
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

NFVnice: Dynamic Backpressure and

Scheduling for NFV Service Chains

Sameer G. Kulkarni , Wei Zhang, Jinho Hwang, Shriram Rajagopalan,

K. K. Ramakrishnan , Fellow, ACM, Timothy Wood, Mayutan Arumaithurai,

and Xiaoming Fu , Senior Member, IEEE, Member, ACM

Abstract— Managing Network Function (NF) service chains
requires careful system resource management. We propose
NFVnice, a user space NF scheduling and service chain man-
agement framework to provide fair, efficient and dynamic
resource scheduling capabilities on Network Function Virtual-
ization (NFV) platforms. The NFVnice framework monitors
load on a service chain at high frequency (1000Hz) and employs
backpressure to shed load early in the service chain, thereby
preventing wasted work. Borrowing concepts such as rate pro-
portional scheduling from hardware packet schedulers, CPU
shares are computed by accounting for heterogeneous packet
processing costs of NFs, I/O, and traffic arrival characteristics. By
leveraging cgroups, a user space process scheduling abstraction
exposed by the operating system, NFVnice is capable of con-
trolling when network functions should be scheduled. NFVnice
improves NF performance by complementing the capabilities of
the OS scheduler but without requiring changes to the OS’s
scheduling mechanisms. Our controlled experiments show that
NFVnice provides the appropriate rate-cost proportional fair
share of CPU to NFs and significantly improves NF performance
(throughput and latency) by reducing wasted work across an
NF chain, compared to using the default OS scheduler. NFVnice
achieves this even for heterogeneous NFs with vastly different
computational costs and for heterogeneous workloads.

Index Terms— Network function virtualization, service func-
tion chaining, scheduling, backpressure, fairness.

I. INTRODUCTION

NETWORK Function Virtualization (NFV) seeks to imple-

ment network functions and middlebox services such as

Manuscript received December 27, 2018; revised October 6, 2019;
accepted January 11, 2020; approved by IEEE/ACM TRANSACTIONS ON

NETWORKING Editor G. Paschos. This work was supported in part by the EU
FP7 Marie Curie Actions CleanSky ITN Project under Grant 607584, in part
by the U.S. NSF under Grant CRI-1823270, Grant CNS-1522546, and Grant
CNS-1422362, in part by the Department of the Army, U.S. Army Research,
Development and Engineering Command under Grant W911NF-15-1-0508,
and in part by Huawei Technologies Company, Ltd., under the HIRP Grant.
(Corresponding author: Sameer G. Kulkarni.)

Sameer G. Kulkarni and K. K. Ramakrishnan are with the Department of
Computer Science and Engineering, University of California at Riverside,
Riverside, CA 92521 USA (e-mail: sameer.sameergk@gmail.com).

Wei Zhang is with Microsoft Azure Networking, Microsoft, Redmond, WA
98052 USA.

Jinho Hwang is with the IBM T. J. Watson Research Center, Yorktown
Heights, NY 10598 USA.

Shriram Rajagopalan is with Tetrate, San Francisco, CA 94111 USA.
Timothy Wood is with the Department of Computer Science, The George

Washington University, Washington, DC 20052 USA.
Mayutan Arumaithurai and Xiaoming Fu are with the Institut für Informatik,

University of Göttingen, 37077 Göttingen, Germany.
Digital Object Identifier 10.1109/TNET.2020.2969971

firewalls, NAT, proxies, deep packet inspection, WAN opti-

mization, etc., in software instead of purpose-built hardware

appliances. These software based network functions can be

run on top of commercial-off-the-shelf (COTS) hardware,

with virtualized network functions (NFs). Network functions,

however, often are chained together [1], where a packet is

processed by a sequence of NFs before being forwarded to

the destination.

The advent of container technologies like Docker [2]

enables network operators to densely pack a single NFV

appliance (VM/bare metal) with large numbers of network

functions at runtime. Even though NFV platforms are typically

capable of processing packets at line rate, without efficient

management of system resources in such densely packed

environments, service chains can result in serious performance

degradation because bottleneck NFs may drop packets that

have already been processed by upstream NFs, resulting in

wasted work in the service chain.

NF processing has to address a combination of require-

ments. Just as hardware switches and routers provide

rate-proportional scheduling for packet flows, an NFV plat-

form has to provide a fair processing of packet flows.

Secondly, the tasks running on the NFV platform may have

heterogeneous processing requirements that OS schedulers

(unlike hardware switches) address using their typical fair

scheduling mechanisms. OS schedulers, however, do not treat

packet flows fairly in proportion to their arrival rate. Thus,

NF processing requires a re-thinking of the system resource

management framework to address both these requirements.

Moreover, standard OS schedulers: a) do not have the right

metrics and primitives to ensure fairness between NFs that

deal with the same or different packet flows; b) do not

make scheduling decisions that account for chain level infor-

mation; and c) cannot guarantee predictable per-flow latency

requirements. If the scheduler allocates more processing to an

upstream NF and the downstream NF becomes overloaded,

packets are dropped by the downstream NF. This results

in inefficient processing and wasting the work done by the

upstream NF. OS schedulers also need to be adapted to

work with user space data plane frameworks such as Intel’s

DPDK [3]. They have to be cognizant of NUMA (Non-

uniform Memory Access) concerns of NF processing and the

dependencies among NFs in a service chain. Additionally,

processor performance is critically dependent on cache per-

formance, which in turn depends on locality of reference [4].

When the OS switches contexts, locality of access may not

occur because the instructions and data of the newly-scheduled

1063-6692 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4727-6875
https://orcid.org/0000-0003-1849-5155
https://orcid.org/0000-0002-8012-4753

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

NF may no longer be in the cache(s). Context switching results

in additional NF processing costs, beyond the typical cost

associated with the operations performed by the kernel [4]

and have to be accounted for. Therefore, determining how to

dynamically schedule NFs is key to achieving high perfor-

mance and scalability for diverse service chains, especially in

a scenario where multiple NFs are contending for a CPU core.

Hardware routers and switches that employ sophisticated

scheduling algorithms such as rate proportional schedul-

ing [5], [6] have predictable performance per-packet, because

processing resources are allocated fairly to meet QoS require-

ments and bottlenecks are avoided by design. However, NFV

platforms are necessarily different because: a) the OS sched-

uler does not know a priori, the capacity or processing require-

ments for each NF; b) an NF may have variable per-packet

costs (e.g., some packets may trigger DNS lookup, which are

expensive to process, and others may just be an inexpensive

header match). With NFV service chains, there is a need to be

aware of the computational demands for packet processing.

There can also be sporadic blocking of NFs due to I/O

(read/write) stalls, that also results in latency variation across

the processed packets.

A further consideration is that routers and switches ‘simply’

drop packets when congested. However, an NF in a service

chain that drops packets can result in considerable wasted

processing at NFs earlier in the chain. These wasted resources

could be gainfully utilized by other NFs being scheduled on

the same CPU core to process other packet flows. We posit

that a scheduling framework for NFV service chains has

to simultaneously account for both task level scheduling on

processing cores and packet level scheduling. This combined

problem is what poses a challenge: When you get a packet,

you have to decide which task has to run, and also which

packets to process, and for how long.

To solve these problems we propose NFVnice, an NFV

management framework that provides fair and efficient

resource allocations to NF service chains. NFVnice focuses on

the scheduling and control problems of NFs running on shared

CPU cores, and considers a variety of realistic issues such as

bottlenecked NFs in a chain, and the impact of NFs that per-

form disk I/O accesses, which naturally complicate scheduling

decisions. NFVnice makes the following contributions:
• Automatically tuning CPU scheduling parameters to pro-

vide a fair allocation that weighs NFs based on both their

packet arrival rate and the required computation cost.

• Determining when NFs are eligible to get a CPU share

and when they need to yield the CPU, entirely from user

space, improving throughput and fairness regardless of

the kernel scheduler being used.

• Leveraging the scheduling flexibility to achieve backpres-

sure for service chain-level congestion control, that avoids

unnecessary packet processing early in a chain if the

packet might be dropped later on.

• Extending backpressure to apply not only to adjacent

NFs in a service chain, but for full service chains and

managing congestion across hosts using ECN.

• Presenting a scheduler-agnostic framework that does not

require any operating system or kernel modifications.
We have implemented NFVnice (source code [7]) on

top of OpenNetVM [8], a DPDK-based NFV platform that

runs NFs in separate processes or containers to facilitate

deployment. Our evaluation shows that NFVnice can support

different kernel schedulers, while substantially improving

throughput and providing fair CPU allocation based on

processing requirements. In controlled experiments using the

vanilla CFS scheduler [9], NFVnice reduces packet drops

from 3Mpps (million packets per second) to just 0.01Mpps

during overload conditions. NFVnice provides performance

isolation for TCP flows when there are competing UDP flows,

improving throughput of TCP flows from 30Mbps to 4Gbps,

without penalizing UDP flows, by avoiding wasted work.

Further, our evaluations demonstrate that NFVnice, because

of the dynamic backpressure, is resilient to the variability

in packet-processing cost of the NFs, yielding considerable

improvement in throughput and latency even for the large

service chains (including chains that span multiple cores).

II. BACKGROUND AND MOTIVATION

A. Diversity, Fairness, and Chain Efficiency

The middleboxes that are being deployed in industry are

diverse in their applications as well as in their complexity

and processing requirements. ETSI standards [10] show that

NFs have dramatically different processing and performance

requirements. Measurements of existing NFs show the varia-

tion in CPU demand and per packet latency: some NFs have

per-core throughput in the order of million packets per second

(Mpps), e.g., switches; others have throughputs as low as a

few kilo pps, e.g., encryption engines.

