Managing State for Failure Resiliency
in Network Function Virtualization

Sameer G Kulkarni*", K. K. Ramakrishnan’, and Timothy Wood*
“IIT Gandhinagar, India, "University of California, Riverside, *George Washington University.

Abstract— Ensuring high scalability (elastic scale-out and
consolidation), as well as high availability (failure resiliency)
are critical in encouraging adoption of software-based network
functions (NFs). In recent years, two paradigms have evolved in
terms of the way the NFs manage their state - namely the Stateful
(state is coupled with the NF instance) and a Stateless (state
is externalized to a datastore) manner. These two paradigms
present unique challenges and opportunities for ensuring high
scalability and high availability of NFs and NF chains. In
this work, we assess the impact on ensuring the correctness
of NF state including the implications of non-determinism in
packet processing, and carefully analyze and present the benefits
and disadvantages of the two state management paradigms.
We leverage OpenNetVM and Redis in-memory datastore to
implement both state management paradigms and empirically
compare the two. Although the stateless paradigm is desirable for
elastic scaling, our experimental results show that, even at line-
rate packet processing (10 Gbps), stateful NFs can achieve chain-
level failover across servers in a LAN incurring less than 10%
performance. The state-of-the-art stateless counterparts incur
severe throughput penalties. We observe 30-85% overhead on
normal processing, depending on the mode of state updated to
the externalized datastore.

Index Terms—Network Function Virtualization (NFV), Service
Function Chaining (SFC), Fault-tolerance, Availability,

I. INTRODUCTION

Software-based Network functions (NFs) have evolved sig-
nificantly in recent years and have become an integral part of
service provider, enterprise, and data center networks. These
NFs are typically high speed packet processing engines func-
tioning as a bump-in-the-wire on the data path and may need to
process several million packets per second, as link rates scale
up from 10G, to 40G, to 100Gbps. They support a variety
of in-network services such as network address translation
(NAT), firewalls (FW), intrusion detection and prevention
(IDS/IPS), etc. Network flows typically pass through more
than one NF, being processed in a specific order referred to
as a Service Function Chain (SFC). Figure 1 shows a simple
chain consisting of NAT, FW, IDS and rate limiter NFs.

NFs operate inline with the network forwarding datapath,
and as such, NF failure or underlying hardware failures (server
node, link) can significantly disrupt network operations. Hence
providing NF failure resiliency is critical. Further, we observe
that NFs differ in their computational complexity and can
drastically vary in their packet processing rates [1]. In order
to meet varying traffic demands and to meet chain-wide per-
formance goals, the NFs in a chain may need to be elastically
scaled — i.e., networks have to dynamically adapt the number
of NF instances and balance the load across them.

978-1-7281-8154-7/20/$31.00 (©2020 IEEE

;ate Eimiter
NAT ‘\—) FW-1 N (Primary) -
A%
A% AN A}
A . % _ ¥ Rate Limiter _
FW-2 IDS-2 § (Backup) >

Fig. 1: NF chains comprising NAT, FW, IDS and Rate limiter
NFs; Elastic scaling of FW and IDS NFs results in redirecting
part of the traffic from NAT across scaled instances (blue
dotted line); Failure of Rate limiter NF results in redirection
of traffic to a backup rate limiter NF (red dotted lines).

Works such as Pico replication [2], FTMB [3] and Rein-
force [4]' make use of stateful NFs that maintain their state
locally within the NF instance and share the state across multi-
ple NF instances through message passing or other traditional
operating system shared memory constructs. However, support
for shared state in these works is limited to the instances within
a single server node. In contrast, Stateless NFs are a new
architectural approach for managing state in network function
virtualization (NFV) platforms. Stateless NFs decouple the
existing design of NFs into a stateless processing component
and a data store layer. They break the tight coupling of state
with the processing components, thus seeking to enable a more
elastic and resilient network function infrastructure [5]. Works
such as CHC [6] have followed such an approach and extended
the state management aspects to facilitate very low cost (per-
packet processing latency) chain-wide failure resiliency.

In this work, we compare stateful and stateless NF manage-
ment and deployment paradigms. We implement and deploy
stateful and stateless NFs and NF chains on OpenNetVM [7],
a DPDK based high performance NFV platform. We provide
both qualitative and quantitative analysis and results on the
impact of incorporating stateful or stateless NFs on our NFV
platform. We specifically target the impact on NF performance
(failure-free operation) and their ability to support features
such as elastic scaling and fault-tolerance while addressing
non-determinism and having chain-wide consistent operations.

