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Abstract—When Proof-of-Stake (PoS) underlies a consensus
protocol, parties who are eligible to participate in the protocol
are selected via a public selection function that depends on
the stake they own. Identity and stake of the selected parties
must then be disclosed in order to allow verification of their
eligibility, and this can raise privacy concerns.

In this paper, we present a modular approach for addressing
the identity leaks of selection functions, decoupling the problem
of implementing an anonymous selection of the participants,
from the problem of implementing others task, e.g. consensus.

We present an ideal functionality for anonymous selection
that can be more easily composed with other protocols. We then
show an instantiation of our anonymous selection functionality
based on the selection function of Algorand.

Keywords-Blockchain, Proof-of-Stake, Privacy
I. INTRODUCTION

Permissionless Blockchain. Permissionless blockchains,
first introduced in Bitcoin [1], are open systems where
any party is allowed to participate by provably investing
in some type of resource. Following this principle, many
other permissionless blockchains have been developed which
use different type of user resources (computation [1], mem-
ory [2], money [3], [4], [5], time [6], etc).

At the core of all permissionless blockchains, lies a
mechanism for selecting the party that will decide how to
extend the blockchain, that is, decide what will be the next
added block. This is a challenging task in a permissionless
setting, but thanks to the enforcement of provable user
resources and assuming a fixed upper bound of adversarial
resources, several selection methods have been shown to be
effective. For example, in Bitcoin, the selection method is
based on Proof-of-Work. The party to be selected is the
one to first solve a computationally hard puzzle (which is
fresh for each block and randomly generated by the system
protocol). To participate in the selection, a party only needs
to start working on the problem. Once a party finds a solution
it can announce it and gain the right to extend the blockchain
(as well as receive some rewards).

In Proof-of-Stake (PoS) blockchains (e.g., [3], [7]) in-
stead, the selection is performed according to the amount of
stake (e.g., tokens) a party owns in the system. For example,
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assuming that stake is money, a party is selected via a
randomized process, with probability that is proportional to
the amount of money she owns.

There is, however, a key difference between the two types
of selection. In proof-of-work, the proof of winning the
selection is a solution to a fresh, random puzzle, which
can be completely disconnected from the identity of the
winning party. As an example, let us consider the case of
Bitcoin. The first step of any party that wishes to participate
in the selection process is to assemble the block B;;; to
be added next on the blockchain if the party gets selected.
This block includes a pointer to the previous block B;,
a set of transactions and a Bitcoin address to which the
potential reward will be sent. The exact information included
in the block defines the puzzle that the party needs to
solve. If a party solves the puzzle before hearing about
any other solution, it announces the block and the solution
(B, solution). As long as the solution is valid and this was
the first party to announce a solution for the next block, the
party gets elected. What is interesting to note in this process
is that the selection process does not depend on the identity
of the party (the address included in the block B can always
be a fresh one) — the proof of being selected is simply a valid
puzzle solution for a given block. In contrast, in Proof-of-
Stake selection it is not possible for parties to disconnect
their identity from the proof of winning the selection, since
their identity is part of the proof.

Anonymous Selection in Proof-of-stake Settings. The
selection function used in known proof-of-stake consensus
protocols must satisfy the following properties: privately
evaluated, publicly verifiable and fair. The first property says
that only the stakeholder can learn if she is eligible to speak
next, thus, the selection function can be evaluated only with
the knowledge of the secret key. This property is necessary
for preventing adaptive corruption of the selected party, and
is crucial for achieving consistency and chain-quality prop-
erties. The second property says that, a stakeholder PK; can
prove that she is eligible, by producing a proof that can be
verified by anyone having access to PK; (and corresponding
stake). The last property says that the probability of being
eligible follows a fixed and public metric of eligibility. This
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metric can be different in different applications. For proof-
of-stake consensus, the metric of fairness is that a party
wins with probability that is proportional to its stake. In
general, PoS protocols can have different eligibility criteria
(where the weight is scaled after a certain threshold, so that
rich people are not selected too often). Independently of the
eligibility criteria, a crucial property is that fairness must
hold even in case parties generate their keys maliciously.
That is, an adversary should not be able to craft keys that
allow her to hit the eligibility criteria with higher probability.

In this work we focus on anonymizing the selection
function in the Proof-of-Stake setting. Our goal is to provide
a formal definition of anonymous selection, and show an
instantiation.

A. Our Contributions

We now give an overview of our main contributions.

A Flexible Definition of Anonymous Selection. An anony-
mous Proof-of-Stake selection function should have all the
properties of a regular PoS selection (e.g., privately eval-
uated, publicly verifiable, fair), but additionally it should
guarantee that the proof of selection hides the identity of
the winner.

To capture all the above properties, we design an ideal
functionality that we call Fanon-Selection- Our ideal function-
ality allows parties to register their identity P; (along with
associated stake stake; when relevant). Once all parties are
registered, any party can start making eligibility queries
which are associated to a “tag” tag. The semantic of a
tag depends on the application that invokes the selection
procedure. For example, in Algorand [7], a tag is a tuple
(round,step,seed) since this is the information that defines
when a new selection process must be performed. Similarly,
in Ouroboros PoS [3], a tag is of the form (epoch nonce,
slot number). A party P; can ask Fanon-Selection if she
is eligible to speak for a certain tag. Fanon-Selection 1S
parameterized by an eligibility predicate Eligible, which on
input the tag tag and other information, such as stake,
returns a bit b € {0,1}. Fanon-Selection correctly evaluates
the predicate Eligible for P;.

