This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING

NFVnice: Dynamic Backpressure and
Scheduling for NFV Service Chains

Sameer G. Kulkarni™, Wei Zhang, Jinho Hwang, Shriram Rajagopalan,
K. K. Ramakrishnan™, Fellow, ACM, Timothy Wood, Mayutan Arumaithurai,
and Xiaoming Fu™, Senior Member, IEEE, Member, ACM

Abstract— Managing Network Function (NF) service chains
requires careful system resource management. We propose
NFVnice, a user space NF scheduling and service chain man-
agement framework to provide fair, efficient and dynamic
resource scheduling capabilities on Network Function Virtual-
ization (NFV) platforms. The NFVnice framework monitors
load on a service chain at high frequency (1000Hz) and employs
backpressure to shed load early in the service chain, thereby
preventing wasted work. Borrowing concepts such as rate pro-
portional scheduling from hardware packet schedulers, CPU
shares are computed by accounting for heterogeneous packet
processing costs of NFs, I/0, and traffic arrival characteristics. By
leveraging cgroups, a user space process scheduling abstraction
exposed by the operating system, NFVnice is capable of con-
trolling when network functions should be scheduled. NFVnice
improves NF performance by complementing the capabilities of
the OS scheduler but without requiring changes to the OS’s
scheduling mechanisms. Our controlled experiments show that
NFVnice provides the appropriate rate-cost proportional fair
share of CPU to NFs and significantly improves NF performance
(throughput and latency) by reducing wasted work across an
NF chain, compared to using the default OS scheduler. NFVnice
achieves this even for heterogeneous NFs with vastly different
computational costs and for heterogeneous workloads.

Index Terms—Network function virtualization, service func-
tion chaining, scheduling, backpressure, fairness.

I. INTRODUCTION

ETWORK Function Virtualization (NFV) seeks to imple-
ment network functions and middlebox services such as

Manuscript received December 27, 2018; revised October 6, 2019;
accepted January 11, 2020; approved by IEEE/ACM TRANSACTIONS ON
NETWORKING Editor G. Paschos. This work was supported in part by the EU
FP7 Marie Curie Actions CleanSky ITN Project under Grant 607584, in part
by the U.S. NSF under Grant CRI-1823270, Grant CNS-1522546, and Grant
CNS-1422362, in part by the Department of the Army, U.S. Army Research,
Development and Engineering Command under Grant W911NF-15-1-0508,
and in part by Huawei Technologies Company, Ltd., under the HIRP Grant.
(Corresponding author: Sameer G. Kulkarni.)

Sameer G. Kulkarni and K. K. Ramakrishnan are with the Department of
Computer Science and Engineering, University of California at Riverside,
Riverside, CA 92521 USA (e-mail: sameer.sameergk @gmail.com).

Wei Zhang is with Microsoft Azure Networking, Microsoft, Redmond, WA
98052 USA.

Jinho Hwang is with the IBM T. J. Watson Research Center, Yorktown
Heights, NY 10598 USA.

Shriram Rajagopalan is with Tetrate, San Francisco, CA 94111 USA.

Timothy Wood is with the Department of Computer Science, The George
Washington University, Washington, DC 20052 USA.

Mayutan Arumaithurai and Xiaoming Fu are with the Institut fiir Informatik,
University of Gottingen, 37077 Gottingen, Germany.

Digital Object Identifier 10.1109/TNET.2020.2969971

firewalls, NAT, proxies, deep packet inspection, WAN opti-
mization, etc., in software instead of purpose-built hardware
appliances. These software based network functions can be
run on top of commercial-off-the-shelf (COTS) hardware,
with virtualized network functions (NFs). Network functions,
however, often are chained together [1], where a packet is
processed by a sequence of NFs before being forwarded to
the destination.

The advent of container technologies like Docker [2]
enables network operators to densely pack a single NFV
appliance (VM/bare metal) with large numbers of network
functions at runtime. Even though NFV platforms are typically
capable of processing packets at line rate, without efficient
management of system resources in such densely packed
environments, service chains can result in serious performance
degradation because bottleneck NFs may drop packets that
have already been processed by upstream NFs, resulting in
wasted work in the service chain.

NF processing has to address a combination of require-
ments. Just as hardware switches and routers provide
rate-proportional scheduling for packet flows, an NFV plat-
form has to provide a fair processing of packet flows.
Secondly, the tasks running on the NFV platform may have
heterogeneous processing requirements that OS schedulers
(unlike hardware switches) address using their typical fair
scheduling mechanisms. OS schedulers, however, do not treat
packet flows fairly in proportion to their arrival rate. Thus,
NF processing requires a re-thinking of the system resource
management framework to address both these requirements.
Moreover, standard OS schedulers: a) do not have the right
metrics and primitives to ensure fairness between NFs that
deal with the same or different packet flows; b) do not
make scheduling decisions that account for chain level infor-
mation; and c) cannot guarantee predictable per-flow latency
requirements. If the scheduler allocates more processing to an
upstream NF and the downstream NF becomes overloaded,
packets are dropped by the downstream NF. This results
in inefficient processing and wasting the work done by the
upstream NF. OS schedulers also need to be adapted to
work with user space data plane frameworks such as Intel’s
DPDK [3]. They have to be cognizant of NUMA (Non-
uniform Memory Access) concerns of NF processing and the
dependencies among NFs in a service chain. Additionally,
processor performance is critically dependent on cache per-
formance, which in turn depends on locality of reference [4].
When the OS switches contexts, locality of access may not
occur because the instructions and data of the newly-scheduled

1063-6692 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4727-6875
https://orcid.org/0000-0003-1849-5155
https://orcid.org/0000-0002-8012-4753

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

NF may no longer be in the cache(s). Context switching results
in additional NF processing costs, beyond the typical cost
associated with the operations performed by the kernel [4]
and have to be accounted for. Therefore, determining how to
dynamically schedule NFs is key to achieving high perfor-
mance and scalability for diverse service chains, especially in
a scenario where multiple NFs are contending for a CPU core.

Hardware routers and switches that employ sophisticated
scheduling algorithms such as rate proportional schedul-
ing [5], [6] have predictable performance per-packet, because
processing resources are allocated fairly to meet QoS require-
ments and bottlenecks are avoided by design. However, NFV
platforms are necessarily different because: a) the OS sched-
uler does not know a priori, the capacity or processing require-
ments for each NF; b) an NF may have variable per-packet
costs (e.g., some packets may trigger DNS lookup, which are
expensive to process, and others may just be an inexpensive
header match). With NFV service chains, there is a need to be
aware of the computational demands for packet processing.
There can also be sporadic blocking of NFs due to I/O
(read/write) stalls, that also results in latency variation across
the processed packets.

A further consideration is that routers and switches ‘simply’
drop packets when congested. However, an NF in a service
chain that drops packets can result in considerable wasted
processing at NFs earlier in the chain. These wasted resources
could be gainfully utilized by other NFs being scheduled on
the same CPU core to process other packet flows. We posit
that a scheduling framework for NFV service chains has
to simultaneously account for both task level scheduling on
processing cores and packet level scheduling. This combined
problem is what poses a challenge: When you get a packet,
you have to decide which task has to run, and also which
packets to process, and for how long.

To solve these problems we propose NFVnice, an NFV
management framework that provides fair and efficient
resource allocations to NF service chains. NFVnice focuses on
the scheduling and control problems of NFs running on shared
CPU cores, and considers a variety of realistic issues such as
bottlenecked NFs in a chain, and the impact of NFs that per-
form disk I/O accesses, which naturally complicate scheduling

decisions. NFVnice makes the following contributions:
o Automatically tuning CPU scheduling parameters to pro-

vide a fair allocation that weighs NFs based on both their
packet arrival rate and the required computation cost.

o Determining when NFs are eligible to get a CPU share
and when they need to yield the CPU, entirely from user
space, improving throughput and fairness regardless of
the kernel scheduler being used.

o Leveraging the scheduling flexibility to achieve backpres-
sure for service chain-level congestion control, that avoids
unnecessary packet processing early in a chain if the
packet might be dropped later on.

« Extending backpressure to apply not only to adjacent
NFs in a service chain, but for full service chains and
managing congestion across hosts using ECN.

o Presenting a scheduler-agnostic framework that does not
require any operating system or kernel modifications.

We have implemented NFVnice (source code [7]) on

top of OpenNetVM [8], a DPDK-based NFV platform that
runs NFs in separate processes or containers to facilitate
deployment. Our evaluation shows that NFVnice can support

IEEE/ACM TRANSACTIONS ON NETWORKING

different kernel schedulers, while substantially improving
throughput and providing fair CPU allocation based on
processing requirements. In controlled experiments using the
vanilla CFS scheduler [9], NFVnice reduces packet drops
from 3Mpps (million packets per second) to just 0.01Mpps
during overload conditions. NFVnice provides performance
isolation for TCP flows when there are competing UDP flows,
improving throughput of TCP flows from 30Mbps to 4Gbps,
without penalizing UDP flows, by avoiding wasted work.
Further, our evaluations demonstrate that NFVnice, because
of the dynamic backpressure, is resilient to the variability
in packet-processing cost of the NFs, yielding considerable
improvement in throughput and latency even for the large
service chains (including chains that span multiple cores).

II. BACKGROUND AND MOTIVATION
A. Diversity, Fairness, and Chain Efficiency

The middleboxes that are being deployed in industry are
diverse in their applications as well as in their complexity
and processing requirements. ETSI standards [10] show that
NFs have dramatically different processing and performance
requirements. Measurements of existing NFs show the varia-
tion in CPU demand and per packet latency: some NFs have
per-core throughput in the order of million packets per second
(Mpps), e.g., switches; others have throughputs as low as a
few kilo pps, e.g., encryption engines.

Fair Scheduling: Determining how to allocate CPU time to
network functions in order to provide fair and efficient chain
performance despite NF diversity is the focus of our work.
Defining “fairness” when NFs may have drastically different
requirements or behavior is important. We leverage the work
on Rate Proportional Servers [5], [6]. We define the allocation
to be rate-cost proportionally fair if the allocation ensures the
same normalized service to all the contending NFs, i.e., we
apportion the resources (CPU cycles) to NFs based on the
combination of each NF’s arrival rate and processing cost.
Intuitively, if either one of these factors is fixed, then we expect
its CPU allocation to be proportional to the other metric. For
example, if two NFs have the same computation cost but one
has twice the arrival rate of the other, then it must have twice
the output rate relative to the second NF. Alternatively, if the
NFs have the same arrival rate, but one requires twice the
processing cost, then we expect the heavy NF to get twice as
much CPU time, resulting in both NFs having the same output
rate. This definition of fairness can of course be supplemented
with a prioritization factor. This provides an understandable
and consistent way to provide differentiated service for NFs
that is proportional to the arrival rate and processing cost.

