This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

NFVnice: Dynamic Backpressure and
Scheduling for NFV Service Chains

Sameer G. Kulkarrii, Wei Zhang, Jinho Hwang, Shriram Rajagopalan,
K. K. Ramakrishnaii, Fellow, ACM Timothy Wood, Mayutan Arumaithurai,
and Xiaoming Fu’, Senior Member, IEEE, Member, ACM

Abstract—Managing Network Function (NF) service chains rewalls, NAT, proxies, deep packet inspection, WAN opti-
requires careful system resource management. We proposemization, etc., in software instead of purpose-built hardware
NFVnice, a user space NF scheduling and service chain man-gppliances. These software based network functions can be
agement framework to provide fair, efcient and dynamic run on top of commercial-off-the-shelf (COTS) hardware,

resource scheduling capabilities on Network Function Virtual- . .] . .
ization (NFV) platfgrmsl? The NFVnice framework monitors With virtualized network functions (NFs). Network functions,

load on a service chain at high frequency (1000Hz) and employs however, often are chained together [1], where a packet is
backpressure to shed load early in the service chain, thereby processed by a sequence of NFs before being forwarded to
preventing wasted work. Borrowing concepts such as rate pro- the destination.

portional scheduling from hardware packet schedulers, CPU The advent of container technologies like Docker [2]
shares are computed by accounting for heterogeneous packetangples network operators to densely pack a single NFV

processing costs of NFs, I/O, and traf ¢ arrival characteristics. By ; .
leveraging cgroups, a user space process scheduling abstractionapp“‘r’lnce (VM/bare metal) with large numbers of network

exposed by the operating system, NFVnice is capable of con-functions at runt|me._ Even though NEV platform_s are typlc_ally
trolling when network functions should be scheduled. NFVnice capable of processing packets at line rate, without ef cient
improves NF performance by complementing the capabilities of management of system resources in such densely packed
the OS scheduler but without requiring changes to the OS's environments, service chains can result in serious performance
scheduling mechanisms. Our controlled experiments show that degradation because bottleneck NFs may drop packets that

NFVnice provides the appropriate rate-cost proportional fair have alread P
i ; y been processed by upstream NFs, resulting in
share of CPU to NFs and signi cantly improves NF performance wasted work in the service chain.

(throughput and latency) by reducing wasted work across an . N .
NF chain, compared to using the default OS scheduler. NFvnice ~NF processing has to address a combination of require-
achieves this even for heterogeneous NFs with vastly different ments. Just as hardware switches and routers provide

computational costs and for heterogeneous workloads. rate-proportional scheduling for packet ows, an NFV plat-
Index Terms— Network function virtualization, service func- form has to provide a_falr processing of packet ows.
tion chaining, scheduling, backpressure, fairness. Secondly, the tasks running on the NFV platform may have

heterogeneous processing raguments that OS schedulers
(unlike hardware switches) address using their typical fair
|. INTRODUCTION scheduling mechanisms. OS schedulers, however, do not treat
)) L . packet ows fairly in proportion to their arrival rate. Thus,
ETWORK Function Virtualization (NFV) seeks to imple-Ng rqcessing requires a re-thinking of the system resource
ment network functions and middlebox services such ?r?anagement framework to adsis both these requirements.
Manuscript received December 27, 2018; revised October 6 201%0@0\/6"’ stan_da_r(_d oS schedulers:_ a) do not have the rlght
accepted January 11, 2020; approved EEE,ACM TRANSACTIONS ON etrlcs_ and primitives to ensure fairness between NFs that
NETWORKING Editor G. Paschos. This work was supported in part by the EJ€al with the same or different packet ows; b) do not
FP7 Marie Curie Actions CleanSkyfIN Project under Grant 607584, in part make scheduling decisions that account for chain level infor-

by the U.S. NSF under Grant CRI-1823270, Grant CNS-1522546, and Gr i ; _
CNS-1422362, in part by the Department of the Army, U.S. Army Researcwhtlon’ and C) cannot guarantee predlctable per- ow Iatency

Development and Engineering Command under Grant W911NF-15-1-0s68duirements. If the schedulalfocates more processing to an
and in part by Huawei Technologies Company, Ltd., under the HIRP Gramtpstream NF and the downstream NF becomes overloaded,
(Corresponding author: Sameer G. Kulkarni.) packets are dropped by the downstream NF. This results

Sameer G. Kulkarni and K. K. Ramakrishnan are with the Department : : : :
Computer Science and Engineering, Ndmsity of California at Riverside, m inef cient processing and wasting the work done by the

Riverside, CA 92521 USA (e-mail: sameer.sameergk@gmail.com). upstream NF. OS schedulers also need to be adapted to
Wei Zhang is with Microsoft Azure Networking, Microsoft, Redmond, WAwork with user space data plane frameworks such as Intel's
98052 USA. DPDK They hav nizant of NUMA (Non-
Jinho Hwang is with the IBM T. J. Watson Research Center, Yorktown . [3] ey have to be cognizant o U . (0
Heights, NY 10598 USA. uniform Memory Access) concerns of NF processing and the
Shriram Rajagopalan is with Tate, San Francisco, CA 94111 USA. dependencies among NFs in a service chain. Additionally,
WTimh_Othty WSOC}' is Y}/ithvt/hehl?er;aftmggt ;goCsszfg;ef Science, The Georgsrocessor performance is critically dependent on cache per-
asnington university, asnington, . H H H
Mayutan Arumaithurai and Xiaoming Fu are with the Institut fur Informatikformance’ which '_” turn depends on qua“ty of reference [4].
University of Géttingen, 37077 Gottingen, Germany. When the OS switches contexts, locality of access may not

Digital Object Identi er 10.1109/TNET.2020.2969971 occur because the instructiongdasata of the newly-scheduled

1063-6692 © 2020BEE. Personal se is perrited, but republication/redistution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4727-6875
https://orcid.org/0000-0003-1849-5155
https://orcid.org/0000-0002-8012-4753

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

NF may no longer be in the cache(s). Context switching resuttéferent kernel schedulers, while substantially improving
in additional NF processing costs, beyond the typical costroughput and providing fair CPU allocation based on
associated with the operations performed by the kernel [dlocessing requirements. lormtrolled experiments using the
and have to be accounted for. Therefore, determining howwvanilla CFS scheduler [9], NFVnice reduces packet drops
dynamically schedule NFs is key to achieving high perfofrom 3Mpps (million packets gr second) to just 0.01Mpps
mance and scalability for diverse service chains, especiallydaring overload conditions. NFVnice provides performance
a scenario where multiple NFs are contending for a CPU corisolation for TCP ows when there are competing UDP ows,
Hardware routers and switches that employ sophisticatedproving throughput of TCP ows from 30Mbps to 4Gbps,
scheduling algorithms such as rate proportional schedwulithout penalizing UDP ows, by avoiding wasted work.
ing [5], [6] have predictable grformance per-packet, becausé&urther, our evaluations demstrate that NFVnice, because
processing resources are allocated fairly to meet QoS requiné-the dynamic backpressure, is resilient to the variability
ments and bottlenecks are avoided by design. However, NV packet-processing cost of the NFs, yielding considerable
platforms are necessarily different because: a) the OS schidprovement in throughput and latency even for the large
uler does not know a priori, the capacity or processing requirgervice chains (including chains that span multiple cores).
ments for each NF; b) an NF may have variable per-packet
costs €.g.,some packets may trigger DNS lookup, which are Il. BACKGROUND AND MOTIVATION
expensive to process, and others may just be an inexpensjves: ; ; . .
header match). With NFV service chains, there is a need to%éeDwers_ny, Faimess, and Cha|r_1 Efbciency o
aware of the computational demands for packet processinglhe middleboxes that are being deployed in industry are
There can also be sporadic blocking of NFs due to |/everse in their applications as well as in their complexity
(read/write) stalls, that also results in latency variation acro88d processing requirements. ETSI standards [10] show that
the processed packets. NFs have dramatically differérprocessing and performance
A further consideration is that routers and switches ‘simplyeduirements. Measurements of existing NFs show the varia-
drop packets when congested. However, an NF in a serviig in CPU demand and per packet latency: some NFs have
chain that drops packets can result in considerable wasR&f-core throughputin the ordef million packets per second
processing at NFs earlier in the chain. These wasted resour®4BpS), €.9., switches; others have throughputs as low as a
could be gainfully utilized by other NFs being scheduled of¢W kilo pps,e.g.,encryption engines.
the same CPU core to proces&]@’ packet ows. We posit Fair SChedUIing:Determining how to allocate CPU time to
that a scheduling framework for NFV service chains hdwetwork functions in order to provide fair and ef cient chain
to simultaneously account for both task level scheduling di¢rformance despite NF diversity is the focus of our work.
processing cores and packeteé scheduling. This combined De ning “fairness” when NFs mashave drastically different
problem is what poses a challeng&hen you get a packet, requirements or behavior is important. We leverage the work
you have to decide which task has to run, and also whi&h Rate Proportional Servers [5], [6]. We de ne the allocation
packets to process, and for how long to be rate-cost proportionally fair if the allocation ensures the
To solve these prob'ems we propose NFVnice, an NFSﬂme normalized service to all the Contending NE, we
management framework that provides fair and ef cierPportion the resources (CPU cycles) to NFs based on the
resource allocations to NF service chains. NFVnice focuses @mbination of each NF’s arrival rate and processing cost.
the scheduling and control problems of NFs running on sharBtulitively, if either one of these factors is xed, then we expect
CPU cores, and considers a variety of realistic issues suchitgsCPU allocation to be proportional to the other metric. For
bottlenecked NFs in a chain, and the impact of NFs that p&xample, if two NFs have the same computation cost but one
form disk I/0 accesses, which maally complicate scheduling has twice the arrival rate of the other, then it must have twice

decisions. NFVnice makes the fo"owing contributions the Output rate relative to the second NF. AlternatiVE|y, if the
- Automatically tuning CPU saduling parameters to pro-NFs have the same arrival rate, but one requires twice the

vide a fair allocation that weighs NFs based on both thgirocessing cost, then we expect the heavy NF to get twice as
packet arrival rate and the required computation cost. much CPU time, resulting in both NFs having the same output
Determining when NFs are eligible to get a CPU shamate. This de nition of fairnes can of course be supplemented
and when they need to yield the CPU, entirely from useavith a prioritization factor. This provides an understandable
space, improving throughput and fairness regardless arid consistent way to provide differentiated service for NFs
the kernel scheduler being used. that is proportional to the arrival ratnd processing cost.
Leveraging the scheduling exibility to achieve backpres- Unfortunately, standard CPU schedulers do not have suf -
sure for service chain-level congestion control, that avoidgent information to allocate resources in a way that provides
unnecessary packet processing early in a chain if thate-cost proportional fairness. CPU schedulers typically try to
packet might be dropped later on. provide fair allocation of processing time, but if computation
Extending backpressure tapply not only to adjacent costs vary between NFs this cannot provide rate-cost fairness.
NFs in a service chain, but for full service chains andherefore, NFVnice must enhance the scheduler with more
managing congestion across hosts using ECN. information so that it can appropriately allocate CPU time to
Presenting a scheduler-agnostic framework that does pobvide correctly weighted allocations. We adopt the notion
require any operating system or kernel modi cations. of rate-cost proportional fairness for two fundamental reasons:
We have implemented NFVnice (source code [7]) on it ensures that all competing NFs get a minimal CPU share
top of OpenNetVM [8], a DPDK-based NFV platform thatnecessary to make progress even in the worst case scenario
runs NFs in separate processes or containers to facilit@éghly uneven and overloaded across competing NFs), while
deployment. Our evaluation shows that NFVnice can suppaeeking to maximize the throughput for a given load across all

