
Managing State for Failure Resiliency
in Network Function Virtualization

Sameer G Kulkarni∗†, K. K. Ramakrishnan†, and Timothy Wood‡

∗IIT Gandhinagar, India, †University of California, Riverside, ‡George Washington University.

Abstract— Ensuring high scalability (elastic scale-out and
consolidation), as well as high availability (failure resiliency)
are critical in encouraging adoption of software-based network
functions (NFs). In recent years, two paradigms have evolved in
terms of the way the NFs manage their state - namely the Stateful
(state is coupled with the NF instance) and a Stateless (state
is externalized to a datastore) manner. These two paradigms
present unique challenges and opportunities for ensuring high
scalability and high availability of NFs and NF chains. In
this work, we assess the impact on ensuring the correctness
of NF state including the implications of non-determinism in
packet processing, and carefully analyze and present the benefits
and disadvantages of the two state management paradigms.
We leverage OpenNetVM and Redis in-memory datastore to
implement both state management paradigms and empirically
compare the two. Although the stateless paradigm is desirable for
elastic scaling, our experimental results show that, even at line-
rate packet processing (10 Gbps), stateful NFs can achieve chain-
level failover across servers in a LAN incurring less than 10%
performance. The state-of-the-art stateless counterparts incur
severe throughput penalties. We observe 30-85% overhead on
normal processing, depending on the mode of state updated to
the externalized datastore.

Index Terms—Network Function Virtualization (NFV), Service
Function Chaining (SFC), Fault-tolerance, Availability,

I. INTRODUCTION

Software-based Network functions (NFs) have evolved sig-

nificantly in recent years and have become an integral part of

service provider, enterprise, and data center networks. These

NFs are typically high speed packet processing engines func-

tioning as a bump-in-the-wire on the data path and may need to

process several million packets per second, as link rates scale

up from 10G, to 40G, to 100Gbps. They support a variety

of in-network services such as network address translation

(NAT), firewalls (FW), intrusion detection and prevention

(IDS/IPS), etc. Network flows typically pass through more

than one NF, being processed in a specific order referred to

as a Service Function Chain (SFC). Figure 1 shows a simple

chain consisting of NAT, FW, IDS and rate limiter NFs.

NFs operate inline with the network forwarding datapath,

and as such, NF failure or underlying hardware failures (server

node, link) can significantly disrupt network operations. Hence

providing NF failure resiliency is critical. Further, we observe

that NFs differ in their computational complexity and can

drastically vary in their packet processing rates [1]. In order

to meet varying traffic demands and to meet chain-wide per-

formance goals, the NFs in a chain may need to be elastically

scaled – i.e., networks have to dynamically adapt the number

of NF instances and balance the load across them.

NAT FW-1 IDS-1 Rate Limiter
(Primary)

FW-2 IDS-2 Rate Limiter
(Backup)

Fig. 1: NF chains comprising NAT, FW, IDS and Rate limiter

NFs; Elastic scaling of FW and IDS NFs results in redirecting

part of the traffic from NAT across scaled instances (blue

dotted line); Failure of Rate limiter NF results in redirection

of traffic to a backup rate limiter NF (red dotted lines).

Works such as Pico replication [2], FTMB [3] and Rein-

force [4]1 make use of stateful NFs that maintain their state

locally within the NF instance and share the state across multi-

ple NF instances through message passing or other traditional

operating system shared memory constructs. However, support

for shared state in these works is limited to the instances within

a single server node. In contrast, Stateless NFs are a new

architectural approach for managing state in network function

virtualization (NFV) platforms. Stateless NFs decouple the

existing design of NFs into a stateless processing component

and a data store layer. They break the tight coupling of state

with the processing components, thus seeking to enable a more

elastic and resilient network function infrastructure [5]. Works

such as CHC [6] have followed such an approach and extended

the state management aspects to facilitate very low cost (per-

packet processing latency) chain-wide failure resiliency.

In this work, we compare stateful and stateless NF manage-

ment and deployment paradigms. We implement and deploy

stateful and stateless NFs and NF chains on OpenNetVM [7],

a DPDK based high performance NFV platform. We provide

both qualitative and quantitative analysis and results on the

impact of incorporating stateful or stateless NFs on our NFV

platform. We specifically target the impact on NF performance

(failure-free operation) and their ability to support features

such as elastic scaling and fault-tolerance while addressing

non-determinism and having chain-wide consistent operations.