II. BACKGROUND & DESIGN ALTERNATIVES
A. NF State Management

Some NFs may be inherently stateless i.e., they do not
maintain any state associated with packet processing e.g.,
stateless firewalls utilize static pre-configured access control
rules to block certain packets. However, a large number of NFs
are stateful and maintain flow/packet specific state information

I'This work extends & complements [4] with results on Stateless NFs.

Authorized licensed use limited to: The George Washington University. Downloaded on August 31,2020 at 19:37:18 UTC from IEEE Xplore. Restrictions apply.

Network Function Instance
NF State

Externalized Data Store

Coherent.(éharég) State

Shargd counters;etc.

Expfusive (Parmib.ned) R T
7 State 3
.." Per-flow state, etc.’,

Process Packets T,
Update Internal/Coherent state
Modify/Drop/Forward packets

P i

Process Packets ., | JF_
Update Internal/Coherent state | =~ % |\ packets
Modify/Drop/Forward packets

R 2 R : i
Packets =Jpf Packets =3 M Packer

(a) Stateful NF (b) Stateless NF

Fig. 2: Network Function State Management: (a) Stateful NFs
with state maintained within the NF instance and (b) Stateless
NFs where the NF state is maintained in the externalized data
store and optionally the NFs can locally cache the state.

e.g., IDS, load balancer, efc. [3]. The state maintained by
the NFs may correspond to i) per flow status - ie., state
for each new flow e.g., application delivery controllers and
stateful firewalls; ii) per packet status - state associated with
the processing of each individual packet by the NFs e.g., IDS.
In this work, we focus only on the stateful NFs.

In [8], they categorize the state maintained by the NFs into
i) Internal - ephemeral state: it is of no consequence outside
that NF instance’s execution, e.g., application logic, resource
mappings (CPU core, configuration files), efc.
ii) External state - Partitioned and coherent state: NF state
that is required for, and impacts, the packet processing. It
includes Partitioned state - e.g., per flow state, that is often
specific to an NF instance and differs across different replicas,
and coherent state - e.g., shared global counters and state
associated with a group of flows, which can be updated by
different NF instances and need to be kept consistent across
NF replicas. In addition, changes made to the packet due to
the NF processing also correspond to the state e.g., NAT,
load balancer NFs modify the TCP/IP headers; Firewalls,
IDS/IPS may modify the packet routing state across the NF
chains. Figure 2 (a) shows the NF state partitioning and packet
processing with the Stateful NFs.

B. Non-Determinism in NFs

Non-determinism (ND) is pervasive in NFs [3], [4]. Output
from two identical NFs, even when provided with identical
inputs, can differ due to non-determinism exhibited by the
NFs in processing the packets. ND can be due to a) the
local behavior of each NF i.e., hardware dependence whose
outcome cannot be predicted, such as hardware clocks, random
number generators, etc., or race conditions in accessing shared
variables among different NF threads; b) the behavior of the
network connecting them, as well, e.g., the order of packet
arrival and subsequent processing either due to random packets
being lost, dropped or marked for ECN [9].

For example, rate limiter NFs that restrict the maximum
number of connections for different clients may end up re-
jecting or terminating different connections either due to a
race condition among NF threads accessing and updating the
shared connection counter variable or due to ordering of packet

processing within the NF itself. Similarly, a load balancer NF
that assigns each TCP connection to one server from a pool
of backend servers may end up choosing different backend
servers for the same flow across different NF instances when
the backend server selection logic is based on system specific
calls like random (). This also impacts the state at the external
clients and may potentially disrupt network services as the
clients may end up losing the connection/session state main-
tained at their respective ends. Thus, ND further complicates
the state management of NFs when providing resiliency.

C. Stateless or Externalized state NFs

Recent work, such as StatelessNF [5] and CHC [6] have
proposed an alternative approach to manage NF state by
decoupling the NF state from the NF processing instance and
externalizing that state to an in-memory database like Re-
dis [10], RAMCloud [11] etc. as shown in Fig. 2 (b). Note: The
Externalized data store is decoupled from the NF instance and
can be implemented and run as a single/cluster of processes or
containers on the same or different compute nodes. Any state
access operations from the NF instance to the externalized state
(e.g., add/read/write/modity/delete) require inter-node or inter-
process communication e.g., remote procedure call, HTTP/TCP
socket etc., based on the location of the externalized state. To
avoid the communication overheads, most of the research
works [5], [6] consider an in-memory data store that allows
partitioning and storing of the database on the DRAM of the
local node (e.g., Redis client process). Despite, it should be
noted that with user space NFs, the access to state through the
database APIs typically incurs the overhead of an additional
context switch to kernel space. Further, just as with stateful
NFs, the externalized state can also be cached locally within
the NF instance that can exploit the local cache and alleviate
communication overheads by allowing the processing of a
large batch of packets.