If eligible, P; can then send Fanon-Selection @ message m,
and obtain a proof 7, for m and tag tag. For example, in
Algorand m could be a protocol message for the underlying
Byzantine Agreement, or a block proposed by a leader. Only
P; can check her own eligibility, and this captures the private
evaluation property. The fairness property is captured by
the fact that Fanon-Selection Only computes a valid proof for
parties that pass Eligible.

The proof 7 does not have any identity attached — cap-
turing the anonymity property. Any other party P (even if
not registered in the system) can later query Fanon-Selection
to verify that 7 is a valid proof for m, tag, and get yes/no
as an answer. This captures the public verifiability property.
Furthermore, only proofs that are generated by Fanon-Selection
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will correctly verify, and this captures the correctness and
fairness of the system. An ideal functionality for anonymous
lottery is also defined in a concurrent work [8] (that we
discuss in more details in Section I-B). Their definition
differs from ours in the following crucial aspect. In [8],
when an eligible party asks the functionality to send m for
tag entry, the ideal functionality will broadcast the message
m to all parties in the system. This indeed captures what
typically happens in a consensus protocol, where messages
are broadcast to all parties. However, this approach presents
some potential drawbacks. First, anonymous selection and
anonymous broadcast seem to be problems of different na-
ture — one is at application level, the other is at network level.
In particular, the guarantees that one can achieve against
an adversary that can only act at application level might be
much stronger than the guarantees one could hope to achieve
against an adversary that works at network level. Indeed, it
has already been observed in previous work (see Sec VI - C
of [9], Sec 5.1 and 5.2 of [5] and Sec 4.2 of [10]) that there
is some seemingly inherent leakage at network level that an
adversary can exploit. Therefore, the anonymity guarantee
promised by the functionality described in [8] might not
be necessarily realizable (even in the ideal anonymous
broadcast hybrid model). Second, an ideal functionality that
enforces broadcast cannot be used in protocols where parties
do not need/want to broadcast their eligibility to the entire
network.

Our ideal functionality instead provides a proof 7 of
eligibility for a party P; and does not enforce any further
action. This proof is an actual string that P; can use in
another protocol. This makes our ideal functionality more
flexible and, we think, more easily composable with other
protocols. In our work we first present an ideal functionality
that allows parties to be eligible with the same weight. This
can capture the lottery of Ouroboros style protocols where
parties are selected with the same weight (but are selected
more often based on their stake - in different tag). Our
functionality also captures the lottery of Algorand if we
assume that each user is associated with one unit of stake. To
capture the lottery functionality of Algorand where parties
with different stake amounts are selected with different
weights, we present a modification of our ideal functionality
for the multi-stake setting Fanon-Selection-Ms 11 Appendix B.
Note that the ideal functionality of [8] does not capture this
selection with multiple weights and cannot be used directly
to replace the lottery function of Algorand.

Instantiation from Algorand Selection Function. We
provide an implementation of Fapon-Selection based on the
underlying selection function of the Algorand protocol (as
described in [7], which works as follows. In Algorand, a
party P; is identified by its public key pk,. In order to check
availability for a certain tag, she uses her private (signing)
key sk; to compute a signature on tag : 0; = SIGg, (tag).
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This signature is given as input to a random oracle H, i.e.
y = H(o;). The random output y is then used to check
eligibility: if y is below a threshold 7', the party is selected,
and the proof is simply the pair (y,o;). In order to verify
such a proof one needs to use pk; to verify the signature, and
this obviously requires leaking the identity of the selected
party.

To anonymize this selection function, a naive approach
would be to simply send y, and add a zero-knowledge
proof for the statement: “y is the correct output of the
random oracle evaluated on input a signature o that verifies
under some pk; present in the system (i.e., in the set of
all published public keys).” Note that the pre-image o; of
the random oracle must remain hidden, since it reveals the
identity of the stake-holder.

This straightforward approach, however, fails when H is
modeled as a random oracle, since it can only be used as a
black-box in the protocol. Thus one cannot prove properties
of pre-images of the random oracle unless the random oracle
is used as a black-box in the zero-knowledge proof (and no
succinct reusable black-box proofs are known to exist so
far). On the other hand, we stress that one cannot simply
replace H with a concrete hash function in the proof, since
the perfect unpredictability property of the random oracle is
crucially used in the proof of security, when arguing security
against maliciously chosen keys (for example see Sec. 3.2
of [11]).

Thus, as our second contribution we show how to over-
come the above issue and avoid using the random oracle in
the zero-knowledge proof, while still maintaining the same
selection function of Algorand. We devise a method that
allows one to prove properties about the “pre-image” of the
output of the random oracle, while still using the random
oracle as a black-box. Our approach is the following. Instead
of proving a statement about a secret function applied on the
input of the random oracle H we prove a statement about
a secret function applied to the output of H, which can
be public. Crucially, we need that the function applied to
the output y does not disturb the unpredictability properties
we get from the random oracle. To do so, we use trapdoor
permutations.

Our anonymous selection function therefore works as
follows. For each tag tag, there is a public value associated
to a party P; which is V; = #H(i|tag), and can (but it
does not have to) be computed by everyone. Each party
P, also has associated a public key TRP.pk; for a trapdoor
permutation f. To check if eligible to speak for tag tag,
a party P; proceeds as follows. She uses her trapdoor
key TRP.sk; to compute v; = f'lleP.ski(Vi) and then use
randomness v; to run predicated Eligible, which in Algorand
simply consists to check if v; < T'. If eligible, P; computes
a succinct non-interactive ZK argument (e.g. [12], [13])
proving that she knows a pre-image of one of the V; that
makes her eligible. Note that values Vj,...,Vx can be
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computed by everyone since they do not require any secret.
In fact they can be pre-computed in advance, and consumed
as the protocol proceeds. Note also that the statement of
the zero knowledge proofs does not need to contain the list
Vi,..., VN but only their accumulated representation, that
is, the root of a Merkle Tree.