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KULKARNI et al: NFVnice: DYNAMIC BACKPRESSURE AND SCHEDULING FOR NFV SERVICE CHAINS 3
5 100 5 100
NF1-Throughput NF1-CPU Utilization NF1-Throughput NF1-CPU Utilization
NF2-Throughput ZZZZ3 NF2-CPU Utilization NF2-Throughput 7ZZZZ NF2-CPU Utilization %
4 | NF3-Throughput EZ=E= 3 NF3-CPU Utilization 80 4 | NF3-Throughput NF3-CPU Utilization 80
Q ~ I -~
g 2 =& S
= =~ = =~
c3 60 5§ 3 60 §
= =}
2 8 3 g
22 40 5 92 40 3
° > 0 >
£ & £ ®
1 20 1 20
0 : B 0 0 0
Normal Batch RR Normal Batch RR Normal Batch RR Normal Batch RR
(a) Even load distribution. (b) Uneven load distribution.

Fig. 1. The scheduler alone is unable to provide faiouvese allocations that account for processing cost and load.

the NFs; and ii) the rate-cost proportional fairness is genetal run until either the task voluntarily yields, or consumes
and exible, so that it can be tuned to meet the QoS policiegke allotted time-slice. If it consumes the allocated time-
desired by the operator. Further, the approach ensures tate, it is re-inserted into the red-black tree based on its
when contending NFs include malicious NFs (those that faibmulative run-time consumed so far. The CFS scheduler
to yield), or misbehaving NFs (get stuck in a loop making analogous to weighted fair queueing (WFQ) schedul-
no progress), such NFs do not consume the CPU excessivily, [20], [21]. Thus, CFS ensures a fair proportion of
impeding the progress of other NFs. While the Linux defau@PU allocation to all the tasks. The CFS Batch variant
scheduler has the notion of arteial run-time for each running has fewer timer interrupts than normal CFS, leading to a
task, we ne-tune that capability to provide the correct shatenger time quantum and fewer context switches, while still
of the CPU for an NF, rather than simply allocating an equalfering fairness. The Round Robin (RR) scheduler (part of the
share of the CPU to each contending NF. linux real-time (RT) scheduling class), simply cycles through
Efbcient Chaining:Beyond simply allocating CPU time processes with a speci ed time quantum (1-100ms), but does
fairly to NFs on a single core, the combination of NFs intoot focus on a particular measure of fairness other than equal
service chains demands careful resource management acallssation of cycles. The CFSasds of schedulers readily use
the chain to minimize the impact of bottlenecks. Processinglae cgroups to provide CPU bandwidth control per-process
packet only to have it dropped from a subsequent bottleneckls group of processes), while the RT schedulers do not
gueue is wasteful, and a recipe feceive livelocj11], [12]. support CPU bandwidth control for group scheduling [9].
When an NF (whether a single NF or one in a service To explore the impact of these schedulers on NFV appli-
chain) is overloaded, packet drops become inevitable, acations we consider a simple deployment with three NF
processing resources already consumed by those packetspapeesses sharing a CPU core. We look at two workloads:
wasted. For responsive ows, such as TCP, congestion contigl equal offered load (of 5 Mpps) to all NFs; 2) unequal
and avoidance using packet drop methods such as RED, REiffered load, with NF1, NF2 gettin§ Mpps, and NF3 getting
SFQ, CSFQ [13][16] and feedback with Explicit Congestio Mpps.
Noti cation (ECN) [17] can cause the ows to adapt their rates We consider three heterogeneous NFs (computation costs:
to the available capacity on an end-to-end basis. However, féF1 = 500, NF2= 250 and NF3= 50 CPU cycles) subject
non-responsive ows (e.g., UDP), a local, rapidly adaptintp equal and unequal loads. Figure 1 shows that when arrival
method is backpressure, which can propagate informatitates are the same, none of the schedulers are able to provide
regarding a congested resource upstream (to previous NF®um fairness goal—an equal output rate for all three NFs.
the chain). It is important however to ensure that effects su€irS Normal always apportions CPU equally, regardless of
as head-of-the-linelbcking or unfairness do not creep in a®ffered load and NF processing cost, so the lighter weight
a result. NF3 gets the highest throughput. The RR scheduler gives
each NF an equal chance to run, but does not limit the time
B. Existing OS Schedulers Are the NF runs for..The CFs Batc'h sch'eduler is in between thgse
ll-Suited for NFV Deployment extremes since it seeks to provide fairness, bl_Jt over longer time
periods. Notably, the Batch scheduler provides NF3 almost
Linux provides several different process schedulers, withe same throughput as Normal CFS, despite allocating it
the Completely Fair Schederl (CFS) [9] being the default substantially less CPU. The reason for this is that Normal
since kernel 2.6.23. In this work we focus on three scheduleGFS can incur a very large number of context switches due to
i) CFS Normal, ii) CFS Batch, and Round Robin. The CFf#s goal of providing very ne-grained fairness. Since Batch
class of schedulers use a nanosecond resolution timer to prde reduces scheduler preemption, it has substantially fewer
vide ne granularity scheduling decisions. Each task in CFBon-voluntary context switches—reducing from 65K to 1K
maintains a monotonically increasing virtual run-time whicher second—as illustrated in the Table I. While RR also has
determines the order and quantum of CPU assignment to thise context switch overhead, it allows heavy weight NFs to
tasks. The time-slice is not xed, but is determined relative tgreedily consume the CPU, nearly starving NF3.
the run-time of the contending tasks in a time-ordered red-We also demonstrate the impact on latency due to the
black tree [18], [19]. The task with the smallest run-timgcheduling of NFs in a service chain. For this, we consider
(the left most node in the ordered red-black tree) is scheduladhain of three heterogeneous NFs executed on a same CPU

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING
TABLE | (Chained) NFs
CONTEXT SWITCHES FORHETEROGENEOUSNFS 2 Wakeup Thread]<-C—°Dt-rgll Path =0 H
Even Load Uneven Load :ED Monitor Thread]‘_ - ___: NF Container -:—:
SCHED_ SCHED_ SCHED_ SCHED_ SCHED_ SCHED_ c ! : :
NORMAL BATCH RR NORMAL BATCH RR o NF Manager <_____}____> libnf 1
Ccsw- nve csw- w csw- nve csw- nve csw- nve csw- nve [0 a FI |+ = ’
NF ch/s sweh |y | WO g | SWER | Gy sweh |y | SWeR | epys | SWeR 5 8|S [+ By Data Path (111
/s /s /s /s /s /s =
NF1 0 33785 0 504 198 7 0 38585 0 503 35 10 3 & (] 1E8E RX | TX <—4l Shared Memory Pool]
NF2 0 32214 1 505 204 2 0 41089 4 496 92 1 +
NF3 | 65796 107 1010 8 206 0 79479 85 1004 4 93 0 E 8 :
38 R -+ CPU Schedulers
X n
6500
= A
6000
5500 T NICs
_5000 | — —
g_f{ggg L Fig. 3. NFVnice building blocks.
23500
c . g . . .
%5888 providing these metrics from the NF implementation to the
- . . . -
1500 underlying operating system, NFVnice provides network
1 . A
500 function implementations with an abstraction library called
Normal Batch RR(1ms) RR(100ms) libnf. In addition to the usual tasks such as efcient read-

ing/writing packets from/to the network at line rate and
Fig. 2. Minimum, maximum, and three quartiles (25%ile, median an verIappmg_proces&_ng with non_bIOCkmg asynChronous /0,
75%ile) latency for different kernel schedulers. ibnf co-ordinates with the NFhce platform to schedule/
de-schedule a network function as necessary.

core, and measure the round-trip-time (RTT) latency for packet™0difying the OS scheduler to be aware of various queues
processing across the chain (the time from packet generatigntn® NFV platform is an onerous task that might lead
to receiving it back, after processing). Figure 2 shows the b unnecessary maintenance overhead and potential system
plot of the latency seen with fiérent schedulers. The choicelnStability. One approach is to change the priority of the NF
of scheduler has signi cant impact on the latency. Moreovepased on the queue length of packet at that NF. This will have
the variance (min, max, and the three quartiles) in latency 3¢ €ffect of increasing the number of CPU cycles provided
much higher with the CFS (Normal and Batch) schedulers tH& that NF. This will require the change to occur frequently
perform more frequent context switches compared to the F§ the queue length varies. The change requires a system call,
schedulers (1ms or 100ms). which consumes CPU cycles and adds latency. In addition,
These results show that just having the Linux scheduldfth service chains, as the queue at an upstream NF builds,
handle scheduling NFs has undesirable results as by itdEifPriority has to be raised to process packets and deliver to
it is unable to adapt to both varying per-packet processifgdueue at the downstream NF. Then, the downstream NF's

requirements of NFs and packet arrival rates. Further, it pEiority will have to be raised. We believe that this can lead to

important to avoid the overheads of excessive context switchB§tapility because of frequent changes and the delay involved

All of these scheduling requirements must be met on a per-cdfeeffecting the change. This only gets worse with complex

basis, while accounting for the behavior of chains spannif§Viceé chains, where an NF is both an upstream NF for one
multiple cores or servers. service chain and a downstream NF for another service chain.