A key advantage with externalizing state is that when any
NF instance fails, the state in the externalized data store is not
impacted, and is still available for the replica NF to seamlessly
failover, which only requires the flows to be redirected to a
replica NF. e.g., When the rate limiter NF fails, the flows from
the IDS-1 and IDS-2 can be redirected to the new instance
of the rate-limiter as shown in Fig. 1 without the need to
re-synchronize and update the state at the replica instance.
The approaches using stateless NFs with externalized state are
better suited for a Microservices architecture [12]. Stateless
NFs allow seamless scaling of NF instances and failover to
different NF instances, without having the state replicated to a
distinct replica that is selected a priori. In addition, since the
state is decoupled from the NF instance, asymmetric routing of
packets from different flows which may be common in multi-
path routing [13] can be supported as well — e.g., in Fig. 1,
packets of flows processed at NF instances (FW-1, IDS-1) in
the service chain may instead be processed by NF instances
FW-2 and IDS-2 without any loss of information?.

2This is based on the assumption that all the state is externalized, and no
state is cached locally within the NFs

Authorized licensed use limited to: The George Washington University. Downloaded on August 31,2020 at 19:37:18 UTC from IEEE Xplore. Restrictions apply.

Architecturally having externalized state for NFs might
seem a step in the right direction, but the challenges in terms of
performance, addressing non-determinism and complexity of
operation need to be carefully analyzed including the overhead
of employing them for high speed packet processing NFs has
to be empirically determined (as we do in this paper).

D. Elastic Scaling and Route Management

Elastic scaling is the ability to adapt NF instances to
changing application traffic patterns with automatic scale-out
(add) or scale-in (remove) of the NFs. With traditional stateful
NFs, when the NFs are elastically scaled, it is essential to first
update the associated state for the portion of the traffic that is
distributed across these new NF instances before updating the
route for the flows. Works such as [14], [8] ensure the corre-
sponding NF state is replicated before migrating flows to the
new instance. However, with stateless NFs (with no caching)
e.g., as in [5], flows can be instantly redistributed without
the need to worry about any state update. But, cache-based
stateless NFs [6] require the cached state to be flushed out
and synchronized to an externalized data store before routing
the traffic to the new NF instances. We analyze the penalty for
such state migration for the stateful and stateless (with cache)
approaches. Further, with NF chains, it is necessary to ensure
the flow’s affinity for an NF instance (upstream NFs in the
chain) is maintained when any NF in the chain is elastically
scaled. e.g., in Fig. 1, when the FW and IDS NFs are scaled to
a new FW-2 and IDS-2 instances, FW-2 needs to ensure that
flows that have their state at IDS-1 are routed towards IDS-1
and only the flows that have their state migrated to new IDS
instance are routed and served at IDS-2.

E. Addressing NF and NF chain failures

Unlike elastic scaling, providing resiliency for an NF or NF
chain failure requires more careful consideration of NF state
management. Accordingly, earlier works have distinguished
two approaches with ‘Active:Standby’ mode of operation viz.
1) checkpoint only[8], [2] and ii) replay based approaches [3],
[6], [4]. In either case, it is necessary to setup a standby replica
NF and NF chain instances a priori, and perform periodic state
updates (synchronization) on the standby instances. Although
most works [2], [5], [3] address fault tolerance, only [6], [4]
specifically address chain-wide failure resiliency.

Therefore, addressing elastic scaling and fault tolerance for
NFs is a major challenge - the solution needs to ensure: i)
consistent state updates across NF instances, since any loss of
state can not only degrade performance, but can also disrupt
correct operation of the network service; ii) overcome non-
determinism to ensure state consistency; and iii) have low-
overhead on normal operation to ensure high packet processing
rate and low packet-processing latency.