Unfortunately, standard CPU schedulers do not have suffi-
cient information to allocate resources in a way that provides
rate-cost proportional fairness. CPU schedulers typically try to
provide fair allocation of processing time, but if computation
costs vary between NFs this cannot provide rate-cost fairness.
Therefore, NFVnice must enhance the scheduler with more
information so that it can appropriately allocate CPU time to
provide correctly weighted allocations. We adopt the notion
of rate-cost proportional fairness for two fundamental reasons:
i) it ensures that all competing NFs get a minimal CPU share
necessary to make progress even in the worst case scenario
(highly uneven and overloaded across competing NFs), while
seeking to maximize the throughput for a given load across all

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KULKARNI et al.: NFVnice: DYNAMIC BACKPRESSURE AND SCHEDULING FOR NFV SERVICE CHAINS

100

5
NF1-Throughput £ NF1-CPU Utilization EST
NF2-Throughput ZZZZ NF2-CPU Utilization wzzui
4 | NF3-Throughput E=22 NF3-CPU Utilization 80
v —~
& S
s e
£3 60 5
=
3 g
< =
g2 40 5
° >
£ &
1 20
0 : ‘ 0
Normal Batch RR Normal Batch RR
(a) Even load distribution.
Fig. 1. The scheduler alone is unable to provide fair resource allocations that

the NFs; and ii) the rate-cost proportional fairness is general
and flexible, so that it can be tuned to meet the QoS policies
desired by the operator. Further, the approach ensures that
when contending NFs include malicious NFs (those that fail
to yield), or misbehaving NFs (get stuck in a loop making
no progress), such NFs do not consume the CPU excessively,
impeding the progress of other NFs. While the Linux default
scheduler has the notion of a virtual run-time for each running
task, we fine-tune that capability to provide the correct share
of the CPU for an NF, rather than simply allocating an equal
share of the CPU to each contending NF.

Efficient Chaining: Beyond simply allocating CPU time
fairly to NFs on a single core, the combination of NFs into
service chains demands careful resource management across
the chain to minimize the impact of bottlenecks. Processing a
packet only to have it dropped from a subsequent bottleneck’s
queue is wasteful, and a recipe for receive livelock [11], [12].

When an NF (whether a single NF or one in a service
chain) is overloaded, packet drops become inevitable, and
processing resources already consumed by those packets are
wasted. For responsive flows, such as TCP, congestion control
and avoidance using packet drop methods such as RED, REM,
SFQ, CSFQ [13]-[16] and feedback with Explicit Congestion
Notification (ECN) [17] can cause the flows to adapt their rates
to the available capacity on an end-to-end basis. However, for
non-responsive flows (e.g., UDP), a local, rapidly adapting
method is backpressure, which can propagate information
regarding a congested resource upstream (to previous NFs in
the chain). It is important however to ensure that effects such
as head-of-the-line blocking or unfairness do not creep in as
a result.

B. Existing OS Schedulers Are
1ll-Suited for NFV Deployment

Linux provides several different process schedulers, with
the Completely Fair Scheduler (CFS) [9] being the default
since kernel 2.6.23. In this work we focus on three schedulers:
i) CFS Normal, ii) CFS Batch, and Round Robin. The CFS
class of schedulers use a nanosecond resolution timer to pro-
vide fine granularity scheduling decisions. Each task in CFS
maintains a monotonically increasing virtual run-time which
determines the order and quantum of CPU assignment to these
tasks. The time-slice is not fixed, but is determined relative to
the run-time of the contending tasks in a time-ordered red-
black tree [18], [19]. The task with the smallest run-time
(the left most node in the ordered red-black tree) is scheduled

5 100
NF1-Throughput NF1-CPU Utilization
NF2-Throughput 7ZZZZZ NF2-CPU Utilization Wz
4 | NF3-Throughput &= NF3-CPU Utilization Ez=z3 80
v ~
o S
s <
£° 60 §
=1
H ks
2 =
S 40 3
2 o
£ S
1 20

Batch RR Normal Batch
(b) Uneven load distribution.

Normal

account for processing cost and load.

to run until either the task voluntarily yields, or consumes
the allotted time-slice. If it consumes the allocated time-
slice, it is re-inserted into the red-black tree based on its
cumulative run-time consumed so far. The CFS scheduler
is analogous to weighted fair queueing (WFQ) schedul-
ing [20], [21]. Thus, CFS ensures a fair proportion of
CPU allocation to all the tasks. The CFS Batch variant
has fewer timer interrupts than normal CFS, leading to a
longer time quantum and fewer context switches, while still
offering fairness. The Round Robin (RR) scheduler (part of the
linux real-time (RT) scheduling class), simply cycles through
processes with a specified time quantum (1-100ms), but does
not focus on a particular measure of fairness other than equal
allocation of cycles. The CFS class of schedulers readily use
the cgroups to provide CPU bandwidth control per-process
(or group of processes), while the RT schedulers do not
support CPU bandwidth control for group scheduling [9].

To explore the impact of these schedulers on NFV appli-
cations we consider a simple deployment with three NF
processes sharing a CPU core. We look at two workloads:
1) equal offered load (of 5 Mpps) to all NFs; 2) unequal
offered load, with NF1, NF2 getting 6 Mpps, and NF3 getting
3 Mpps.

We consider three heterogeneous NFs (computation costs:
NF1 = 500, NF2 = 250 and NF3 = 50 CPU cycles) subject
to equal and unequal loads. Figure 1 shows that when arrival
rates are the same, none of the schedulers are able to provide
our fairness goal—an equal output rate for all three NFs.
CFS Normal always apportions CPU equally, regardless of
offered load and NF processing cost, so the lighter weight
NF3 gets the highest throughput. The RR scheduler gives
each NF an equal chance to run, but does not limit the time
the NF runs for. The CFS Batch scheduler is in between these
extremes since it seeks to provide fairness, but over longer time
periods. Notably, the Batch scheduler provides NF3 almost
the same throughput as Normal CFS, despite allocating it
substantially less CPU. The reason for this is that Normal
CFS can incur a very large number of context switches due to
its goal of providing very fine-grained fairness. Since Batch
mode reduces scheduler preemption, it has substantially fewer
non-voluntary context switches—reducing from 65K to 1K
per second—as illustrated in the Table I. While RR also has
low context switch overhead, it allows heavy weight NFs to
greedily consume the CPU, nearly starving NF3.

We also demonstrate the impact on latency due to the
scheduling of NFs in a service chain. For this, we consider
a chain of three heterogeneous NFs executed on a same CPU

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4
TABLE I
CONTEXT SWITCHES FOR HETEROGENEOUS NFS
Even Load Uneven Load
SCHED_ SCHED_ SCHED_ SCHED_ SCHED_ SCHED_
NORMAL BATCH RR NORMAL BATCH RR
csw- e csw- w csw- | ¢ csw- e csw- W eew- | IV
NF ch/s swch /s cswch chls swch /s swch eh/s swch chls swch
/s /s /s /s /s /s
NF1 0 33785 0 504 198 7 0 38585 0 503 85 10
NF2 0 32214 1 505 204 2 0 41089 4 496 92 1
NF3 | 65796 107 1010 8 206 0 79479 85 1004 4 93 0

Batch RR(1ms)
Kernel Scheduler

Normal RR(100ms)

Fig. 2. Minimum, maximum, and three quartiles (25%ile, median and
75%ile) latency for different kernel schedulers.

core, and measure the round-trip-time (RTT) latency for packet
processing across the chain (the time from packet generation
to receiving it back, after processing). Figure 2 shows the box
plot of the latency seen with different schedulers. The choice
of scheduler has significant impact on the latency. Moreover,
the variance (min, max, and the three quartiles) in latency is
much higher with the CFS (Normal and Batch) schedulers that
perform more frequent context switches compared to the RR
schedulers (1ms or 100ms).

These results show that just having the Linux scheduler
handle scheduling NFs has undesirable results as by itself
it is unable to adapt to both varying per-packet processing
requirements of NFs and packet arrival rates. Further, it is
important to avoid the overheads of excessive context switches.
All of these scheduling requirements must be met on a per-core
basis, while accounting for the behavior of chains spanning
multiple cores or servers.

III. DESIGN AND IMPLEMENTATION

In an NFV platform, at the top of the stack are one or more
network functions that must be scheduled in such a way that
idle work (i.e., while waiting for packets) is minimized and
load on the service chain is shed as early as possible so as to
avoid wasted work. However, the operating system’s process
scheduler that lies at the bottom of the software stack remains
completely application agnostic, with its goal of providing a
fair share of system resources to all processes. As shown in
the prior section, the kernel scheduler’s metrics for scheduling
are along orthogonal dimensions to those desired by the
network functions. NFVnice bridges the gap by translating
the scheduling requirements at the NFV application layer to a
format consumable by the operating system.

The design of NFVnice centers around the concept
of assisted preemptive scheduling, where network func-
tions provide hints to the underlying OS with regard
to their utilization. In addition to monitoring the aver-
age computation time of a network function per packet,
NFVnice needs to know when NFs in a chain are over-
loaded, or blocked on packet/disk I/0. The queues between
NFs in a service chain serve as a good indicator of
pending work at each NF. To facilitate the process of

IEEE/ACM TRANSACTIONS ON NETWORKING

c | Path (Chained) NFs
ontrol Pat ettty
2 Wakeup Thread <= o 3 [ttty n
= | : L
D Monitor Thread]<- ---d NF Container L 1
= i i
g NF Manager [«--------» libnf o
5 S8 |4 5'%""’ I~ Data Path (111
S&lg | |E2) R [[Tx)e—]— | Shared Memory Pool]
28 !
58 e i -+ CPU Schedulers
N
Y
% NICs

Fig. 3. NFVnice building blocks.

providing these metrics from the NF implementation to the
underlying operating system, NFVnice provides network
function implementations with an abstraction library called
libnf. In addition to the usual tasks such as efficient read-
ing/writing packets from/to the network at line rate and
overlapping processing with non-blocking asynchronous 1/O,
libnf co-ordinates with the NFVnice platform to schedule/
de-schedule a network function as necessary.

Modifying the OS scheduler to be aware of various queues
in the NFV platform is an onerous task that might lead
to unnecessary maintenance overhead and potential system
instability. One approach is to change the priority of the NF
based on the queue length of packet at that NF. This will have
the effect of increasing the number of CPU cycles provided
to that NF. This will require the change to occur frequently
as the queue length varies. The change requires a system call,
which consumes CPU cycles and adds latency. In addition,
with service chains, as the queue at an upstream NF builds,
its priority has to be raised to process packets and deliver to
a queue at the downstream NF. Then, the downstream NF’s
priority will have to be raised. We believe that this can lead to
instability because of frequent changes and the delay involved
in effecting the change. This only gets worse with complex
service chains, where an NF is both an upstream NF for one
service chain and a downstream NF for another service chain.
Instead, NFVnice leverages cgroups [22], [23], a standard
userspace primitive provided in linux to manipulate process
scheduling. NFVnice monitors queue sizes, computation times
and I/O activities in user space with the help of libnf and
manipulates scheduling weights accordingly.