Instead, NFVnice leverages cgroups [22], [23], a standard
I1l. DESIGN AND IMPLEMENTATION userspace primitive provided in linux to manipulate process

In an NFV platform, at the top of the stack are one or mogsheduling. !\I_EVnic;e monitors queue sizes, computation times
network functions that must be scheduled in such a way tftd /O activities in user space with the help ldfnf and
idle work (i.e., while waiting for packets) is minimized andnanipulates schedulinweights accordingly.
load on the service chain is shad early as possibleo as to
avoid wasted work. However, the operating system’s procesSystem Components
scheduler that lies at the bottom of the software stack remaing=igure 3 illustrates the key components of the NFVnice plat-
completely application agnostic, with its goal of providing dorm. We leverage DPDK for fast userspace networking [3].
fair share of system resources to all processes. As shownQaor NFV platform is implemented as a system of queues that
the prior section, the kernel scheduler's metrics for schedulihgld packet descriptors pointing to shared memory regions.
are along orthogonal dimensions to those desired by tlfibe NF Manager runs on a dedicated set of cores and is
network functions. NFVnice bridges the gap by translatingsponsible for ferrying packet references between the network
the scheduling requirements at the NFV application layer toimterface card (NIC) queues and NF queues in an ef cient
format consumable by the operating system. manner. When packets arrive to the NIC, Rx threads in the
The design of NFVnice centers around the conceplF Manager take advantage of DPDK’s poll mode driver to
of assisted preemptive scheduling, where network fundeliver the packets into a shared memory region accessible to
tions provide hints to the underlying OS with regar@ll the NFs. The Rx thread does a lookup in the Flow Table to
to their utilization. In addition to monitoring the aver-directthe packetto the appropriate NF. Once a ow is matched
age computation time of a network function per packetp an NF, packet descriptors are copied into the NF's receive
NFVnice needs to know when NFs in a chain are overing buffer and the Wakeup subsystem brings the NF process
loaded, or blocked on pacitdisk 1/0. The queues betweeninto the runnable state. After being processed by an NF, the NF
NFs in a service chain serve as a good indicator &fanager’'s Tx threads move packets through the remainder of
pending work at each NF. To facilitate the process dhe chain. This provides zero-copy packet movement.

Kernel Scheduler

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KULKARNI et al: NFVnice: DYNAMIC BACKPRESSURE AND SCHEDULING FOR NFV SERVICE CHAINS 5
e Explicit Congestion Notification N a signal is sent to the NF so that it will be scheduled to run
! User 5 Queve by the OS scheduler in netmap, or the hypervisor scheduler
! Space ack Pressure Length Waiting i) g i X . >
_-]_i' in ClickOS. While this provides an ef cient mechanism for
-------- - -~ Running waking NFs, neither system allows for more complex resource

191908y

! | management policies, which can lead to unfair CPU alloca-

Load

e a
J

1apuss

Wagha) *guetrl Wonitor Thread tions across NFs, or inef cient scheduling across chains.
Komel > Work Conserving CPU Schedulers _In NFVnice, NFs sleep by _blocklng on a semaphore shared
1Space |Running NFs with the NF Manager, granting the management plane great
' HW (Shared CPU Cores)

S ey ——————— ;L exibility in deciding which NFs to activate at a given time.
The policy we provide for activating an NF considers the num-
ber of packets pending in its queue, its priority relative to other
Service chains can be con gured during system start s, and knowledge of_the queue lengths of downstream NFs
using simple con guration les or from an external orches! _the_ same chain. This allows the_ management frarr_lework
trator such as an SDN controller. When an NE nishes WitHD indirectly affect the CPU scheduling of NFs to be fairness
a packet, it enqueues it in its Tx queue, where it is read nd service-chain aware, without requiring that information be
the manager and re@dcted to the Rx queue of the next NF° nch_ronlged_ with the ker.nels scheduler.

in the chain. The NF Manager also picks up packets from theR€linquishing the CPU:NFs process batches of packets,
Tx queue of the last NF in the chain, and sends it out ovEfciding whether to keep processing or relinquish the CPU
the network. We have designed NFVnice to provide high pek?_etween each batch. This decision and all interactions with
formance processing of NF service chains. The NF Manageif¢ management layer, e.g., rieceive a batch of packets, are
scheduling subsystem determines when an NF should be acfiediated bylibnf, which in turn exposes a simple interface
and how much CPU time it should be allocated relative #9 developers to write their network function. After a batch
other NFs. The backpressure subsystem provides chain-awfr8t most 32 packets is processétnf will check a shared
management, preventing NFs from spending time processf§mory ag set by the NF Manager that indicates if it should
packets that are likely to be dropped downstream. relinquish the CPU early (e.g., as a result of backpressure,

System Management and NF Deployméftie NF Man- 28S described below). If the ag is not set, the NF will attempt
ager ’s (Rx, Tx and Monitor) threads are pinned to separdf Process another batch; if the ag has been set or there
dedicated cores. The number of Rx, Tx and monitor threa8& N0 packets available, the NF will block on the semaphore
are con gurable C-Macros), to meet system needs, and'ntil noti ed by the Manager. This provides a ex[ble way
available CPU resources. Similarly, the maximum number " the manager to indicate that an NF should give up the
NFs and maximum chain length can be con gured. NFVnicgPU Wwithout requiring the kernel's CPU scheduler to be
allows NFs and NF service chains to be deployed as inddF-aware.
pendent processes or Docker containers which are linked®PU Scheduler:Since multiple NF processes are likely to
with libnf library. libnf exports a simple, minimal interfacebe in the runnable state at the same time, it is the operating
(9 functions, 2 callbacks and4 structures), and both thesystem’s CPU scheduler that must determine which to run
NF Manager andibnf leverage the DPDK libraries (ring @and for how long. In the early stages of our work we sought
buffers, timers, memory management). We believe developity design a custom CPU scheduler that would incorporate
or porting NFs or existing docker containers can be reasonablfy information such as queue lengths into its scheduling
straightforward. For example, a simple bridge NF or a basitecisions. However, we found that synchronizing queue length

Fig. 4. NF scheduling and backpressure.

monitor NF is less than 100 lines & code. information with the kernel, at the frequency necessary for NF
) scheduling, incurred overheads that outweighed any bene ts.
B. Scheduling NFs NFVnice carefully controls when individual NF processes

Each network function in NFVnice is implemented insid@re runnable and when they yield the CPU (as described
its own process (potentially running in a container). Thus ti@&bove), the batch scheduler’s longer time quantum and less fre-
OS scheduler is responsible for picking which NF to run at ayuent preemption are desirable. In most cases, NFVnice NFs
point in time. We believe that rather than design an entirefglinquish the CPU due to policies controlled by the manager,
new scheduler for NFV, it is important to leverage Linux'gather than through an involuntary context switch. This reduces
existing scheduling framework, and use our managemeverhead and helps NFVnice prioritize the most important NF
framework in user space to tune any of the stock OS schedulsprocessing without requiring information sharing between
to provide the properties desired for NFV support. Figure dser and kernel space.
shows the NFVnice scheduling that makes the OS scheduler béssigning CPU WeightsNFVnice provides mechanisms to
governed by NF Manager via cgroups, and ultimately assign®nitor a network function to estimate its CPU requirements,
running NFs to shared CPU cores. The detailed descriptionafd to adjust its scheduling weight. Policies in the NF Manager
the gure is in the Sections IlI-B and IlI-C. can then dynamically tune the scheduling weights assigned

Activating NFs: NFs that busy-wait for packets performto each process in order to meet operator speci ed priority
very poorly in a shared CPU environment. Thus it is criticalequirements.
to design the NF framework so that NFs are only activatedThe packet arrival rate for a given NF can be easily
when there are packets availa for them to process, as isestimated by either the NF or the NF Manager. We measure
done in NFV platforms such as netmap [24] and ClickOS [25fhe service time to procesgacket inside each NF usitignf.
However, these systems provide only a relatively simple polidp avoid outliers from skewing these measurements (e.g., if a
for activating an NF: once one or more packets are availabtmntext switch occurs in the middle of processing a packet),

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING
! ! NF3
B D /'
Qlen < LOW_WATER_MARK Qlen > HIGH_WATER_MARK A
and and)
Queuing Time > Threshold Queuing Time > Threshold —A—> NF1 AB_> NF2 B/' NF4
—Cc—» —
Qlen >= HIGH_WATER_MARK c
ci Packet DA
lear acKe!
Throttle Throttle \ NF5
Qlen < LOW_WATER_MARK
Fig. 5. Backpressure state diagram. Fig. 6. Overloaded NFs (in bold) cause back pressure at the entry points for

service chains A, C, and D.

we maintain a histogram of timings, allowing NFVnice ta bled when th lenath d high wat K
ef ciently estimate the service time at different percentiles. IS eénabled when the queue length exceeds a high watermar

For each NFi on a shared core, we calculatsad(i) = and is only disabled once it falls below the low watermark.
. s, the product of arrival rate,,, and service times. Local Optimization and ECNNFVnice also supports sim-

We then nd the total load on each core, such as care ple, local backpressuré.e., an NF will block if its output
TX queue becomes full. This can happen because the NF

e ; .
Lﬂt?'gr?igfm) - 1= load(i), and assign cpu shares forManager TX Thread responsible for the queue is overloaded.
i en following the formula
load(i) Locallba(.:kpre'ssure is entirely NF-driven, _and requires no
et S A coordination with the manager, so we use it to handle short
_ _ ~ TotalLoad(m) ~ bursts and cases where the manager is overloaded.

This provides an allocation of CPU weights that provides \we also consider the fact that an NFVnice middlebox
rate proportional fairness to each NF. Tigority ; parameter server might only be one in a chain spread across several
can be tuned if desired to provide differential service to NFgosts. To facilitate congestion control across machines, the NF
Tuning priority in this way provides a more intuitive level OfManager will also mark the ECN bits in TCP ows in order to
control than directly workig with the CPU priorities exposed facijitate end-to-end management. Since ECN works at longer
by the scheduler since it is normalized by the NF's load. timescales, we monitor queue lengths with an exponentially

weighted moving average and use that to trigger marking of
C. Backpressure ows following [17].

A key goal of NFVnice is to avoid wasting workeg., pre-
venting an upstream NF from processing packets if they dpe Facilitating 1/0
just going to be dropped at a downstream NF later in the A network function could block when its receive ring buffer
chain that has become overloaded. We achieve this throqg@mpty or when it is Wamng to Comp|ete 1/10 requests to the
backpressure, which ensures bottlenecks are quickly deteci@derlying storage. In both cases, NF implementations running
while mlnlmlzmg the effects of head of line blocking. on the NFVnice p|atf0rm ar expected to y|e|d the CPU,

Cross-Chain Backpressurefthe NF Manager is in an ideal returning any unused CPU cycles back to the scheduling pool.
position to observe behavior across NFs since it assists|incase of I/O, NF implementations should use asynchronous
moving packets between them. When one of the NF Managey® to overlap packet processing with background 1/0 to main-
TX threads detects that the receive queue for an NF is abq¥ throughput. NFVnice provides a simple library calliahf
a high watermark (HIGH_WATER_MARK) and queuing timethat abstracts such complexities from the NF implementation.

is above threshold, then it examines all packets in the NFfgirther details can be found in our earlier work [26].
gueue to determine what service chain they are a part of.