III. RELATED WORK
Works [3], [4] consider network functions to be stateful

and correspondingly provide support to migrate state across
different NF instances to facilitate elastic scaling and failure
resiliency, while the works [5], [6] consider the NFs to be
stateless having externalized the state to a datastore.

Elastic Scaling Split/Merge [8] defines state access APIs to
read and update the internal state of virtualized NFs being
moved across hosts. It relies on the ability to identify per-
flow state to provide consistent migration. FlexNFV [15] is a
DPDK based framework that periodically monitors NF load on
a service chain, and performs timely scaling of NFs to evenly
distribute the load among available instances. In work [16],
authors propose a proactive approach to scale and provision
NF instances ahead of time based on the estimated flow rates
using an efficient online learning method.

Fault tolerance and high availability: Pico Replication [2]
relies on flow-group based NF state transfers i.e., application
level NF state check-pointing to address high availability
for the stateful NFs. During the check-pointing, to ensure
correctness, it pauses the packet processing of the flows
and buffers all the input and output packets which results
in significant throughput and latency overhead during the
failure-free operation. On the other hand, FTMB [3] relies on
packet replay and periodic (coarse-grain) check-pointing of
the NF state. It logs all the input packets and the per packet
access log for the shared variables in the NF that account for
non-determinism, which are necessary to replay and restore
the state correctly on the replica NF. However, both do not
address fault tolerance for NF chains and do not provide
any NF chain-wide consistent recovery. REINFORCE [4]
fills this gap with an efficient chain level replication scheme
which does not excessively impact the normal operation as
well does not place any restrictions on replay mode to ensure
correctness of the replica state.

IV. IMPLEMENTATION

Stateful NFs: We leverage our previous work on REIN-
FORCE [4] to support stateful NFs. REINFORCE is built
on OpenNetVM [7] - a DPDK based high performance NFV
platform. Each NF maintains a 64KB local memory block to
maintain NF state e.g., per flow state information. In addition
64MB of a shared memory block is provided to maintain the
global shared state across multiple instances of the same kind
of network function e.g., global counters.

Stateless NFs: We implement stateless NFs with the assis-
tance of Redis [10] as a backend data-store. We used Redis
version 2.8.4. and the latest version of Hiredis - a minimalist
‘C’ client library to integrate with our NFs. Since we built
REINFORCE on OpenNetVM, we leverage the same base
platform to build the stateless NFs as in CHC [6].

We customized and built the existing NFs (Basic monitor
(BM), Vlan Tag (QoS), Load balancer (LB) and Deep Packet
Inspection (DPI)) to read and export the state variables to
Redis, so that core processing logic of the NFs is unchanged,
and only the relevant state access operations are modified.
Note, we do not change any of the dynamic memory and
in-packet processing functionality. Only the static counter
variables (Svs) are exported to Redis.

We tested for varying state update patterns to compare the
impact of using synchronous (sync) and asynchronous (async)
state update operations. Further, we enabled a local cache of

Authorized licensed use limited to: The George Washington University. Downloaded on August 31,2020 at 19:37:18 UTC from IEEE Xplore. Restrictions apply.

variables for each of the NF state variables for both the syn-
chronous (sync+c) and asynchronous (async+c) state updates.
These state variables are updated on the backend database only
after performing a batch of packet processing operations. In
addition, we did not wait for acknowledgements in the case
of asynchronous operations (for both async, async+c cases)
so that packet processing is not stalled and can be performed
concurrently with state update operations.

We experimented with several in-memory databases and
narrowed our implementation to leverage Redis as the pre-
ferred datastore due to performance, tuning support for dif-
ferent configuration parameters, stability and ‘C’ plugin avail-
ability that enables easy integration with our platform. Further,
in order to improve performance, we tuned the Redis config-
uration parameters as follows:

1. We enabled TCP keep-alives so that once the connection
is setup by an NF, it is reused for the entire session, without
requiring the TCP connection to be setup for every request.

2. We disabled the transparent huge pages and RDB persistence
options to avoid the overhead of disk operations.

3. Also, to avoid excessive logging overheads, we set the log-
level to "warnings-only’ mode.

V. EVALUATION

We use an experimental testbed consisting of five Intel(R)
Xeon(R) CPU ES5-2697 v3 @ 2.60GHz servers, each with
157GB RAM, (two sockets with 28 cores each), running
Ubuntu SMP Linux kernel 3.19.0-39-lowlatency. Additionally,
we have a source and sink node at either end. We deploy
the Redis datastore on both predecessor and primary nodes.
For these experiments, nodes were connected back-to-back
with dual-port 10Gbps DPDK compatible NICs to avoid any
switch-induced overheads. We keep a dedicated 10Gbps link
for Redis traffic, while the NFs communicate over a separate
10Gbps DPDK port. We use the DPDK-based high speed
traffic generator, Moongen [17] to generate line rate traffic
(14.88Mpps). We vary the traffic rate as needed for each of the
different experiments. For the NF chain scenario, we deploy
the entire NF chain on single (primary) node.