B. Related Work

Concurrently and independently to our work there have
been two relevant proposals: a framework of anonymous
PoS proposed by Ganesh, Orlandi and Tschudi [8] (in
Eurocrypt’19) and the “Ouroboros Crypsinous” protocol
proposed by Kerber, Kohlweiss, Kiayias and Zikas [5] (in
IEEE S&P’19). We will discuss both results and explain how
we differ.

The work by Ganesh et al. [8] is the most closely related
to ours. They introduce a clean framework to capture and
abstract the lottery aspect of proof-of-stake with an ideal
functionality, that they call Fioery. As discussed earlier,
the main difference with our formulation is that their ideal
lottery functionality captures more than just lottery, since
it also enforces broadcast of eligible messages, and this
modeling choice could present potential drawbacks. We also
note that even though Fiottery abstracts the lottery from the
claimed results, it is unclear how Fiottery i8/can be used as a
black-box. Concretely, when claiming that “Ourobors Praos
instantiated with private lottery results in a private proof-
of-stake protocol” (See Corollary 1 of [8]), the informal
proof does not actually use the ideal lottery functionality
Flottery, parameterized with the eligibility predicate used in
Ouroboros Praos. Rather it uses the specific (game-based)
security properties of the specific implementations of the
anonymized version of the VRF used in Ouroboros Praos.
This raises some confusion about whether one should think
that Ouroboros Praos (with Anonymized VRF) is a secure
realization of Fiottery Or Whether Fiottery can be used as a
building block to realize a “private-proof-of-stake” protocol
(though no definition of “private-proof-of-stake” protocol is
provided in [8]).

Finally, [8] originally implemented Fiottery by employing
the VRF used in Ouroboros Praos, which is anonymized
by simply adding a SNARK to prove that the VRF veri-
fies correctly. Such implementation required the verification
algorithm to evaluate the random oracle, and thus suffered
from the issue of proving a property about the output of
a random oracle (which we discussed above). An updated
version of [8] can be found in [14] which replaces the
VRF of Ouroboros Praos with the one used in Ouroboros
Crypsinous[5] and avoids using the random oracle in the
verification circuit used in the SNARK. We instead give
an implementation based on Algorand’s selection function.
Similarly to us, [8] guarantees anonymity only in presence
of static adversaries. Note however that our construction
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could actually provide adaptive security for correctness (not
anonymity). We discuss such an extension in Section VI-A.

Summing up, the key differences between our work
and [8] is in the definition — our allows composability
with more general protocols besides consensus— and in the
instantiation — we use the selection function of Algorand,
while [8] instantiate it using Ouroboros’s VRF.

Ouroboros Crypsinous [5] does not focus on the gen-
eral problem of anonymous selection in proof-of-stake set-
ting, rather it focuses on defining private proof-of-stake
blockchains. They provide an ideal “private ledger function-
ality” that aims to capture privacy of blocks and transactions.
They then show how to build a private blockchain for pay-
ments extending the Ouroboros protocol with a confidential-
ity layer. Confidentiality is preserved in presence of “semi-
adaptive” adversaries, that is, adversary that can corrupt a
party at any time, but cannot access the state of the corrupted
party immediately after corruption. Although their tech-
niques are very interesting, they are tied to the Ouroboros
PoS designs and private blockchains. Our work instead does
not aim at adding anonymity to the Ouroboros blockchain
specifically (though our technique could be used to hide the
stakeholder identity in the Ouroboros blockchain).

II. PRELIMINARIES

We start by setting the notation to be used throughout the
paper. By PPT we denote a probabilistic polynomial-time
algorithm. Let A\ be the security parameter and || denote
concatenation. We denote the uniform sampling of a value
r from a set D as r < D and rq,---,r, < D indicates
that we sample from D a uniformly random subset of n
elements. We use bold symbols for vectors of elements.
For a vector v, by v[i] we denote the ith entry of the
vector. We say a function f is negligible in A if for every
polynomial p there exists a constant ¢ such that f(\) < ﬁ
when A > c. Two ensembles X = {X) .}ren zef0,1}+ and
Y = {Y) .} ren,z€f0,1}+ of binary random variables are said
to be indistinguishable, X ~ Y, if for all z it holds that
| Pr[X, , = 1]— Pr[Y, . = 1]| is negligible in A.

Let R be an efficiently computable binary relation. For
pairs (stmt,w) € R we call stmt the statement and w the
witness. Let £ be the language consisting of statements in
R.

Non-Interactive Zero Knowledge Proof (NIZK). We recall
the definition of a non-interactive zero knowledge proof
system (adapted from [15] and [16]).