II. BACKGROUND & DESIGN ALTERNATIVES

A. NF State Management

Some NFs may be inherently stateless i.e., they do not

maintain any state associated with packet processing e.g.,

stateless firewalls utilize static pre-configured access control

rules to block certain packets. However, a large number of NFs

are stateful and maintain flow/packet specific state information

1This work extends & complements [4] with results on Stateless NFs.978-1-7281-8154-7/20/$31.00 c©2020 IEEE

Authorized licensed use limited to: The George Washington University. Downloaded on August 31,2020 at 19:37:18 UTC from IEEE Xplore. Restrictions apply.

Network Function Instance
NF State

Packets
Packets

Packets
Process Packets

Update Internal/Coherent state
Modify/Drop/Forward packets

Packets
Packets

Packets

 Exclusive (Partitioned)
State

Per-flow state, etc.

Coherent (Shared) State
Shared counters, etc.

Network Function Instance

\

 Externalized Data Store

Packets
Packets

Packets
Process Packets

Update Internal/Coherent state
Modify/Drop/Forward packets

Packets
Packets

Packets

NF State
Per-flow, Shared counters, etc.NF State

Per-flow, Shared counters, etc.NF State
Per-flow, Shared counters, etc.

Local State
(Cached)

(a) Stateful NF (b) Stateless NF

Fig. 2: Network Function State Management: (a) Stateful NFs

with state maintained within the NF instance and (b) Stateless

NFs where the NF state is maintained in the externalized data

store and optionally the NFs can locally cache the state.

e.g., IDS, load balancer, etc. [3]. The state maintained by

the NFs may correspond to i) per flow status - i.e., state

for each new flow e.g., application delivery controllers and

stateful firewalls; ii) per packet status - state associated with

the processing of each individual packet by the NFs e.g., IDS.

In this work, we focus only on the stateful NFs.

In [8], they categorize the state maintained by the NFs into

i) Internal - ephemeral state: it is of no consequence outside

that NF instance’s execution, e.g., application logic, resource

mappings (CPU core, configuration files), etc.

ii) External state - Partitioned and coherent state: NF state

that is required for, and impacts, the packet processing. It

includes Partitioned state - e.g., per flow state, that is often

specific to an NF instance and differs across different replicas,

and coherent state - e.g., shared global counters and state

associated with a group of flows, which can be updated by

different NF instances and need to be kept consistent across

NF replicas. In addition, changes made to the packet due to

the NF processing also correspond to the state e.g., NAT,

load balancer NFs modify the TCP/IP headers; Firewalls,

IDS/IPS may modify the packet routing state across the NF

chains. Figure 2 (a) shows the NF state partitioning and packet

processing with the Stateful NFs.

B. Non-Determinism in NFs

Non-determinism (ND) is pervasive in NFs [3], [4]. Output

from two identical NFs, even when provided with identical

inputs, can differ due to non-determinism exhibited by the

NFs in processing the packets. ND can be due to a) the

local behavior of each NF i.e., hardware dependence whose

outcome cannot be predicted, such as hardware clocks, random

number generators, etc., or race conditions in accessing shared

variables among different NF threads; b) the behavior of the

network connecting them, as well, e.g., the order of packet

arrival and subsequent processing either due to random packets

being lost, dropped or marked for ECN [9].

For example, rate limiter NFs that restrict the maximum

number of connections for different clients may end up re-

jecting or terminating different connections either due to a

race condition among NF threads accessing and updating the

shared connection counter variable or due to ordering of packet

processing within the NF itself. Similarly, a load balancer NF

that assigns each TCP connection to one server from a pool

of backend servers may end up choosing different backend

servers for the same flow across different NF instances when

the backend server selection logic is based on system specific

calls like random(). This also impacts the state at the external

clients and may potentially disrupt network services as the

clients may end up losing the connection/session state main-

tained at their respective ends. Thus, ND further complicates

the state management of NFs when providing resiliency.