We compare REINFORCE with CHC [6]. We implement a
simplified version of CHC, where the NF state is externalized
to a Redis datastore [10]. The NFs cache the state locally and
perform asynchronous state update operations after processing
a batch of 256 packets. All our experiments with REINFORCE
use a small batch size of 32 packets. However for CHC, we
set batch size to 256 packets, as the smaller batch (32) limited
CHC’s throughput to less than 3Mpps? .

A. Choosing the Externalized datastore.

We experimented with standard benchmark tools avail-
able with the Redis [10] Aerospike [18] in-memory cluster
databases that can be used to externalize NF state. With
Redis, we observed that we could achieve a maximum of

3Note: Our results (throughput) for CHC are better than those presented
in the CHC paper [6], and the results may depend on the actual CHC
implementation and its optimized datastore.

1.65 million read and 1.32 million writes transactions per
second (tps) respectively on a single node, for transferring
8 bytes of data each time. Note: For highest performance,
we tuned the ‘parallel connections’ and ‘pipeline (in-flight
requests)’ parameters, and set the parallel connections to 200
and pipeline (in-flight requests) to 256. In fact, the default
Redis parameters (parallel connections = 50, pipeline = 1)
result in less than 100K read/write operations per second.
With Aerospike, we observed 350K read and 370K write tps
respectively. We chose Redis because it was easy to integrate
using the Hiredis ‘C’ plugin with our NFV platform.

B. Performance impact of Externalizing NF State.

First, we profile the impact on throughput for using the
external state store in both synchronous and asynchronous
updates. We use a simple forwarder NF with a packet counter
variable exported to the externalized state store as a toy NF,
to demonstrate the impact of synchronous and asynchronous
modes of state update, with local caches, for different batch
sizes. The state update to the data store is carried out after
processing a batch of packets.

From Figure 3a, we observe that with no caching, where
the state variable is updated to the datastore after processing
each and every single packet (i.e., with batch size=1, update
operations are effectively operating with no local cache), both
synchronous and asynchronous modes results in very low
throughput (0.01 and 0.5Mpps respectively). Although, this
mode ensures strict correctness, it incurs a very high penalty
on throughput and latency. We gradually increase the batch
size for updating the datastore. Here, variables are cached
locally and are updated to the datastore only after processing
a fixed batch of packets. We observe that even with a very
large batch size of 2048, synchronous state updates can at-best
achieve a performance of 6Mpps, while the asynchronous state
updates (without waiting for acknowledgements) can achieve
line rate throughput (14.88Mpps) for batch sizes above 1024.
However, asynchronous state updates require the platform to
take additional measures to ensure correct state recovery in
the event of failures. This includes, at the very least during
normal operation, tracking of failed updates (based on the
acknowledgements), and ensure correct versioning of the states
to be maintained both at the datastore and the local cache of
the NF. Further, as suggested by CHC [6], to achieve correct
recovery in the event of failures, it is necessary to keep track of
the previous version of the state variables in the datastore along
with additional metadata (last NF, and the packet responsible
for state update) that can help suppress any duplicate updates.
Figure 3b shows the latency profile for the baseline, REIN-
FORCE and CHC with synchronous and asynchronous modes
of operation with the local cache, and a state update batch
size of 256. The round-trip latency for CHC with synchronous
mode incurs high penalty, while the asynchronous mode is
only marginally better than REINFORCE.

C. Elastic Scaling
With stateful NFs, elastic scaling requires to synchronize/-
transfer state to the newly instantiated NFs. Hence, we profile

Authorized licensed use limited to: The George Washington University. Downloaded on August 31,2020 at 19:37:18 UTC from IEEE Xplore. Restrictions apply.