A non-interactive zero-knowledge proof system for a rela-
tion R is defined as a set of probabilistic polynomial time al-
gorithms NIZK = (NIZK.Setup, NIZK.Prove, NIZK.Verify).
NIZK.Setup is a common reference string generation al-
gorithm that produces a common reference string crs of
length Q(\). The prover takes as input (crs,stmt,w) and
by running NIZK.Prove produces a proof m. The verifier
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takes as input (crs,stmt, ) and runs NIZK.Verify to verify
the proof. The following properties need to be satisfied:
o Completeness: The NIZK proof system is complete if
an honest prover with a valid witness can convince an
honest verifier. For all adversaries A we have:

Pr(crs «+ NIZK.Setup(1*); (stmt,w) «+ A(crs);
7 < NIZK.Prove(crs, stmt, w) :
NIZK Verify(crs, stmt, 7) = 1 A (stmt,w) € R] =1

o Soundness: A NIZK proof system is sound if it is infea-
sible to convince an honest verifier when the statement
is false. For all polynomial size families {stmty} of
statements stmty ¢ £ and all adversaries A we have:

Prcrs < NIZK.Setup(1}); m + A(crs, stmty ) :
NIZK Verify(crs, stmty, m) = 1] < negl(}\)

o Zero-Knowledge: A NIZK proof system is zero-
knowledge if the proofs 7 do not reveal any information
about the witness. That is, if there exists a polynomial
time simulator S = (S1,83), where S; returns a
simulated common reference string crs together with
a simulation trapdoor 7 and an extraction key ek. The
trapdoor 7 enables Sy to simulate proofs without access
to the witness. For all non-uniform polynomial time
adversaries A we have:

Prlcrs « NIZK.Setup(1*) : ANZK-Prove(ers,) (¢rg) — 1]
~ Pr[(crs, 7, ek) « Sy (1) : A5 (crs) = 1]

where S(crs, 7,stmt,w) = Sa(crs,T,stmt) for
(stmt,w) € R and both oracles output failure if
(stmt,w) ¢ R. Notice that we define the simulator
S; as in [16], where S7 not only outputs a simulated
crs and a trapdoor 7, but also an extraction key ek.
We require the NIZK arguments to satisfy the following
simulation extractability property as defined in [16].
o Simulation Extractability: Simulation extractability is
a strong notion which requires that even after seeing
many simulated proofs (even for false theorems), when-
ever the adversary generates a new proof, a simulator is
able to extract a witness. More formally, a NIZK proof
system is said to be simulation extractable if it satisfies
computational zero-knowledge and additionally, there
exists a polynomial-time algorithm Extract, such that
for any polynomial-time adversary .4, it holds that

Pr[(crs, 7, ek) + S1(11); (stmt, ) + A5 (crs, ek);
w < Extract(crs, ek, stmt, ) : stmt ¢ QA
A (stmt,w) ¢ £ A NIZK.Verify(crs, stmt, 7) = 1] = negl(n)

where @ is the list of queries made by .A.

Trapdoor Permutation. We adapt the definition of trapdoor
permutation from Bellare and Yung [17].
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Definition 1 (Trapdoor Permutation). We say that
(TRP.KeyGen, f, f~1) is a trapdoor permutation if the
Sfollowing conditions hold:

Generation: For all A > 0, the output of TRP.KeyGen
on input 1* is a pair of A\-bit strings TRP.pk, TRP.sk.
Permutation: For all A > 0 and (TRP.pk, TRP.sk) €
TRP.KeyGen(1*), the maps frrp.pk(-) and frap 4 (*)
are permutations of {0,1}* which are inverse of
each other. That is f-FRlp.sk(fTRP_pk(-r)) = 1z and
Jrreok(frrp s (W) = y for all w,y € {0, 1},

Security: For all probabilistic polynomial-time (PPT)
adversaries A, 3 a negligible function negl(-) such that

Pr(frrp.pk(2) = y : (TRP.pk, TRP.sk) <— TRP.KeyGen(1*
y + {0,1}*; 2 + A(1*, TRP.pk, )] < negl()\)

III. IDEAL FUNCTIONALITY FOR POS ANONYMOUS
SELECTION

We present a definition of our anonymous selection func-
tionality Fr 6 . in the UC-framework of [18].
Assumptions. We start by stating our assumptions.

Stake: We consider a setting where each party is associated
with exactly one unit of stake. This ideal functionality can be
used to replace selection in lottery based protocols like [11]
and [7] if, for [7], we assume that each party is associated
with one unit of stake. We take this approach to describe a
lottery functionality to pick winners with the same weight
(=1). This simpler functionality will allow to showcase how
anonymity can be achieved in a simpler protocol, without
trivializing the problem. To keep the notation general we use
stake; to denote the stake of party P;. We also describe a
modification of our ideal functionality to capture the lottery
of [7] in the multi-stake scenario (under the assumption that
majority of stake belongs to honest parties) where parties are
selected with some weight in Section VI-B and Appendix B.
Registration: Before the execution of the functionalities,
all parties register along with their stakes - (P;, stake;) with
the functionality. By n we denote the number of registered
parties. Similar to [8] we consider a static setting where
new parties cannot register once the functionalities are being
executed.

Corruption model: We assume static corruption, i.e. the
corrupted parties are fixed throughout the entire execution.
Note that we can achieve security against an adaptive
adversary for correctness but achieve only static security for
anonymity.

Our proposed functionality. We describe our anonymous
selection functionality ]-'E]'f'nb_'gelection in Figure 1. By tag
we denote all public values corresponding to one execution
of the protocol such as round and step number, random
seed for the current round etc. Each registered party checks
if it is “eligible” to speak for a tag tag by using the
EligibilityCheck command which returns a bit b € {0,1}. If
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the party is eligible to speak for tag, then b = 1, otherwise
b= 0. We stress that we add stake as an input for generality
only. As mentioned above we assume that stake; = 1.