Fair Scheduling: Determining how to allocate CPU time to

network functions in order to provide fair and efficient chain

performance despite NF diversity is the focus of our work.

Defining “fairness” when NFs may have drastically different

requirements or behavior is important. We leverage the work

on Rate Proportional Servers [5], [6]. We define the allocation

to be rate-cost proportionally fair if the allocation ensures the

same normalized service to all the contending NFs, i.e., we

apportion the resources (CPU cycles) to NFs based on the

combination of each NF’s arrival rate and processing cost.

Intuitively, if either one of these factors is fixed, then we expect

its CPU allocation to be proportional to the other metric. For

example, if two NFs have the same computation cost but one

has twice the arrival rate of the other, then it must have twice

the output rate relative to the second NF. Alternatively, if the

NFs have the same arrival rate, but one requires twice the

processing cost, then we expect the heavy NF to get twice as

much CPU time, resulting in both NFs having the same output

rate. This definition of fairness can of course be supplemented

with a prioritization factor. This provides an understandable

and consistent way to provide differentiated service for NFs

that is proportional to the arrival rate and processing cost.

Unfortunately, standard CPU schedulers do not have suffi-

cient information to allocate resources in a way that provides

rate-cost proportional fairness. CPU schedulers typically try to

provide fair allocation of processing time, but if computation

costs vary between NFs this cannot provide rate-cost fairness.

Therefore, NFVnice must enhance the scheduler with more

information so that it can appropriately allocate CPU time to

provide correctly weighted allocations. We adopt the notion

of rate-cost proportional fairness for two fundamental reasons:

i) it ensures that all competing NFs get a minimal CPU share

necessary to make progress even in the worst case scenario

(highly uneven and overloaded across competing NFs), while

seeking to maximize the throughput for a given load across all

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KULKARNI et al.: NFVnice: DYNAMIC BACKPRESSURE AND SCHEDULING FOR NFV SERVICE CHAINS 3

Fig. 1. The scheduler alone is unable to provide fair resource allocations that account for processing cost and load.

the NFs; and ii) the rate-cost proportional fairness is general

and flexible, so that it can be tuned to meet the QoS policies

desired by the operator. Further, the approach ensures that

when contending NFs include malicious NFs (those that fail

to yield), or misbehaving NFs (get stuck in a loop making

no progress), such NFs do not consume the CPU excessively,

impeding the progress of other NFs. While the Linux default

scheduler has the notion of a virtual run-time for each running

task, we fine-tune that capability to provide the correct share

of the CPU for an NF, rather than simply allocating an equal

share of the CPU to each contending NF.

Efficient Chaining: Beyond simply allocating CPU time

fairly to NFs on a single core, the combination of NFs into

service chains demands careful resource management across

the chain to minimize the impact of bottlenecks. Processing a

packet only to have it dropped from a subsequent bottleneck’s

queue is wasteful, and a recipe for receive livelock [11], [12].

When an NF (whether a single NF or one in a service

chain) is overloaded, packet drops become inevitable, and

processing resources already consumed by those packets are

wasted. For responsive flows, such as TCP, congestion control

and avoidance using packet drop methods such as RED, REM,

SFQ, CSFQ [13]–[16] and feedback with Explicit Congestion

Notification (ECN) [17] can cause the flows to adapt their rates

to the available capacity on an end-to-end basis. However, for

non-responsive flows (e.g., UDP), a local, rapidly adapting

method is backpressure, which can propagate information

regarding a congested resource upstream (to previous NFs in

the chain). It is important however to ensure that effects such

as head-of-the-line blocking or unfairness do not creep in as

a result.

B. Existing OS Schedulers Are

Ill-Suited for NFV Deployment

Linux provides several different process schedulers, with

the Completely Fair Scheduler (CFS) [9] being the default

since kernel 2.6.23. In this work we focus on three schedulers:

i) CFS Normal, ii) CFS Batch, and Round Robin. The CFS

class of schedulers use a nanosecond resolution timer to pro-

vide fine granularity scheduling decisions. Each task in CFS

maintains a monotonically increasing virtual run-time which

determines the order and quantum of CPU assignment to these

tasks. The time-slice is not fixed, but is determined relative to

the run-time of the contending tasks in a time-ordered red-

black tree [18], [19]. The task with the smallest run-time

(the left most node in the ordered red-black tree) is scheduled

to run until either the task voluntarily yields, or consumes

the allotted time-slice. If it consumes the allocated time-

slice, it is re-inserted into the red-black tree based on its

cumulative run-time consumed so far. The CFS scheduler

is analogous to weighted fair queueing (WFQ) schedul-

ing [20], [21]. Thus, CFS ensures a fair proportion of

CPU allocation to all the tasks. The CFS Batch variant

has fewer timer interrupts than normal CFS, leading to a

longer time quantum and fewer context switches, while still

offering fairness. The Round Robin (RR) scheduler (part of the

linux real-time (RT) scheduling class), simply cycles through

processes with a specified time quantum (1-100ms), but does

not focus on a particular measure of fairness other than equal

allocation of cycles. The CFS class of schedulers readily use

the cgroups to provide CPU bandwidth control per-process

(or group of processes), while the RT schedulers do not

support CPU bandwidth control for group scheduling [9].

To explore the impact of these schedulers on NFV appli-

cations we consider a simple deployment with three NF

processes sharing a CPU core. We look at two workloads:

1) equal offered load (of 5 Mpps) to all NFs; 2) unequal

offered load, with NF1, NF2 getting 6 Mpps, and NF3 getting

3 Mpps.

We consider three heterogeneous NFs (computation costs:

NF1 = 500, NF2 = 250 and NF3 = 50 CPU cycles) subject

to equal and unequal loads. Figure 1 shows that when arrival

rates are the same, none of the schedulers are able to provide

our fairness goal—an equal output rate for all three NFs.

CFS Normal always apportions CPU equally, regardless of

offered load and NF processing cost, so the lighter weight

NF3 gets the highest throughput. The RR scheduler gives

each NF an equal chance to run, but does not limit the time

the NF runs for. The CFS Batch scheduler is in between these

extremes since it seeks to provide fairness, but over longer time

periods. Notably, the Batch scheduler provides NF3 almost

the same throughput as Normal CFS, despite allocating it

substantially less CPU. The reason for this is that Normal

CFS can incur a very large number of context switches due to

its goal of providing very fine-grained fairness. Since Batch

mode reduces scheduler preemption, it has substantially fewer

non-voluntary context switches—reducing from 65K to 1K

per second—as illustrated in the Table I. While RR also has

low context switch overhead, it allows heavy weight NFs to

greedily consume the CPU, nearly starving NF3.

We also demonstrate the impact on latency due to the

scheduling of NFs in a service chain. For this, we consider

a chain of three heterogeneous NFs executed on a same CPU

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE I

CONTEXT SWITCHES FOR HETEROGENEOUS NFS

Fig. 2. Minimum, maximum, and three quartiles (25%ile, median and
75%ile) latency for different kernel schedulers.

core, and measure the round-trip-time (RTT) latency for packet

processing across the chain (the time from packet generation

to receiving it back, after processing). Figure 2 shows the box

plot of the latency seen with different schedulers. The choice

of scheduler has significant impact on the latency. Moreover,

the variance (min, max, and the three quartiles) in latency is

much higher with the CFS (Normal and Batch) schedulers that

perform more frequent context switches compared to the RR

schedulers (1ms or 100ms).

These results show that just having the Linux scheduler

handle scheduling NFs has undesirable results as by itself

it is unable to adapt to both varying per-packet processing

requirements of NFs and packet arrival rates. Further, it is

important to avoid the overheads of excessive context switches.

All of these scheduling requirements must be met on a per-core

basis, while accounting for the behavior of chains spanning

multiple cores or servers.

III. DESIGN AND IMPLEMENTATION

In an NFV platform, at the top of the stack are one or more

network functions that must be scheduled in such a way that

idle work (i.e., while waiting for packets) is minimized and

load on the service chain is shed as early as possible so as to

avoid wasted work. However, the operating system’s process

scheduler that lies at the bottom of the software stack remains

completely application agnostic, with its goal of providing a

fair share of system resources to all processes. As shown in

the prior section, the kernel scheduler’s metrics for scheduling

are along orthogonal dimensions to those desired by the

network functions. NFVnice bridges the gap by translating

the scheduling requirements at the NFV application layer to a

format consumable by the operating system.

The design of NFVnice centers around the concept

of assisted preemptive scheduling, where network func-

tions provide hints to the underlying OS with regard

to their utilization. In addition to monitoring the aver-

age computation time of a network function per packet,

NFVnice needs to know when NFs in a chain are over-

loaded, or blocked on packet/disk I/O. The queues between

NFs in a service chain serve as a good indicator of

pending work at each NF. To facilitate the process of

Fig. 3. NFVnice building blocks.

providing these metrics from the NF implementation to the

underlying operating system, NFVnice provides network

function implementations with an abstraction library called

libnf. In addition to the usual tasks such as efficient read-

ing/writing packets from/to the network at line rate and

overlapping processing with non-blocking asynchronous I/O,

libnf co-ordinates with the NFVnice platform to schedule/

de-schedule a network function as necessary.