C. Stateless or Externalized state NFs

Recent work, such as StatelessNF [5] and CHC [6] have

proposed an alternative approach to manage NF state by

decoupling the NF state from the NF processing instance and

externalizing that state to an in-memory database like Re-

dis [10], RAMCloud [11] etc. as shown in Fig. 2 (b). Note: The

Externalized data store is decoupled from the NF instance and

can be implemented and run as a single/cluster of processes or

containers on the same or different compute nodes. Any state

access operations from the NF instance to the externalized state

(e.g., add/read/write/modify/delete) require inter-node or inter-

process communication e.g., remote procedure call, HTTP/TCP

socket etc., based on the location of the externalized state. To

avoid the communication overheads, most of the research

works [5], [6] consider an in-memory data store that allows

partitioning and storing of the database on the DRAM of the

local node (e.g., Redis client process). Despite, it should be

noted that with user space NFs, the access to state through the

database APIs typically incurs the overhead of an additional

context switch to kernel space. Further, just as with stateful

NFs, the externalized state can also be cached locally within

the NF instance that can exploit the local cache and alleviate

communication overheads by allowing the processing of a

large batch of packets.
A key advantage with externalizing state is that when any

NF instance fails, the state in the externalized data store is not

impacted, and is still available for the replica NF to seamlessly

failover, which only requires the flows to be redirected to a

replica NF. e.g., When the rate limiter NF fails, the flows from

the IDS-1 and IDS-2 can be redirected to the new instance

of the rate-limiter as shown in Fig. 1 without the need to

re-synchronize and update the state at the replica instance.

The approaches using stateless NFs with externalized state are

better suited for a Microservices architecture [12]. Stateless

NFs allow seamless scaling of NF instances and failover to

different NF instances, without having the state replicated to a

distinct replica that is selected a priori. In addition, since the

state is decoupled from the NF instance, asymmetric routing of

packets from different flows which may be common in multi-

path routing [13] can be supported as well – e.g., in Fig. 1,

packets of flows processed at NF instances (FW-1, IDS-1) in

the service chain may instead be processed by NF instances

FW-2 and IDS-2 without any loss of information2.

2This is based on the assumption that all the state is externalized, and no
state is cached locally within the NFs

Authorized licensed use limited to: The George Washington University. Downloaded on August 31,2020 at 19:37:18 UTC from IEEE Xplore. Restrictions apply.

Architecturally having externalized state for NFs might

seem a step in the right direction, but the challenges in terms of

performance, addressing non-determinism and complexity of

operation need to be carefully analyzed including the overhead

of employing them for high speed packet processing NFs has

to be empirically determined (as we do in this paper).

D. Elastic Scaling and Route Management

Elastic scaling is the ability to adapt NF instances to

changing application traffic patterns with automatic scale-out

(add) or scale-in (remove) of the NFs. With traditional stateful

NFs, when the NFs are elastically scaled, it is essential to first

update the associated state for the portion of the traffic that is

distributed across these new NF instances before updating the

route for the flows. Works such as [14], [8] ensure the corre-

sponding NF state is replicated before migrating flows to the

new instance. However, with stateless NFs (with no caching)

e.g., as in [5], flows can be instantly redistributed without

the need to worry about any state update. But, cache-based

stateless NFs [6] require the cached state to be flushed out

and synchronized to an externalized data store before routing

the traffic to the new NF instances. We analyze the penalty for

such state migration for the stateful and stateless (with cache)

approaches. Further, with NF chains, it is necessary to ensure

the flow’s affinity for an NF instance (upstream NFs in the

chain) is maintained when any NF in the chain is elastically

scaled. e.g., in Fig. 1, when the FW and IDS NFs are scaled to

a new FW-2 and IDS-2 instances, FW-2 needs to ensure that

flows that have their state at IDS-1 are routed towards IDS-1

and only the flows that have their state migrated to new IDS

instance are routed and served at IDS-2.

E. Addressing NF and NF chain failures

Unlike elastic scaling, providing resiliency for an NF or NF

chain failure requires more careful consideration of NF state

management. Accordingly, earlier works have distinguished

two approaches with ‘Active:Standby’ mode of operation viz.

i) checkpoint only[8], [2] and ii) replay based approaches [3],

[6], [4]. In either case, it is necessary to setup a standby replica

NF and NF chain instances a priori, and perform periodic state

updates (synchronization) on the standby instances. Although

most works [2], [5], [3] address fault tolerance, only [6], [4]

specifically address chain-wide failure resiliency.