,—(Functionality

The ideal functionality is parameterized by an
Eligible predicate and maintains the following
elements: (1) A global set of registered parties

P ((Py,stakey), ..., (Py,stake,)). (2) A
table 7', which has one row per party and a
column for each tag € N given by parties when
checking eligibility. The table stores the eligibility
information of each party in each tag. (3) A list
L, to store a proof 7 corresponding to a message
msg in some tag,.

pEligible 1

Anon-Selection |

« Upon receiving (EligibilityCheck, sid, tag)
from a party P; do the following :
1) If P, € P and T(P;, tag) is undefined,
sample 7 € {0,1}* run
Eligible(r, stake;, tag) to get b € {0,1}.
Set T'(P;,tag) = b
2) Output (EligibilityCheck, T'(P;, tag)) to
P;
« Upon receiving (CreateProof, sid, tag, msg)
from a party P;:
1) If T(P;, tag) = 1, send
(Prove, tag, msg) to A. Else, send
(Declined, tag, msg) to P;.
2) Upon receiving (Done, ¢, tag, msg)
from A. Set 7 < v and record
(7, tag, msg) in L. Send
(Proof, 7, tag, msg) to P,
« Upon receiving (Verify, sid, 7, tag, msg)
from some party P’:
1) If (w,tag, msg) € L output
(Verified, sid, (7, tag, msg),1) to P’.
2) If (w, tag,msg) ¢ L, send
(Verify, sid, (7, tag, msg)) to A and
wait for a witness w from the adversary
A. Check if w is valid as follows:
Parse w = (P;, tag, msg) and check
that T'(P;, tag) =1
If yes, store (7, tag, msg) in the list
L and send
(Verified, sid, (7, tag, msg),1) to P’.
If either of these checks are false output
(Verified, sid, (7, tag, msg),0) to P’.

Figure 1. Anonymous selection functionality
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If a party is eligible to speak and wishes to send the
message msg, she can later query the ideal functionality
via the command (CreateProof, tag, msg) to obtain a proof
m that she can use in any other protocol. Note that the
}'E:E:’_'gelection will provide such proof if the party was
marked as Eligible for the tag. Any party that receives such
a pair (msg, ) for a tag, can verify that the proof is correct
by simply querying (Verify, 7, tag, msg) 10 FuroS icction:
Note that the verification does not require any information
on the identity of the sender of the proof, thus capturing
the property of anonymity. Moreover, we note that the ideal
functionality only maintains a list of proofs and does not
store the identity of the party along with the proof in the
list L.

Our implementation additionally requires the standard
random oracle functionality Fro which is defined in Fig-
ure 2.

3
J

,—(Functionality FRroO

The functionality is parameterized by the security
parameter A\. We write T[x] = L to denote the
fact that no pair of the form (z,-) is in T
« Upon receiving (EVAL, x) from a party P do:
1) If T[z] = L, sample a value y
uniformly at random from {0, 1}*, set
Tx] <y and add (z,T[z]) to T
2) Return (EVAL, z, T[z]) to the requester.

Figure 2. The random oracle functionality

IV. REALIZATION OF Fp8®e

In this section we propose a protocol IT5'EP'

o Anon-Selection to
realize the ideal functionality Fr re . from Section
III. Our realization is inspired by the selection algorithm
of Algorand [7], which is run by every party to check if
they are selected into a committee. To ease presentation
we first describe how the selection algorithm of Algorand
works in Section I'V-A before we present our implementation

[[Eligible in Section IV-B.

Anon-Selection
A. Selection Function in Algorand

In Figure 3 we describe the selection function used in
Algorand (that we recast using our notation). Specifically, we
consider the function described in the so called “theoretical
paper” [7] where it is assumed that each public key is
associated with one unit of stake. This implies that during the
selection process each party is either selected to participate
in the next round of the Algorand protocol or not!. This

'Note that in a later paper which describes the implementation of the
Algorand system [19], it is assumed that each public key can have variable
amounts of stake and during the selection process each selected party
receives a weight that defines the power of the party in the later steps.
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is a quite natural property of lottery protocols where each
party holds one or more tickets (public keys for the case
of Algorand) and some of them are selected while others
aren’t. Though our main construction is in this single-stake
setting we give an intuition to extend the protocol to the
multistake setting in Section VI-B.

,—(Algorand’s selection algorithm)

A party (P;,stake;) runs the selection algorithm
to check if it is eligible to send messages in a
following step of Algorand’s protocol. Each party
maintains a Table that stores the tag the party is
eligible to speak in.

Initialization(1*)

Generate signature key pair
(SIG.vk;, SIG.sk;) + SIG.KeyGen(1*).
Generate a master key pair
(MPK, MSK) «+ KeyGen(1").
Generate ephemeral signature key pairs for
|U| number of tag,
{ESIG.sk;j, ESIG.vk;j}jer1.. v
Publish (MPK, {ESIG.vk;j}, SIG.vk;)
CheckEligibility(tag)
o Compute sorthash; = H(SIGgy, (tag))
o Run b; < Eligible(sorthash;, stake;, tag).
« Store Table(tag) = b;.
CreateProof (tag, msg)

o If Table(tag) = 0, output L.
o If Table(tag) = 1, output
(ESIGsk,tag(msg), SIGyy, (tag), sorthash;, tag)
Verify(m, tag, msg)

o Check that SIG,, (tag) is a valid signature.
o Check that H(SIGy, (tag)) = sorthash.

o Check that Eligible(sorthash;, 1, tag) = 1.
o Output 1, if all checks pass.

Figure 3. Algorand’s selection algorithm

The Algorand selection process works as follows. Parties
run the Initialization protocol to generate their keys as soon
as they join the network and publish their public keys:
a master public key and a signature verification key, as
(MPK,SIG.pk;). Using the master public key, each party
generates a large number of ephemeral keys (U = 10% x m
according to [7], where m is the expected number of steps
of each execution of the protocol).

Parties run the selection function at different stages of the
protocol to check if they are selected to speak in a specific
stage. In Algorand a stage is identified by step number, round
number and a random seed . We will use the notation tag
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to capture the item for which the party wishes to test if she
is selected. To check if a party can speak for an item tag
the party first computes a value v; = H(o;) where o; is
the signature computed over tag using the signing key. The
random value v; is then used as input to the function Eligible
described in Figure 4.

