incoming packets are dropped. After completion of replay,

it notifies the standby node to transition to normal (as new
primary) processing mode and thereafter transmits interim

logged packets and subsequent incoming packets.

Active node: processes incoming packets across the NF
chains. For each NF a local standby NF is also instantiated.

After processing a batch of packets, the state is synchronized

with the local standby. When an NF chain spans across
multiple nodes, all nodes except the last active node also act as

the predecessor node and log outgoing packets. At the end of

NF chain processing, it updates the TxTs table and initiates the
2-phase commit for the updated TxTs table. Upon successful

commit, the packets are released; otherwise they are dropped.

Also, periodically the NF state updates are committed to the
remote standby, and in the case of ND, the state commit

operation is performed immediately. Note the NF state used

for remote replication is from the local standby NFs. Also,
the NF manger tracks the liveness of the local NFs and in the

event of an NF failure, it initiates the local NF failover and
transitions the standby NF to active mode.

Standby node: during the standby mode, this node

processes incoming time-stamp updates and the NF chain’s
state-update packets and notifies the state-update response

back to the active node. Upon notification by the predecessor

node to transition to replay mode, the NF-manager transitions
the local standby NFs to active mode and forwards the

subsequent incoming packets for processing to the NFs in the

chain. Until the replay completion notification, the standby
node checks for the processed packet time-stamp with the last

logged time-stamp in the TxTs table to determine whether the

packet is to be dropped (duplicate) or not. After the completion
of replay, the standby node transitions and continues to process

subsequent packets as an active node.

IX. CONCLUSION

REINFORCE is the first to address chain-wide NF
resiliency, supporting fast detection and recovery of software,

server and link failures. REINFORCE can detect NF failure

and failover to a local standby within 150µs. More importantly,
it provides chain-wide failover to a remote node within 5ms.

In addition, REINFORCE results in minimal overhead for

normal operation and achieves 2X better performance than the
state-of-the-art. We distinguish the minimum state information

needed to achieve efficient and consistent remote replication.
The key is REINFORCE’s separation of deterministic and non-

deterministic NF processing, and only incurring the overhead

of checkpointing and a 2-phase commit of state on the standby
for non-deterministic NF processing. REINFORCE automati-

cally tracks and replicates state to standby NFs while enforcing

correctness. The amount of state replicated is minimized by
using ‘lazy’ replication of NF application state across hosts,

and packet replay is used to speed up the recovery of deter-

ministic NF processing. Even for reasonably frequent non-
deterministic packet processing, REINFORCE’s performance

is far superior to the other alternatives.

REFERENCES

[1] R. Potharaju and N. Jain, “Demystifying the dark side of the middle:
A field study of middlebox failures in datacenters,” in Proc. Conf.

Internet Meas. Conf., New York, NY, USA, 2013, pp. 9–22, doi: 10.
1145/2504730.2504737.

[2] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures
in data centers: Measurement, analysis, and implications,” SIGCOMM

Comput. Commun. Rev., vol. 41, no. 4, pp. 350–361, Aug. 2011, doi: 10.
1145/2043164.2018477.

[3] H. S. Gunawi et al., “Why does the cloud stop computing?: Lessons
from hundreds of service outages,” in Proc. 7th ACM Symp. Cloud
Comput. (SoCC), New York, NY, USA, 2016, pp. 1–16, doi: 10.
1145/2987550.2987583.

[4] S. K. Sahoo, J. Criswell, and V. Adve, “An empirical study of reported
bugs in server software with implications for automated bug diagnosis,”
in Proc. 32nd ACM/IEEE Int. Conf. Softw. Eng.-ICSE, vol. 1, New York,
NY, USA, 2010, pp. 485–494, doi: 10.1145/1806799.1806870.

[5] J. Martins et al., “Clickos and the art of network function virtualiza-
tion,” in Proc. 11th USENIX Conf. Networked Syst. Design Implement.

(NSDI), Berkeley, CA, USA, 2014, pp. 459–473. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2616448.2616491

[6] A. Madhavapeddy et al., “Unikernels: Library operating systems for the
cloud,” SIGPLAN Not., vol. 48, no. 4, p. 461, Apr. 2013, doi: 10.1145/
2499368.2451167.