Modifying the OS scheduler to be aware of various queues

in the NFV platform is an onerous task that might lead

to unnecessary maintenance overhead and potential system

instability. One approach is to change the priority of the NF

based on the queue length of packet at that NF. This will have

the effect of increasing the number of CPU cycles provided

to that NF. This will require the change to occur frequently

as the queue length varies. The change requires a system call,

which consumes CPU cycles and adds latency. In addition,

with service chains, as the queue at an upstream NF builds,

its priority has to be raised to process packets and deliver to

a queue at the downstream NF. Then, the downstream NF’s

priority will have to be raised. We believe that this can lead to

instability because of frequent changes and the delay involved

in effecting the change. This only gets worse with complex

service chains, where an NF is both an upstream NF for one

service chain and a downstream NF for another service chain.

Instead, NFVnice leverages cgroups [22], [23], a standard

userspace primitive provided in linux to manipulate process

scheduling. NFVnice monitors queue sizes, computation times

and I/O activities in user space with the help of libnf and

manipulates scheduling weights accordingly.

A. System Components

Figure 3 illustrates the key components of the NFVnice plat-

form. We leverage DPDK for fast userspace networking [3].

Our NFV platform is implemented as a system of queues that

hold packet descriptors pointing to shared memory regions.

The NF Manager runs on a dedicated set of cores and is

responsible for ferrying packet references between the network

interface card (NIC) queues and NF queues in an efficient

manner. When packets arrive to the NIC, Rx threads in the

NF Manager take advantage of DPDK’s poll mode driver to

deliver the packets into a shared memory region accessible to

all the NFs. The Rx thread does a lookup in the Flow Table to

direct the packet to the appropriate NF. Once a flow is matched

to an NF, packet descriptors are copied into the NF’s receive

ring buffer and the Wakeup subsystem brings the NF process

into the runnable state. After being processed by an NF, the NF

Manager’s Tx threads move packets through the remainder of

the chain. This provides zero-copy packet movement.

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KULKARNI et al.: NFVnice: DYNAMIC BACKPRESSURE AND SCHEDULING FOR NFV SERVICE CHAINS 5

Fig. 4. NF scheduling and backpressure.

Service chains can be configured during system startup

using simple configuration files or from an external orches-

trator such as an SDN controller. When an NF finishes with

a packet, it enqueues it in its Tx queue, where it is read by

the manager and redirected to the Rx queue of the next NF

in the chain. The NF Manager also picks up packets from the

Tx queue of the last NF in the chain, and sends it out over

the network. We have designed NFVnice to provide high per-

formance processing of NF service chains. The NF Manager’s

scheduling subsystem determines when an NF should be active

and how much CPU time it should be allocated relative to

other NFs. The backpressure subsystem provides chain-aware

management, preventing NFs from spending time processing

packets that are likely to be dropped downstream.

System Management and NF Deployment: The NF Man-

ager ’s (Rx, Tx and Monitor) threads are pinned to separate

dedicated cores. The number of Rx, Tx and monitor threads

are configurable (C-Macros), to meet system needs, and

available CPU resources. Similarly, the maximum number of

NFs and maximum chain length can be configured. NFVnice

allows NFs and NF service chains to be deployed as inde-

pendent processes or Docker containers which are linked

with libnf library. libnf exports a simple, minimal interface

(9 functions, 2 callbacks and 4 structures), and both the

NF Manager and libnf leverage the DPDK libraries (ring

buffers, timers, memory management). We believe developing

or porting NFs or existing docker containers can be reasonably

straightforward. For example, a simple bridge NF or a basic

monitor NF is less than 100 lines of C code.

B. Scheduling NFs

Each network function in NFVnice is implemented inside

its own process (potentially running in a container). Thus the

OS scheduler is responsible for picking which NF to run at any

point in time. We believe that rather than design an entirely

new scheduler for NFV, it is important to leverage Linux’s

existing scheduling framework, and use our management

framework in user space to tune any of the stock OS schedulers

to provide the properties desired for NFV support. Figure 4

shows the NFVnice scheduling that makes the OS scheduler be

governed by NF Manager via cgroups, and ultimately assigns

running NFs to shared CPU cores. The detailed description of

the figure is in the Sections III-B and III-C.

Activating NFs: NFs that busy-wait for packets perform

very poorly in a shared CPU environment. Thus it is critical

to design the NF framework so that NFs are only activated

when there are packets available for them to process, as is

done in NFV platforms such as netmap [24] and ClickOS [25].

However, these systems provide only a relatively simple policy

for activating an NF: once one or more packets are available,

a signal is sent to the NF so that it will be scheduled to run

by the OS scheduler in netmap, or the hypervisor scheduler

in ClickOS. While this provides an efficient mechanism for

waking NFs, neither system allows for more complex resource

management policies, which can lead to unfair CPU alloca-

tions across NFs, or inefficient scheduling across chains.

In NFVnice, NFs sleep by blocking on a semaphore shared

with the NF Manager, granting the management plane great

flexibility in deciding which NFs to activate at a given time.

The policy we provide for activating an NF considers the num-

ber of packets pending in its queue, its priority relative to other

NFs, and knowledge of the queue lengths of downstream NFs

in the same chain. This allows the management framework

to indirectly affect the CPU scheduling of NFs to be fairness

and service-chain aware, without requiring that information be

synchronized with the kernel’s scheduler.

Relinquishing the CPU: NFs process batches of packets,

deciding whether to keep processing or relinquish the CPU

between each batch. This decision and all interactions with

the management layer, e.g., to receive a batch of packets, are

mediated by libnf, which in turn exposes a simple interface

to developers to write their network function. After a batch

of at most 32 packets is processed, libnf will check a shared

memory flag set by the NF Manager that indicates if it should

relinquish the CPU early (e.g., as a result of backpressure,

as described below). If the flag is not set, the NF will attempt

to process another batch; if the flag has been set or there

are no packets available, the NF will block on the semaphore

until notified by the Manager. This provides a flexible way

for the manager to indicate that an NF should give up the

CPU without requiring the kernel’s CPU scheduler to be

NF-aware.

CPU Scheduler: Since multiple NF processes are likely to

be in the runnable state at the same time, it is the operating

system’s CPU scheduler that must determine which to run

and for how long. In the early stages of our work we sought

to design a custom CPU scheduler that would incorporate

NF information such as queue lengths into its scheduling

decisions. However, we found that synchronizing queue length

information with the kernel, at the frequency necessary for NF

scheduling, incurred overheads that outweighed any benefits.

NFVnice carefully controls when individual NF processes

are runnable and when they yield the CPU (as described

above), the batch scheduler’s longer time quantum and less fre-

quent preemption are desirable. In most cases, NFVnice NFs

relinquish the CPU due to policies controlled by the manager,

rather than through an involuntary context switch. This reduces

overhead and helps NFVnice prioritize the most important NF

for processing without requiring information sharing between

user and kernel space.

Assigning CPU Weights: NFVnice provides mechanisms to

monitor a network function to estimate its CPU requirements,

and to adjust its scheduling weight. Policies in the NF Manager

can then dynamically tune the scheduling weights assigned

to each process in order to meet operator specified priority

requirements.

The packet arrival rate for a given NF can be easily

estimated by either the NF or the NF Manager. We measure

the service time to process a packet inside each NF using libnf.

To avoid outliers from skewing these measurements (e.g., if a

context switch occurs in the middle of processing a packet),

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 5. Backpressure state diagram.

we maintain a histogram of timings, allowing NFVnice to

efficiently estimate the service time at different percentiles.

For each NF i on a shared core, we calculate load(i) =
λi ∗ si, the product of arrival rate, λ, and service time, s.

We then find the total load on each core, such as core m,

TotalLoad(m) =
∑

n

i=1
load(i), and assign cpu shares for

NFi on corem following the formula:

Sharesi = Priorityi ∗
load(i)

TotalLoad(m)
This provides an allocation of CPU weights that provides

rate proportional fairness to each NF. The Priorityi parameter

can be tuned if desired to provide differential service to NFs.

Tuning priority in this way provides a more intuitive level of

control than directly working with the CPU priorities exposed

by the scheduler since it is normalized by the NF’s load.

C. Backpressure

A key goal of NFVnice is to avoid wasting work, i.e., pre-

venting an upstream NF from processing packets if they are

just going to be dropped at a downstream NF later in the

chain that has become overloaded. We achieve this through

backpressure, which ensures bottlenecks are quickly detected

while minimizing the effects of head of line blocking.

Cross-Chain Backpressure: The NF Manager is in an ideal

position to observe behavior across NFs since it assists in

moving packets between them. When one of the NF Manager’s

TX threads detects that the receive queue for an NF is above

a high watermark (HIGH_WATER_MARK) and queuing time

is above threshold, then it examines all packets in the NF’s

queue to determine what service chain they are a part of.

NFVnice then enables service chain-specific packet dropping

at the upstream NFs. NF Manager maintains states of each NF,

and in this case, it moves the NF’s state from backpressure

watch list to packet throttle as shown in Figure 5. When

the queue length becomes less than a low watermark (LOW_

WATER_MARK), the state moves to clear throttle.

The backpressure operation is illustrated in Figure 6, where

four service chains (A-D) pass through several different

NFs. The bold NFs (3 and 5) are currently overloaded.

The NF Manager detects this and applies back pressure to

flows A, C, and D. This is performed upstream where those

flows first enter the system, minimizing wasted work. Note that

backpressure is selective based on service chain, so packets for

service chain B are not affected at all. Service chains can be

defined at fine granularity (e.g., at the flow-level) in order to

minimize head of line blocking.

This form of system-wide backpressure offers a simple

mechanism that can provide substantial performance benefits.

The backpressure subsystem employs hysteresis control to

prevent NFs rapidly switching between modes. Backpressure

Fig. 6. Overloaded NFs (in bold) cause back pressure at the entry points for
service chains A, C, and D.

is enabled when the queue length exceeds a high watermark

and is only disabled once it falls below the low watermark.