Therefore, addressing elastic scaling and fault tolerance for

NFs is a major challenge - the solution needs to ensure: i)

consistent state updates across NF instances, since any loss of

state can not only degrade performance, but can also disrupt

correct operation of the network service; ii) overcome non-

determinism to ensure state consistency; and iii) have low-

overhead on normal operation to ensure high packet processing

rate and low packet-processing latency.

III. RELATED WORK
Works [3], [4] consider network functions to be stateful

and correspondingly provide support to migrate state across

different NF instances to facilitate elastic scaling and failure

resiliency, while the works [5], [6] consider the NFs to be

stateless having externalized the state to a datastore.

Elastic Scaling Split/Merge [8] defines state access APIs to

read and update the internal state of virtualized NFs being

moved across hosts. It relies on the ability to identify per-

flow state to provide consistent migration. FlexNFV [15] is a

DPDK based framework that periodically monitors NF load on

a service chain, and performs timely scaling of NFs to evenly

distribute the load among available instances. In work [16],

authors propose a proactive approach to scale and provision

NF instances ahead of time based on the estimated flow rates

using an efficient online learning method.

Fault tolerance and high availability: Pico Replication [2]

relies on flow-group based NF state transfers i.e., application

level NF state check-pointing to address high availability

for the stateful NFs. During the check-pointing, to ensure

correctness, it pauses the packet processing of the flows

and buffers all the input and output packets which results

in significant throughput and latency overhead during the

failure-free operation. On the other hand, FTMB [3] relies on

packet replay and periodic (coarse-grain) check-pointing of

the NF state. It logs all the input packets and the per packet

access log for the shared variables in the NF that account for

non-determinism, which are necessary to replay and restore

the state correctly on the replica NF. However, both do not

address fault tolerance for NF chains and do not provide

any NF chain-wide consistent recovery. REINFORCE [4]

fills this gap with an efficient chain level replication scheme

which does not excessively impact the normal operation as

well does not place any restrictions on replay mode to ensure

correctness of the replica state.

IV. IMPLEMENTATION

Stateful NFs: We leverage our previous work on REIN-

FORCE [4] to support stateful NFs. REINFORCE is built

on OpenNetVM [7] - a DPDK based high performance NFV

platform. Each NF maintains a 64KB local memory block to

maintain NF state e.g., per flow state information. In addition

64MB of a shared memory block is provided to maintain the

global shared state across multiple instances of the same kind

of network function e.g., global counters.

Stateless NFs: We implement stateless NFs with the assis-

tance of Redis [10] as a backend data-store. We used Redis

version 2.8.4. and the latest version of Hiredis - a minimalist

‘C’ client library to integrate with our NFs. Since we built

REINFORCE on OpenNetVM, we leverage the same base

platform to build the stateless NFs as in CHC [6].

We customized and built the existing NFs (Basic monitor

(BM), Vlan Tag (QoS), Load balancer (LB) and Deep Packet

Inspection (DPI)) to read and export the state variables to

Redis, so that core processing logic of the NFs is unchanged,

and only the relevant state access operations are modified.

Note, we do not change any of the dynamic memory and

in-packet processing functionality. Only the static counter

variables (Svs) are exported to Redis.

We tested for varying state update patterns to compare the

impact of using synchronous (sync) and asynchronous (async)

state update operations. Further, we enabled a local cache of

Authorized licensed use limited to: The George Washington University. Downloaded on August 31,2020 at 19:37:18 UTC from IEEE Xplore. Restrictions apply.

variables for each of the NF state variables for both the syn-

chronous (sync+c) and asynchronous (async+c) state updates.

These state variables are updated on the backend database only

after performing a batch of packet processing operations. In

addition, we did not wait for acknowledgements in the case

of asynchronous operations (for both async, async+c cases)

so that packet processing is not stalled and can be performed

concurrently with state update operations.

We experimented with several in-memory databases and

narrowed our implementation to leverage Redis as the pre-

ferred datastore due to performance, tuning support for dif-

ferent configuration parameters, stability and ‘C’ plugin avail-

ability that enables easy integration with our platform. Further,

in order to improve performance, we tuned the Redis config-

uration parameters as follows:

1. We enabled TCP keep-alives so that once the connection

is setup by an NF, it is reused for the entire session, without

requiring the TCP connection to be setup for every request.