[7] (2013). ETSI-GS-NFV-002-Network Functions Virtualization (NFV):

Architectural Framework. [Online]. Available: http://www.etsi.org/
deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf

[8] J. Sherry et al., “Rollback-recovery for middleboxes,” SIGCOMM
Comput. Commun. Rev., vol. 45, no. 5, pp. 227–240, Aug. 2015,
doi: 10.1145/2829988.2787501.

[9] S. Rajagopalan, D. Williams, and H. Jamjoom, “Pico replication:
A high availability framework for middleboxes,” in Proc. 4th

Annu. Symp. Cloud Comput. (SOCC), New York, NY, USA, 2013,
pp. 1:1–1:15, doi: 10.1145/2523616.2523635.

[10] A. Gember-Jacobson et al., “Opennf: Enabling innovation in network
function control,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 4,
pp. 163–174, Aug. 2014, doi: 10.1145/2740070.2626313.

[11] J. Khalid and A. Akella, “Correctness and performance for state-
ful chained network functions,” in Proc. 16th USENIX Symp. Netw.

Syst. Design Implement. (NSDI), Boston, MA, USA, Feb. 2019,
pp. 501–516. [Online]. Available: https://www.usenix.org/conference/
nsdi19/presentation/khalid

[12] A. Panda, O. Lahav, K. Argyraki, M. Sagiv, and S. Shenker,
“Verifying isolation properties in the presence of middleboxes,”
2014, arXiv:1409.7687. [Online]. Available: https://arxiv.org/abs/1409.
7687

[13] K. Alpernas et al., “Abstract interpretation of stateful networks,” in Proc.

Int. Static Anal. Symp., 2018, pp. 86–106.

[14] E. B. Nightingale, K. Veeraraghavan, P. M. Chen, and J. Flinn, “Rethink
the sync,” ACM Trans. Comput. Syst. (TOCS), vol. 26, no. 3, pp. 1–26,
Sep. 2008, doi: 10.1145/1394441.1394442.

[15] (2014). Data Plane Development Kit. [Online]. Available:
http://dpdk.org/

[16] (2017). Criu: Checkpoint Restore in Userspace. [Online]. Available:
http://criu.org/

[17] P. Quinn and T. Nadeau, Eds., Problem Statement for Serxvice Func-

tion Chaining, document RFC 7498, Apr. 2015. [Online]. Available:
https://www.rfc-editor.org/info/rfc7498, doi: 10.17487/RFC7498.

[18] E. J. Jackson et al., “Softflow: A middlebox architec-
ture for open vswitch,” in Proc. USENIX ATC, 2016,
pp. 15–28.

[19] D. Katz and D. Ward, Bidirectional Forwarding Detection (BFD),
document RFC 5880, Jun. 2010. [Online]. Available: https://www.rfc-
editor.org/info/rfc5880, doi: 10.17487/RFC5880.

[20] C. Cachin, S. Schubert, and M. Vukolić, “Non-determinism in Byzantine
fault-tolerant replication,” 2016, arXiv:1603.07351. [Online]. Available:
https://arxiv.org/abs/1603.07351

[21] Y. Velner et al., “Some complexity results for stateful network verifica-
tion,” in Proc. Int. Conf. Tools Algorithms Construct. Anal. Syst. Berlin,
Germany: Springer, 2016, pp. 811–830.

[22] Network Functions Virtualization (NFV): Resiliency Requirements,
document ETSI-GS-NFV-REL-001, 2015. [Online]. Available:
http://www.etsi.org/deliver/etsi_gs/NFV-REL/001_099/001/01.01.01_
60/gs_NFV-REL001v010101p.pdf

[23] S. G. Kulkarni, G. Liu, K. Ramakrishnan, M. Arumaithurai, T. Wood,
and X. Fu, “Reinforce: Achieving efficient failure resiliency for network
function virtualization based services,” in Proc. 14th Int. Conf. Emerg.

Netw. Exp. Technol., 2018, pp. 41–53.