Local Optimization and ECN: NFVnice also supports sim-

ple, local backpressure, i.e., an NF will block if its output

TX queue becomes full. This can happen because the NF

Manager TX Thread responsible for the queue is overloaded.

Local backpressure is entirely NF-driven, and requires no

coordination with the manager, so we use it to handle short

bursts and cases where the manager is overloaded.

We also consider the fact that an NFVnice middlebox

server might only be one in a chain spread across several

hosts. To facilitate congestion control across machines, the NF

Manager will also mark the ECN bits in TCP flows in order to

facilitate end-to-end management. Since ECN works at longer

timescales, we monitor queue lengths with an exponentially

weighted moving average and use that to trigger marking of

flows following [17].

D. Facilitating I/O

A network function could block when its receive ring buffer

is empty or when it is waiting to complete I/O requests to the

underlying storage. In both cases, NF implementations running

on the NFVnice platform are expected to yield the CPU,

returning any unused CPU cycles back to the scheduling pool.

In case of I/O, NF implementations should use asynchronous

I/O to overlap packet processing with background I/O to main-

tain throughput. NFVnice provides a simple library called libnf

that abstracts such complexities from the NF implementation.

Further details can be found in our earlier work [26].

E. Optimizations

Separating Overload Detection and Control: Since the NFV

platform [27] must process millions of packets per second

to meet line rates, we separate out overload detection from

the control mechanisms required to respond to it. The NF

Manager’s Tx threads are well situated to detect when an NF

is becoming backlogged as it is their responsibility to enqueue

new packets to each NF’s Tx queue. Using a single DPDK’s

enqueue interface, the Tx thread enqueues a packet to a NF’s

Rx queue if the queue is below the high watermark, while

getting feedback about the queue’s state in the return value.

When overload is detected, an overload flag is set in the meta

data structure related to the NF.

The control decision to apply backpressure is delegated to

th NF Manager’s Wakeup thread. The Wakeup thread scans

through the list of NFs classifying them into two categories:

ones where backpressure should be applied and ones that need

to be woken up. This separation simplifies the critical path

in the Tx threads and also provides some hysteresis control,

since a short burst of packets causing an NF to exceeds its

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KULKARNI et al.: NFVnice: DYNAMIC BACKPRESSURE AND SCHEDULING FOR NFV SERVICE CHAINS 7

threshold may have already been processed by the time the

Wakeup thread considers it for backpressure.

Separating Load Estimation and CPU Allocation: The load

on an NF is a product of its packet arrival rate and the

per-packet processing time. The scheduler weight is calculated

based on the load and the cgroup’s weights for the NF are

updated. Since changing a weight requires writing to the Linux

sysfs, it is critical that this be done outside of the packet

processing data path. libnf merely collects samples of packet

processing times, while the NF Manager computes the load

and assigns the CPU shares using cgroup virtual file system.

The data plane (libnf) samples the packet processing time

in a lightweight fashion every millisecond by observing the

CPU cycle counter before and after the NF’s packet handler

function is called. We chose sampling because measuring

overhead for each packet using the CPU cycle counters results

in a CPU pipeline flush [28], resulting in additional overhead.

The samples are stored in a histogram, in memory shared

between libnf and the NF Manager. The processing time

samples produced by each NF are stored in shared memory

and aggregated by the NF Manager. Not all packets incur

the same processing time, as some might be higher due to

I/O activity. Hence, NFVnice uses the median over a 100ms

moving window as the estimated packet processing time of

the NF. Every millisecond, the NF Manager calculates the

load on each NF using its packet arrival rate and the estimated

processing time. Every 10ms, it updates the weights used by

the kernel scheduler.

IV. EVALUATION

A. Testbed and Approach

Our experimental testbed has Intel(R) Xeon(R) CPU

E5-2697 v3 @ 2.60GHz servers, 157GB memory,

running Ubuntu SMP Linux kernel 3.19.0-39-lowlatency.

Each CPU has dual-sockets with a total of 56 cores. For

these experiments, 3 nodes were connected back-to-back

with dual-port 10Gbps DPDK compatible NICs to avoid any

switch overheads.

We make use of DPDK based high speed traffic generators,

Moongen [29] and Pktgen [30] as well as Iperf3 [31], to

generate line rate (10Gbps) traffic consisting of UDP and TCP

packets with varying numbers of flows. Moongen is configured

to generate 64 byte UDP packets at line rate(∼14.2Mpps).

Iperf is used to generate TCP flows with variable packet

sizes.

We demonstrate NFVnice’s effectiveness as a user-space

solution that influences the NF scheduling decisions of

the native Linux kernel scheduling policies, i.e., Round

Robin (RR) for the Real-time scheduling class, SCHED_

NORMAL (termed NORMAL henceforth) and SCHED_

BATCH (termed BATCH) policies in the CFS class. Different

NF configurations (compute, I/O) and service chains with

varying workloads (traffic characteristics) are used. For all the

bar plots, we provide the average, the minimum and maximum

values observed across the samples collected every second

during the experiment. In all cases, the NFs are interrupt

driven, woken up by NF manager when the packets arrive

while NFs voluntarily yield based on NFVnice’s policies.

Also, when the transmit ring out of an NF is full, that NF

suspends processing packets until room is created on the

transmit ring.

Fig. 7. Performance of NFVnice in a 3NF service chain.

TABLE II

PACKET DROP RATE PER SECOND

B. Overall NFVnice Performance

We first demonstrate NFVnice’s overall performance, both

in throughput and in resource (CPU) utilization for each

scheduler type. We compare the default schedulers to our

NFVnice system, or when only including the CPU weight

allocation tool (termed cgroups) or the backpressure

to avoid wasted work at upstream NFs in the service chain.

1) NF Service Chain on a Single Core: Here, we first con-

sider a sequential service chain of three NFs; with computation

cost Low (NF1, 120 cycles), Medium (NF2, 270 cycles), and

High (NF3, 550 cycles). All NFs run on a single shared core.

Figure 7 shows that NFVnice achieves an improvement of

as much as a factor of two for throughput (especially over the

RR scheduler). We also separately show the contribution of the

cgroups and backpressure features. By combining both

features, NFVnice improves the overall throughput across all

three kernel scheduling disciplines. cgroups only updates

the CPU share proportionally for the 3 NFs. This results

in improved performance compared to using the Default

(NORMAL and BATCH) schedulers. Since the round-robin

scheduler (RR) does not use the cgroups feature, it shows

no improvement. However the backpressure feature pro-

vides benefit independent of the underlying kernel-scheduler.

Table II shows the number of packets dropped at the input of

either of the downstream NFs, NF2 or NF3, after processing

at the upstream node (an indication of truly wasted work).

Without NFVnice, the default schedulers drop millions of

packets per second. But with NFVnice, the packet drop rate is

dramatically lower (near zero), demonstrating that NFVnice

is effective in avoiding wasted work and providing proper

CPU allocation. We also gather perf-scheduler statistics for

the average scheduling delay and runtime of each of the NFs.

From Table III, we can see that i) with NFVnice the run-time

for each NF is apportioned in a cost-proportional manner

(NF1 being least and NF3 being most), unlike the NORMAL

scheduler that seeks to provide equal allocations independent

of the packet processing costs. ii) the average scheduling

delay with NFVnice for the NFs (that is the time taken to

begin execution once the NF is ready) is lower for the NFs

with higher processing time (which is exactly what is desired,

to avoid making a complex NF wait to process packets,

and thus avoiding unnecessary packet loss). Again this is

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

TABLE III

SCHEDULING LATENCY AND RUNTIME OF NFS

TABLE IV

THROUGHPUT, CPU UTIL. AND WASTED WORK OF 3NFS

better than the behaviour of the default NORMAL and RR

schedulers.1

2) Multi-Core Scalability: We next demonstrate the benefit

of NFVnice with the NFs in a chain across cores, with each NF

pinned to a separate, dedicated core. We use these experiments

to demonstrate the benefits of NFVnice, namely: a) avoiding

wasted work through backpressure; and b) judicious resource

(CPU cycles) utilization through scheduling. When NFs are

pinned to separate cores, there is no specific role/contribution

for the vanilla OS schedulers, and for such an experiment we

use the default scheduler (NORMAL).

First, we consider the chain of 3 NFs, NF1 (Low,

550 cycles), NF2 (Medium, 2200 cycles) and NF3 (High,

4500 CPU cycles). Compared to the default scheduler

(NORMAL), NFVnice plays a key role in avoiding the wasted

work and efficiently utilizing CPU cycles. Table IV shows

that NFVnice’s CPU utilization by NF1 and NF2 on their

cores is dramatically reduced, going down from 100% to

1̃1% and 64% respectively, while maintaining the aggregate

throughput (0.6 Mpps). This is primarily because of back-

pressure ensuring that the upstream NFs only process the

correct amount of packets that the downstream NFs can

consume. Excess packets coming into the chain are dropped

at the beginning of the chain. When we use only the default

NORMAL scheduler by itself, NF1 and NF2 use 100% of the

CPU to process a huge number of packets (the ‘service rate’

in the Table IV), only to be discarded at the downstream NF3.

We now consider two different service chains with 4 NFs

using 4 cores in the system such that each NF is pinned to

a separate, dedicated core as shown in Fig. 8. Chain-1 has

three NFs: NF1 (270 cycles), NF2 (120 cycles) and NF4

(300 cycles) running on 3 different cores. Chain-2 comprises

NF1, NF3(4500 cycles) and NF4. Moongen generates 64-byte

packets at line rate, equally splitting them between two flows

that are assigned to chain-1 and chain-2. Table V shows that

in the Default case (NORMAL scheduler), NF1 processes

almost an equal number of packets for chain-1 and chain-2.