2. We disabled the transparent huge pages and RDB persistence

options to avoid the overhead of disk operations.

3. Also, to avoid excessive logging overheads, we set the log-

level to ’warnings-only’ mode.

V. EVALUATION

We use an experimental testbed consisting of five Intel(R)

Xeon(R) CPU E5-2697 v3 @ 2.60GHz servers, each with

157GB RAM, (two sockets with 28 cores each), running

Ubuntu SMP Linux kernel 3.19.0-39-lowlatency. Additionally,

we have a source and sink node at either end. We deploy

the Redis datastore on both predecessor and primary nodes.

For these experiments, nodes were connected back-to-back

with dual-port 10Gbps DPDK compatible NICs to avoid any

switch-induced overheads. We keep a dedicated 10Gbps link

for Redis traffic, while the NFs communicate over a separate

10Gbps DPDK port. We use the DPDK-based high speed

traffic generator, Moongen [17] to generate line rate traffic

(14.88Mpps). We vary the traffic rate as needed for each of the

different experiments. For the NF chain scenario, we deploy

the entire NF chain on single (primary) node.

We compare REINFORCE with CHC [6]. We implement a

simplified version of CHC, where the NF state is externalized

to a Redis datastore [10]. The NFs cache the state locally and

perform asynchronous state update operations after processing

a batch of 256 packets. All our experiments with REINFORCE

use a small batch size of 32 packets. However for CHC, we

set batch size to 256 packets, as the smaller batch (32) limited

CHC’s throughput to less than 3Mpps3 .

A. Choosing the Externalized datastore.

We experimented with standard benchmark tools avail-

able with the Redis [10] Aerospike [18] in-memory cluster

databases that can be used to externalize NF state. With

Redis, we observed that we could achieve a maximum of

3Note: Our results (throughput) for CHC are better than those presented
in the CHC paper [6], and the results may depend on the actual CHC
implementation and its optimized datastore.

1.65 million read and 1.32 million writes transactions per

second (tps) respectively on a single node, for transferring

8 bytes of data each time. Note: For highest performance,

we tuned the ‘parallel connections’ and ‘pipeline (in-flight

requests)’ parameters, and set the parallel connections to 200

and pipeline (in-flight requests) to 256. In fact, the default

Redis parameters (parallel connections = 50, pipeline = 1)

result in less than 100K read/write operations per second.

With Aerospike, we observed 350K read and 370K write tps

respectively. We chose Redis because it was easy to integrate

using the Hiredis ‘C’ plugin with our NFV platform.

B. Performance impact of Externalizing NF State.

First, we profile the impact on throughput for using the

external state store in both synchronous and asynchronous

updates. We use a simple forwarder NF with a packet counter

variable exported to the externalized state store as a toy NF,

to demonstrate the impact of synchronous and asynchronous

modes of state update, with local caches, for different batch

sizes. The state update to the data store is carried out after

processing a batch of packets.

From Figure 3a, we observe that with no caching, where

the state variable is updated to the datastore after processing

each and every single packet (i.e., with batch size=1, update

operations are effectively operating with no local cache), both

synchronous and asynchronous modes results in very low

throughput (0.01 and 0.5Mpps respectively). Although, this

mode ensures strict correctness, it incurs a very high penalty

on throughput and latency. We gradually increase the batch

size for updating the datastore. Here, variables are cached

locally and are updated to the datastore only after processing

a fixed batch of packets. We observe that even with a very

large batch size of 2048, synchronous state updates can at-best

achieve a performance of 6Mpps, while the asynchronous state

updates (without waiting for acknowledgements) can achieve

line rate throughput (14.88Mpps) for batch sizes above 1024.

However, asynchronous state updates require the platform to

take additional measures to ensure correct state recovery in

the event of failures. This includes, at the very least during

normal operation, tracking of failed updates (based on the

acknowledgements), and ensure correct versioning of the states

to be maintained both at the datastore and the local cache of

the NF. Further, as suggested by CHC [6], to achieve correct

recovery in the event of failures, it is necessary to keep track of

the previous version of the state variables in the datastore along

with additional metadata (last NF, and the packet responsible

for state update) that can help suppress any duplicate updates.