NFVnice then enableservice chain-specibgacket dropping E- Optimizations
at the upstream NFs. NF Manager maintains states of each NF$eparating Overload Detection and Contr@ince the NFV
and in this case, it moves the NF's state franackpressure platform [27] must process millions of packets per second
watch list to packet throttleas shown in Figure 5. Whento meet line rates, we separate out overload detection from
the queue length becomes less than a low watermark (LOWe control mechanisms required to respond to it. The NF
WATER_MARK), the state moves tolear throttle Manager’s Tx threads are well situated to detect when an NF
The backpressure operation is illustrated in Figure 6, whesbecoming backlogged as it is their responsibility to enqueue
four service chains (A-D) pass through several differemew packets to each NF’'s Tx quee Using a single DPDK’s
NFs. The bold NFs (3 and 5) are currently overloadednqueue interface, the Tx thread enqueues a packet to a NF's
The NF Manager detects this and applies back pressureRw queue if the queue is below the high watermark, while
ows A, C, and D. This is performed upstream where thosgetting feedback about the queue’s state in the return value.
ows rst enter the system, minimizing wasted work. Note thaiVhen overload is detected, an overload ag is set in the meta
backpressure is selective based on service chain, so packetsiéda structure related to the NF.
service chain B are not affected at all. Service chains can belhe control decision to apply backpressure is delegated to
de ned at ne granularity €.g.,at the ow-level) in order to th NF Manager's Wakeup thread. The Wakeup thread scans
minimize head of line blocking. through the list of NFs classifying them into two categories:
This form of system-wide backpressure offers a simplanes where backpressure should be applied and ones that need
mechanism that can provide stdnstial performance bene ts. to be woken up. This separation simpli es the critical path
The backpressure subsystem employs hysteresis controlintdhe Tx threads and also provides some hysteresis control,
prevent NFs rapidly switching between modes. Backpresswwiace a short burst of packets causing an NF to exceeds its

Shares; = Priority

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KULKARNI et al: NFVnice: DYNAMIC BACKPRESSURE AND SCHEDULING FOR NFV SERVICE CHAINS 7

threshold may have already been processed by the time the 3 Default Only CGroup ?
Wakeup thread considers it for backpressure. NFVnice 2271 Only BKPR
Separating Load Estimation and CPU Allocationhe load
on an NF is a product of its packet arrival rate and the
per-packet processing time. Thehgduler weight is calculated
based on the load and the cgroup’s weights for the NF are
updated. Since changing a weight requires writing to the Linux
sysfs, it is critical that this be done outside of the packet
processing data pathibnf merely collects samples of packet
processing times, while the \Manager computes the load NORMAL BATCH R
and assigns the CPU shares using cgroup virtual le systemig. 7. Performance of NFVnice in a 3NF service chain.
The data planelipnf) samples the packet processing time

Throughput in Mpps

(1ms) RR(100ms)

R

in a lightweight fashion every millisecond by observing the TABLE I
CPU cycle counter before and after the NF's packet handler PACKET DROPRATE PER SECOND
function is called. We choseampling because measuring NORMAL BATCH RR(Ims) RR(100ms)

Default | NFVnice | Default | NFVnice | Default | NFVnice | Default | NFVnice
0 0 0

overhead for each packet using the CPU cycle counters resultSxersss 1125 1 2 0S6M 05IM
in a CPU pipeline ush [28], resulting in additional overhead. ~=120M [123K [0SM [1ok [293 [1K] 00M [1%
The samples are stored in a histogram, in memory shared

betweenlibnf and the NF Manager. The processing tim .

samples produced by each NF are stored in shared mem ryOveraII NFVnice Performance

and aggregated by thg NF Manager. NOt all pqckets INCUMye rst demonstrate NFVnice's overall performance, both
the same processing time, as some might be higher du& oy, o ghput and in resourcéCPU) utilization for each

o activity. Hence, NFanc_e uses the median over a 100@ heduler type. We compare the default schedulers to our
moving window as the estimated packet processing time Vnice system, or when only including the CPU weight
the NF. Every millisecond, the NF Manager calculates thg| . ation tool (térmed:groups) or the backpressure

load on each NF using its packet arrival rate and the estima void wasted work at upstream NFs in the service chain.
processing time. Every 10ms, it updates the weights used yl) NF Service Chain on a Single Corelere, we rst con-

the kernel scheduler. .) . - A .
sider a sequential service chain of three NFs; with computation
IV. EVALUATION cost Low (NF1, 120 cycles), Medium (NF2, 270 cycles), and
High (NF3, 550 cycles). All NFs run on a single shared core.
A. Testbed and Approach Figure 7 shows that NFVnice achieves an improvement of
Our experimental testbed has Intel(R) Xeon(R) CPHs much as a factor of two for throughput (especially over the
E5-2697 v3 @ 2.60GHz servers, 157GB memor®RR scheduler). We also separately show the contribution of the
running Ubuntu SMP Linux kernel 3.19.0-39-lowlatencycgroups andbackpressure features. By combining both
Each CPU has dual-sockets with a total of 56 cores. Ffmatures, NFVnice improves the overall throughput across all
these experiments3 nodes were connected back-to-bacthree kernel scheduling disciplinesgroups only updates
with dual-port 10Gbps DPDK compatible NICs to avoid anyhe CPU share proportionally for th® NFs. This results
switch overheads. in improved performance compared to using the Default
We make use of DPDK based high speed traf ¢ generato(ORMAL and BATCH) schedulers. Since the round-robin
Moongen [29] and Pktgen [30] as well as Iperf3 [31], t@cheduler (RR) does not use thgroups feature, it shows
generate line rate (10Gbps) traf ¢ consisting of UDP and TCRo improvement. However thigackpressure feature pro-
packets with varying numbers of ows. Moongen is con guredrides bene t independent of the underlying kernel-scheduler.
to generate 64 byte UDP packets at line rate§.2Mpps). Table Il shows the number of packets dropped at the input of
Iperf is used to generate TCPws with variable packet either of the downstream NFs, NF2 or NF3, after processing
sizes. at the upstream node (an indication of truly wasted work).
We demonstrate NFVnice's effectiveness as a user-spaghout NFVnice, the default schedulers drop millions of
solution that inuences the NF scheduling decisions gfackets per second. But with NFVnice, the packet drop rate is
the native Linux kernel scheduling policies.e., Round dramatically lower (near zerpfdemonstrating that NFVnice
Robin (RR) for the Real-time scheduling class, SCHEDiIs effective in avoiding wasted work and providing proper
NORMAL (termed NORMAL henceforth) and SCHED_CPU allocation. We also gather perf-scheduler statistics for
BATCH (termed BATCH) policies in the CFS class. Differenthe average scheduling deland runtime of each of the NFs.
NF con gurations (compute, 1/0) and service chains witlirrom Table Ill, we can see that i) with NFVnice the run-time
varying workloads (traf ¢ characteristics) are used. For all thier each NF is apportioned in a cost-proportional manner
bar plots, we provide the average, the minimum and maximuiNF1 being least and NF3 being most), unlike the NORMAL
values observed across the samples collected every secsehteduler that seeks to provide equal allocations independent
during the experiment. In all cases, the NFs are interrupt the packet processing costs. ii) the average scheduling
driven, woken up by NF manager when the packets arridgelay with NFVnice for the NFs (that is the time taken to
while NFs voluntarily yield based on NFVnice's policiesbegin execution once the NF is ready) is lower for the NFs
Also, when the transmit ring out of an NF is full, that NFwith higher processing time (which is exactly what is desired,
suspends processing packets until room is created on tbeavoid making a complex NF wait to process packets,
transmit ring. and thus avoiding unnecessary packet loss). Again this is

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE Il
SCHEDULING LATENCY AND RUNTIME OF NFs

NORMAL BATCH RR(Ims) RR(100ms)
measured in ms | Default | NFVnice | Default | NFVnice | Default | NFVnice | Default | NFVnice
NFI-Avg. Delay | 0.002 0.112 0.003 1613 1022 | 0.730 0.924 | 0.809
NF1-Runtime 657.825 | 128723 | 312703 | 143.754 | - - - -
NF2-Avg. Delay | 0.065 0.008 1144 0.255 0570 | 0612 0537 | 0473
NF2-Runtime 602.285 | 848.922 | 836.940 | 803.185 | - - - -
NF3-Avg. Delay | 0.045 0.025 0.149 0.009 0885 | 0479 0.705 | 0.646
NF3-Runtime 623.797 | 1014.218 | 826.203 | 1047.968 | - - - -

Fig. 8. Red (Chain-1) and Green (chain-2 NF chain setup).

TABLE IV TABLE V

THROUGHPUT, CPU UTIL. AND WASTED WORK OF 3NFs THROUGHPUT, CPU UTILIZATION AND WASTED WORK IN A CHAIN

Default NFVnice OF 3 NFs (EACH NF PINNED TO A DIFFERENTCORE)
Svc. rate Drop rate | CPU Util Svc. rate | Drop rate | CPU Util
NF1 Default NFVNice
5.95Mpps - 100% 0.82Mpps - 11% £3%
(NSSI\?;%Cle” Sve.Rate g:ig CPU Sve.Rate DR::E CPU
(~2200cycles) 1.18Mpps | 4.76Mpps 100% 0.72Mpps | 150Kpps | 64% +1% (pps) (ops) Util.% (pps) (ops) Util. %
N3 NE1 Chainl 3.26M 6.498M
N 0.6Mpps 0.58Mpps 100% 0.6Mpps 70Kpps 100% . Chain2 3.26M 2.86M | 78.6% +0.4 | 0.583M 0 82.1% +0.5
(~4500cycles) (~270cycles) A -
> C ggregate 6.522M 7.08M
Aggregate 0.6Mpps - 300% 0.6Mpps - 175% +3% Chaint 336M 6.498M

NF2
(~120cycles)

Chain2

- ~0 52.8% +1.2
Aggregate 3.26M

~0 58% £0.7

6.498M

better than the behaviour of the default NORMAL and RR — Chainl | -
schedulers. (4s00eyces) |y || | o]
2) Multi-Core Scalability: We next demonstrate the bene t NF4 ot o] 0 | ewr 407 [osoM| o | s o

(~300cycles)