[24] Reinforce Sourcecode. Accessed: Sep. 20, 2018. [Online]. Available:
https://github.com/sameergk/REINFORCE_Supplements

Authorized licensed use limited to: The George Washington University. Downloaded on March 16,2020 at 23:38:48 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/1806799.1806870
http://dx.doi.org/10.1145/2829988.2787501
http://dx.doi.org/10.1145/2523616.2523635
http://dx.doi.org/10.1145/2740070.2626313
http://dx.doi.org/10.1145/1394441.1394442
http://dx.doi.org/10.17487/RFC7498
http://dx.doi.org/10.17487/RFC5880
http://dx.doi.org/10.1145/2504730.2504737
http://dx.doi.org/10.1145/2504730.2504737
http://dx.doi.org/10.1145/2043164.2018477
http://dx.doi.org/10.1145/2043164.2018477
http://dx.doi.org/10.1145/2987550.2987583
http://dx.doi.org/10.1145/2987550.2987583
http://dx.doi.org/10.1145/2499368.2451167
http://dx.doi.org/10.1145/2499368.2451167

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

[25] W. Zhang et al., “Opennetvm: A platform for high performance network
service chains,” in Proc. Workshop Hot Topics Middleboxes Netw.

Function Virtualization (HotMIddlebox), New York, NY, USA, 2016,
pp. 26–31. [Online]. Available: http://doi.acm.org/2940147.2940155

[26] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“Moongen: A scriptable high-speed packet generator,” in Proc. ACM

Conf. Internet Meas. Conf., 2015, pp. 275–287.
[27] A. Bench. Ab-Apache HTTP Server Benchmarking Tool. [Online]. Avail-

able: https://httpd.apache.org/docs/2.4/programs/ab.html
[28] (2018). Wrk: A Http Benchmarking Tool. [Online]. Available:

https://github.com/wg/wrk
[29] L. Deri, M. Martinelli, T. Bujlow, and A. Cardigliano, “NDPI: Open-

source high-speed deep packet inspection,” in Proc. Int. Wireless Com-

mun. Mobile Comput. Conf. (IWCMC), Aug. 2014, pp. 617–622.
[30] (2018). Ndpi Test Pcap Traces. [Online]. Available: https://github.

com/ntop/nDPI/tree/dev/tests/pcap
[31] Redis Labs. (2019). Redis. [Online]. Available: https://redis.io
[32] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield,

“Split/merge: System support for elastic execution in virtual middle-
boxes,” presented at the 10th USENIX Symp. Netw. Syst. Design
Implement. (NSDI), Lombard, IL, USA, 2013, pp. 227–240.

[33] A. Gember et al., “Stratos: A network-aware orchestration layer for
middleboxes in the cloud,” CoRR, May 2013. [Online]. Available:
http://arxiv.org/abs/1305.0209

[34] J. Khalid, A. Gember-Jacobson, R. Michael, A. Abhashkumar, and A.
Akella, “Paving the way for NFV: Simplifying middlebox modifications
using statealyzr,” in Proc. 13th USENIX Symp. Netw. Syst. Design

Implement. (NSDI), Santa Clara, CA, USA, 2016, pp. 239–253. [Online].
Available: https://www.usenix.org/conference/nsdi16/technical-sessions/
presentation/khalid

[35] S. Woo, J. Sherry, S. Han, S. Moon, S. Ratnasamy, and S. Shenker,
“Elastic scaling of stateful network functions,” in Proc. 15th USENIX
Symp. Netw. Syst. Design Implement. (NSDI), Renton, WA, USA, 2018,
pp. 299–312. [Online]. Available: https://www.usenix.org/conference/
nsdi18/presentation/woo

[36] C. Wang et al., “PLOVER: Fast, multi-core scalable virtual machine
fault-tolerance,” in Proc. 15th USENIX Symp. Netw. Syst. Design

Implement. (NSDI), Renton, WA, USA, 2018, pp. 483–489. [Online].
Available: https://www.usenix.org/conference/nsdi18/presentation/wang

[37] M. Kablan, A. Alsudais, E. Keller, and F. Le, “Stateless network
functions: Breaking the tight coupling of state and processing,”
in Proc. 14th USENIX Symp. Netw. Syst. Design Implement.
(NSDI), Boston, MA, USA, 2017, pp. 97–112. [Online]. Available:
https://www.usenix.org/conference/nsdi17/technical-sessions/
presentation/kablan

Sameer G. Kulkarni received the Ph.D. degree
from the University of Göttingen, Germany. He
is currently a Post-Doctoral Researcher at the
Department of Computer Science and Engineering,
University of California, Riverside, CA, USA. His
current research interests include parallel and distrib-
uted computing, software-defined networks, network
function virtualization, and cloud computing.