Figure 3b shows the latency profile for the baseline, REIN-

FORCE and CHC with synchronous and asynchronous modes

of operation with the local cache, and a state update batch

size of 256. The round-trip latency for CHC with synchronous

mode incurs high penalty, while the asynchronous mode is

only marginally better than REINFORCE.

C. Elastic Scaling

With stateful NFs, elastic scaling requires to synchronize/-

transfer state to the newly instantiated NFs. Hence, we profile

Authorized licensed use limited to: The George Washington University. Downloaded on August 31,2020 at 19:37:18 UTC from IEEE Xplore. Restrictions apply.

and update 8 bytes of data achieves a maximum of 1.65 million

read and 1.32 million write transactions per second (Tps) on

a single node. The overhead for using in-memory databases

comes primarily from the socket I/O (read/write system calls),

that involves user-space to kernel-space context switching, and

thus reduced performance for DPDK-based user-space NFs.

Further, a major challenge arises in ensuring the correctness

and consistency of the externalized state with respect to

failed NFs that might have partially processed the packets

and updated the state locally or synced only a portion of

the state updates to the database, before crashing. In such

scenarios, both the NFs and the database need to maintain

additional version control for each state update, so that state

updates can be validated before being committed. This would

further reduce the NF processing capacity [6]. Moreover, with

the Stateless NF approach there is a need to instrument and

refactor the NF code to externalize the NF state. It requires

all the internal NF state entities to be expressed in a well-

defined key-value store mode. While this may be easily dealt

with for per-flow state, it can be difficult to express shared per-

session state as well as internal state variables in this manner.

Also, typically NFs allocate and release memory dynamically

(via alloc and free callback functions as in nDPI). Although

ephemeral, these states may also need to be externalized to

ensure operational correctness, which can result in significant

state update overhead. On the other hand, the complexity

of supporting non-determinism and chain-wide correctness in

both the stateful and stateless NFs is non-trivial. To ensure

correctness, stateless NFs would require additional support

from the externalized databases to provide version control and

roll back of the committed state.

Stateless NFs with externalized state is promising, decou-

pling state and processing for NFV. However, the performance

challenges with externalized data stores suggest that they need

to be adopted with care for high speed packet processing NFs.

VII. CONCLUSION
In this paper, we analyzed two NF state management

(i.e., traditional in-memory stateful NFs and stateless NFs)

approaches that have been proposed for addressing elastic

scaling and fault tolerance. Ensuring correctness and consistent

state update and recovery for NF chains face similar challenges

(addressing non-determinism and chain-wide consistency) for

both state management approaches. Stateless NFs, although

promising, fall short of achieving line-rate packet processing

capabilities and stateful NFs offer much higher performance

and correctness under non-deterministic packet processing.

Advancements in userspace in-memory databases and persis-

tent storage can continue to help externalizing state for spe-

cialized applications contexts, especially when NF processing

is entirely deterministic.

Acknowledgement: This work was supported by US NSF

grants CRI-1823270, CNS-1763929, and CRI-1823236.

REFERENCES

[1] ETSI-GS-NFV-002, “Network Functions Virtualization (NFV): Archi-
tectural Framework,” http://www.etsi.org/deliver/etsi_gs/nfv/001_099/
002/01.01.01_60/gs_nfv002v010101p.pdf, 2013, [ONLINE].

[2] S. Rajagopalan, D. Williams, and H. Jamjoom, “Pico replication:
A high availability framework for middleboxes,” in Proceedings of

the 4th Annual Symposium on Cloud Computing, ser. SOCC ’13.
New York, NY, USA: ACM, 2013, pp. 1:1–1:15. [Online]. Available:
http://doi.acm.org/10.1145/2523616.2523635

[3] J. Sherry, P. X. Gao, S. Basu, A. Panda, A. Krishnamurthy, C. Maciocco,
M. Manesh, J. a. Martins, S. Ratnasamy, L. Rizzo, and S. Shenker,
“Rollback-recovery for middleboxes,” SIGCOMM Comput. Commun.