Aggregate | 3.842M 7.08M

of NFVnice with the NFs in a chain across cores, with each NF
pinned to a separate, dedicated core. We use these experiments

to demonstrate the bene ts of NFVnice, namely: a) avoiding EChainl ®Chain2
wasted work through backpressure; and b) judicious resourc ostaune:
(CPU cycles) utilization through scheduling. When NFs are ‘s
pinned to separate cores, there is no speci c role/contributiol YVricene

Default-NF3

for the vanilla OS schedulers, and for such an experiment w nevicenes
use the default scheduler (NORMAL). N
First, we consider the chain of 3 NFs, NF1 (Low,
550 cycles), NF2 (Medium, 2200 cycles) and NF3 (High, " I i
4500 CPU cycles). Compared to the default schedule. # Packets processed in Mpps “Default NFvnice °
(NORMAL), NFVnice plays a key role in avoiding the wastedig. 9. Performance for NF chains shown in Fig. 8.
work and ef ciently utilizing CPU cycles. Table IV shows
that NFVnice’s CPU utilization by NF1 and NF2 on their . . .
cores is dramatically reduced, going down from 100% t rocessing cycles to process packets from chain-1. NFVnice

%10 0 . . A proves the throughput of chain-1 by factor of 2. At the
11% and 4% respectively, while maintaining the ag9regallme time, it maintains the throughput of chain-2 at its

thr:aosus%?gu(taécs)frirﬁﬂpgﬁgt m;s f);'tr:;zrr':]y ’\?Egagﬁf Ofrobcaecsks- gr(])ttleneck (NF3) rate of 0.6Mpps. Overall, NFVnice not only
P g P y p VBids wasted work, but judiciously allocates CPU resources

correct amount of packets th"."t the downstre_am NFs ¢ upstream NFs) proportionate to the chain’s bottleneck
consume. Excess packets coming into the chain are drop ﬁg

at the beginning of the chain. When we use only the defau ource capacity as shown in the Figure 9.

NORMAL scheduler by itself, NF1 and NF2 use 100% of the, >) Realistic NFs With Real Data-Tracéle next demon-
g,ate the benet of NFVnice processing realistic trafc,

CPU to process a huge number of packets (the ‘service ral . . S i
in the TaFt))Ie V), only t% be discardedpat the d(ownstream NF3S Seenina public trace colledtat .th? Equm|x-NYC monitor,
We now consider two different service chains wtiNFs o CAIDA [32.]' We use a realistic NF chain. Thg pruned
ta trace consists of a large number of small-sized TCP

using 4 cores in the system such that each NF is pinned

a separate, dedicated core as shown in Fig. 8. Chain-1 §882:aandleugf Ii(:(ZSZatZW(Sr-e::J/(IetinuseinMgongglile:Ora:?eplz)fl

three NFs: NF1 (270 cycles), NF2 (120 cycles) and NF4S Pcap . . 9 P)
2.3Mpps). In this experiment, we use the same con guration

(300 cycles) running ol different cores. Chain-2 comprises_ =~ ! o) .
) in Fig. 8 and deploy four realistic NFs: NF1 (Monitor), NF2
NF1, NF3(4500 cycles) and NF4. Moongen generates 64-b %oad Balancer), NF3 (AES Encryption) and NF4 (VLAN

packets at line rate, equally splitting them between two ow: ging). Chain-1 (NF1, NF2 and NF4) serves the TCP

that are assigned to chain-1 and chain-2. Table V shows t 9% ¢ to provide monitoring, vian-tagging and load-balancing
in the Default case (NORMAL scheduler), NF1 process osf the traf c to different backend servers. Chain-2 (NF1,

almost an equal number of patk for chain-1 and chain-2. \ oo 'o 4 NF4) caters for UDP traf ¢ to provide monitoring,

However, for chain-2, the downstream NF3 discards a majorit L n-taqaing and encrvotion of UDP packets. To demonstrate
of the packets processed by NF1. This results not only Le sch%%luﬁng bene tsygf NFVnice Wpe dedicéte two process-
wasted work, but it also adversely impacts the throughpI cores, so that NF1 and NF2 are pinned to a same core

of chain-1. On the other hand, with NFVnice, backpressu . .
has the upstream NF1 process only the appropriate numbe coc}rel), while the NF3 and NF4 are pinned to another core

packets of chain-2 (which has its bottleneck at the downstreé re2).

. .~ Figure 10 shows the throughput achieved across two
NF, NF3). This frees up the upstream NF1 to use the remalmgﬁains for different cases. Compared to the default case

1Even though, RR(100ms) performs as well as NFVnice, it performs vef@! the NORMAL schedul_er, NFVnice achieves nearly
poorly in other cases as seen in IV-D.1 and IV-D.2 scenarios. 35% improvement, while with BATCH and RR(1ms) we

r 100
- 90
- 80
- 70
- 60
- 50
- 40
- 30
F 20
- 10

| mepuutiL %

CPU Utilization %

Aggr. Throughputin Mpps
c R, N oW B U oo N ®

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KULKARNI et al. NFVnice: DYNAMIC BACKPRESSURE AND SCHEDULING FOR NFV SERVICE CHAINS 9
2.5 - 6500
Default ™™ NFVnice 6000 NFVnice(SC)
5500 Default(DC) | NFVnice(DC)
w 2Fr . 5000 |- -
e 4500
< 24000 b &
c 15+ 53500 - I I =
= £3000
3 %2500 %
S 1} 2000 é
g 1000 8 2 2 8
Fos f% 500 | NORMAL BATCH RR(1ms) RR(100ms)
. / 0
] % é Fig. 11. Latency prole for packet processing in3aNF service chain.
NORMAL BATCH RR(1ms) RR(100ms) Box Plot represents the minimum, maximum, and the three quartiles (25%ile,

)) . .) median and 75%ile) of latency for different kernel schedulers.
Fig. 10. Performance of NFVnice fawo different service chains of 3

realistic NFs with real-world data trace.
than running the NFs on different cores (DC) and has more

also achieve about 60% improvement. In the default cas@riance across different schedulezsy.,worst case for CFS,
NF1 processes a lot more packets for both chain-1 and chaigr@ latency increased from 3 to 6.5ms. This increase
than what downstream NF2 and NF3 can consume. Thislatency is mainly due to context switches by the kernel
results in wasted work. Further, on the other core, NF4 gefshedulers.
considerably fewer CPU cycles compared to the contending NFVnice : NFVnice improves latery for all the sched-
compute-intensive NF3 (AES Encryption), especially in thglers by 50-70% across all the quartiles, including the max-
RR (100ms) case, thus resulting in a signi cant throughpyhum latency in both (SC and DC) the scenarios. This
drop (less than 16Kpps) across both the chains. On the otRerprimarily due to the judicious scheduling decisions of
hand, with NFVnice, backpressure ensures that the upstreRf\/nice across the NF chain, which result in the effective
NF1 only processes the appropriate number of packets f@flization of the CPU by allowing the processing of just the
chain-1 and chain-2, thus giving more CPU cycles for NF2ight amount of packets at each NF in the chain. NFVnice
cgroups ensures that NF4 gets sufcient CPU cycles t@voids additional queuing delay for the processed packets at
process the packets, resulting in better performance acrg@ss downstream nodes. NFVnice avoids any wasted work,
all class of schedulers, with more than 500x improvement gyoiding the unnecessary queuing of packets at upstream nodes
throughput for the RR(100ms) case. which are going to be eventually dropped. Further, NFVnice
We also experimented with othehared-core and separatgyrovides more consistent and predictable latency than the
core placement con gurations, and we consistently foungkfault. The latency variation with NFVnice for running the
NFVnice improves performance in the range of (7—75%) f&yFs on same core (SC) and different core (DC) is much
all the con gurations. In-fact, even when NFs were pinnegmaller due to effective scheduling and avoiding unnecessary
to separate dedicated cores, NFVnice improves througiyntext switches.

put by at least 7% due to the early packet dropping of 2) Impact of Offered Load on Latencye analyze the

backpressure . impact of scheduling2 NFs of a chain on same core (SC)
. and also compare the latency results for running the same
C. Latency Analysis 2 NFs on two separate (distinct) cores (DC). We compare

We evaluate the impact on packet processing latency whaefault with NFVnice and plot the 99th percentile latency
scheduling multiple NFs of a service chain on the santéggure 12 for different offeredoads. When the offered load
core (SC) and compare itith the latency prole when is low (100(Mbps) the latency is similar for all the
running the same NFs on dedicated, distinct cores (D@gses. Thus, scheduling NFs tre same core optimizes the
We further demonstrate the bene ts of NFVnice in improwutilization of CPU cores, with minimal impact on latency.
ing (reducing) the overall NF chain latency for both cases. Fblowever, at higher packet rates G00QM bps), we observe
these experiments, we use the Moongen packet generator tad scheduling NFs on the samare (SC) has a steep increase
collect the RTT samples as recommended in the benchmarkinghe latency, while for the DC case there is more a gradual
methodology for network interconnect devices [33]. increase in latency. Subsequently, the latency remains almost

Scheduling the NFs on the same core results in additiotaé same in both cases. This is because the overload results
latency, but we believe it is within reasonable levels. Howevén excessive queuing delays at the NFs. With NFVnice, we
the benet of cache locality for packet processing acrosmserve similar behavior, but the latency is signi cantly lower
different NFs in the chain allows us to in fact considerablgcross the entire offered load range, for both (SC and DC)
improve on the per-packet processing latency. cases.