A. System Components

Figure 3 illustrates the key components of the NFVnice plat-
form. We leverage DPDK for fast userspace networking [3].
Our NFV platform is implemented as a system of queues that
hold packet descriptors pointing to shared memory regions.
The NF Manager runs on a dedicated set of cores and is
responsible for ferrying packet references between the network
interface card (NIC) queues and NF queues in an efficient
manner. When packets arrive to the NIC, Rx threads in the
NF Manager take advantage of DPDK’s poll mode driver to
deliver the packets into a shared memory region accessible to
all the NFs. The Rx thread does a lookup in the Flow Table to
direct the packet to the appropriate NF. Once a flow is matched
to an NF, packet descriptors are copied into the NF’s receive
ring buffer and the Wakeup subsystem brings the NF process
into the runnable state. After being processed by an NF, the NF
Manager’s Tx threads move packets through the remainder of
the chain. This provides zero-copy packet movement.

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KULKARNI et al.: NFVnice: DYNAMIC BACKPRESSURE AND SCHEDULING FOR NFV SERVICE CHAINS 5

Explicit Congestion Notification

Length Waiting

pace ¥ . LS N
-
NF Manager [+~~~ ~gm== - 7 Bunning

e e B
)

|e—1
Load

Monitor Thread

1apuss
191908y

CGroup| Computation
Weights| Cost

—

! ——— > Work Conserving CPU Schedulers

| Space | Running NFs

i HW (Shared CPU Cores)
— Mmoo In-Network NFV Platform ------------------ s =

1 Kernel

Fig. 4. NF scheduling and backpressure.

Service chains can be configured during system startup
using simple configuration files or from an external orches-
trator such as an SDN controller. When an NF finishes with
a packet, it enqueues it in its Tx queue, where it is read by
the manager and redirected to the Rx queue of the next NF
in the chain. The NF Manager also picks up packets from the
Tx queue of the last NF in the chain, and sends it out over
the network. We have designed NFVnice to provide high per-
formance processing of NF service chains. The NF Manager’s
scheduling subsystem determines when an NF should be active
and how much CPU time it should be allocated relative to
other NFs. The backpressure subsystem provides chain-aware
management, preventing NFs from spending time processing
packets that are likely to be dropped downstream.

System Management and NF Deployment: The NF Man-
ager ’s (Rx, Tx and Monitor) threads are pinned to separate
dedicated cores. The number of Rx, Tx and monitor threads
are configurable (C-Macros), to meet system needs, and
available CPU resources. Similarly, the maximum number of
NFs and maximum chain length can be configured. NFVnice
allows NFs and NF service chains to be deployed as inde-
pendent processes or Docker containers which are linked
with libnf library. libnf exports a simple, minimal interface
(9 functions, 2 callbacks and 4 structures), and both the
NF Manager and libnf leverage the DPDK libraries (ring
buffers, timers, memory management). We believe developing
or porting NFs or existing docker containers can be reasonably
straightforward. For example, a simple bridge NF or a basic
monitor NF is less than 100 lines of C code.

B. Scheduling NFs

Each network function in NFVnice is implemented inside
its own process (potentially running in a container). Thus the
OS scheduler is responsible for picking which NF to run at any
point in time. We believe that rather than design an entirely
new scheduler for NFV, it is important to leverage Linux’s
existing scheduling framework, and use our management
framework in user space to tune any of the stock OS schedulers
to provide the properties desired for NFV support. Figure 4
shows the NFVnice scheduling that makes the OS scheduler be
governed by NF Manager via cgroups, and ultimately assigns
running NFs to shared CPU cores. The detailed description of
the figure is in the Sections III-B and III-C.

Activating NFs: NFs that busy-wait for packets perform
very poorly in a shared CPU environment. Thus it is critical
to design the NF framework so that NFs are only activated
when there are packets available for them to process, as is
done in NFV platforms such as netmap [24] and ClickOS [25].
However, these systems provide only a relatively simple policy
for activating an NF: once one or more packets are available,

a signal is sent to the NF so that it will be scheduled to run
by the OS scheduler in netmap, or the hypervisor scheduler
in ClickOS. While this provides an efficient mechanism for
waking NFs, neither system allows for more complex resource
management policies, which can lead to unfair CPU alloca-
tions across NFs, or inefficient scheduling across chains.

In NFVnice, NFs sleep by blocking on a semaphore shared
with the NF Manager, granting the management plane great
flexibility in deciding which NFs to activate at a given time.
The policy we provide for activating an NF considers the num-
ber of packets pending in its queue, its priority relative to other
NFs, and knowledge of the queue lengths of downstream NFs
in the same chain. This allows the management framework
to indirectly affect the CPU scheduling of NFs to be fairness
and service-chain aware, without requiring that information be
synchronized with the kernel’s scheduler.

Relinquishing the CPU: NFs process batches of packets,
deciding whether to keep processing or relinquish the CPU
between each batch. This decision and all interactions with
the management layer, e.g., to receive a batch of packets, are
mediated by /ibnf, which in turn exposes a simple interface
to developers to write their network function. After a batch
of at most 32 packets is processed, libnf will check a shared
memory flag set by the NF Manager that indicates if it should
relinquish the CPU early (e.g., as a result of backpressure,
as described below). If the flag is not set, the NF will attempt
to process another batch; if the flag has been set or there
are no packets available, the NF will block on the semaphore
until notified by the Manager. This provides a flexible way
for the manager to indicate that an NF should give up the
CPU without requiring the kernel’s CPU scheduler to be
NF-aware.

CPU Scheduler: Since multiple NF processes are likely to
be in the runnable state at the same time, it is the operating
system’s CPU scheduler that must determine which to run
and for how long. In the early stages of our work we sought
to design a custom CPU scheduler that would incorporate
NF information such as queue lengths into its scheduling
decisions. However, we found that synchronizing queue length
information with the kernel, at the frequency necessary for NF
scheduling, incurred overheads that outweighed any benefits.

NFVnice carefully controls when individual NF processes
are runnable and when they yield the CPU (as described
above), the batch scheduler’s longer time quantum and less fre-
quent preemption are desirable. In most cases, NFVnice NFs
relinquish the CPU due to policies controlled by the manager,
rather than through an involuntary context switch. This reduces
overhead and helps NFVnice prioritize the most important NF
for processing without requiring information sharing between
user and kernel space.

Assigning CPU Weights: NFVnice provides mechanisms to
monitor a network function to estimate its CPU requirements,
and to adjust its scheduling weight. Policies in the NF Manager
can then dynamically tune the scheduling weights assigned
to each process in order to meet operator specified priority
requirements.

The packet arrival rate for a given NF can be easily
estimated by either the NF or the NF Manager. We measure
the service time to process a packet inside each NF using libnf.
To avoid outliers from skewing these measurements (e.g., if a
context switch occurs in the middle of processing a packet),

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6
Qlen < LOW_WATER_MARK Qlen > HIGH_WATER_MARK
and and
Queuing Time > Threshold Queuing Time > Threshold
Qlen >= HIGH_WATER_MARK
Clear Packet
Throttle Throttle
Qlen < LOW_WATER_MARK
Fig. 5. Backpressure state diagram.

we maintain a histogram of timings, allowing NFVnice to
efficiently estimate the service time at different percentiles.

For each NF 7 on a shared core, we calculate load(i) =
Ai * s;, the product of arrival rate, A\, and service time, s.
We then find the total load on each core, such as core m,
TotalLoad(m) = >, load(i), and assign cpu shares for
NF; on core,, following the formula:

load(i)
Total Load(m)

This provides an allocation of CPU weights that provides
rate proportional fairness to each NF. The Priority; parameter
can be tuned if desired to provide differential service to NFs.
Tuning priority in this way provides a more intuitive level of
control than directly working with the CPU priorities exposed
by the scheduler since it is normalized by the NF’s load.

Shares; = Priority; *

C. Backpressure

A key goal of NFVnice is to avoid wasting work, i.e., pre-
venting an upstream NF from processing packets if they are
just going to be dropped at a downstream NF later in the
chain that has become overloaded. We achieve this through
backpressure, which ensures bottlenecks are quickly detected
while minimizing the effects of head of line blocking.

Cross-Chain Backpressure: The NF Manager is in an ideal
position to observe behavior across NFs since it assists in
moving packets between them. When one of the NF Manager’s
TX threads detects that the receive queue for an NF is above
a high watermark (HIGH_WATER_MARK) and queuing time
is above threshold, then it examines all packets in the NF’s
queue to determine what service chain they are a part of.
NFVnice then enables service chain-specific packet dropping
at the upstream NFs. NF Manager maintains states of each NF,
and in this case, it moves the NF’s state from backpressure
watch list to packet throttle as shown in Figure 5. When
the queue length becomes less than a low watermark (LOW_
WATER_MARK), the state moves to clear throttle.

The backpressure operation is illustrated in Figure 6, where
four service chains (A-D) pass through several different
NFs. The bold NFs (3 and 5) are currently overloaded.
The NF Manager detects this and applies back pressure to
flows A, C, and D. This is performed upstream where those
flows first enter the system, minimizing wasted work. Note that
backpressure is selective based on service chain, so packets for
service chain B are not affected at all. Service chains can be
defined at fine granularity (e.g., at the flow-level) in order to
minimize head of line blocking.

This form of system-wide backpressure offers a simple
mechanism that can provide substantial performance benefits.
The backpressure subsystem employs hysteresis control to
prevent NFs rapidly switching between modes. Backpressure

IEEE/ACM TRANSACTIONS ON NETWORKING

' ' NF3
D
A/
—A—P A—>
NF1 s—l NF2 —B""| NF4
—Cc—» o—» .
RN
Nl NFs

Fig. 6. Overloaded NFs (in bold) cause back pressure at the entry points for
service chains A, C, and D.

is enabled when the queue length exceeds a high watermark
and is only disabled once it falls below the low watermark.

Local Optimization and ECN: NFVnice also supports sim-
ple, local backpressure, i.e., an NF will block if its output
TX queue becomes full. This can happen because the NF
Manager TX Thread responsible for the queue is overloaded.
Local backpressure is entirely NF-driven, and requires no
coordination with the manager, so we use it to handle short
bursts and cases where the manager is overloaded.

We also consider the fact that an NFVnice middlebox
server might only be one in a chain spread across several
hosts. To facilitate congestion control across machines, the NF
Manager will also mark the ECN bits in TCP flows in order to
facilitate end-to-end management. Since ECN works at longer
timescales, we monitor queue lengths with an exponentially
weighted moving average and use that to trigger marking of
flows following [17].

D. Facilitating 1/0

A network function could block when its receive ring buffer
is empty or when it is waiting to complete I/O requests to the
underlying storage. In both cases, NF implementations running
on the NFVnice platform are expected to yield the CPU,
returning any unused CPU cycles back to the scheduling pool.
In case of I/0, NF implementations should use asynchronous
I/O to overlap packet processing with background I/O to main-
tain throughput. NFVnice provides a simple library called libnf
that abstracts such complexities from the NF implementation.
Further details can be found in our earlier work [26].