However, for chain-2, the downstream NF3 discards a majority

of the packets processed by NF1. This results not only in

wasted work, but it also adversely impacts the throughput

of chain-1. On the other hand, with NFVnice, backpressure

has the upstream NF1 process only the appropriate number of

packets of chain-2 (which has its bottleneck at the downstream

NF, NF3). This frees up the upstream NF1 to use the remaining

1Even though, RR(100ms) performs as well as NFVnice, it performs very
poorly in other cases as seen in IV-D.1 and IV-D.2 scenarios.

Fig. 8. Red (Chain-1) and Green (chain-2 NF chain setup).

TABLE V

THROUGHPUT, CPU UTILIZATION AND WASTED WORK IN A CHAIN

OF 3 NFS (EACH NF PINNED TO A DIFFERENT CORE)

Fig. 9. Performance for NF chains shown in Fig. 8.

processing cycles to process packets from chain-1. NFVnice

improves the throughput of chain-1 by factor of 2. At the

same time, it maintains the throughput of chain-2 at its

bottleneck (NF3) rate of 0.6Mpps. Overall, NFVnice not only

avoids wasted work, but judiciously allocates CPU resources

(at upstream NFs) proportionate to the chain’s bottleneck

resource capacity as shown in the Figure 9.

3) Realistic NFs With Real Data-Trace: We next demon-

strate the benefit of NFVnice processing realistic traffic,

as seen in a public trace collected at the Equinix-NYC monitor,

from CAIDA [32]. We use a realistic NF chain. The pruned

data trace consists of a large number of small-sized TCP

(1388) and UDP (475) flows. We use Moongen to replay

the pcap file at line rate (resulting in a packet rate of

∼2.3Mpps). In this experiment, we use the same configuration

as in Fig. 8 and deploy four realistic NFs: NF1 (Monitor), NF2

(Load Balancer), NF3 (AES Encryption) and NF4 (VLAN

Tagging). Chain-1 (NF1, NF2 and NF4) serves the TCP

traffic to provide monitoring, vlan-tagging and load-balancing

of the traffic to different backend servers. Chain-2 (NF1,

NF3 and NF4) caters for UDP traffic to provide monitoring,

vlan-tagging and encryption of UDP packets. To demonstrate

the scheduling benefits of NFVnice, we dedicate two process-

ing cores, so that NF1 and NF2 are pinned to a same core

(core1), while the NF3 and NF4 are pinned to another core

(core2).

Figure 10 shows the throughput achieved across two

chains for different cases. Compared to the default case

for the NORMAL scheduler, NFVnice achieves nearly

35% improvement, while with BATCH and RR(1ms) we

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KULKARNI et al.: NFVnice: DYNAMIC BACKPRESSURE AND SCHEDULING FOR NFV SERVICE CHAINS 9

Fig. 10. Performance of NFVnice for two different service chains of 3
realistic NFs with real-world data trace.

also achieve about 60% improvement. In the default case,

NF1 processes a lot more packets for both chain-1 and chain-2

than what downstream NF2 and NF3 can consume. This

results in wasted work. Further, on the other core, NF4 gets

considerably fewer CPU cycles compared to the contending

compute-intensive NF3 (AES Encryption), especially in the

RR (100ms) case, thus resulting in a significant throughput

drop (less than 16Kpps) across both the chains. On the other

hand, with NFVnice, backpressure ensures that the upstream

NF1 only processes the appropriate number of packets for

chain-1 and chain-2, thus giving more CPU cycles for NF2.

cgroups ensures that NF4 gets sufficient CPU cycles to

process the packets, resulting in better performance across

all class of schedulers, with more than 500x improvement in

throughput for the RR(100ms) case.

We also experimented with other shared-core and separate

core placement configurations, and we consistently found

NFVnice improves performance in the range of (7–75%) for

all the configurations. In-fact, even when NFs were pinned

to separate dedicated cores, NFVnice improves through-

put by at least 7% due to the early packet dropping of

backpressure.

C. Latency Analysis

We evaluate the impact on packet processing latency when

scheduling multiple NFs of a service chain on the same

core (SC) and compare it with the latency profile when

running the same NFs on dedicated, distinct cores (DC).

We further demonstrate the benefits of NFVnice in improv-

ing (reducing) the overall NF chain latency for both cases. For

these experiments, we use the Moongen packet generator and

collect the RTT samples as recommended in the benchmarking

methodology for network interconnect devices [33].

Scheduling the NFs on the same core results in additional

latency, but we believe it is within reasonable levels. However,

the benefit of cache locality for packet processing across

different NFs in the chain allows us to in fact considerably

improve on the per-packet processing latency.

1) Simple 3 NF Chain: We present the impact of different

kernel schedulers on the packet processing latency for a 3 NF

chain used in experiment IV-B.1. To isolate the scheduling

overheads, we also measure the latency when each NF in

the chain is pinned to a separate core (represented by DC).

Figure 11 shows the box plot for the latency observed with

different kernel schedulers for each distinct scenario.

Default: Using the default schedulers, latency for

scheduling multiple NFs on the same core (SC) is higher

Fig. 11. Latency profile for packet processing in a 3 NF service chain.
Box Plot represents the minimum, maximum, and the three quartiles (25%ile,
median and 75%ile) of latency for different kernel schedulers.

than running the NFs on different cores (DC) and has more

variance across different schedulers. e.g., worst case for CFS,

the latency increased from 3.5ms to 6.5ms. This increase

in latency is mainly due to context switches by the kernel

schedulers.

NFVnice : NFVnice improves latency for all the sched-

ulers by 50-70% across all the quartiles, including the max-

imum latency in both (SC and DC) the scenarios. This

is primarily due to the judicious scheduling decisions of

NFVnice across the NF chain, which result in the effective

utilization of the CPU by allowing the processing of just the

right amount of packets at each NF in the chain. NFVnice

avoids additional queuing delay for the processed packets at

the downstream nodes. NFVnice avoids any wasted work,

avoiding the unnecessary queuing of packets at upstream nodes

which are going to be eventually dropped. Further, NFVnice

provides more consistent and predictable latency than the

default. The latency variation with NFVnice for running the

NFs on same core (SC) and different core (DC) is much

smaller due to effective scheduling and avoiding unnecessary

context switches.

2) Impact of Offered Load on Latency: We analyze the

impact of scheduling 2 NFs of a chain on same core (SC)

and also compare the latency results for running the same

2 NFs on two separate (distinct) cores (DC). We compare

default with NFVnice and plot the 99th percentile latency

Figure 12 for different offered loads. When the offered load

is low (≤ 1000Mbps) the latency is similar for all the

cases. Thus, scheduling NFs on the same core optimizes the

utilization of CPU cores, with minimal impact on latency.

However, at higher packet rates (≥ 5000Mbps), we observe

that scheduling NFs on the same core (SC) has a steep increase

in the latency, while for the DC case there is more a gradual

increase in latency. Subsequently, the latency remains almost

the same in both cases. This is because the overload results

in excessive queuing delays at the NFs. With NFVnice, we

observe similar behavior, but the latency is significantly lower

across the entire offered load range, for both (SC and DC)

cases.

3) Latency With Variation in Chain Computation Cost:

We extend the 2 NF chain experiment and vary the per-packet

computation cost of NF1 from Low (120 cycles), to Medium

(270 cycles), to High (550 cycles). NF2 in all cases simply

transmits the packet out. When executing NFs on the same

core (SC), we observe the median and 99%ile latency to be

lower than when executing them on different cores (DC) for

low and medium computation cost for NF1 (results omitted

due to space constraints). However, with High computation

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 12. 99%ile latency of 2 NF chain at different offered load.

TABLE VI

PERF-COUNTERS FOR DIFFERENT 2 NF CHAIN MODES

cost for NF1 the latency increased for SC. The system

performance counters captured using the perf tool are shown

in the Table VI.

With SC, the Instructions-Per-Cycle (IPC) is roughly 2-3x

times better than when executing NFs on different cores. This

can be attributed to effective L1 cache reference locality, which

has less than 7.5% misses on data-cache. But with DC, the load

misses nearly double, incurring additional stalls and per-packet

processing costs, resulting in higher latencies. On the other

hand, the overhead of context switching with SC results in

more frequent data and instruction TLB load misses.

To summarize, when the per-packet computation cost of NFs

is low (CPU is not the bottleneck) it is beneficial to schedule

the NFs on a same core to reap the benefits of cache locality

and to avoid the cross-core cache access overheads. But, when

the computation-cost of an NF becomes a bottleneck, it is

beneficial to execute the NFs on separate cores.

D. Salient Features of NFVnice

1) Variable NF Packet Processing Cost: We now evaluate

the resilience of NFVnice to not only heterogeneity across

NFs, but also variable packet processing costs within an NF.