1) Simple3 NF Chain: We present the impact of different 3) Latency With Variation in Chain Computation Cost:
kernel schedulers on the packet processing latency ®NE We extend th& NF chain experiment and vary the per-packet
chain used in experiment IV-B.1. To isolate the schedulingomputation cost of NF1 from Low (120 cycles), to Medium
overheads, we also measure the latency when each NF2@0 cycles), to High (550 cycles). NF2 in all cases simply
the chain is pinned to a separate core (represented by Dttansmits the packet out. When executing NFs on the same
Figure 11 shows the box plot for the latency observed wittore (SC), we observe the median and 99%ile latency to be
different kernel schedulsrfor each distinct scenario. lower than when executing them on different cores (DC) for

Default: Using the default schedulers, latency folow and medium computation cost for NF1 (results omitted
scheduling multiple NFs on the same core (SC) is highdue to space constraints). However, with High computation

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING
Fig. 12. 99%ile latency of 2 NF chaiat different offered load. Fig. 13. Performance with serécchain of 3 Heterogeneous NFs with
varying per packet processing costs.
TABLE VI
PERF-COUNTERS FORDIFFERENTZ NF CHAIN MODES the NORMAL and RR(1ms) schedulers achieve relatively
Characterstics - C tion Cost — higher throughputs. When examining the throu.ghput with only
T e s e SC C the CPU weight assignment,Group, we see improvement
nstructions rer cle . . W3 . . .- . -
o) | +0005% | +0.08% | +016% | £0.07% | <0.04% | <021% with the BATCH scheduler, but not as much with the NOR-
et 1005 | 2013% | S017% | +013% | 40005 | £0.59% MAL scheduler. This is because the variation in per-packet

R I O I O I B I processing cost of NFs result in an inaccurate estimate of the

L1-dcache-load: 752.737 407.267 772.669 419.044 664.478 367.680 ! - i i i i
(c;/lc/s:c)oa ’ +0.04% | £0.08% | £0.14% | £0.07% | +0.06% | +0.22% NF_S paCket processing cost and thU_S an lngpproprlate WEIth

Trdeache ldmisses | 70 e Tt | v | oo | o assignment and CPU share allocation. This inaccuracy also
dTLB-loads 75é.77; J0736 |75 | AT52T | 665005 | 367581 causes NFVnice (which combin€Group and backpressure)

M/s +0.04% .09% | £0.11% | +0.08% .06% .23%

T O L it to experience a marginal degradation in throughput for the
TCB foads T B e Tk e different schedulers. Backpressure alone (the Only BKPR
(M/sec) +1.05% | £3.78% | +£0.50% | +£2.82% | +0.66% +4.19% i i i

iTLB-loaS:-cmisses 371 3.18 3,9)2 3.88 420 3.33 .Ca'se)’ WhICh (;JoeS nOt adJUSt the CPU Shares based on '_:hls

(%) £L00% | £522% | £0.27% | +4.35% | £0.55% | 45.82% inaccurate estimate is more resilient to the packet-processing

) cost variation and achieves the best (and almost the same)
cost for NF1 the latency oreased for SC. The systemhroughput across all the schedulers. NFVnice gains this
performance counters captured using the perf tool are shogéhe t of backpressure, and therefore, in all cases NFVnice’s
in the Table VI. throughput is superior to theanilla schedulers. We could
~ With SC, the Instructions-Per-Cycle (IPC) is roughly 2-3gitigate the impact of variable packet processing costs by
times better than when executing NFs on different cores. Thjgo ling NFs more precisely and frequently, and averaging the
can be attributed to effective L1 cache reference |Oca|ity, Whi(aﬂocessing over a |arger window of packets_ However' we real-
has less than 7.5% misses on data-cache. But with DC, the 1928l that this can be expensive, consuming considerable CPU
misses nearly double, incurring additional stalls and per-packgkles itself. This is where NFVnice’s use of backpressure
processing costs, resulting in higher latencies. On the othgilps overcome the penalty from the variability, getting better
hand, the overhead of context switching with SC results tRroughput and reduced packet loss compared to the default
more frequent data and instruction TLB load misses. schedulers.

To summarize, when the per-packet computation cost of NFsp) service Chain Heterogeneityie next consider a three
is low (CPU is not the bottleneck) it is bene cial to schedul§F chain, but vary the chain con guration—(Low, Medium,
the NFs on a same core to reap the bene ts of cache localitygh):(High, Medium, Low); and so on for a totélcases—so
and to avoid the cross-core cacaccess overheads. But, whemhat the location of the bottleneck NF in the chain changes in
the computation-cost of an NF becomes a bottleneck, it dach case. Results in Figure 14 show signi cant variance in

bene cial to execute the NFs on separate cores. the behaviour of the vanilla kernel schedulers. NORMAL and
_) BATCH perform similar to each other in most cases, except
D. Salient Features of NFVnice for the small differences for the reasons described earlier in

1) Variable NF Packet Processing Cost¥e now evaluate Section Il. We also looked at RR with time slices of 1ms
the resilience of NFVnice to not only heterogeneity acrossd 100ms, and their performance is vastly different. For the
NFs, but also variable packet processing costs within an N¥mall time-slice, performance is better when the bottleneck
We use the same three-NF service chain used in IV-B.1, BN is upstream, while RR with a larger time-slice performs
modify their processing costs. Packets of the same ow habetter when the bottleneck NF is downstream. This is primarily
varying processing costs of 120, 270 or 550 cycles at eadhie to wasted work and inefcient CPU allotment to the
of the NFs. Packets are classied as having one of thesentending NFs. However, with NFVnice, in almost every
3 processing costs at each of the NFs, thus yiel@idifferent case, we can see considerable improvements in throughput,
variants for the total processing cost of a packet across fleg all the schedulers. NFVnice minimizes the wasted cycles
3 -NF service chain. Figure 13 shows the throughput for difrdependent of the OS scheduler’s operational time-slice.
ferent schedulers. With the Default scheduler, the throughpuimpact of RROs Time Slices with NF®onsider the
achieved differs considerabbpompared to the case with xed chain con gurations “High-Med-Low” and “Med-High-Low”
per-packet processing costs as seen in Figure 7. For the DefaulEigure 14. RR(100 ms time slice) performs very poorly,
scheduler, the throughput degrades considerably for the vanillih very low throughpuk 40Kpps. This is due to the ‘Fast-
coarse time-slice schedulers (BATCH and RR(100ms)), whifgoducer, slow-consumer’ situation [34], making the NF with

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KULKARNI et al: NFVnice: DYNAMIC BACKPRESSURE AND SCHEDULING FOR NFV SERVICE CHAINS 11

Fig. 14. Throughput for varying combinations of 3 NF\8ee chain with Heterogeneous computation costs.

perform poorly, with degraded throughput as soon as we go
to two or more ows, because of the different bottleneck NFs.
However, NFVnice performs uniformly better in every case,
and is almost independent of where the bottlenecks are for
the multiple ows. Moreover, NFVnice provides a substantial
improvement and robustness to varying loads and bottlenecks
even across all the schedulers.

4) Performance Isolation:lt is common to observe that
when there are responsive (TCP) ows that share resources
with non-responsive (UDP) ows, there can be a substan-

Fig. 15. Throughput (Mpps) in @ NF service chain for different combina- tial degradation of TCP performance, as the congestion
tions (types) and mix of workload. avoidance algorithms are triggered causing it to back-off.
This impact is exacerbated in afsgare-based environment

“High” computes hog the CPU resource. Now, in the defaultecause resources are wasted by the non-responsive UDP
RR scheduler, the packets processed by this NF would logvs that see a downstream bottleneck, resulting in packets
dequeued by the Tx threads but will be subsequently droppeeéing dropped at that downstream NF. These wasted resources
as the next NF in the chain does not get an adequate sharsult in less capacity being available for TCP. Because of the
of the CPU to process thesagkets. The upstream NF thatper- ow backpressure in NFVnice, we are able to substantially
is hogging the CPU has to nish its time slice and the OS8orrect this undesirable situation and protect TCP’s throughput
scheduler then causes a involuntary context switch for thésen in the presence of non-responsive UDP.
“High” NF. However, with NFVnice, the queue buildup results In this experiment, we generate TCP and UDP ows with
in generating a backpressure signal across the chain, forcipgrf3. One TCP ow goes through only NF1 (Low cost) and
the upstream NF to be evicted (i.e., triggering a voluntalyF2 (Medium cost) on a shared core. 10 UDP ows share
context switch) from the CPU as soon as the downstreadF1l and NF2 with the TCP ow, but also go through an
NFs buffer levels exceed the igvatermark threshold. The additional NF3 (High cost, on a separate core) which is the
upstream NF will not execute till the downstream NF gets toottleneck for the UDP ows - limiting their total rate to
consume and process its receive buffers. Thus, NFVnice is a0 Mbps.
to enforce judicious access to the CPU among the competingMe rst start thel TCP ow. After 15 seconds, 10 UDP
NFs of a service chain. We see in every case in g. ldows start, but stop at 40 seconds. As soon as the UDP
NFVnice’s throughput is superido vanilla scheduler, empha- ows interfere with the TCP ow, there is substantial packet
sizing the point we make in this paper: NFVnice’s design cdoss without NFVnice, becaud¢F1 and NF2 see contention
support a number of different kernel schedulers, effectivefyom a large amount of UDP packets arriving into the system,
support heterogeneous service chains and still provide supegetting processed and being thrown away at the queue for NF3.
performance (throughput, packet loss). The throughput for the TCP ow craters from neadyGbps

3) Workload HeterogeneityWe use3 homogeneous NF’s to just around 10-30 Mbps (note log scale), while the total
with the same compute cost, but vary the nature of thdDP rate essentially keeps at the bottleneck NF3’s capacity
incoming packet ows so that ththree NFs are traversed inof 280 Mbps. With NFVnice, bene ting from per- ow back-
a different order for each ow. We increase the number gfressure, the TCP ow sees much less impact (dropping from
ows (each with equal rate) from to 6, as we go from Type 4 Ghps to about 3.3 Gbps), adjung to utilize the remaining
1 to Type 6. Thus, the bottleneck for each ow is differentcapacity at NF1 and NF2. This is primarily due to NFVnice’s
Figure 15, shows that the native schedulers (rst four barapility to perform selective early discard of the UDP packets

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

focus on NF management and sdhing across cluster scale.
Our work focuses on a different scale: how to schedule NFs on
shared cores to achieve fairness when ows have load pressure.
Different from traditional packet scheduling for fairness on
hardware platforms [6], [40]-[42], NFs are more complex,
resulting in diversity of packet processing costs. Furthermore,
different kinds of ow arrival rates exacerbate the dif culty of
fair scheduling.
PSPAT [43] aims to provide a scalable scheduler framework
by decoupling the packet scheduler algorithm from dispatching
Fig. 16. Bene't for mix of responsi\/e & non_responsive OWS. paCketS to the NIC for h|gh performance. NFVnice considers
the orthogonal problem of packet processing cost and ow
arrival rate to fairly allocate CPU resources across the NFs.
PIFO [44] presents the packet-in- rst-out philosophy distinct
from the typical rst-in- rst-out packet processing models.
We use the insight from this work to decide whether to accept
a packet and queue it for processing at the intended NF or
discard at the time of packet arrival. Then, the enqueued pack-
ets are always processed in order. This approach of selective
early discard yields two bene ts: i) it avoids dropping partially
processed (through the chain) packets, thus not wasting CPU
cycles; ii) it avoid CPU stealing and allows CPU cycles to be
judiciously allocated to other contending NFs.
User space scheduling and related framewolkirks, such
. s [45], [46], consider cooperative user-space scheduling, pro-
?:TDCS ucsyilcé fstgei ﬁﬁ‘zclk ';rsgsﬁ Ir:ez.,%tgsrri\\//vilsge \tﬁi V.\Il%ul;d gfvvgf\’\;ﬁ%%?ng very low cost context switching, that is orders of magni-
EF&J Nolt(e t?at :‘hgsg?\ﬂpb ows' ra;]te Is .ma'i:rjtainetiGatJfE)e ch a framework are two-fold: a) they invariably require the
ottieneck rate o PS as snown in Figure (hreads to cooperate, i.e., each thread must voluntarily yield

lines are one on top of the other). Thus, NFVnice ENSUIES ensure that the other threads get a chance to share the CPU,
that non-responsive ows (UDP) do not unnecessarily steal .