E. Optimizations

Separating Overload Detection and Control: Since the NFV
platform [27] must process millions of packets per second
to meet line rates, we separate out overload detection from
the control mechanisms required to respond to it. The NF
Manager’s Tx threads are well situated to detect when an NF
is becoming backlogged as it is their responsibility to enqueue
new packets to each NF’s Tx queue. Using a single DPDK’s
enqueue interface, the Tx thread enqueues a packet to a NF’s
Rx queue if the queue is below the high watermark, while
getting feedback about the queue’s state in the return value.
When overload is detected, an overload flag is set in the meta
data structure related to the NF.

The control decision to apply backpressure is delegated to
th NF Manager’s Wakeup thread. The Wakeup thread scans
through the list of NFs classifying them into two categories:
ones where backpressure should be applied and ones that need
to be woken up. This separation simplifies the critical path
in the Tx threads and also provides some hysteresis control,
since a short burst of packets causing an NF to exceeds its

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KULKARNI et al.: NFVnice: DYNAMIC BACKPRESSURE AND SCHEDULING FOR NFV SERVICE CHAINS 7

threshold may have already been processed by the time the
Wakeup thread considers it for backpressure.

Separating Load Estimation and CPU Allocation: The load
on an NF is a product of its packet arrival rate and the
per-packet processing time. The scheduler weight is calculated
based on the load and the cgroup’s weights for the NF are
updated. Since changing a weight requires writing to the Linux
sysfs, it is critical that this be done outside of the packet
processing data path. /ibnf merely collects samples of packet
processing times, while the NF Manager computes the load
and assigns the CPU shares using cgroup virtual file system.

The data plane (libnf) samples the packet processing time
in a lightweight fashion every millisecond by observing the
CPU cycle counter before and after the NF’s packet handler
function is called. We chose sampling because measuring
overhead for each packet using the CPU cycle counters results
in a CPU pipeline flush [28], resulting in additional overhead.
The samples are stored in a histogram, in memory shared
between [libnf and the NF Manager. The processing time
samples produced by each NF are stored in shared memory
and aggregated by the NF Manager. Not all packets incur
the same processing time, as some might be higher due to
I/O activity. Hence, NFVnice uses the median over a 100ms
moving window as the estimated packet processing time of
the NF. Every millisecond, the NF Manager calculates the
load on each NF using its packet arrival rate and the estimated
processing time. Every 10ms, it updates the weights used by
the kernel scheduler.

1V. EVALUATION

A. Testbed and Approach

Our experimental testbed has Intel(R) Xeon(R) CPU
E5-2697 v3 @ 2.60GHz servers, 157GB memory,
running Ubuntu SMP Linux kernel 3.19.0-39-lowlatency.
Each CPU has dual-sockets with a total of 56 cores. For
these experiments, 3 nodes were connected back-to-back
with dual-port 10Gbps DPDK compatible NICs to avoid any
switch overheads.

We make use of DPDK based high speed traffic generators,
Moongen [29] and Pktgen [30] as well as Iperf3 [31], to
generate line rate (10Gbps) traffic consisting of UDP and TCP
packets with varying numbers of flows. Moongen is configured
to generate 64 byte UDP packets at line rate(~14.2Mpps).
Iperf is used to generate TCP flows with variable packet
sizes.

We demonstrate NFVnice’s effectiveness as a user-space
solution that influences the NF scheduling decisions of
the native Linux kernel scheduling policies, i.e., Round
Robin (RR) for the Real-time scheduling class, SCHED_
NORMAL (termed NORMAL henceforth) and SCHED_
BATCH (termed BATCH) policies in the CFS class. Different
NF configurations (compute, I/O) and service chains with
varying workloads (traffic characteristics) are used. For all the
bar plots, we provide the average, the minimum and maximum
values observed across the samples collected every second
during the experiment. In all cases, the NFs are interrupt
driven, woken up by NF manager when the packets arrive
while NFs voluntarily yield based on NFVnice’s policies.
Also, when the transmit ring out of an NF is full, that NF
suspends processing packets until room is created on the
transmit ring.

Default Only CGroup =
Only BKPR £z

NFVnice #2222

[N)

Throughput in Mpps
-
o

Al

0 - ki A
NORMAL BATCH RR(1ms) RR(100ms)
Fig. 7. Performance of NFVnice in a 3NF service chain.
TABLE II
PACKET DROP RATE PER SECOND
NORMAL BATCH RR(1ms) RR(100ms)
Default | NFVnice | Default | NFVnice | Default | NFVnice | Default | NFVnice
NFI | 3.58M 112K M 0 0.86M 0 0.53M 0
NF2 | 2.02M 12.3K 0.9M 11.5K 2.92M 12K 0.03M 12K

B. Overall NFVnice Performance

We first demonstrate NFVnice’s overall performance, both
in throughput and in resource (CPU) utilization for each
scheduler type. We compare the default schedulers to our
NFVnice system, or when only including the CPU weight
allocation tool (termed cgroups) or the backpressure
to avoid wasted work at upstream NFs in the service chain.

1) NF Service Chain on a Single Core: Here, we first con-
sider a sequential service chain of three NFs; with computation
cost Low (NF1, 120 cycles), Medium (NF2, 270 cycles), and
High (NF3, 550 cycles). All NFs run on a single shared core.

Figure 7 shows that NFVnice achieves an improvement of
as much as a factor of two for throughput (especially over the
RR scheduler). We also separately show the contribution of the
cgroups and backpressure features. By combining both
features, NFVnice improves the overall throughput across all
three kernel scheduling disciplines. cgroups only updates
the CPU share proportionally for the 3 NFs. This results
in improved performance compared to using the Default
(NORMAL and BATCH) schedulers. Since the round-robin
scheduler (RR) does not use the cgroups feature, it shows
no improvement. However the backpressure feature pro-
vides benefit independent of the underlying kernel-scheduler.
Table II shows the number of packets dropped at the input of
either of the downstream NFs, NF2 or NF3, after processing
at the upstream node (an indication of truly wasted work).
Without NFVnice, the default schedulers drop millions of
packets per second. But with NFVnice, the packet drop rate is
dramatically lower (near zero), demonstrating that NFVnice
is effective in avoiding wasted work and providing proper
CPU allocation. We also gather perf-scheduler statistics for
the average scheduling delay and runtime of each of the NFs.
From Table III, we can see that i) with NFVnice the run-time
for each NF is apportioned in a cost-proportional manner
(NF1 being least and NF3 being most), unlike the NORMAL
scheduler that seeks to provide equal allocations independent
of the packet processing costs. ii) the average scheduling
delay with NFVnice for the NFs (that is the time taken to
begin execution once the NF is ready) is lower for the NFs
with higher processing time (which is exactly what is desired,
to avoid making a complex NF wait to process packets,
and thus avoiding unnecessary packet loss). Again this is

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TABLE III
SCHEDULING LATENCY AND RUNTIME OF NFs
NORMAL BATCH RR(Ims) RR(100ms)
measured in ms Default NFVnice Default NFVnice | Default | NFVnice | Default | NFVnice
NFI-Avg. Delay | 0.002 0.112 0.003 1.613 1.022 0.730 0.924 0.809
NFI1-Runtime 657.825 128.723 312.703 143.754 - - - -
NF2-Avg. Delay | 0.065 0.008 1.144 0.255 0.570 0.612 0.537 0.473
NF2-Runtime 602.285 | 848.922 836.940 | 803.185 - - - -
NF3-Avg. Delay | 0.045 0.025 0.149 0.009 0.885 0.479 0.703 0.646
NF3-Runtime 623.797 | 1014.218 | 826.203 | 1047.968 | - - - -
TABLE IV
THROUGHPUT, CPU UTIL. AND WASTED WORK OF 3NFs
Default NFVnice
Svc. rate Drop rate | CPU Util Svc. rate | Drop rate | CPU Util
NFI1
(~550cycles) 5.95Mpps 100% 0.82Mpps 11% £3%
NF2 . o o
(~2200cycles) 1.18Mpps | 4.76Mpps 100% 0.72Mpps 150Kpps 64% +1%
NF3
(~4500cycles) 0.6Mpps 0.58Mpps 100% 0.6Mpps 70Kpps 100%
Aggregate 0.6Mpps 300% 0.6Mpps 175% +3%

better than the behaviour of the default NORMAL and RR
schedulers.!

2) Multi-Core Scalability: We next demonstrate the benefit
of NFVnice with the NFs in a chain across cores, with each NF
pinned to a separate, dedicated core. We use these experiments
to demonstrate the benefits of NFVnice, namely: a) avoiding
wasted work through backpressure; and b) judicious resource
(CPU cycles) utilization through scheduling. When NFs are
pinned to separate cores, there is no specific role/contribution
for the vanilla OS schedulers, and for such an experiment we
use the default scheduler (NORMAL).

First, we consider the chain of 3 NFs, NF1 (Low,
550 cycles), NF2 (Medium, 2200 cycles) and NF3 (High,
4500 CPU cycles). Compared to the default scheduler
(NORMAL), NFVnice plays a key role in avoiding the wasted
work and efficiently utilizing CPU cycles. Table IV shows
that NFVnice’s CPU utilization by NF1 and NF2 on their
cores is dramatically reduced, going down from 100% to
11% and 64% respectively, while maintaining the aggregate
throughput (0.6 Mpps). This is primarily because of back-
pressure ensuring that the upstream NFs only process the
correct amount of packets that the downstream NFs can
consume. Excess packets coming into the chain are dropped
at the beginning of the chain. When we use only the default
NORMAL scheduler by itself, NF1 and NF2 use 100% of the
CPU to process a huge number of packets (the ‘service rate’
in the Table IV), only to be discarded at the downstream NF3.

We now consider two different service chains with 4 NFs
using 4 cores in the system such that each NF is pinned to
a separate, dedicated core as shown in Fig. 8. Chain-1 has
three NFs: NF1 (270 cycles), NF2 (120 cycles) and NF4
(300 cycles) running on 3 different cores. Chain-2 comprises
NF1, NF3(4500 cycles) and NF4. Moongen generates 64-byte
packets at line rate, equally splitting them between two flows
that are assigned to chain-1 and chain-2. Table V shows that
in the Default case (NORMAL scheduler), NF1 processes
almost an equal number of packets for chain-1 and chain-2.
However, for chain-2, the downstream NF3 discards a majority
of the packets processed by NF1. This results not only in
wasted work, but it also adversely impacts the throughput
of chain-1. On the other hand, with NFVnice, backpressure
has the upstream NF1 process only the appropriate number of
packets of chain-2 (which has its bottleneck at the downstream
NF, NF3). This frees up the upstream NF1 to use the remaining

'Even though, RR(100ms) performs as well as NFVnice, it performs very
poorly in other cases as seen in IV-D.1 and IV-D.2 scenarios.

IEEE/ACM TRANSACTIONS ON NETWORKING

Chain-1

~Core-2

g

Red (Chain-1) and Green (chain-2 NF chain setup).

Chain-2
Fig. 8.