Note that the Eligible function takes as input stake; as
well, but is not explicitly used since in our setting we assume
that only one unit of stake is associated with each public key.

Parties who are eligible to speak can obtain a publicly ver-
ifiable proof via the algorithm CreateProof, which takes in
input the message they want to send. Note that CreateProof
also includes an ephemeral signature on the message to
ensure adaptive security, that is if the party is corrupted later,
it cannot create a valid signature since the ephemeral key is
deleted immediately.

To verify, parties use procedure Verify, which will check
the validity of the signatures using the public key and check
that the hash satisfies the properties required by the function
Eligible.

B. Our Anonymized Selection Protocol

We now describe the protocol that realizes the
Fargble @ ion functionality using the selection function
(Eligible) of Algorand. Following [7], we assume that each
public key is associated with one unit of stake. Note that this
does not trivialize the problem, since it is still necessary
to hide the identity of the user eligible to speak. Thus in
our instantiation and all further descriptions, assume that

stake; = 1.

,—(Function Eligible(v;, stake;, tag)} \

Global variables for the protocol are totalStake
and 7. totalStake defines the total stake of the
parties in the network and 7 is the expected
number of parties to be selected (this depends on
the tag).

-
A totalStake
2: b+ 0
3. if # < p then
4: b+ 1
5: return b;
Figure 4. The eligibility predicate

We assume there is a mechanism in place to register the
public keys of the parties. This should ensure that the party
does not create more public keys than the stake it owns.
This bootstrapping ensures that the list of public keys is
fixed before the execution of the protocol and all parties
can see this list of public keys.
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We require the following cryptographic primitives:

1) Non-interactive zero knowledge proofs that al-
low the operations NIZK.Setup, NIZK.Prove and
NIZK.Verify.

A trapdoor permutation scheme that allows parties to
evaluate a trapdoor permutation on an input x using
their public key TRP.pk by evaluating y = frrp.pk(2).
The parties can compute the inverse of y using the
corresponding secret key TRP.sk by evaluating z =
fT_RIP.sk(?J)-

3) A signature scheme that allows parties to sign a
message using their secret key (SIG.sk) - o
SIG.sign(SIG.sk,m) and verification is done by
SIG.Ver(SIG.pk, o, m)

A commitment scheme that allows parties to commit
to a message z, by computing C = Com(z,s) and
a pseudorandom function F’, that parties can evaluate
using their secret key PRF.sk by computing C?"f =
F(PRF.sk, x)

We now describe the different steps of the protocol:
Setup(1*) : The public parameters pp contain the common
reference string of NIZK, crs + NIZK.Setup(1*) and a
public list L initialized to (.

Initialization(P;) (Key Generation) : P; runs the key gen-
eration algorithm, KeyGen, as soon as he registers with the
network. KeyGen takes as input the public parameters pp.
For each unit of stake that P; owns, it does the following
: Run KeyGen to output a PRF secret key PRF.sk; <
PRF.KeyGen(1%) , compute a commitment to the PRF secret
key CP"f = Com(PRF.skj; s,f), a trapdoor permutation
key pair (TRP.pk;, TRP.sk;) + TRP.KeyGen(1*) and a
signature key pair (SIG.sk;, SIG.vk;) + SIG.KeyGen. P;
then publishes pk; = (TRP.pk;, SIG.vk;, C*"/) and stores
the secret key sk; = (PRF.sk;, TRP.sk;, sp,f, SIG.sk;). The
pk; is published to a public list L. A Merkle tree, M Tree(pk)
with root rty is created with this list

2)

4)

L ={(C" SIG.vky, TRP.pk,), - , (C?"T SIG.vk,, TRP.pk,)}

and can be viewed by all parties in the world. The initial-
ization protocol is described in Figure 6.

EligibilityCheck(P;, tag) : For each tag P, runs the
ProcessRO algorithm (see Figure 5) to compute a vector
‘Zag = (V’tag[l}, ‘Zag[Q], i ,‘Zag[n]), where n is the total
number of keys (also equal to totalStake, since one key is
generated for one unit of stake) in the system. The ﬁag is
stored as a Merkle tree, MTree(Vtag) with root rty; n The
idea is that for each key, P; owns in MTree(pk), there is a
corresponding Xzag [7] in the same position in MTree(‘Zag).
This vector Yzag is computed for each tag and serves as
a trapdoor permutation whose inverse (v;) is computed by
the party. Only party P; can compute the inverse of this
permutation since only P; knows the trapdoor secret key. To
ensure that the party uses the correct secret key, we require
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that the position of Xzag [i] and the tuple containing TRP.pk;
are the same in the corresponding merkle trees.

,—(Protocol ProcessRO(tag)} \

The algorithm takes as input a tag and does the
following:
o Forall ; € [n]:
1) Query (Eval, tagl|i) to the ideal
functionality FRro.
2) Receive message (Eval, tagl|i, V;) from
Fro-
o Output a vector V where each element
V] = V..

Figure 5. ProcessRO algorithm

r—(Protocol Initialization (P, szd)} \

1: Generate (TRP.pk,, TRP.sk;) < TRP.KeyGen(lx)
2: Generate (PRF.sk;) + PRF.KeyGen(lx)
3:  Generate (SIG.pk;, SIG.sk;) < SIG.KeyGen (1)
4: Sample s + {0,1}* and compute
CP"1 .= Com(s, PRF.sk;)
The protocol publishes the variables : pk; :=
(TRP.pk;, SIG.vk;, C*"7) as leaves of MTree(pk)

and returns sk; = (TRP.sk;, SIG.sk;, (s, PRF.sk;))
to P;.