We use the same three-NF service chain used in IV-B.1, but

modify their processing costs. Packets of the same flow have

varying processing costs of 120, 270 or 550 cycles at each

of the NFs. Packets are classified as having one of these

3 processing costs at each of the NFs, thus yielding 9 different

variants for the total processing cost of a packet across the

3 -NF service chain. Figure 13 shows the throughput for dif-

ferent schedulers. With the Default scheduler, the throughput

achieved differs considerably compared to the case with fixed

per-packet processing costs as seen in Figure 7. For the Default

scheduler, the throughput degrades considerably for the vanilla

coarse time-slice schedulers (BATCH and RR(100ms)), while

Fig. 13. Performance with service chain of 3 Heterogeneous NFs with
varying per packet processing costs.

the NORMAL and RR(1ms) schedulers achieve relatively

higher throughputs. When examining the throughput with only

the CPU weight assignment, CGroup, we see improvement

with the BATCH scheduler, but not as much with the NOR-

MAL scheduler. This is because the variation in per-packet

processing cost of NFs result in an inaccurate estimate of the

NF’s packet-processing cost and thus an inappropriate weight

assignment and CPU share allocation. This inaccuracy also

causes NFVnice (which combines CGroup and backpressure)

to experience a marginal degradation in throughput for the

different schedulers. Backpressure alone (the Only BKPR

case), which does not adjust the CPU shares based on this

inaccurate estimate is more resilient to the packet-processing

cost variation and achieves the best (and almost the same)

throughput across all the schedulers. NFVnice gains this

benefit of backpressure, and therefore, in all cases NFVnice’s

throughput is superior to the vanilla schedulers. We could

mitigate the impact of variable packet processing costs by

profiling NFs more precisely and frequently, and averaging the

processing over a larger window of packets. However, we real-

ize that this can be expensive, consuming considerable CPU

cycles itself. This is where NFVnice’s use of backpressure

helps overcome the penalty from the variability, getting better

throughput and reduced packet loss compared to the default

schedulers.

2) Service Chain Heterogeneity: We next consider a three

NF chain, but vary the chain configuration—(Low, Medium,

High);(High, Medium, Low); and so on for a total 6 cases—so

that the location of the bottleneck NF in the chain changes in

each case. Results in Figure 14 show significant variance in

the behaviour of the vanilla kernel schedulers. NORMAL and

BATCH perform similar to each other in most cases, except

for the small differences for the reasons described earlier in

Section II. We also looked at RR with time slices of 1ms

and 100ms, and their performance is vastly different. For the

small time-slice, performance is better when the bottleneck

NF is upstream, while RR with a larger time-slice performs

better when the bottleneck NF is downstream. This is primarily

due to wasted work and inefficient CPU allotment to the

contending NFs. However, with NFVnice, in almost every

case, we can see considerable improvements in throughput,

for all the schedulers. NFVnice minimizes the wasted cycles

independent of the OS scheduler’s operational time-slice.

Impact of RR’s Time Slices with NFV: Consider the

chain configurations “High-Med-Low” and “Med-High-Low”

in Figure 14. RR(100 ms time slice) performs very poorly,

with very low throughput < 40Kpps. This is due to the ‘Fast-

producer, slow-consumer’ situation [34], making the NF with

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KULKARNI et al.: NFVnice: DYNAMIC BACKPRESSURE AND SCHEDULING FOR NFV SERVICE CHAINS 11

Fig. 14. Throughput for varying combinations of 3 NF service chain with Heterogeneous computation costs.

Fig. 15. Throughput (Mpps) in a 3 NF service chain for different combina-
tions (types) and mix of workload.

“High” computes hog the CPU resource. Now, in the default

RR scheduler, the packets processed by this NF would be

dequeued by the Tx threads but will be subsequently dropped,

as the next NF in the chain does not get an adequate share

of the CPU to process these packets. The upstream NF that

is hogging the CPU has to finish its time slice and the OS

scheduler then causes a involuntary context switch for this

“High” NF. However, with NFVnice, the queue buildup results

in generating a backpressure signal across the chain, forcing

the upstream NF to be evicted (i.e., triggering a voluntary

context switch) from the CPU as soon as the downstream

NFs buffer levels exceed the high watermark threshold. The

upstream NF will not execute till the downstream NF gets to

consume and process its receive buffers. Thus, NFVnice is able

to enforce judicious access to the CPU among the competing

NFs of a service chain. We see in every case in fig. 14,

NFVnice’s throughput is superior to vanilla scheduler, empha-

sizing the point we make in this paper: NFVnice’s design can

support a number of different kernel schedulers, effectively

support heterogeneous service chains and still provide superior

performance (throughput, packet loss).

3) Workload Heterogeneity: We use 3 homogeneous NF’s

with the same compute cost, but vary the nature of the

incoming packet flows so that the three NFs are traversed in

a different order for each flow. We increase the number of

flows (each with equal rate) from 1 to 6, as we go from Type

1 to Type 6. Thus, the bottleneck for each flow is different.

Figure 15, shows that the native schedulers (first four bars)

perform poorly, with degraded throughput as soon as we go

to two or more flows, because of the different bottleneck NFs.

However, NFVnice performs uniformly better in every case,

and is almost independent of where the bottlenecks are for

the multiple flows. Moreover, NFVnice provides a substantial

improvement and robustness to varying loads and bottlenecks

even across all the schedulers.

4) Performance Isolation: It is common to observe that

when there are responsive (TCP) flows that share resources

with non-responsive (UDP) flows, there can be a substan-

tial degradation of TCP performance, as the congestion

avoidance algorithms are triggered causing it to back-off.

This impact is exacerbated in a software-based environment

because resources are wasted by the non-responsive UDP

flows that see a downstream bottleneck, resulting in packets

being dropped at that downstream NF. These wasted resources

result in less capacity being available for TCP. Because of the

per-flow backpressure in NFVnice, we are able to substantially

correct this undesirable situation and protect TCP’s throughput

even in the presence of non-responsive UDP.

In this experiment, we generate TCP and UDP flows with

Iperf3. One TCP flow goes through only NF1 (Low cost) and

NF2 (Medium cost) on a shared core. 10 UDP flows share

NF1 and NF2 with the TCP flow, but also go through an

additional NF3 (High cost, on a separate core) which is the

bottleneck for the UDP flows - limiting their total rate to

280 Mbps.

We first start the 1 TCP flow. After 15 seconds, 10 UDP

flows start, but stop at 40 seconds. As soon as the UDP

flows interfere with the TCP flow, there is substantial packet

loss without NFVnice, because NF1 and NF2 see contention

from a large amount of UDP packets arriving into the system,

getting processed and being thrown away at the queue for NF3.

The throughput for the TCP flow craters from nearly 4 Gbps

to just around 10-30 Mbps (note log scale), while the total

UDP rate essentially keeps at the bottleneck NF3’s capacity

of 280 Mbps. With NFVnice, benefiting from per-flow back-

pressure, the TCP flow sees much less impact (dropping from

4 Gbps to about 3.3 Gbps), adjusting to utilize the remaining

capacity at NF1 and NF2. This is primarily due to NFVnice’s

ability to perform selective early discard of the UDP packets

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 16. Benefit for mix of responsive & non-responsive flows.

Fig. 17. Performance for different NF service chain lengths.

because of the backpressure. Otherwise we would have wasted

CPU cycles at NF1 and NF2, depriving the TCP flow of the

CPU. Note that the UDP flows’ rate is maintained at the

bottleneck rate of 280 Mbps as shown in Figure 16 (UDP

lines are one on top of the other). Thus, NFVnice ensures

that non-responsive flows (UDP) do not unnecessarily steal

the CPU resources from other responsive (TCP) flows in an

NFV environment.

5) Supporting Longer NF Chains: We choose three different

NFs, as in IV-B, and increase the chain length from 1 NF up

to a chain of 10 NFs by including one of the 3 NFs each time.

We examine two cases: (i) all the NFs of the chain are on a

single core (denoted by SC); and (ii) three cores are used, and

as the chain length is increased, the additional NF is placed

on the next core in round-robin fashion (denoted by MC).

Results are shown in Figure 17. For the single core, NFVnice

achieves higher throughput than the Default scheduler for

longer chains, with the greater improvements achieved for

chain lengths of 3-6. As the chains get longer (>7 NFs sharing

the same core), the improvement with NFVnice is not as high.

For the multiple core case, NFVnice improves throughput

substantially, especially as more NFs are multiplexed on a care

(e.g., chain lengths>4), compared to the Default scheduler.

V. RELATED WORK

NF Management and Scheduling: In recent years, several

NFV platforms have been developed to accelerate packet

processing on commodity servers [24], [25], [27], [35], [36].

There is a growing interest in managing and scheduling

network functions. Many works address the placement of NFs

for performance and efficient resource usage [37]–[39]. For

example, E2 [37] builds a scalable scheduling framework on

top of BESS [36]. They abstract NF placement as a DAG,

dynamically scale and migrate NFs while keeping flow affinity.

NFV-RT [38] defines deadlines for requests, and places or

migrates NFs to provide timing guarantees. These projects

focus on NF management and scheduling across cluster scale.

Our work focuses on a different scale: how to schedule NFs on

shared cores to achieve fairness when flows have load pressure.

Different from traditional packet scheduling for fairness on

hardware platforms [6], [40]–[42], NFs are more complex,

resulting in diversity of packet processing costs. Furthermore,

different kinds of flow arrival rates exacerbate the difficulty of

fair scheduling.

PSPAT [43] aims to provide a scalable scheduler framework

by decoupling the packet scheduler algorithm from dispatching

packets to the NIC for high performance. NFVnice considers

the orthogonal problem of packet processing cost and flow

arrival rate to fairly allocate CPU resources across the NFs.

PIFO [44] presents the packet-in-first-out philosophy distinct

from the typical first-in-first-out packet processing models.

We use the insight from this work to decide whether to accept

a packet and queue it for processing at the intended NF or

discard at the time of packet arrival. Then, the enqueued pack-

ets are always processed in order. This approach of selective

early discard yields two benefits: i) it avoids dropping partially

processed (through the chain) packets, thus not wasting CPU

cycles; ii) it avoid CPU stealing and allows CPU cycles to be

judiciously allocated to other contending NFs.