TABLE V

THROUGHPUT, CPU UTILIZATION AND WASTED WORK IN A CHAIN
OF 3 NFs (EACH NF PINNED TO A DIFFERENT CORE)

Default
Drop

NFVNice
Drop

Svc.Rate Rate CPU Svc.Rate Rate CPU
(pps) ©p9) Util.% (pps) (ops) Util.%
NE1 Chainl 3.26M 6.498M
Chain2 3.26M 2.86M | 78.6% +0.4 | 0.583M 0 82.1% £0.5

(~270cycles)

6.522M
3.26M

7.08M
6.498M

Aggregate
Chainl
Chain2

Aggregate
Chainl

NF2

(~120cycles) ~0 52.8% +1.2

~0 58% £0.7

3.26M 6.498M

NF3

0.582M 0.582M

Chain2 2.68M 100% 40 <100 100% +0
(~4500cycles) s regate | 0.582M 0.582M
NF4 Chainl 3.26M 6.498M
(~300cycles) Chain2 0.582M 0 60% +0.7 0.582M 0 84% 0.7
Y Aggregate | 3.842M 7.08M
=) P i 8 1 r 100
EChainl ®Chain2 | CPU Uil %
7 4 90
Default-NF1 goo¢
) M 50
NFVnice-NF1 6 ™

- 70
- 60
- 50
- 40
- 30
F 20
- 10

Default-NF2
NFVnice-NF2
Default-NF3
NFVnice-NF3
Default-NF4
NFVnice-NF4

Aggr. Throughputin Mpps
CPU Utilization %

$392208880208esss
$EELIIIILIIIINLL

2333ssssssssesssscesess
g333s

Packets processed in Mpps

0 " Default NFVnice 0

Fig. 9. Performance for NF chains shown in Fig. 8.

processing cycles to process packets from chain-1. NFVnice
improves the throughput of chain-1 by factor of 2. At the
same time, it maintains the throughput of chain-2 at its
bottleneck (NF3) rate of 0.6Mpps. Overall, NFVnice not only
avoids wasted work, but judiciously allocates CPU resources
(at upstream NFs) proportionate to the chain’s bottleneck
resource capacity as shown in the Figure 9.

3) Realistic NFs With Real Data-Trace: We next demon-
strate the benefit of NFVnice processing realistic traffic,
as seen in a public trace collected at the Equinix-N'YC monitor,
from CAIDA [32]. We use a realistic NF chain. The pruned
data trace consists of a large number of small-sized TCP
(1388) and UDP (475) flows. We use Moongen to replay
the pcap file at line rate (resulting in a packet rate of
~2.3Mpps). In this experiment, we use the same configuration
as in Fig. 8 and deploy four realistic NFs: NF1 (Monitor), NF2
(Load Balancer), NF3 (AES Encryption) and NF4 (VLAN
Tagging). Chain-1 (NF1, NF2 and NF4) serves the TCP
traffic to provide monitoring, vlan-tagging and load-balancing
of the traffic to different backend servers. Chain-2 (NFI,
NF3 and NF4) caters for UDP traffic to provide monitoring,
vlan-tagging and encryption of UDP packets. To demonstrate
the scheduling benefits of NFVnice, we dedicate two process-
ing cores, so that NF1 and NF2 are pinned to a same core
(corel), while the NF3 and NF4 are pinned to another core
(core2).

Figure 10 shows the throughput achieved across two
chains for different cases. Compared to the default case
for the NORMAL scheduler, NFVnice achieves nearly
35% improvement, while with BATCH and RR(Ims) we

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KULKARNI et al.: NFVnice: DYNAMIC BACKPRESSURE AND SCHEDULING FOR NFV SERVICE CHAINS 9
2.5 - 6500
Default ™™ NFVnice 6000 NFVnice(SC)
5500 Default(DC) | NFVnice(DC)
w 2Fr 5000 |- -
S —~4500
< 24000 b &
15 | 53500 - 1 I =
= £3000
a 52500 %
S 1} 2000 é
3 100 5 g = &
= 05 500 | NORMAL BATCH RR(1ms) RR(100ms)
: 0
] A Fig. 11. Latency profile for packet processing in a 3 NF service chain.
NORMAL BATCH RR(1ms) RR(100ms) Box Plot represents the minimum, maximum, and the three quartiles (25%ile,
. median and 75%ile) of latency for different kernel schedulers.
Fig. 10. Performance of NFVnice for two different service chains of 3

realistic NFs with real-world data trace.

also achieve about 60% improvement. In the default case,
NF1 processes a lot more packets for both chain-1 and chain-2
than what downstream NF2 and NF3 can consume. This
results in wasted work. Further, on the other core, NF4 gets
considerably fewer CPU cycles compared to the contending
compute-intensive NF3 (AES Encryption), especially in the
RR (100ms) case, thus resulting in a significant throughput
drop (less than 16Kpps) across both the chains. On the other
hand, with NFVnice, backpressure ensures that the upstream
NF1 only processes the appropriate number of packets for
chain-1 and chain-2, thus giving more CPU cycles for NF2.
cgroups ensures that NF4 gets sufficient CPU cycles to
process the packets, resulting in better performance across
all class of schedulers, with more than 500x improvement in
throughput for the RR(100ms) case.

We also experimented with other shared-core and separate
core placement configurations, and we consistently found
NFVnice improves performance in the range of (7-75%) for
all the configurations. In-fact, even when NFs were pinned
to separate dedicated cores, NFVnice improves through-
put by at least 7% due to the early packet dropping of
backpressure.

C. Latency Analysis

We evaluate the impact on packet processing latency when
scheduling multiple NFs of a service chain on the same
core (SC) and compare it with the latency profile when
running the same NFs on dedicated, distinct cores (DC).
We further demonstrate the benefits of NFVnice in improv-
ing (reducing) the overall NF chain latency for both cases. For
these experiments, we use the Moongen packet generator and
collect the RTT samples as recommended in the benchmarking
methodology for network interconnect devices [33].

Scheduling the NFs on the same core results in additional
latency, but we believe it is within reasonable levels. However,
the benefit of cache locality for packet processing across
different NFs in the chain allows us to in fact considerably
improve on the per-packet processing latency.

1) Simple 3 NF Chain: We present the impact of different
kernel schedulers on the packet processing latency for a 3 NF
chain used in experiment IV-B.1. To isolate the scheduling
overheads, we also measure the latency when each NF in
the chain is pinned to a separate core (represented by DC).
Figure 11 shows the box plot for the latency observed with
different kernel schedulers for each distinct scenario.

Default: Using the default schedulers, latency for
scheduling multiple NFs on the same core (SC) is higher

than running the NFs on different cores (DC) and has more
variance across different schedulers. e.g., worst case for CFS,
the latency increased from 3.5ms to 6.5ms. This increase
in latency is mainly due to context switches by the kernel
schedulers.

NFVnice : NFVnice improves latency for all the sched-
ulers by 50-70% across all the quartiles, including the max-
imum latency in both (SC and DC) the scenarios. This
is primarily due to the judicious scheduling decisions of
NFVnice across the NF chain, which result in the effective
utilization of the CPU by allowing the processing of just the
right amount of packets at each NF in the chain. NFVnice
avoids additional queuing delay for the processed packets at
the downstream nodes. NFVnice avoids any wasted work,
avoiding the unnecessary queuing of packets at upstream nodes
which are going to be eventually dropped. Further, NFVnice
provides more consistent and predictable latency than the
default. The latency variation with NFVnice for running the
NFs on same core (SC) and different core (DC) is much
smaller due to effective scheduling and avoiding unnecessary
context switches.

2) Impact of Offered Load on Latency: We analyze the
impact of scheduling 2 NFs of a chain on same core (SC)
and also compare the latency results for running the same
2 NFs on two separate (distinct) cores (DC). We compare
default with NFVnice and plot the 99th percentile latency
Figure 12 for different offered loads. When the offered load
is low (< 1000Mbps) the latency is similar for all the
cases. Thus, scheduling NFs on the same core optimizes the
utilization of CPU cores, with minimal impact on latency.
However, at higher packet rates (> 5000M bps), we observe
that scheduling NFs on the same core (SC) has a steep increase
in the latency, while for the DC case there is more a gradual
increase in latency. Subsequently, the latency remains almost
the same in both cases. This is because the overload results
in excessive queuing delays at the NFs. With NFVnice, we
observe similar behavior, but the latency is significantly lower
across the entire offered load range, for both (SC and DC)
cases.

3) Latency With Variation in Chain Computation Cost:
We extend the 2 NF chain experiment and vary the per-packet
computation cost of NF1 from Low (120 cycles), to Medium
(270 cycles), to High (550 cycles). NF2 in all cases simply
transmits the packet out. When executing NFs on the same
core (SC), we observe the median and 99%ile latency to be
lower than when executing them on different cores (DC) for
low and medium computation cost for NF1 (results omitted
due to space constraints). However, with High computation

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2500

Default(2NF SC) NFVnice(2NF SC) —@—
Default(2NF DC) —#— NFVnice(2NF DC) —@—

2000 - . |

1500

-
o
S
1<)

Latency in (us)

500

100 500 1000 5000 6000 7000 8000 9000
Packet Rate in Mbps

10000

Fig. 12. 99%ile latency of 2 NF chain at different offered load.

TABLE VI
PERF-COUNTERS FOR DIFFERENT 2 NF CHAIN MODES
C ion Cost
Characteristics Low i High

SC DC SC DC SC DC

Instructions Per Cycle I.11 0.47 1.32 0.47 1.14 0.48
(IPC) +0.05% | £0.08% | £0.16% | £0.07% | £0.04% | £0.21%
Branches 542.651 214.541 687.361 220.863 606.733 198.317
(M/Sec) +0.05% | £0.13% | 4+0.17% | £0.12% | £0.04% | 40.29%

Branch-misses 0.22 0.64 0.15 0.63 0.27 0.98
(%) +1.43% | £1.39% | £1.70% | +1.81% | +0.68% | +1.59%
L1-dcache-loads 7527737 | 407.267 772.669 | 419.044 | 664.478 | 367.680
(M/sec) +0.04% | £0.08% | +£0.14% | +£0.07% | +£0.06% | +£0.22%

L1-dcache-load-misses 749 14.63 5.81 14.67 6.29 12.09
(%) +0.06% | £0.03% | £0.13% | £0.05% | +0.16% | 40.09%
dTLB-loads 7527773 | 407.426 | 773735 | 419.213 | 665.003 367.581
(M/sec) +0.04% | £0.09% | £0.11% | £0.08% | £0.06% | +0.23%

dTLB-load-misses 031 0.05 0.67 0.06 1.53 0.10
(%) +1.08% | +4.09% | 4+0.49% | +3.59% | +0.23% | +3.89%

iTLB-loads 21.920 2.548 30.921 3471 64.382 3.447
(M/sec) +1.05% | £3.78% | £0.50% | +£2.82% | +£0.66% | +4.19%

iTLB-load-misses 371 3.18 392 3.88 420 333
(%) +£1.00% | +5.22% | £0.27% | +£4.35% | +0.55% | £5.82%

cost for NFI the latency increased for SC. The system
performance counters captured using the perf tool are shown
in the Table VI.