Eligible

Figure 6. Initialization protocol for IT5 2 "c | o

Using this ‘Zag[z’} P; computes
Vi = frip s, (Vesg ). (1

P; then evaluates the Eligible function as shown in Figure 4
to check if the party can speak for item tag. The eligibility
check is shown in Figure 7.

—{Protocol EligibilityCheck( P, sid, tag) f————

1: Call processRO(tag) and receive Viag

2: Compute v; = f;Rlp.skl(‘Zag [2])
3: Call Eligible(v;, stake;, tag) and receive byag
4: Output (btag, Vi, ‘_/‘tag)~

Figure 7. Eligibility check for [IEtieible

Anon-Selection

CreateProof (P;, tag, msg;, v;, ‘_/;ag) . If P; is eligible to
speak for item tag it commits to its winning ticket v;. The
commitment is implemented using a pseudorandom function
F and is constructed as follows : C¥ = F(PRF.sk;, v;|/tag).

We are required to hide the value v; so that identity of
the party is not revealed. (One may simply run fTRp.pki (v;)
for all identities and identify who sent the message).

At the same time we require the commitment to be deter-
ministic, else a malicious party may speak multiple times in
the same tag, with the same v; by just using a different
randomness each time. To ensure that a malicious party
cannot send multiple (potentially conflicting) messages, we
require the commitment to be deterministic and hence use a
PRF.

P; then constructs a NIZK that proves the following
statements:

e “I know wv;, such that lzag [i] = frrP.pk, (Vi)”

o “Tam eligible to speak for tag according to randomness
V; J

e “C? is correctly computed as F'(PRF.sk;,v;||tag)”

e “I know the path from pk; which is the leaf of a
Merkle tree MTree(pk), that contains commitment of
my PRF secret key, trapdoor public key and signature
verification key, to the root of the Merkle tree.”

o “I know the path from ‘Zag[i}, which is the leaf of a
Merkle tree MTree(Viog) that contains all the elements
in vector ﬁag, to the root of the Merkle tree.”

More formally, the NIZK statement and proof for the lan-
guage L characterized by the relation R is computed as
follows:

7 + NIZK.Prove(crs, x,w) 2)

o statement z = (rt‘;tag7 rtpr, tag, msg, Cy, ‘_/';ag).
o witness w = (i, PRF.sk;, v, 0, 5,1, pk;, pathy,, path‘zag),

where pk; = (TRP.pk;, Sig.vk;, Cprs).
e R(z,w) =1 if and only if:

1) C? = F(PRF.sk;,v;|tag)

2) CP"F = Com(PRF.sky; s, f)

3) Vi = frrp.pk, (vi)

4) Vi = Viagli]

5) Eligible(v;, stake;, tag) =1

6) o = SIG.Sign(SIG.sk;, msg|/tag)

7) SIG.Ver(SIG.vk;, 0, msg|/tag) =1

8) validPathy (path,, rtyr, pk;) = 1

9) validPathy, (pathy; .t Viegli]) = 1

g’ ‘/tag

The protocol for creating the proof is shown in Figure 8.
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,—(Protocol CreateProof (P;, sid, msg;, tag, v;, ‘zag))ﬁ

1: Compute Ci = F(PRF.sk;, vi||tag)

2: Let rtg, e be the root of MTree(Vtag)
3: Let pathvtag[i] be the path to ‘Zag [7] in MTree(Vtag)
4: Let rtpk be the root of MTree(pk)
5: Let path,,  be the path to pk; in MTree(pk).
6: Compute o; = SIG.Sign(SIG.sk;, msy;| tag)
7: Letxz= (rt‘7tag7 rtok, tag, msg:, Cy )
8: Let w = (4, PRF.sks, v;, pk;, pathy ., path\;mgm7 D)
9: Compute mnizk := NIZK.Prove(crs, z, w)
as shown in Equation 2
10: Setm; = (rt‘7tag7 rtok, Ci, mnizk) and output 7r;

Eligible
1—IAnon—Selection

Figure 8. Creating a proof in

Verify(tag, msg,m) : Party P; on receiving a message
from another party first runs ProcessRO algorithm to
compute Vtag. The zero knowledge proof = is parsed
as (rty,rtpr, C,mnizk). Pi then sets the statement z to
be (rt‘zag7rtpk,tag, msg,C) and checks if NIZK.Verify
(crs,x,mnizg) = 1. If it checks out then P; accepts the
message, else it rejects the message. The protocol for
verification of a message is shown in Figure 10.

The overall protocol is described below in Figure 9.

,—(Protocol H,Elri\goirlﬂeSelection(Sid)} \
A Eﬁ)ia‘gly P; executes the protocol
I 8 ection 1D the following way:
1: Call Initialization(P;, sid) to get (pk;,sk;)
2: To publish a message msg; in tag :
3: Call EligibilityCheck(P;, sid, tag) to get
btag, ‘Zag and v;.
4 : if biag = 1 then
call CreateProof(P;, sid, msg;, tag, v;, ‘_/;ag)
to get m;
5: Output (msgi, tag, m;)
6: To verify a message(msg, tag, 7) in tag:
7: Call Verify(sid, tag, msg, )
and output the bit it returns.
Figure 9. Anonymous Selection protocol - Hilniii:_leselection
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,—(Protocol Verify(sid, tag, msg, w)}

1: Call ProcessRO(tag) and receive \Zag

2: Parse m = (I’tvtag, rtpk, C, TNiZK)
3: Setz= (rthag’ rtok, C, tag, msg)
4: Check that NIZK.Verify(crs, z, mzk) = 1

If yes, output 1; else output 0

Eligible
Anon-Selection

Figure 10.  Verifying a proof in II

V. PROOF(SKETCH)

Theorem 1. The protocol WEI'-iniir:j-lzelection (Fig. 9) UC-realizes
the Fri82¢ o functionality (Fig. 1) in the Fro-hybrid
model, assuming anonymous multicast communications, se-
cure pseudorandom functions, secure simulation-sound ex-
tractable NIZKs, trapdoor permutations and unforgeable

signatures, in the presence of a PPT adversary.