16 500
714
&1 400 F
10 7
o 00 |
5g S0 E
5 6 Za00 F
S 4 5
£2 100

0 T T T

0 1 32 64 128 256 512 1024 2048 0

-
N
T T T

=

Throughput

I IREIII\IFOF:\CE I*I
0 8 64 256512 1K 2K 4K 8K 16K 32K 64K256K

8
6 -

4 |FCHC(ASync+Cache) ——
2

0

Batch update size (# Packets) Baseline Reinforce

L L
CHC(Sync+C) CHC(Async+C)

NF state update size (in bytes)

(a) Throughput for a Simple forwarder NF (b) Round-trip latency (5%ile, 25%, me- (c) Throughput for different size of NF

updating a single (8 byte) state variable. dian, 75% and 99%ile).

state update.

Fig. 3: Throughput and Latency comparison for stateful (REINFORCE) and stateless (CHC) approaches including synchronous
and asynchronous modes of externalized state. We use batch size of 32 for REINFORCE and 256 for CHC.

the state Synchronization overhead for the stateful NFs.
State Synchronization overhead: We profiled the cost of
memory scan and updating of the dirty state for a 64KB
memory and 1KB chunks to be 55-80 CPU ticks. The copy
overhead for a 4KB page is measured to be 2315-2590 CPU
ticks. Note: Copy operation for a batch of processed packets
(32 packets) drastically reduces the overhead during normal
processing and allows to achieve line-rate packet processing.
However, the stateless NFs (with no cache) incur zero over-
head for state update, while the cache based stateless NFs
require datastore update operation (making the NF context
switch from user to kernel space). We observed the overheads
to be extremely excessive resulting in a maximum throughput
of ~4Mpps (details in §V-E).

D. Overhead Analysis on Normal Operation

Normal (Failure-free) Operation: For a number of different
NFs, we compare: i) the overhead during normal operation by
measuring the throughput; and ii) additional latency of packet
processing (for state update operation), for individual NF
instances. We observed the performance of REINFORCE to
be on-par with the baseline (no resiliency case), achieving near
baseline throughput for the monitor NF (line rate~13.5Mpps)
and also for the NF chains, providing 2-3x better than
CHC, although the per-packet processing latency 99%ile were
comparable. Note: More details on the throughput and latency
are provided in our earlier work [4].

Impact of Non-Determinism rate: REINFORCE performs a
2-phase commit of the chain-wide packet-processing progress
and NF states. To ensure correctness, any non-deterministic
updates result in chain-wide NF state checkpointing. We
also analyze the impact on performance for different non-
determinism rates. REINFORCE is able to provide near line-
rate processing for the non-deterministic rate that is less
frequent than one every 250usec, while more frequent non-
determinism reduces the throughput, eventually dropping to
0.22Mpps. This is due to the round-trip latency of 2-phase
commit, causing the NF processing to stall if a previous non-
deterministic batch of packets has to be processed and state
committed to the standby. In the case of stateless NFs (with
local cache), performance impact depends on the memory
update operations to the datastore.

E. Impact of bulk memory update operations

The size of the NF state for different types of NFs vary. We
analyze the impact of updating the state, with different amount
of variables, ranging from a total size of 8 bytes to 64 Kbytes.

We compare the memory replication strategy of REINFORCE
with the externalized state approach of CHC, where the state
is replicated to the Redis datastore. For this experiment, we
use simple forwarder NF (that has almost no computation
overhead for packet processing) with a single state variable
(set as an array of integers). We vary the size of this variable
array for each run. For CHC, we use the asynchronous mode of
operation with a local cache and the state update is done once
for every batch of 256 packets. We also do not wait for the
acknowledgements of the state update. Note: The local cache
of the state variable in CHC (array) is read at initialization
and the NF continues to update the local cache, while the
state is replicated to datastore after processing a batch of
256 packets. With REINFORCE, the modified region of the
variable array is updated after processing a batch of 32 packets
and also replicated to the remote node as detailed in our earlier
work [4]. Figure 3c shows the impact on throughput for
both REINFORCE and CHC with increasing amounts of NF
state being updated. With the externalized datastore of CHC,
state updates above the size of 256 byte start to degrade the
throughput and for large sizes (more than 16K) the throughput
drops below 1Mpps. However, with REINFORCE, we see that
even with 16K data size, it is able to keep up with near line-
rate packet processing, and throughput drops for larger data
sizes, but even then, only to 8.7Mpps for a 64K data size.