With SC, the Instructions-Per-Cycle (IPC) is roughly 2-3x
times better than when executing NFs on different cores. This
can be attributed to effective L1 cache reference locality, which
has less than 7.5% misses on data-cache. But with DC, the load
misses nearly double, incurring additional stalls and per-packet
processing costs, resulting in higher latencies. On the other
hand, the overhead of context switching with SC results in
more frequent data and instruction TLB load misses.

To summarize, when the per-packet computation cost of NFs
is low (CPU is not the bottleneck) it is beneficial to schedule
the NFs on a same core to reap the benefits of cache locality
and to avoid the cross-core cache access overheads. But, when
the computation-cost of an NF becomes a bottleneck, it is
beneficial to execute the NFs on separate cores.

D. Salient Features of NFVnice

1) Variable NF Packet Processing Cost: We now evaluate
the resilience of NFVnice to not only heterogeneity across
NFs, but also variable packet processing costs within an NF.
We use the same three-NF service chain used in IV-B.1, but
modify their processing costs. Packets of the same flow have
varying processing costs of 120, 270 or 550 cycles at each
of the NFs. Packets are classified as having one of these
3 processing costs at each of the NFs, thus yielding 9 different
variants for the total processing cost of a packet across the
3 -NF service chain. Figure 13 shows the throughput for dif-
ferent schedulers. With the Default scheduler, the throughput
achieved differs considerably compared to the case with fixed
per-packet processing costs as seen in Figure 7. For the Default
scheduler, the throughput degrades considerably for the vanilla
coarse time-slice schedulers (BATCH and RR(100ms)), while

IEEE/ACM TRANSACTIONS ON NETWORKING

25
Default Only CGroup E===
NFVnice Only BKPR B

2
v
Q
[=%
=

e 15
i
3
a
=

2 1
<
=
F

0.5

0 :
NORMAL RR(1ms) RR(100ms)
Fig. 13. Performance with service chain of 3 Heterogeneous NFs with

varying per packet processing costs.

the NORMAL and RR(Ims) schedulers achieve relatively
higher throughputs. When examining the throughput with only
the CPU weight assignment, CGroup, we see improvement
with the BATCH scheduler, but not as much with the NOR-
MAL scheduler. This is because the variation in per-packet
processing cost of NFs result in an inaccurate estimate of the
NF’s packet-processing cost and thus an inappropriate weight
assignment and CPU share allocation. This inaccuracy also
causes NFVnice (which combines CGroup and backpressure)
to experience a marginal degradation in throughput for the
different schedulers. Backpressure alone (the Only BKPR
case), which does not adjust the CPU shares based on this
inaccurate estimate is more resilient to the packet-processing
cost variation and achieves the best (and almost the same)
throughput across all the schedulers. NFVnice gains this
benefit of backpressure, and therefore, in all cases NFVnice’s
throughput is superior to the vanilla schedulers. We could
mitigate the impact of variable packet processing costs by
profiling NFs more precisely and frequently, and averaging the
processing over a larger window of packets. However, we real-
ize that this can be expensive, consuming considerable CPU
cycles itself. This is where NFVnice’s use of backpressure
helps overcome the penalty from the variability, getting better
throughput and reduced packet loss compared to the default
schedulers.

2) Service Chain Heterogeneity: We next consider a three
NF chain, but vary the chain configuration—(Low, Medium,
High);(High, Medium, Low); and so on for a total 6 cases—so
that the location of the bottleneck NF in the chain changes in
each case. Results in Figure 14 show significant variance in
the behaviour of the vanilla kernel schedulers. NORMAL and
BATCH perform similar to each other in most cases, except
for the small differences for the reasons described earlier in
Section II. We also looked at RR with time slices of Ims
and 100ms, and their performance is vastly different. For the
small time-slice, performance is better when the bottleneck
NF is upstream, while RR with a larger time-slice performs
better when the bottleneck NF is downstream. This is primarily
due to wasted work and inefficient CPU allotment to the
contending NFs. However, with NFVnice, in almost every
case, we can see considerable improvements in throughput,
for all the schedulers. NFVnice minimizes the wasted cycles
independent of the OS scheduler’s operational time-slice.

Impact of RR’s Time Slices with NFV: Consider the
chain configurations “High-Med-Low” and “Med-High-Low”
in Figure 14. RR(100 ms time slice) performs very poorly,
with very low throughput < 40K pps. This is due to the ‘Fast-
producer, slow-consumer’ situation [34], making the NF with

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KULKARNI et al.: NFVnice: DYNAMIC BACKPRESSURE AND SCHEDULING FOR NFV SERVICE CHAINS 11
5 Low-Med-High Low-High-Med Med-Low-High
3 3
§2 s| Default T——1 NFVnice §2 sl Default == NFVnice §2 5| Default T— NFVnice
=" 'g 7 =" = r
2t ? e 2t c 2| g %
515t g 515} S1st é .
= / L= =
o 1f / o 1r) g .
205} 0 % 205t 205 | é
£ Ve =L Ve £ Y
= 0 ¢ z = 0 2 ' 2 = 0 % 4
NORMAL BATCH RR(1ms)RR(100ms) NORMAL BATCH RR(1ms)RR(100ms) NORMAL BATCH RR(1ms)RR(100ms)
Med-High-Low High-Low-Med High-Med-Low
3 3 3
a Default =0 NFVnice a Default 3 NFVnice a Defauit "3 NFVnice E
§2.5 r §2.5 r §2.5 - 7
£ 2F V] ' £ 2F £ 2
515 % 515+ ? 515} g
=g [~ s / [Ve /
< 7 = =]
5 1r g _ 5 1+ Z S 1f
5] ﬁ 7 o ’ o f
2os} , . 205} £o5} g
(o 0 Z ; = 0 Z & v 0 i
NORMAL BATCH RR(1ms)RR{100ms) NORMAL BATCH RR(1ms)RR(100ms) NORMAL BATCH RR(1ms)RR(100ms)
Fig. 14. Throughput for varying combinations of 3 NF service chain with Heterogeneous computation costs.

NORMAL £
BATCH ===
2.5 | Rr(1ms)

RR(100ms) N
NORMAL-NFVnice
BATCH-NFVnice

RR(1ms)-NFVnice
RR(100ms)-NFVnice

Throughput in Mpps
-
o
»

s S R

()
| Eosammmmmmm

s
e

N
Type 4 Type 5

Type 3
Work Loads

Type 1 Type 2

Type 6

Fig. 15. Throughput (Mpps) in a 3 NF service chain for different combina-
tions (types) and mix of workload.

“High” computes hog the CPU resource. Now, in the default
RR scheduler, the packets processed by this NF would be
dequeued by the Tx threads but will be subsequently dropped,
as the next NF in the chain does not get an adequate share
of the CPU to process these packets. The upstream NF that
is hogging the CPU has to finish its time slice and the OS
scheduler then causes a involuntary context switch for this
“High” NF. However, with NFVnice, the queue buildup results
in generating a backpressure signal across the chain, forcing
the upstream NF to be evicted (i.e., triggering a voluntary
context switch) from the CPU as soon as the downstream
NFs buffer levels exceed the high watermark threshold. The
upstream NF will not execute till the downstream NF gets to
consume and process its receive buffers. Thus, NFVnice is able
to enforce judicious access to the CPU among the competing
NFs of a service chain. We see in every case in fig. 14,
NFVnice’s throughput is superior to vanilla scheduler, empha-
sizing the point we make in this paper: NFVnice’s design can
support a number of different kernel schedulers, effectively
support heterogeneous service chains and still provide superior
performance (throughput, packet loss).

3) Workload Heterogeneity: We use 3 homogeneous NF’s
with the same compute cost, but vary the nature of the
incoming packet flows so that the three NFs are traversed in
a different order for each flow. We increase the number of
flows (each with equal rate) from 1 to 6, as we go from Type
1 to Type 6. Thus, the bottleneck for each flow is different.
Figure 15, shows that the native schedulers (first four bars)

perform poorly, with degraded throughput as soon as we go
to two or more flows, because of the different bottleneck NFs.
However, NFVnice performs uniformly better in every case,
and is almost independent of where the bottlenecks are for
the multiple flows. Moreover, NFVnice provides a substantial
improvement and robustness to varying loads and bottlenecks
even across all the schedulers.

4) Performance Isolation: It is common to observe that
when there are responsive (TCP) flows that share resources
with non-responsive (UDP) flows, there can be a substan-
tial degradation of TCP performance, as the congestion
avoidance algorithms are triggered causing it to back-off.
This impact is exacerbated in a software-based environment
because resources are wasted by the non-responsive UDP
flows that see a downstream bottleneck, resulting in packets
being dropped at that downstream NF. These wasted resources
result in less capacity being available for TCP. Because of the
per-flow backpressure in NFVnice, we are able to substantially
correct this undesirable situation and protect TCP’s throughput
even in the presence of non-responsive UDP.

In this experiment, we generate TCP and UDP flows with
Iperf3. One TCP flow goes through only NF1 (Low cost) and
NF2 (Medium cost) on a shared core. 10 UDP flows share
NF1 and NF2 with the TCP flow, but also go through an
additional NF3 (High cost, on a separate core) which is the
bottleneck for the UDP flows - limiting their total rate to
280 Mbps.

We first start the 1 TCP flow. After 15 seconds, 10 UDP
flows start, but stop at 40 seconds. As soon as the UDP
flows interfere with the TCP flow, there is substantial packet
loss without NFVnice, because NF1 and NF2 see contention
from a large amount of UDP packets arriving into the system,
getting processed and being thrown away at the queue for NF3.
The throughput for the TCP flow craters from nearly 4 Gbps
to just around 10-30 Mbps (note log scale), while the total
UDP rate essentially keeps at the bottleneck NF3’s capacity
of 280 Mbps. With NFVnice, benefiting from per-flow back-
pressure, the TCP flow sees much less impact (dropping from
4 Gbps to about 3.3 Gbps), adjusting to utilize the remaining
capacity at NF1 and NF2. This is primarily due to NFVnice’s
ability to perform selective early discard of the UDP packets

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10000

1000

Throughput in Mbps
=
)
o

-
o

TCP With NFVnice

TCP W/O NFVnice —+—
UDP With NFVnice —ili—
UDP W/O NFVnice —*—
5 10 15 20 25 30 35 40 45 50 55 60

Time in seconds

1

Fig. 16. Benefit for mix of responsive & non-responsive flows.

-
o

100

Default-SC S Default-MC Gain-SC —#&—
Gain-MC —o— | 90
80
70
1 60
50
1 40
1 30
1 20
1 10

Relative Throughput Gain %

Throughput in Mpps
O = N W Hh U1 O N O O

Service Chain Length

Fig. 17. Performance for different NF service chain lengths.

because of the backpressure. Otherwise we would have wasted
CPU cycles at NF1 and NF2, depriving the TCP flow of the
CPU. Note that the UDP flows’ rate is maintained at the
bottleneck rate of 280 Mbps as shown in Figure 16 (UDP
lines are one on top of the other). Thus, NFVnice ensures
that non-responsive flows (UDP) do not unnecessarily steal
the CPU resources from other responsive (TCP) flows in an
NFV environment.