User space scheduling and related frameworks: Works, such

as [45], [46], consider cooperative user-space scheduling, pro-

viding very low cost context switching, that is orders of magni-

tude faster than regular Pthreads. However, the drawbacks with

such a framework are two-fold: a) they invariably require the

threads to cooperate, i.e., each thread must voluntarily yield

to ensure that the other threads get a chance to share the CPU,

without which progress of the threads cannot be guaranteed.

This means that the programs that implement L-threads must

include frequent rescheduling points for each L-thread [46]

incurring additional complexity in developing the NFs. b) As

there is no specific scheduling policy (it is just FIFO based),

all the L-threads share the same priority, and are backed by

the same kernel thread (typically pinned to a single core), and

thus lack the ability to perform selective prioritization and

the ability to provide QoS differentiation across cooperating

threads. Nonetheless, NFVnice’s backpressure mechanism can

still be effectively employed for such cooperating threads to

voluntarily yield the CPU as necessary. Another approach

used by systems such as E2 [37] and VPP [35] is to host

multiple NFs within a shared address space, allowing them to

be executed as function calls in a run to completion manner by

one thread. This incurs very low NUMA and cross-core packet

chaining overheads, but being monolithic, it is inflexible and

impedes the deployment of NFs from third party vendors.

Congestion Control and Backpressure: Congestion con-

trol and backpressure have been extensively studied in the

past [47], [48]. DCTCP [47] leverages ECN to provide

multi-bit feedback to the end hosts. MQ-ECN [48] enables

ECN for tradeoff of both high throughput and low latency

in multi-service multi-queue production DCNs (Data Cen-

ter Network). All of these focus on congestion control in

DCNs. However, in an NFV environment, flows are typically

steered through a service chain. The later congestion is found,

the more resources are wasted. If the end hosts do not enable

ECN support or there are UDP flows, it is especially important

for the NFV platform to gracefully handle high load scenarios

in an efficient and fair way. Using multiple mechanisms

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KULKARNI et al.: NFVnice: DYNAMIC BACKPRESSURE AND SCHEDULING FOR NFV SERVICE CHAINS 13

(ECN and backpressure), NFVnice ensures that overload at

bottlenecks are quickly detected in order to avoid congestion

and wasted work. Fair Queueing: Orthogonal work such

as [49], [50], propose to ensure fair sharing of network

resources among multiple tenants by spreading requests to

multiple processing entities. That is, they distribute flows with

different costs to different processing threads. In contrast,

NFVnice seeks to achieve fairness by scheduling the NFs

that process the packets of different flows appropriately, Thus,

a fair share of the CPU is allocated to each competing NF.

VI. CONCLUSION

As the use of highly efficient user-space network I/O

frameworks such as DPDK becomes more prevalent, there will

be a growing need to mediate application-level performance

requirements across the user-kernel boundary. OS-based

schedulers lack the information needed to provide higher

level goals for packet processing, such as rate proportional

fairness that needs to account for both NF processing cost

and arrival rate. By carefully tuning scheduler weights and

applying backpressure to efficiently shed load early in the the

NFV service chain, NFVnice provides substantial improve-

ments in chain-wide throughput and latency, and dramatically

reduces the wasted work across NF chains. This allows the

NFV platform to gracefully handle overload scenarios while

maintaining efficiency and fairness.

Our implementation of NFVnice demonstrates how an

NFV framework can efficiently tune the OS scheduler and

harmoniously integrate backpressure to meet its performance

goals. Our results show that selective backpressure leads to

more efficient allocation of resources for NF service chains

within or across cores, and scheduler weights can be used to

provide rate-cost proportional fairness, regardless of the kernel

scheduler being used.

REFERENCES

[1] J. Halpern and C. Pignataro, Service Function Chaining (SFC) Archi-

tecture, document RFC 7665, 2015. [Online]. Available: https://tools.
ietf.org/html/rfc7665

[2] D. Merkel, “Docker: Lightweight Linux containers for consistent devel-
opment and deployment,” Linux J., vol. 2014, no. 239, Mar. 2014.

[3] (2014). Data Plane Development Kit. [Online]. Available: http://dpdk.
org/

[4] J. C. Mogul and A. Borg, “The effect of context switches on cache
performance,” ACM SIGPLAN Notices, vol. 26, no. 4, pp. 75–84, 1991.

[5] A. Parekh and R. Gallager, “A generalized processor sharing approach
to flow control in integrated services networks: The multiple node case,”
IEEE/ACM Trans. Netw., vol. 2, no. 2, pp. 137–150, Apr. 1994.

[6] D. Stiliadis and A. Varma, “Rate-proportional servers: A design method-
ology for fair queueing algorithms,” IEEE/ACM Trans. Netw., vol. 6,
no. 2, pp. 164–174, Apr. 1998.

[7] NFVnice Sourcecode. Accessed: Oct. 30, 2017. [Online]. Available:
https://github.com/
nfvnice/NFVnice_Source.git

[8] W. Zhang et al., “OpenNetVM: A platform for high performance
network service chains,” in Proc. Workshop Hot Topics Middleboxes

Netw. Function Virtualization (HotMIddlebox), New York, NY, USA,
2016, pp. 26–31, doi: 10.1145/2940147.2940155.

[9] I. Molnar. (2017). Linux Kernel Documentation: CFS Scheduler
Design. [Online]. Available: https://www.kernel.org/doc/Documentation/
scheduler/sched-design-CFS.txt

[10] (2013). Network Functions Virtualization (NFV): Architectural Frame-

work, ETSI-GS-NFV-002. [Online]. Available: http://www.etsi.org/
deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf

[11] T. Kelly, S. Floyd, and S. Shenker, “Patterns of congestion collapse,”
Int. Comput. Sci. Inst., Univ. Cambridge, Cambridge, U.K., Tech. Rep.,
2003. [Online]. Available: https://icir.org/floyd/papers/patterns.pdf

[12] J. C. Mogul and K. Ramakrishnan, “Eliminating receive livelock in
an interrupt-driven kernel,” ACM Trans. Comput. Syst., vol. 15, no. 3,
pp. 217–252, 1997.

[13] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Trans. Netw., vol. 1, no. 4,
pp. 397–413, Aug. 1993.

[14] D. Lapsley and S. Low, “Random early marking: An optimisation
approach to Internet congestion control,” in Proc. IEEE Int. Conf. Netw.

(ICON), Sep. 1999, pp. 67–74.
[15] W.-C. Feng, D. Kandlur, D. Saha, and K. Shin, “BLUE: A new

class of active queue management algorithms,” Univ. Michigan, Ann
Arbor, MI, USA, Tech. Rep. CSE-TR-387-99, 1999, vol. 1001,
p. 48105.

[16] I. Stoica, S. Shenker, and H. Zhang, “Core-stateless fair queueing:
A scalable architecture to approximate fair bandwidth allocations in
high-speed networks,” IEEE/ACM Trans. Netw., vol. 11, no. 1, pp. 33–
46, Feb. 2003, doi: 10.1109/TNET.2002.808414.

[17] K. Ramakrishnan, S. Floyd, and D. Black, The Addition of Explicit
Congestion Notification (ECN) to IP, document RFC 3168, 2001.
[Online]. Available: https://tools.ietf.org/html/rfc3168

[18] R. Bayer, “Symmetric binary B-trees: Data structure and maintenance
algorithms,” Acta Inf., vol. 1, no. 4, pp. 290–306, 1972.

[19] L. J. Guibas and R. Sedgewick, “A dichromatic framework for balanced
trees,” in Proc. IEEE 19th Annu. Symp. Found. Comput. Sci., 1978,
pp. 8–21.

[20] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair
queueing algorithm,” ACM SIGCOMM Comput. Commun. Rev., vol. 19,
no. 4, pp. 1–12, 1989.

[21] L. Zhang, “VirtualClock: A new traffic control algorithm for packet-
switched networks,” ACM Trans. Comput. Syst., vol. 9, no. 2,
pp. 101–124, 1991.

[22] P. Menage. (2017). Linux Kernel Documentation: Cgroups.
[Online]. Available: https://www.kernel.org/doc/Documentation/cgroup-
v1/cgroups.txt

[23] (2017). Cgroups-Linux Control Groups. [Online]. Available: http://man7.
org/linux/man-pages/man7/cgroups.7.html

[24] L. Rizzo, “Netmap: A novel framework for fast packet I/O,” in Proc.

USENIX Annu. Tech. Conf. Berkeley, CA, USA: USENIX, 2012,
pp. 101–112. [Online]. Available: https://www.usenix.org/conference/
usenixfederatedconferencesweek/netmap-novel-framework-fast-packet-
io

[25] J. Martins et al., “ClickOS and the art of network function virtu-
alization,” in Proc. 11th USENIX Symp. Netw. Syst. Design Imple-
ment. (NSDI). Seattle, WA, USA: USENIX Association, Apr. 2014,
pp. 459–473.

[26] S. G. Kulkarni et al., “NFVnice: Dynamic backpressure and scheduling
for NFV service chains,” in Proc. Conf. ACM Special Interest Group

Data Commun., 2017, pp. 71–84.
[27] J. Hwang, K. K. Ramakrishnan, and T. Wood, “NetVM: High per-

formance and flexible networking using virtualization on commod-
ity platforms,” IEEE Trans. Netw. Service Manag., vol. 12, no. 1,
pp. 34–47, Mar. 2015.