. ~without which progress of the threads cannot be guaranteed.
the CPU resources from other responsive (TCP) ows in

NEV environment. 9his means that the programs that implement L-threads must

: . . include frequent reschedulingoints for each L-thread [46]
5) Supporting Longer NF Chaind/e choose three different . . o S0 -
NFs, as in IV-B, and increase the chain length framiF up incurring additional complexity in developing the NFs. b) As

to a chain of 10 NFs by including one of tBeNFs each time. there is no speci ¢ scheduling policy (it is just FIFO based),

We examine two cases: (i) all the NFs of the chain are on?# the L-threads share the same priority, and are backed by

single core (denoted by SC); and (ii) three cores are used, qﬂ% same kernel thread (typically pinned to a single core), and

. e o : s lack the ability to perform selective prioritization and
as the chain length is increased, the additional NF is plac o : . - :
on the next core in round-robin fashion (denoted by MC ability to provide QoS di#frentiation across cooperating

Results are shown in Fiqure 17. For the sinale core. NEVN hreads. Nonetheless, NF\¢els backpressure mechanism can
achieves higher throu ?1 ut thén the Defgult schéduler T%?'” be effectively employed for such cooperating threads to
g ghp V(5Iuntarily yield the CPU as necessary. Another approach

longer chains, with the greater improvements achieved fgg :

4 i . ed by systems such as E2 [37] and VPP [35] is to host
fﬁ:?alriggég‘:’ec;f fﬁg'igs :gsecnr:z'nntsvﬁteht :\? E\%ﬁ ?C(é\l ::ssnsohcaansnﬁi Wultiple NFs within a shared address space, allowing them to
For the multi I’e corepcase NEVnice imoroves throu hgbté executed as function calls in a run to completion manner by

. P X ' pro 9NPYhe thread. This incurs very low NUMA and cross-core packet
substantially, especially as more NFs are multiplexed on a care

! chaining overheads, but being monolithic, it is in exible and
(e.g., chain lengths4), compared to the Default scheduler. impedes the deployment of NFs from third party vendors.

Congestion Control and Backpressur€ongestion con-
trol and backpressure have been extensively studied in the
NF Management and Schedulinty recent years, severalpast [47], [48]. DCTCP [47] leverages ECN to provide
NFV platforms have been developed to accelerate packetlti-bit feedback to the end hosts. MQ-ECN [48] enables
processing on commodity servers [24], [25], [27], [35], [36]JECN for tradeoff of both high throughput and low latency
There is a growing interestni managing and schedulingin multi-service multi-queue production DCNs (Data Cen-
network functions. Many works address the placement of NEer Network). All of these focus on congestion control in

for performance and ef cient resource usage [37]-[39]. F&DCNs. However, in an NFV environment, ows are typically
example, E2 [37] builds a scalable scheduling framework @teered through a service chain. The later congestion is found,
top of BESS [36]. They abstract NF placement as a DAG)e more resources are wasted. If the end hosts do not enable
dynamically scale and migrate NFs while keeping ow af nity.ECN support or there are UDP ows, it is especially important
NFV-RT [38] de nes deadlines for requests, and places éor the NFV platform to gracefly handle high load scenarios
migrates NFs to provide timing guarantees. These projeats an efcient and fair way. Using multiple mechanisms

Fig. 17. Performance for diffené NF service chain lengths.

e faster than regular Pthreads. However, the drawbacks with

V. RELATED WORK

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KULKARNI et al: NFVnice: DYNAMIC BACKPRESSURE AND SCHEDULING FOR NFV SERVICE CHAINS 13

(ECN and backpressure), NFVnice ensures that overload[i@] S. Floyd and V. Jacobson, “Random early detection gateways for
bottlenecks are quickly detected in order to avoid congestion congestion avoidance,/IEEE/ACM Trans. Netw. vol. 1, no. 4,

: . pp. 397-413, Aug. 1993.
and wasted work. Fair Queueing: Orthogonal work such 14] D. Lapsley and S. Low, “Random early marking: An optimisation

as [49], [50], propose to ensure fair sharing of network ~ approach to Internet congestion control,"Rnoc. IEEE Int. Conf. Netw.
resources among multiple tenants by spreading requests _to (ICON), Sep. 1999, pp. 67-74.

. . . . I . W.-C. Feng, D. Kandlur, D. Saha, and K. Shin, “BLUE: A new
multiple processing entities. That is, they distribute ows with™ ¢/ & ¢, cte queue managemengorithms.” Univ. Michigan, Ann

different costs to different processing threads. In contrast, arbor, M, USA, Tech. Rep. CSE-TR-387-99, 1999, vol. 1001,
NFVnice seeks to achieve fairness by scheduling the NFEs p. 48105.

; ; 6] |. Stoica, S. Shenker, and H. Zi@ “Core-stateless fair queueing:
that Process the paCketS of different ows appropnately, Thue’ A scalable architecture to approximate fair bandwidth allocations in

a fair share of the CPU isllacated to each competing NF. high-speed networksJEEE/ACM Trans. Netw.vol. 11, no. 1, pp. 33—
46, Feb. 2003, doil0.1109/TNET.2002.808414.

VI. ConcLUsION [17] K. Ramakrishnan, S. Floyd, and D. Blackhe Addition of Explicit

As the use of highly efcient user-space network I/O Congestion Notipcation (ECN) to |Rdocument RFC 3168, 2001.

frameworks such as DPDK becomes more prevalent there g [Online]. Available: https://tools.ietf.org/html/rfc3168
’ i] R. Bayer, “Symmetric binary B-trees: Data structure and maintenance

be a growing need to mediate application-level performance’ aigorithms," Acta Inf, vol. 1, no. 4, pp. 290-306, 1972.
requirements across the user-kernel boundary. OS-babedl L. J. Guibas and R. Sedgewick, “A dichromatic framework for balanced

schedulers lack the information needed to provide higher “eeg"z"l‘ Proc. IEEE 19th Annu. Symp. Found. Comput. ,St878,

. - pp.

|e_/e| goals for packet processing, such as rate proportlor[@h A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair
fairness that needs to account for both NF processing cost queueing algorithm ACM SIGCOMM Comput. Commun. Rewol. 19,
and arrival rate. By carefully tuning scheduler weights a no. 4, pp. 1-12, 1989.

Vi K f Ci | . 1] L. Zhang, “VirtualClock: A new tafc control algorithm for packet-
applying backpressure to ef ciently shed load early in the the™ ¢ hed networks” ACM Trans. Comput. Systvol. 9, no. 2,

NFV service chain, NFVnice provides substantial improve- pp. 101-124, 1991. _ _
ments in chain-wide throughput and latency, and dramaticalf¢l P. Menage. (2017). Linux Kernel Documentation: Cgroups

. . [Online]. Available: https://www.kernel.org/doc/Documentation/cgroup-
reduces the wasted work across NF chains. This allows the vi/egroups.txt

NFV platform to gracefully hadle overload scenarios while[23] (2017).Cgroups-Linux Control GroupgOnline]. Available: http:/man7.
maintaining ef ciency and fairness. A Erglginuxqule\\lnipagesgnan7/?gfrOUPS-7~hktn]j| ast packet 1107 P
. . . . RIZzo0, etmap: novel Tramework Tor fast packe , OcC.
Our implementation of NFVnice demonstrates how df USENIX Annu. Tech. ConfBerkeley, CA, USA: USENIX, 2012,
NFV framework can ef ciently tune the OS scheduler and pp. 101-112. [Online]. Available: https:/Aww.usenix.org/conference/
harmoniously integrate backpressure to meet its performance usenixfederatedconferencesweek/netmap-novel-framework-fast-packet-
; io
goals. Ou_r results ShOW that selective baCkpreSS_ure Iea(_j 257 J. Martins et al, “ClickOS and the art of network function virtu-
more ef cient allocation of resources for _NF service chains ~ jjization,” in Proc. 11th USENIX Symp. Netw. Syst. Design Imple-
within or across cores, and scheduler weights can be used to ment. (NSDI) Seattle, WA, USA: USENIX Association, Apr. 2014,

; ; ; ; pp. 459-473.
provide rate-cost proportional fairness, regardiess of the ker&%& S. G. Kulkarniet al., “NFVnice: Dynamic backpressure and scheduling

scheduler bemg used. for NFV service chains,” inProc. Conf. ACM Special Interest Group
Data Commun.2017, pp. 71-84.
REFERENCES [27] J. Hwang, K. K. Rarﬁgkrishnan, and T. Wood, “NetVM: High per-
[1] J. Halpern and C. Pignatar@ervice Function Chaining (SFC) Archi- formance and exible networking using virtualization on commod-
tecture document RFC 7665, 2015. [Online]. Available: https://tools. ity platforms,” IEEE Trans. Netw. Service Managvol. 12, no. 1,
ietf.org/html/rfc7665 pp. 3447, Mar. 2015.
[2] D. Merkel, “Docker: Lightweight Lhux containers for consistent devel- [28] (Jun. 2016).Performance Measurements With RDT$Cnline]. Avail-
opment and deployment[inux J, vol. 2014, no. 239, Mar. 2014. able: https://www.strchr.com/performance_measurements_with_rdtsc
[3] (2014). Data Plane Development KifOnline]. Available: http://dpdk. [29] P. Emmerich, S. Gallenafiér, D. Raumer, F. Wohlfart, and G. Carle,
org/ “MoonGen: A scriptable high-speed packet generator,Pinoc. ACM

[4] J. C. Mogul and A. Borg, “The effect of context switches on cache Conf. Internet Meas. Conf2015, pp. 275-287.
performance,”ACM SIGPLAN Noticesvol. 26, no. 4, pp. 75-84, 1991. [30] R. Olsson, “Pktgen the Linux packet generator,”Hroc. Linux Symp.
[5] A. Parekh and R. Gallager, “A geradized processor sharing approach Ottawa, ON, Canada, vol. 2, 2005, pp. 11-24.
to ow control in integrated services networks: The multiple node case[31] J. Dugan, S. Elliott, B. A. Mah, J. Poskanzer, and K. Prabhu. (2014).
IEEE/ACM Trans. Nety.vol. 2, no. 2, pp. 137-150, Apr. 1994. iPerfNThe Ultimate Speed Test Tool for TCP, UDP and SC[hline].
[6] D. stiliadis and A. Varma, “Rate-proportional servers: A design method- Available: https://iperf.fr/
ology for fair queueing algorithms JEEE/ACM Trans. Netw.vol. 6, [32] (2019). The CAIDA Anonymized Internet Traces Datasinline].