Rev., vol. 45, no. 4, pp. 227–240, Aug. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2829988.2787501

[4] S. G. Kulkarni, G. Liu, K. K. Ramakrishnan, M. Arumaithurai, T. Wood,
and X. Fu, “Reinforce: Achieving efficient failure resiliency for network
function virtualization-based services,” IEEE/ACM Transactions on Net-

working, vol. 28, no. 2, pp. 695–708, 2020.
[5] M. Kablan, A. Alsudais, E. Keller, and F. Le, “Stateless network

functions: Breaking the tight coupling of state and processing,”
in 14th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 17). Boston, MA: USENIX Association, 2017,
pp. 97–112. [Online]. Available: https://www.usenix.org/conference/
nsdi17/technical-sessions/presentation/kablan

[6] J. Khalid and A. Akella, “Correctness and performance for stateful
chained network functions,” in 16th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 19). Boston, MA:
USENIX Association, Feb. 2019, pp. 501–516. [Online]. Available:
https://www.usenix.org/conference/nsdi19/presentation/khalid

[7] W. Zhang, G. Liu, W. Zhang, N. Shah, P. Lopreiato, G. Todeschi,
K. Ramakrishnan, and T. Wood, “Opennetvm: A platform for high
performance network service chains,” in Proceedings of the 2016

Workshop on Hot Topics in Middleboxes and Network Function

Virtualization, ser. HotMIddlebox ’16. New York, NY, USA: ACM,
2016, pp. 26–31. [Online]. Available: http://doi.acm.org/2940147.
2940155

[8] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield,
“Split/merge: System support for elastic execution in virtual
middleboxes,” in Presented as part of the 10th USENIX

Symposium on Networked Systems Design and Implementation

(NSDI 13). Lombard, IL: USENIX, 2013, pp. 227–240. [Online].
Available: https://www.usenix.org/conference/nsdi13/technical-sessions/
presentation/rajagopalan

[9] Y. Velner, K. Alpernas, A. Panda, A. Rabinovich, M. Sagiv, S. Shenker,
and S. Shoham, “Some complexity results for stateful network verifi-
cation,” in International Conference on Tools and Algorithms for the

Construction and Analysis of Systems. Springer, 2016, pp. 811–830.
[10] redislabs, “Redis,” 2019. [Online]. Available: https://redis.io
[11] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and

M. Rosenblum, “Fast crash recovery in ramcloud,” in Proceedings of

the Twenty-Third ACM Symposium on Operating Systems Principles,
ser. SOSP ’11. New York, NY, USA: ACM, 2011, pp. 29–41.
[Online]. Available: http://doi.acm.org/10.1145/2043556.2043560

[12] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen, Microser-

vice Architecture: Aligning Principles, Practices, and Culture, 1st ed.
O’Reilly Media, Inc., 2016.

[13] Y. Ganjali and A. Keshavarzian, “Load balancing in ad hoc networks:
single-path routing vs. multi-path routing,” in IEEE INFOCOM 2004,
vol. 2. IEEE, 2004, pp. 1120–1125.

[14] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao,
A. Anand, T. Benson, A. Akella, and V. Sekar, “Stratos: A network-
aware orchestration layer for middleboxes in the cloud,” CoRR, vol.
abs/1305.0209, 2013. [Online]. Available: http://arxiv.org/abs/1305.0209

[15] X. Fei, F. Liu, H. Jin, and B. Li, “Flexnfv: Flexible network service
chaining with dynamic scaling,” IEEE Network, pp. 1–7, 2020.

[16] X. Fei, F. Liu, H. Xu, and H. Jin, “Adaptive vnf scaling and flow routing
with proactive demand prediction,” in IEEE INFOCOM 2018 - IEEE

Conference on Computer Communications, 2018, pp. 486–494.
[17] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,

“Moongen: a scriptable high-speed packet generator,” in Proceedings of

the 2015 ACM Conference on Internet Measurement Conference. ACM,
2015, pp. 275–287.

[18] V. Srinivasan, B. Bulkowski, W.-L. Chu, S. Sayyaparaju, A. Gooding,
R. Iyer, A. Shinde, and T. Lopatic, “Aerospike: Architecture of a real-
time operational dbms,” Proceedings of the VLDB Endowment, vol. 9,
no. 13, pp. 1389–1400, 2016.

Authorized licensed use limited to: The George Washington University. Downloaded on August 31,2020 at 19:37:18 UTC from IEEE Xplore. Restrictions apply.