5) Supporting Longer NF Chains: We choose three different
NFs, as in IV-B, and increase the chain length from 1 NF up
to a chain of 10 NFs by including one of the 3 NFs each time.
We examine two cases: (i) all the NFs of the chain are on a
single core (denoted by SC); and (ii) three cores are used, and
as the chain length is increased, the additional NF is placed
on the next core in round-robin fashion (denoted by MC).
Results are shown in Figure 17. For the single core, NFVnice
achieves higher throughput than the Default scheduler for
longer chains, with the greater improvements achieved for
chain lengths of 3-6. As the chains get longer (>7 NFs sharing
the same core), the improvement with NFVnice is not as high.
For the multiple core case, NFVnice improves throughput
substantially, especially as more NFs are multiplexed on a care
(e.g., chain lengths>4), compared to the Default scheduler.

V. RELATED WORK

NF Management and Scheduling: In recent years, several
NFV platforms have been developed to accelerate packet
processing on commodity servers [24], [25], [27], [35], [36].
There is a growing interest in managing and scheduling
network functions. Many works address the placement of NFs
for performance and efficient resource usage [37]-[39]. For
example, E2 [37] builds a scalable scheduling framework on
top of BESS [36]. They abstract NF placement as a DAG,
dynamically scale and migrate NFs while keeping flow affinity.
NFV-RT [38] defines deadlines for requests, and places or
migrates NFs to provide timing guarantees. These projects

IEEE/ACM TRANSACTIONS ON NETWORKING

focus on NF management and scheduling across cluster scale.
Our work focuses on a different scale: how to schedule NFs on
shared cores to achieve fairness when flows have load pressure.
Different from traditional packet scheduling for fairness on
hardware platforms [6], [40]-[42], NFs are more complex,
resulting in diversity of packet processing costs. Furthermore,
different kinds of flow arrival rates exacerbate the difficulty of
fair scheduling.

PSPAT [43] aims to provide a scalable scheduler framework
by decoupling the packet scheduler algorithm from dispatching
packets to the NIC for high performance. NFVnice considers
the orthogonal problem of packet processing cost and flow
arrival rate to fairly allocate CPU resources across the NFs.
PIFO [44] presents the packet-in-first-out philosophy distinct
from the typical first-in-first-out packet processing models.
We use the insight from this work to decide whether to accept
a packet and queue it for processing at the intended NF or
discard at the time of packet arrival. Then, the enqueued pack-
ets are always processed in order. This approach of selective
early discard yields two benefits: i) it avoids dropping partially
processed (through the chain) packets, thus not wasting CPU
cycles; ii) it avoid CPU stealing and allows CPU cycles to be
judiciously allocated to other contending NFs.

User space scheduling and related frameworks: Works, such
as [45], [46], consider cooperative user-space scheduling, pro-
viding very low cost context switching, that is orders of magni-
tude faster than regular Pthreads. However, the drawbacks with
such a framework are two-fold: a) they invariably require the
threads to cooperate, i.e., each thread must voluntarily yield
to ensure that the other threads get a chance to share the CPU,
without which progress of the threads cannot be guaranteed.
This means that the programs that implement L-threads must
include frequent rescheduling points for each L-thread [46]
incurring additional complexity in developing the NFs. b) As
there is no specific scheduling policy (it is just FIFO based),
all the L-threads share the same priority, and are backed by
the same kernel thread (typically pinned to a single core), and
thus lack the ability to perform selective prioritization and
the ability to provide QoS differentiation across cooperating
threads. Nonetheless, NFVnice’s backpressure mechanism can
still be effectively employed for such cooperating threads to
voluntarily yield the CPU as necessary. Another approach
used by systems such as E2 [37] and VPP [35] is to host
multiple NFs within a shared address space, allowing them to
be executed as function calls in a run to completion manner by
one thread. This incurs very low NUMA and cross-core packet
chaining overheads, but being monolithic, it is inflexible and
impedes the deployment of NFs from third party vendors.

Congestion Control and Backpressure: Congestion con-
trol and backpressure have been extensively studied in the
past [47], [48]. DCTCP [47] leverages ECN to provide
multi-bit feedback to the end hosts. MQ-ECN [48] enables
ECN for tradeoff of both high throughput and low latency
in multi-service multi-queue production DCNs (Data Cen-
ter Network). All of these focus on congestion control in
DCNs. However, in an NFV environment, flows are typically
steered through a service chain. The later congestion is found,
the more resources are wasted. If the end hosts do not enable
ECN support or there are UDP flows, it is especially important
for the NFV platform to gracefully handle high load scenarios
in an efficient and fair way. Using multiple mechanisms

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KULKARNI et al.: NFVnice: DYNAMIC BACKPRESSURE AND SCHEDULING FOR NFV SERVICE CHAINS 13

(ECN and backpressure), NFVnice ensures that overload at
bottlenecks are quickly detected in order to avoid congestion
and wasted work. Fair Queueing: Orthogonal work such
as [49], [50], propose to ensure fair sharing of network
resources among multiple tenants by spreading requests to
multiple processing entities. That is, they distribute flows with
different costs to different processing threads. In contrast,
NFVnice seeks to achieve fairness by scheduling the NFs
that process the packets of different flows appropriately, Thus,
a fair share of the CPU is allocated to each competing NF.

VI. CONCLUSION

As the use of highly efficient user-space network I/O
frameworks such as DPDK becomes more prevalent, there will
be a growing need to mediate application-level performance
requirements across the user-kernel boundary. OS-based
schedulers lack the information needed to provide higher
level goals for packet processing, such as rate proportional
fairness that needs to account for both NF processing cost
and arrival rate. By carefully tuning scheduler weights and
applying backpressure to efficiently shed load early in the the
NFV service chain, NFVnice provides substantial improve-
ments in chain-wide throughput and latency, and dramatically
reduces the wasted work across NF chains. This allows the
NFV platform to gracefully handle overload scenarios while
maintaining efficiency and fairness.

Our implementation of NFVnice demonstrates how an
NFV framework can efficiently tune the OS scheduler and
harmoniously integrate backpressure to meet its performance
goals. Our results show that selective backpressure leads to
more efficient allocation of resources for NF service chains
within or across cores, and scheduler weights can be used to
provide rate-cost proportional fairness, regardless of the kernel
scheduler being used.

REFERENCES

[1] J. Halpern and C. Pignataro, Service Function Chaining (SFC) Archi-
tecture, document RFC 7665, 2015. [Online]. Available: https://tools.
ietf.org/html/rfc7665

[2] D. Merkel, “Docker: Lightweight Linux containers for consistent devel-
opment and deployment,” Linux J., vol. 2014, no. 239, Mar. 2014.

[3] (2014). Data Plane Development Kit. [Online]. Available: http://dpdk.
org/

[4] J. gC. Mogul and A. Borg, “The effect of context switches on cache
performance,” ACM SIGPLAN Notices, vol. 26, no. 4, pp. 75-84, 1991.

[5] A. Parekh and R. Gallager, “A generalized processor sharing approach
to flow control in integrated services networks: The multiple node case,”
IEEE/ACM Trans. Netw., vol. 2, no. 2, pp. 137-150, Apr. 1994.

[6] D. Stiliadis and A. Varma, “Rate-proportional servers: A design method-
ology for fair queueing algorithms,” IEEE/ACM Trans. Netw., vol. 6,
no. 2, pp. 164-174, Apr. 1998.

[71 NFVnice Sourcecode. Accessed: Oct. 30, 2017. [Online]. Available:
https://github.com/
nfvnice/NFVnice_Source.git

[8] W. Zhang et al., “OpenNetVM: A platform for high performance
network service chains,” in Proc. Workshop Hot Topics Middleboxes
Netw. Function Virtualization (HotMIddlebox), New York, NY, USA,
2016, pp. 26-31, doi: 10.1145/2940147.2940155.

[9] I. Molnar. (2017). Linux Kernel Documentation: CFS Scheduler

Design. [Online]. Available: https://www.kernel.org/doc/Documentation/

scheduler/sched-design-CFS.txt

(2013). Network Functions Virtualization (NFV): Architectural Frame-

work, ETSI-GS-NFV-002. [Online]. Available: http://www.etsi.org/

deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf

T. Kelly, S. Floyd, and S. Shenker, “Patterns of congestion collapse,”

Int. Comput. Sci. Inst., Univ. Cambridge, Cambridge, U.K., Tech. Rep.,

2003. [Online]. Available: https://icir.org/floyd/papers/patterns.pdf

J. C. Mogul and K. Ramakrishnan, “Eliminating receive livelock in

an interrupt-driven kernel,” ACM Trans. Comput. Syst., vol. 15, no. 3,

pp. 217-252, 1997.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

[33]

[34]

[35]
[36]

[37]

(38]

S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Trans. Netw., vol. 1, no. 4,
pp. 397-413, Aug. 1993.

D. Lapsley and S. Low, “Random early marking: An optimisation
approach to Internet congestion control,” in Proc. IEEE Int. Conf. Netw.
(ICON), Sep. 1999, pp. 67-74.

W.-C. Feng, D. Kandlur, D. Saha, and K. Shin, “BLUE: A new
class of active queue management algorithms,” Univ. Michigan, Ann
Arbor, MI, USA, Tech. Rep. CSE-TR-387-99, 1999, vol. 1001,
p. 48105.

I. Stoica, S. Shenker, and H. Zhang, “Core-stateless fair queueing:
A scalable architecture to approximate fair bandwidth allocations in
high-speed networks,” IEEE/ACM Trans. Netw., vol. 11, no. 1, pp. 33—
46, Feb. 2003, doi: 10.1109/TNET.2002.808414.

K. Ramakrishnan, S. Floyd, and D. Black, The Addition of Explicit
Congestion Notification (ECN) to IP, document RFC 3168, 2001.
[Online]. Available: https://tools.ietf.org/html/rfc3168

R. Bayer, “Symmetric binary B-trees: Data structure and maintenance
algorithms,” Acta Inf., vol. 1, no. 4, pp. 290-306, 1972.

L. J. Guibas and R. Sedgewick, “A dichromatic framework for balanced
trees,” in Proc. IEEE 19th Annu. Symp. Found. Comput. Sci., 1978,
pp. 8-21.

A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair
queueing algorithm,” ACM SIGCOMM Comput. Commun. Rev., vol. 19,
no. 4, pp. 1-12, 1989.

L. Zhang, “VirtualClock: A new traffic control algorithm for packet-

switched networks,” ACM Trans. Comput. Syst., vol. 9, no. 2,
pp. 101-124, 1991.
P. Menage. (2017). Linux Kernel Documentation: Cgroups.