VI. EVALUATION SUMMARY AND FUTURE DIRECTIONS

The stateless NF approach of decoupling processing and
state management simplifies the elastic scaling of NFs and
fits well with the microservices architecture. Externalized state
allows any NF instance to start processing packets without
any state update overheads or any loss of state. Further, this
decoupling of the NF state allows us to easily support asym-
metric routing (e.g., equal-cost-multiple-path (ECMP)) where
packets can take different paths, potentially traversing through
different instances of the NFs. This is not easily implemented
with the traditional stateful NF designs. However, with the
current state-of-the-art in-memory databases like Redis, there
are still significant performance challenges and limitations in
externalizing the NF state.

As NFs act as a bump-in-the-wire, their packet processing
rates have to be very high, up to several million packets per
second (~14Mpps for a line-rate of 10Gbps). The processing
rate with stateless NFs may be limited by the read/write trans-
actions achievable with the external database. Our evaluation
with Redis (with asynchronous and parallel execution) to read

Authorized licensed use limited to: The George Washington University. Downloaded on August 31,2020 at 19:37:18 UTC from IEEE Xplore. Restrictions apply.

and update 8 bytes of data achieves a maximum of 1.65 million
read and 1.32 million write transactions per second (Tps) on
a single node. The overhead for using in-memory databases
comes primarily from the socket I/O (read/write system calls),
that involves user-space to kernel-space context switching, and
thus reduced performance for DPDK-based user-space NFs.

Further, a major challenge arises in ensuring the correctness
and consistency of the externalized state with respect to
failed NFs that might have partially processed the packets
and updated the state locally or synced only a portion of
the state updates to the database, before crashing. In such
scenarios, both the NFs and the database need to maintain
additional version control for each state update, so that state
updates can be validated before being committed. This would
further reduce the NF processing capacity [6]. Moreover, with
the Stateless NF approach there is a need to instrument and
refactor the NF code to externalize the NF state. It requires
all the internal NF state entities to be expressed in a well-
defined key-value store mode. While this may be easily dealt
with for per-flow state, it can be difficult to express shared per-
session state as well as internal state variables in this manner.
Also, typically NFs allocate and release memory dynamically
(via alloc and free callback functions as in nDPI). Although
ephemeral, these states may also need to be externalized to
ensure operational correctness, which can result in significant
state update overhead. On the other hand, the complexity
of supporting non-determinism and chain-wide correctness in
both the stateful and stateless NFs is non-trivial. To ensure
correctness, stateless NFs would require additional support
from the externalized databases to provide version control and
roll back of the committed state.

Stateless NFs with externalized state is promising, decou-
pling state and processing for NFV. However, the performance
challenges with externalized data stores suggest that they need
to be adopted with care for high speed packet processing NFs.

VII. CONCLUSION
In this paper, we analyzed two NF state management

(i.e., traditional in-memory stateful NFs and stateless NFs)
approaches that have been proposed for addressing elastic
scaling and fault tolerance. Ensuring correctness and consistent
state update and recovery for NF chains face similar challenges
(addressing non-determinism and chain-wide consistency) for
both state management approaches. Stateless NFs, although
promising, fall short of achieving line-rate packet processing
capabilities and stateful NFs offer much higher performance
and correctness under non-deterministic packet processing.
Advancements in userspace in-memory databases and persis-
tent storage can continue to help externalizing state for spe-
cialized applications contexts, especially when NF processing
is entirely deterministic.

Acknowledgement: This work was supported by US NSF
grants CRI-1823270, CNS-1763929, and CRI-1823236.

REFERENCES

[1] ETSI-GS-NFV-002, “Network Functions Virtualization (NFV): Archi-
tectural Framework,” http://www.etsi.org/deliver/etsi_gs/nfv/001_099/
002/01.01.01_60/gs_nfv002v010101p.pdf, 2013, [ONLINE].

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

S. Rajagopalan, D. Williams, and H. Jamjoom, “Pico replication:
A high availability framework for middleboxes,” in Proceedings of
the 4th Annual Symposium on Cloud Computing, ser. SOCC ’13.
New York, NY, USA: ACM, 2013, pp. 1:1-1:15. [Online]. Available:
http://doi.acm.org/10.1145/2523616.2523635

J. Sherry, P. X. Gao, S. Basu, A. Panda, A. Krishnamurthy, C. Maciocco,
M. Manesh, J. a. Martins, S. Ratnasamy, L. Rizzo, and S. Shenker,
“Rollback-recovery for middleboxes,” SIGCOMM Comput. Commun.
Rev., vol. 45, no. 4, pp. 227-240, Aug. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2829988.2787501

S. G. Kulkarni, G. Liu, K. K. Ramakrishnan, M. Arumaithurai, T. Wood,
and X. Fu, “Reinforce: Achieving efficient failure resiliency for network
function virtualization-based services,” IEEE/ACM Transactions on Net-
working, vol. 28, no. 2, pp. 695-708, 2020.