no. 2, pp. 164-174, Apr. 1998. Available: http://www.caida.org/data/passive

[7] NFVnice SourcecodeAccessed: Oct. 30, 2017. [Online]. Available: [33] Benchmarking Methodology for Network Interconnect Deviassc-
https://github.com/ ument RFC 2544, Mar. 1999. [Online]. Available: https://rfc-editor.
nfvnice/NFVnice_Source.git org/rfc/rfc2544.txt

[8] W. Zhang et al, “OpenNetVM: A platform for high performance [34] L. Rizzo, S. Garzarella, G. Lettieri, and V. Mafone, “A study of
network service chains,” ifProc. Workshop Hot Topics Middleboxes speed mismatches between communicating virtual machine®tado.
Netw. Function Virtualization (HotMIddleboxNew York, NY, USA, Symp. Archit. Netw. Commun. Syst. (ANG&w York, NY, USA, 2016,

2016, pp. 26-31, doil0.1145/2940147.2940155. pp. 61-67, doi:10.1145/2881025.2881037.
[9] I. Molnar. (2017). Linux Kernel Documentation: CFS Scheduler[35] (2016).VPP. [Online]. Available: https://fd.io/
Design [Online]. Available: https://www.kernel.org/doc/Documentation/[36] S. Han, K. Jang, A. Panda, S. Rai, D. Han, and S. Ratnasamy,

scheduler/sched-design-CFS.txt “SoftNIC: A software NIC to augment hardware,” Dept. Elect. Eng.
[10] (2013).Network Functions Virtualization (NFV): Architectural Frame- Comput. Sci., Univ. California, Berkeley, Berkeley, CA, USA, Tech.
work, ETSI-GS-NFV-002 [Online]. Available: http://www.etsi.org/ Rep. UCB/EECS-2015-155, May 2015. rjiine]. Available: http://

deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
[11] T. Kelly, S. Floyd, and S. Shenker, “Patterns of congestion collapsd37] S. Palkaret al, “E2: A framework for NFV applications,” inProc.
Int. Comput. Sci. Inst., Univ. Cambridge, Cambridge, U.K., Tech. Rep., 25th Symp. Oper. Syst. Princ. (SOSRew York, NY, USA, 2015,

2003. [Online]. Available: https://icir.org/ oyd/papers/patterns.pdf pp. 121-136, doi10.1145/2815400.2815423.

[12] J. C. Mogul and K. Ramakrishnan, “Eliminating receive livelock in[38] Y. Li, L. T. X. Phan, and B. T. Loo;Network functions virtualization
an interrupt-driven kernel, ACM Trans. Comput. Systvol. 15, no. 3, with soft real-time guarantees,” iRroc. 35th Annu. |IEEE Int. Conf.
pp. 217-252, 1997. Comput. Commun. (INFOCOMApr. 2016, pp. 1-9.

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

14

[39]

[40]

[41]

[42]

[43]

[44]
[45]
[46]
[47]
(48]

[49]

[50]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

S. Rajagopalan, D. Williams, H. Jamjoom, and A. Wareld,
“SplittMerge: System support for &tic execution in virtual middle-

boxes,” in Proc. 10th USENIX Symp. Netw. Syst. Design Implement.

(NSDI), 2013, pp. 227-240.

M. Shreedhar and G. Varghesekftient fair queuing using de cit
round-robin,” IEEE/ACM Trans. Netw.vol. 4, no. 3, pp. 375-385,
Jun. 1996.

P. Goyal, H. M. Vin, and H. Chen, t8rt-time fair queueing: A schedul-
ing algorithm for integrated seices packet switching networksRCM
SIGCOMM Comput. Commun. Rewvol. 26, no. 4, pp. 157-168, 1996.
D. Stiliadis and A. Varma, “Ef cient fair queueing algorithms for packet-
switched networks JEEE/ACM Trans. Netwvol. 6, no. 2, pp. 175-185,
Apr. 1998.

L. Rizzo, P. Valente, G. Lettieri, and V. Maf one, “PSPAT: Software
packet scheduling at hardware spee@Pmput. Commun.vol. 120,
pp. 32-45, May 2018.

A. Sivaramanet al, “Programmable packet scheduling at line rate,” in
Proc. Conf. ACM SIGCOMM Conf2016, pp. 44-57.

(2017). Fibers. [Online]. Available: https://msdn.microsoft.com/library/
ms682661.aspx

(2014). DPDK L-Thread Subsystem [Online]. Available:
http://dpdk.org/doc/guides/sample_app_ug/performance_thread.html
M. Alizadeh et al, “Data center TCP (DCTCP),ACM SIGCOMM
Comput. Commun. Rewol. 40, no. 4, pp. 63-74, 2010.

W. Bai, L. Chen, K. Chen, and H. Wu, “Enabling ECN in multi-

IEEE/ACM TRANSACTIONS ON NETWORKING

Shriram Rajagopalan received the Ph.D. degree
from The University of British Columbia, Van-
couver, BC, Canada. He is currently a Principal
Engineer with Tetrate. His current work focuses on
layer-7 networking fabric across multiple cloud envi-
ronments for cloud native applications. His research
interests focus on high-availability problems in soft-
ware de ned networking and distributed systems.

K. K. Ramakrishnan received the M.Tech. degree
from the Indian Institute of Science in 1978,
the M.S. degree in 1981, and the Ph.D. degree in
computer science from the University of Maryland,
College Park, MD, USA, in 1983. He is currently a
Professor of computer science and engineering with
the University of California at Riverside, Riverside,
CA, USA. Previously, he was the Distinguished
Member of the Technical Staff at AT&T Labs-
Research. Prior to 1994, he was a Technical Direc-
tor and a Consulting Engineer in networking with

service multi-queue data centers,” ftroc. 13th USENIX Symp. Netw. Digital Equipment Corporation. From 2000 to 2002, he was with TeraOptic
Syst. Design Implement. (NSDIganta Clara, CA, USA: USENIX Networks, Inc., as a Founder and the Vice President. He is a Fellow

Association, 2016, pp. 537-549.

of the ACM and AT&T, recognized for his fundamental contributions on

A. Ghodsi, V. Sekar, M. Zaharia, and |. Stoica, “Multi-resource fai€ommunication networks, including his work on congestion control, trafc
queueing for packet processinggIGCOMM Comput. Commun. Rev. Management and VPN services. He has published over 275 articles and has

vol. 42, no. 4, pp. 1-12, Aug. 2012, ddi0.1145/2377677.2377679. 180 patents issued in his name.

J. Mace, P. Bodik, M. Musuvathi, R. Fonseca, and K. Varadarajan,

“2DFQ: Two-dimensional fair queng for multi-tenant cloud ser-
vices,” in Proc. ACM SIGCOMM Conf.New York, NY, USA, 2016,
pp. 144-159, doil0.1145/2934872.2934878.

Sameer G. Kulkarni received the Ph.D. degree
from the University of Gottingen, Germany. He is
currently a Post-Doctoral Researcher with the
Department of Computer &mnce and Engineering,
University of California at Riverside, Riverside, CA,
USA. His current researclhnterests include par-
allel and distributed coputing, software de ned
networks, network function virtualization, and cloud

Timothy Wood received the bachelor's degree in
electrical and computer engineering from Rutgers
University in 2005, and the Ph.D. degree in com-
puter science from the University of Massachusetts
Amherst in 2011. He is currently an Associate
Professor with the Department of Computer Science,
The George Washington University. His research
studies how new virtualization technologies can pro-
vide application agnostic tools that improve perfor-
mance, ef ciency, and reliability in cloud computing
data centers and software-based networks. His Ph.D.

computing. thesis received the UMass CS Outstanding Dissertation Award, his students
have voted him CS Professor of the Year, and he has won three best paper
awards, the Google Faculty Researshard, and the NSF Career Award.

Wei Zhang received the B.S. degree from the
Hebei University of Economics and Business in
2006, the M.S. degree from Yanshan University
in 2008, the Ph.D. degree from Beihang University
in 2014, and the Ph.D. degree from The George
Washington University in 2018. She is currently

a Research and Development Software Engineer

with Microsoft Azure. Her research interests include

cloud computing, systems, and resource disaggrega-

tion.

Mayutan Arumaithurai received the industrial
Ph.D. degree from the University of Goéttingen,
Germany, in 2010, while working for Nokia Siemens
Networks. He is currently a Senior Researcher with
the Computer Networks Group, University of Géttin-
gen. Prior to that, he worked as a Research Scientist
with the Network Laboratories, NEC Europe Ltd.,
Heidelberg, Germany, for two years. His current
research interests include information centric net-
working, software de ned networks, network func-
tion virtualization, and cloud computing. He has

published in top conferences inshield (ACM SIGCOMM, ACM CoNext,

)) the IEEE Infocom), coauthored IETF/IRTG standards, and has led multiple
Jinho Hwang received the Ph.D. degree from Thepilion-euro EU-funded projects.

George Washington University, Washington, DC,
USA, in 2013. He was a Visiting Scholar with

The George Washington University from 2005 to
2006 and the POSCO ICT Research and Devel-
opment Center, South Korea, from 2007 to 2009.
He interned at the IBM T. J. Watson Research
Center, NY, USA, and AT&T Labs-Research in the

summer of 2012 and 2013, respectively. He has been

a Research Staff Member with the IBM T. J. Watson

Research Center since 2013. He has published more

than 50 articles, led 50 patents, drhas won four best paper awards. His
current research focuses on improviagi cial intelligence support for cloud
systems and networks. He has received six outstanding technical achievement
awards and has been appointed to a Master Inventor at IBM.

Xiaoming Fu (Senior Member, IEEE)aceived the
Ph.D. degree in computer science from Tsinghua
University, China, in 2000. Since 2007, he has been
a Professor and the Head of the Computer Net-
works Group, Georg—August—Universitat Gottingen,
Germany. He has also held visiting positions at
ETSI, University of Cambridge, Columbia Univer-
sity, Tsinghua University, and UCLA. He is also a
Distinguished Lectureof the IEEE, a member of
the ACM and Academia Europaea, and a Fellow of
IET.

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