[Online]. Available: https://www.kernel.org/doc/Documentation/cgroup-
v1/cgroups.txt

(2017). Cgroups-Linux Control Groups. [Online]. Available: http://man7.
org/linux/man-pages/man7/cgroups.7.html

L. Rizzo, “Netmap: A novel framework for fast packet I/O,” in Proc.
USENIX Annu. Tech. Conf. Berkeley, CA, USA: USENIX, 2012,
pp. 101-112. [Online]. Available: https://www.usenix.org/conference/
usenixfederatedconferencesweek/netmap-novel-framework-fast-packet-
io

J. Martins et al., “ClickOS and the art of network function virtu-
alization,” in Proc. 11th USENIX Symp. Netw. Syst. Design Imple-
ment. (NSDI). Seattle, WA, USA: USENIX Association, Apr. 2014,
pp. 459-473.

S. G. Kulkarni et al., “NFVnice: Dynamic backpressure and scheduling
for NFV service chains,” in Proc. Conf. ACM Special Interest Group
Data Commun., 2017, pp. 71-84.

J. Hwang, K. K. Ramakrishnan, and T. Wood, “NetVM: High per-
formance and flexible networking using virtualization on commod-
ity platforms,” IEEE Trans. Netw. Service Manag., vol. 12, no. 1,
pp. 34-47, Mar. 2015.

(Jun. 2016). Performance Measurements With RDTSC. [Online]. Avail-
able: https://www.strchr.com/performance_measurements_with_rdtsc

P. Emmerich, S. Gallenmiiller, D. Raumer, F. Wohlfart, and G. Carle,
“MoonGen: A scriptable high-speed packet generator,” in Proc. ACM
Conf. Internet Meas. Conf., 2015, pp. 275-287.

R. Olsson, “Pktgen the Linux packet generator,” in Proc. Linux Symp.,
Ottawa, ON, Canada, vol. 2, 2005, pp. 11-24.

J. Dugan, S. Elliott, B. A. Mah, J. Poskanzer, and K. Prabhu. (2014).
iPerf—The Ultimate Speed Test Tool for TCP, UDP and SCTP. [Online].
Available: https://iperf.fr/

(2019). The CAIDA Anonymized Internet Traces Dataset. [Online].
Available: http://www.caida.org/data/passive

Benchmarking Methodology for Network Interconnect Devices, doc-
ument RFC 2544, Mar. 1999. [Online]. Available: https://rfc-editor.
org/rfc/rfc2544.txt

L. Rizzo, S. Garzarella, G. Lettieri, and V. Maffione, “A study of
speed mismatches between communicating virtual machines,” in Proc.
Symp. Archit. Netw. Commun. Syst. (ANCS), New York, NY, USA, 2016,
pp. 61-67, doi: 10.1145/2881025.2881037.

(2016). VPP. [Online]. Available: https://fd.io/

S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy,
“SoftNIC: A software NIC to augment hardware,” Dept. Elect. Eng.
Comput. Sci., Univ. California, Berkeley, Berkeley, CA, USA, Tech.
Rep. UCB/EECS-2015-155, May 2015. [Online]. Available: http:/
www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html

S. Palkar et al., “E2: A framework for NFV applications,” in Proc.
25th Symp. Oper. Syst. Princ. (SOSP), New York, NY, USA, 2015,
pp. 121-136, doi: 10.1145/2815400.2815423.

Y. Li, L. T. X. Phan, and B. T. Loo, “Network functions virtualization
with soft real-time guarantees,” in Proc. 35th Annu. IEEE Int. Conf.
Comput. Commun. (INFOCOM), Apr. 2016, pp. 1-9.

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/2940147.2940155
http://dx.doi.org/10.1109/TNET.2002.808414
http://dx.doi.org/10.1145/2881025.2881037
http://dx.doi.org/10.1145/2815400.2815423

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

[39] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield,
“Split/Merge: System support for elastic execution in virtual middle-
boxes,” in Proc. 10th USENIX Symp. Netw. Syst. Design Implement.
(NSDI), 2013, pp. 227-240.

[40] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit
round-robin,” IEEE/ACM Trans. Netw., vol. 4, no. 3, pp. 375-385,
Jun. 1996.

[41] P. Goyal, H. M. Vin, and H. Chen, “Start-time fair queueing: A schedul-
ing algorithm for integrated services packet switching networks,” ACM
SIGCOMM Comput. Commun. Rev., vol. 26, no. 4, pp. 157-168, 1996.

[42] D. Stiliadis and A. Varma, “Efficient fair queueing algorithms for packet-
switched networks,” IEEE/ACM Trans. Netw., vol. 6, no. 2, pp. 175185,
Apr. 1998.

[43] L. Rizzo, P. Valente, G. Lettieri, and V. Maffione, “PSPAT: Software
packet scheduling at hardware speed,” Comput. Commun., vol. 120,
pp. 32-45, May 2018.

[44] A. Sivaraman et al., “Programmable packet scheduling at line rate,” in
Proc. Conf. ACM SIGCOMM Conf., 2016, pp. 44-57.

[45] (2017). Fibers. [Online]. Available: https://msdn.microsoft.com/library/
ms682661.aspx

[46] (2014). DPDK L-Thread Subsystem. [Online]. Available:
http://dpdk.org/doc/guides/sample_app_ug/performance_thread.html

[47] M. Alizadeh et al., “Data center TCP (DCTCP),” ACM SIGCOMM
Comput. Commun. Rev., vol. 40, no. 4, pp. 63-74, 2010.

[48] W. Bai, L. Chen, K. Chen, and H. Wu, “Enabling ECN in multi-
service multi-queue data centers,” in Proc. 13th USENIX Symp. Netw.
Syst. Design Implement. (NSDI). Santa Clara, CA, USA: USENIX
Association, 2016, pp. 537-549.

[49] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica, “Multi-resource fair
queueing for packet processing,” SIGCOMM Comput. Commun. Rev.,
vol. 42, no. 4, pp. 1-12, Aug. 2012, doi: 10.1145/2377677.2377679.

[50] J. Mace, P. Bodik, M. Musuvathi, R. Fonseca, and K. Varadarajan,
“2DFQ: Two-dimensional fair queuing for multi-tenant cloud ser-
vices,” in Proc. ACM SIGCOMM Conf., New York, NY, USA, 2016,
pp. 144-159, doi: 10.1145/2934872.2934878.

Sameer G. Kulkarni received the Ph.D. degree
from the University of Gottingen, Germany. He is
currently a Post-Doctoral Researcher with the
Department of Computer Science and Engineering,
University of California at Riverside, Riverside, CA,
USA. His current research interests include par-
allel and distributed computing, software defined
networks, network function virtualization, and cloud
computing.

Wei Zhang received the B.S. degree from the
Hebei University of Economics and Business in
2006, the M.S. degree from Yanshan University
in 2008, the Ph.D. degree from Beihang University
in 2014, and the Ph.D. degree from The George
Washington University in 2018. She is currently
a Research and Development Software Engineer
with Microsoft Azure. Her research interests include
cloud computing, systems, and resource disaggrega-
tion.

Jinho Hwang received the Ph.D. degree from The
George Washington University, Washington, DC,
USA, in 2013. He was a Visiting Scholar with
The George Washington University from 2005 to
2006 and the POSCO ICT Research and Devel-
opment Center, South Korea, from 2007 to 2009.
He interned at the IBM T. J. Watson Research
Center, NY, USA, and AT&T Labs-Research in the
summer of 2012 and 2013, respectively. He has been
a Research Staft Member with the IBM T. J. Watson
Research Center since 2013. He has published more
than 50 articles, filed 50 patents, and has won four best paper awards. His
current research focuses on improving artificial intelligence support for cloud
systems and networks. He has received six outstanding technical achievement
awards and has been appointed to a Master Inventor at IBM.

IEEE/ACM TRANSACTIONS ON NETWORKING

Shriram Rajagopalan received the Ph.D. degree
from The University of British Columbia, Van-
couver, BC, Canada. He is currently a Principal
Engineer with Tetrate. His current work focuses on
layer-7 networking fabric across multiple cloud envi-
ronments for cloud native applications. His research
interests focus on high-availability problems in soft-
ware defined networking and distributed systems.

K. K. Ramakrishnan received the M.Tech. degree
from the Indian Institute of Science in 1978,
the M.S. degree in 1981, and the Ph.D. degree in
computer science from the University of Maryland,
College Park, MD, USA, in 1983. He is currently a
Professor of computer science and engineering with
the University of California at Riverside, Riverside,
CA, USA. Previously, he was the Distinguished
Member of the Technical Staff at AT&T Labs-
Research. Prior to 1994, he was a Technical Direc-
tor and a Consulting Engineer in networking with
Digital Equipment Corporation. From 2000 to 2002, he was with TeraOptic
Networks, Inc., as a Founder and the Vice President. He is a Fellow
of the ACM and AT&T, recognized for his fundamental contributions on
communication networks, including his work on congestion control, traffic
management and VPN services. He has published over 275 articles and has
180 patents issued in his name.

Timothy Wood received the bachelor’s degree in

electrical and computer engineering from Rutgers

University in 2005, and the Ph.D. degree in com-

puter science from the University of Massachusetts

7 ¥ Ambherst in 2011. He is currently an Associate

) Professor with the Department of Computer Science,

h The George Washington University. His research

/ studies how new virtualization technologies can pro-

A | vide application agnostic tools that improve perfor-

mance, efficiency, and reliability in cloud computing

data centers and software-based networks. His Ph.D.

thesis received the UMass CS Outstanding Dissertation Award, his students

have voted him CS Professor of the Year, and he has won three best paper
awards, the Google Faculty Research Award, and the NSF Career Award.

Mayutan Arumaithurai received the industrial
Ph.D. degree from the University of Gottingen,
Germany, in 2010, while working for Nokia Siemens
Networks. He is currently a Senior Researcher with
the Computer Networks Group, University of Gottin-
gen. Prior to that, he worked as a Research Scientist
with the Network Laboratories, NEC Europe Ltd.,
Heidelberg, Germany, for two years. His current
research interests include information centric net-
working, software defined networks, network func-
tion virtualization, and cloud computing. He has
publlshed in top conferences in his field (ACM SIGCOMM, ACM CoNext,
the IEEE Infocom), coauthored IETF/IRTG standards, and has led multiple
million-euro EU-funded projects.

Xiaoming Fu (Senior Member, IEEE) received the
Ph.D. degree in computer science from Tsinghua
University, China, in 2000. Since 2007, he has been
a Professor and the Head of the Computer Net-
works Group, Georg—August—Universitit Gottingen,
Germany. He has also held visiting positions at
ETSI, University of Cambridge, Columbia Univer-
sity, Tsinghua University, and UCLA. He is also a
Distinguished Lecturer of the IEEE, a member of
the ACM and Academia Europaea, and a Fellow of
IET.

Authorized licensed use limited to: The George Washington University. Downloaded on February 25,2020 at 19:08:32 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/2377677.2377679
http://dx.doi.org/10.1145/2934872.2934878