M. Kablan, A. Alsudais, E. Keller, and F. Le, “Stateless network
functions: Breaking the tight coupling of state and processing,”
in 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17). Boston, MA: USENIX Association, 2017,
pp. 97-112. [Online]. Available: https://www.usenix.org/conference/
nsdil7/technical-sessions/presentation/kablan

J. Khalid and A. Akella, “Correctness and performance for stateful
chained network functions,” in /6th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19). Boston, MA:
USENIX Association, Feb. 2019, pp. 501-516. [Online]. Available:
https://www.usenix.org/conference/nsdil9/presentation/khalid

W. Zhang, G. Liu, W. Zhang, N. Shah, P. Lopreiato, G. Todeschi,
K. Ramakrishnan, and T. Wood, “Opennetvm: A platform for high
performance network service chains,” in Proceedings of the 2016
Workshop on Hot Topics in Middleboxes and Network Function
Virtualization, ser. HotMIddlebox ’16. New York, NY, USA: ACM,
2016, pp. 26-31. [Online]. Available: http://doi.acm.org/2940147.
2940155

S. Rajagopalan, D. Williams,

H. Jamjoom, and A. Warfield,

“Split/merge: System support for elastic execution in virtual
middleboxes,” in Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementation

(NSDI 13). Lombard, IL: USENIX, 2013, pp. 227-240. [Online].
Available: https://www.usenix.org/conference/nsdil3/technical-sessions/
presentation/rajagopalan

Y. Velner, K. Alpernas, A. Panda, A. Rabinovich, M. Sagiv, S. Shenker,
and S. Shoham, “Some complexity results for stateful network verifi-
cation,” in International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 2016, pp. 811-830.
redislabs, “Redis,” 2019. [Online]. Available: https://redis.io

D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and
M. Rosenblum, “Fast crash recovery in ramcloud,” in Proceedings of
the Twenty-Third ACM Symposium on Operating Systems Principles,
ser. SOSP ’11. New York, NY, USA: ACM, 2011, pp. 29-41.
[Online]. Available: http://doi.acm.org/10.1145/2043556.2043560

I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen, Microser-
vice Architecture: Aligning Principles, Practices, and Culture, 1st ed.
O’Reilly Media, Inc., 2016.

Y. Ganjali and A. Keshavarzian, “Load balancing in ad hoc networks:
single-path routing vs. multi-path routing,” in /[EEE INFOCOM 2004,
vol. 2. IEEE, 2004, pp. 1120-1125.

A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao,
A. Anand, T. Benson, A. Akella, and V. Sekar, “Stratos: A network-
aware orchestration layer for middleboxes in the cloud,” CoRR, vol.
abs/1305.0209, 2013. [Online]. Available: http://arxiv.org/abs/1305.0209
X. Fei, F. Liu, H. Jin, and B. Li, “Flexnfv: Flexible network service
chaining with dynamic scaling,” IEEE Network, pp. 1-7, 2020.

X. Fei, F. Liu, H. Xu, and H. Jin, “Adaptive vnf scaling and flow routing
with proactive demand prediction,” in IEEE INFOCOM 2018 - IEEE
Conference on Computer Communications, 2018, pp. 486-494.

P. Emmerich, S. Gallenmiiller, D. Raumer, F. Wohlfart, and G. Carle,
“Moongen: a scriptable high-speed packet generator,” in Proceedings of
the 2015 ACM Conference on Internet Measurement Conference. ACM,
2015, pp. 275-287.

V. Srinivasan, B. Bulkowski, W.-L. Chu, S. Sayyaparaju, A. Gooding,
R. Iyer, A. Shinde, and T. Lopatic, “Aerospike: Architecture of a real-
time operational dbms,” Proceedings of the VLDB Endowment, vol. 9,
no. 13, pp. 1389-1400, 2016.

Authorized licensed use limited to: The George Washington University. Downloaded on August 31,2020 at 19:37:18 UTC from IEEE Xplore. Restrictions apply.