Guyue (Grace) Liu received the B.S. degree from
the Beijing University of Posts and Telecommu-
nications, and the Ph.D. degree in computer sci-
ence from George Washington University. She is
currently a Post-Doctoral Researcher at Carnegie
Mellon University (CMU). Her research interests are
in the areas of networking and systems, and she
has published research papers in top conferences
in these fields. She has interned and collaborated
with leading research institutes, such as Microsoft
Research and Hewlett Packard Labs. She has won

the HP Helion OpenStack Scholarship, the First Place in GENI Competition,
and an RTAS Best Student Paper Award. She was selected as one of the
ten N2Women rising stars in networking and communications in 2019.

K. K. Ramakrishnan (Fellow, IEEE) received the
M.Tech. degree from the Indian Institute of Science,
and the M.S. and Ph.D. degrees in computer science
from the University of Maryland, College Park, MD,
USA, in 1978, 1981, and 1983, respectively. He was
a Distinguished Member of Technical Staff at AT&T
Labs-Research. Prior to 1994, he was the Technical
Director and Consulting Engineer in networking at
Digital Equipment Corporation. From 2000 to 2002,
he was at TeraOptic Networks, Inc., as the Founder
and Vice President. He is currently a Professor of

computer science and engineering with the University of California, Riverside,
CA, USA. He has published over 275 articles and has 180 patents issued in
his name. He is a Fellow of the ACM and an AT&T Fellow, recognized for his
fundamental contributions on communication networks, including his work on
congestion control, traffic management, and VPN services.

Mayutan Arumaithurai received the Ph.D. degree
in industrial engineering from the University of
Goettingen in 2010. Meanwhile, he was working for
Nokia Siemens Networks. Prior to that, he worked
as a Research Scientist at the Network Laborato-
ries of NEC Europe Ltd., Heidelberg, Germany,
for two years. He is currently a Senior Researcher
at the Computer Networks Group, University of
Goettingen, Germany. His current research interests
include information centric networking, software-
defined networks, network function virtualization,

and cloud computing. He has published in top conferences in his field (ACM
SIGCOMM, ACM CoNext, IEEE Infocom), coauthored IETF/IRTG standards,
and has led multiple million-euro EU-funded projects.

Timothy Wood received the bachelor’s degree in
electrical and computer engineering from Rutgers
University in 2005, and the Ph.D. degree in com-
puter science from the University of Massachusetts
Amherst in 2011. He is currently an Associate
Professor with the Department of Computer Science,
George Washington University. His research studies
how new virtualization technologies can provide
application agnostic tools that improve performance,
efficiency, and reliability in cloud computing data
centers and software-based networks. His Ph.D. the-

sis received the UMass CS Outstanding Dissertation Award; his students have
voted him CS Professor of the Year; and he has won three best paper awards,
a Google Faculty Research Award, and an NSF Career Award.

Xiaoming Fu (Senior Member, IEEE) received the
Ph.D. degree in computer science from Tsinghua
University, China, in 2000. Since 2007, he has
been a Professor and the Head of the Com-
puter Networks Group, Georg-August-Universität
Göttingen, Germany. He also held visiting positions
at ETSI, University of Cambridge, Columbia Uni-
versity, Tsinghua University, and UCLA. He is a
Distinguished Lecturer of the IEEE, a member of
the ACM, a Fellow of the IET, and a member of
Academia Europaea.

Authorized licensed use limited to: The George Washington University. Downloaded on March 16,2020 at 23:38:48 UTC from IEEE Xplore. Restrictions apply.