[28] (Jun. 2016). Performance Measurements With RDTSC. [Online]. Avail-
able: https://www.strchr.com/performance_measurements_with_rdtsc

[29] P. Emmerich, S. Gallenmũller, D. Raumer, F. Wohlfart, and G. Carle,
“MoonGen: A scriptable high-speed packet generator,” in Proc. ACM

Conf. Internet Meas. Conf., 2015, pp. 275–287.
[30] R. Olsson, “Pktgen the Linux packet generator,” in Proc. Linux Symp.,

Ottawa, ON, Canada, vol. 2, 2005, pp. 11–24.
[31] J. Dugan, S. Elliott, B. A. Mah, J. Poskanzer, and K. Prabhu. (2014).

iPerf—The Ultimate Speed Test Tool for TCP, UDP and SCTP. [Online].
Available: https://iperf.fr/

[32] (2019). The CAIDA Anonymized Internet Traces Dataset. [Online].
Available: http://www.caida.org/data/passive

[33] Benchmarking Methodology for Network Interconnect Devices, doc-
ument RFC 2544, Mar. 1999. [Online]. Available: https://rfc-editor.
org/rfc/rfc2544.txt

[34] L. Rizzo, S. Garzarella, G. Lettieri, and V. Maffione, “A study of
speed mismatches between communicating virtual machines,” in Proc.

Symp. Archit. Netw. Commun. Syst. (ANCS), New York, NY, USA, 2016,
pp. 61–67, doi: 10.1145/2881025.2881037.

[35] (2016). VPP. [Online]. Available: https://fd.io/
[36] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy,

“SoftNIC: A software NIC to augment hardware,” Dept. Elect. Eng.
Comput. Sci., Univ. California, Berkeley, Berkeley, CA, USA, Tech.
Rep. UCB/EECS-2015-155, May 2015. [Online]. Available: http://
www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html

[37] S. Palkar et al., “E2: A framework for NFV applications,” in Proc.

25th Symp. Oper. Syst. Princ. (SOSP), New York, NY, USA, 2015,
pp. 121–136, doi: 10.1145/2815400.2815423.

[38] Y. Li, L. T. X. Phan, and B. T. Loo, “Network functions virtualization
with soft real-time guarantees,” in Proc. 35th Annu. IEEE Int. Conf.

Comput. Commun. (INFOCOM), Apr. 2016, pp. 1–9.

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/2940147.2940155
http://dx.doi.org/10.1109/TNET.2002.808414
http://dx.doi.org/10.1145/2881025.2881037
http://dx.doi.org/10.1145/2815400.2815423

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

[39] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield,
“Split/Merge: System support for elastic execution in virtual middle-
boxes,” in Proc. 10th USENIX Symp. Netw. Syst. Design Implement.
(NSDI), 2013, pp. 227–240.

[40] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit
round-robin,” IEEE/ACM Trans. Netw., vol. 4, no. 3, pp. 375–385,
Jun. 1996.

[41] P. Goyal, H. M. Vin, and H. Chen, “Start-time fair queueing: A schedul-
ing algorithm for integrated services packet switching networks,” ACM
SIGCOMM Comput. Commun. Rev., vol. 26, no. 4, pp. 157–168, 1996.

[42] D. Stiliadis and A. Varma, “Efficient fair queueing algorithms for packet-
switched networks,” IEEE/ACM Trans. Netw., vol. 6, no. 2, pp. 175–185,
Apr. 1998.

[43] L. Rizzo, P. Valente, G. Lettieri, and V. Maffione, “PSPAT: Software
packet scheduling at hardware speed,” Comput. Commun., vol. 120,
pp. 32–45, May 2018.

[44] A. Sivaraman et al., “Programmable packet scheduling at line rate,” in
Proc. Conf. ACM SIGCOMM Conf., 2016, pp. 44–57.

[45] (2017). Fibers. [Online]. Available: https://msdn.microsoft.com/library/
ms682661.aspx

[46] (2014). DPDK L-Thread Subsystem. [Online]. Available:
http://dpdk.org/doc/guides/sample_app_ug/performance_thread.html

[47] M. Alizadeh et al., “Data center TCP (DCTCP),” ACM SIGCOMM

Comput. Commun. Rev., vol. 40, no. 4, pp. 63–74, 2010.
[48] W. Bai, L. Chen, K. Chen, and H. Wu, “Enabling ECN in multi-

service multi-queue data centers,” in Proc. 13th USENIX Symp. Netw.

Syst. Design Implement. (NSDI). Santa Clara, CA, USA: USENIX
Association, 2016, pp. 537–549.

[49] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica, “Multi-resource fair
queueing for packet processing,” SIGCOMM Comput. Commun. Rev.,
vol. 42, no. 4, pp. 1–12, Aug. 2012, doi: 10.1145/2377677.2377679.

[50] J. Mace, P. Bodik, M. Musuvathi, R. Fonseca, and K. Varadarajan,
“2DFQ: Two-dimensional fair queuing for multi-tenant cloud ser-
vices,” in Proc. ACM SIGCOMM Conf., New York, NY, USA, 2016,
pp. 144–159, doi: 10.1145/2934872.2934878.

Sameer G. Kulkarni received the Ph.D. degree
from the University of Göttingen, Germany. He is
currently a Post-Doctoral Researcher with the
Department of Computer Science and Engineering,
University of California at Riverside, Riverside, CA,
USA. His current research interests include par-
allel and distributed computing, software defined
networks, network function virtualization, and cloud
computing.

Wei Zhang received the B.S. degree from the
Hebei University of Economics and Business in
2006, the M.S. degree from Yanshan University
in 2008, the Ph.D. degree from Beihang University
in 2014, and the Ph.D. degree from The George
Washington University in 2018. She is currently
a Research and Development Software Engineer
with Microsoft Azure. Her research interests include
cloud computing, systems, and resource disaggrega-
tion.

Jinho Hwang received the Ph.D. degree from The
George Washington University, Washington, DC,
USA, in 2013. He was a Visiting Scholar with
The George Washington University from 2005 to
2006 and the POSCO ICT Research and Devel-
opment Center, South Korea, from 2007 to 2009.
He interned at the IBM T. J. Watson Research
Center, NY, USA, and AT&T Labs-Research in the
summer of 2012 and 2013, respectively. He has been
a Research Staff Member with the IBM T. J. Watson
Research Center since 2013. He has published more

than 50 articles, filed 50 patents, and has won four best paper awards. His
current research focuses on improving artificial intelligence support for cloud
systems and networks. He has received six outstanding technical achievement
awards and has been appointed to a Master Inventor at IBM.

Shriram Rajagopalan received the Ph.D. degree
from The University of British Columbia, Van-
couver, BC, Canada. He is currently a Principal
Engineer with Tetrate. His current work focuses on
layer-7 networking fabric across multiple cloud envi-
ronments for cloud native applications. His research
interests focus on high-availability problems in soft-
ware defined networking and distributed systems.

K. K. Ramakrishnan received the M.Tech. degree
from the Indian Institute of Science in 1978,
the M.S. degree in 1981, and the Ph.D. degree in
computer science from the University of Maryland,
College Park, MD, USA, in 1983. He is currently a
Professor of computer science and engineering with
the University of California at Riverside, Riverside,
CA, USA. Previously, he was the Distinguished
Member of the Technical Staff at AT&T Labs-
Research. Prior to 1994, he was a Technical Direc-
tor and a Consulting Engineer in networking with

Digital Equipment Corporation. From 2000 to 2002, he was with TeraOptic
Networks, Inc., as a Founder and the Vice President. He is a Fellow
of the ACM and AT&T, recognized for his fundamental contributions on
communication networks, including his work on congestion control, traffic
management and VPN services. He has published over 275 articles and has
180 patents issued in his name.

Timothy Wood received the bachelor’s degree in
electrical and computer engineering from Rutgers
University in 2005, and the Ph.D. degree in com-
puter science from the University of Massachusetts
Amherst in 2011. He is currently an Associate
Professor with the Department of Computer Science,
The George Washington University. His research
studies how new virtualization technologies can pro-
vide application agnostic tools that improve perfor-
mance, efficiency, and reliability in cloud computing
data centers and software-based networks. His Ph.D.

thesis received the UMass CS Outstanding Dissertation Award, his students
have voted him CS Professor of the Year, and he has won three best paper
awards, the Google Faculty Research Award, and the NSF Career Award.

Mayutan Arumaithurai received the industrial
Ph.D. degree from the University of Göttingen,
Germany, in 2010, while working for Nokia Siemens
Networks. He is currently a Senior Researcher with
the Computer Networks Group, University of Göttin-
gen. Prior to that, he worked as a Research Scientist
with the Network Laboratories, NEC Europe Ltd.,
Heidelberg, Germany, for two years. His current
research interests include information centric net-
working, software defined networks, network func-
tion virtualization, and cloud computing. He has

published in top conferences in his field (ACM SIGCOMM, ACM CoNext,
the IEEE Infocom), coauthored IETF/IRTG standards, and has led multiple
million-euro EU-funded projects.

Xiaoming Fu (Senior Member, IEEE) received the
Ph.D. degree in computer science from Tsinghua
University, China, in 2000. Since 2007, he has been
a Professor and the Head of the Computer Net-
works Group, Georg–August–Universität Göttingen,
Germany. He has also held visiting positions at
ETSI, University of Cambridge, Columbia Univer-
sity, Tsinghua University, and UCLA. He is also a
Distinguished Lecturer of the IEEE, a member of
the ACM and Academia Europaea, and a Fellow of
IET.

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/2377677.2377679
http://dx.doi.org/10.1145/2934872.2934878