Overview of the Simulator. In order to prove UC-security
we need to show that there exists a PPT simulator inter-
acting with Fanon-Selection that generates a transcript that is
indistinguishable from the transcript generated by the real
world adversary running the protocol Wllilr:ilanZelection'

We first give a high-level description of the simulator
(described in Figure 12 and Figure 13) - Sanon-Selection-
Our simulator leverages the programmability of the random
oracle Fro and the extractability and simulatability of the
underlying NIZK. Hence, the simulator Sanon-Selection Will
make use of the NIZK simulators (S1, S2) to correctly setup
the CRS in simulation mode and to simulate NIZK proofs
and the algorithm Extract to extract the witness from proofs
received from the adversary.

SAnon-Selection first sets up a crs using S7. Then, for each
honest party P; present in the system (recall that we are in
the static setting, so on the onset the simulator knows the
set of honest parties), the simulator generates their public
key: (TRP.pk,SIG.vk, crrl)y. Differently from a honest key,
CP"7 is a commitment to 0 instead of the PRF secret key.

When the simulator receives (Prove,msg,tag) from the
ideal functionality ]-'E::g:’_'gelection, it must provide a proof
for the pair (msg, tag), even without knowing the identity
of the party requiring this proof. The simulator will use
the underlying zero-knowledge simulator Sy to compute the
proof 7 and return it to the ideal functionality, as well as
storing 7 in a list £ of proofs computed so far.

The simulator detects whether a malicious party is at-
tempting to learn if she is eligible to speak, by monitoring
the queries to the random oracle Fro. When the query has
the form (tag,i) for a index ¢ such that P; is corrupted,
the simulator will first query Fanon-Selection With command
EligibilityCheck to check if P; is eligible to speak for tag.
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If so, the simulator will program the random oracle with a
value that makes P; pass the selection function.

Finally, when the adversary sends Verify for a pair
(msg, ), the simulator Sanon-Selection first checks if this
proof is in the list £. If so, answers Verified to the party.
Otherwise, the simulator checks if 7 is valid, by running
NIZK.Verify. If the proof is valid, the simulator attempts
to extract the witness using Extract. If the extraction fails,
the simulator will abort with a message ExtractionFailure.
Else, if the extracted witness contains key material from
an honest party, then the simulator abort with a message
SoundnessFailure. Else, the simulator sends CreateProof
to ]:Anon-SeIection on inpUt msg. If ]:Anon-Selection replies
Declined, then abort the protocol.

Sanon-Selection also simulates the random oracle, where for
any query (i,tag) where P; belongs to the set of honest
party, the simulator replies with a uniformly sampled random
value.

We prove indistinguishability of the simulation through
a series of hybrids. The crux of the proof is to show that
the probability of the simulator aborting is negligible. In
the following we summarize the failure events and give an
intuition on why they happen with negligible probability.

o ROFailure - The simulator aborts with this message, if
the output of a Fro query from a malicious party is
already stored in the table for some other previously
queried value. We show that this happens with negligi-
ble probability in Lemma 1.

ExtractionFailure - The simulator aborts with this mes-
sage if it is unable to extract a witness from zero
knowledge proof, using its simulated crs. This occurs
with negligible probability since we assume simulation-
extractable zero knowledge proofs.

SoundnessFailure - The simulator aborts with this mes-
sage if the extracted witness corresponds to that of
an honest party, and the NIZK proof was not in the
list of proofs that is maintained by the simulator. This
would imply that the real-world adversary spoofed a
valid witness for an honest party, which implies that
the real-world adversary has either broken the one-
wayness of the trapdoor permutation, unforgeability of
the signature scheme, or the collision resistance of the
hash function used in the Merkle tree.
GetProofFailure - The simulator aborts with this mes-
sage if the ideal functionality Fanon-Selection replies with
message Declined for a query that corresponds to an
eligible party. This occurs with negligible probability
if Fro was programmed correctly and is shown in
Lemma 5.

Finally, we stress that in our proof we will assume that all
messages are exchanged via a secure anonymous multicast
channel. For the full proof please refer to Appendix A.
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VI. EXTENSIONS FOR ADAPTIVITY AND THE
MULTI-STAKE SETTING

A. Correctness in Presence of Adaptive Adversaries

Our protocol in section IV-B assumes static corruption
of parties. Below we give an intuition on how to achieve
adaptive security for the correctness of the protocol, though
not for anonymity (since we do not use adaptive secure
NIZKs).

Ephemeral Keys of Algorand[7] Algorand uses
ephemeral keys and secure erasures to achieve adaptive
security for the safety property. Parties sign a message in
a step of a round with an ephemeral key and then erase this
key as soon as they send their message.

A party P; generates a master public key and master secret
key (M PK;, M SK;) at initialization. Using the M SK, P;
generates ephemeral keys of the form sk;’*. Here 7 € [r' +
1,7 +10°] for some r’ and s € [1,m] where m is the upper
bound in number of steps in a round. Once the keys are
generated, P; erases M SK. P; also erases sk:’S at the end
of the step. To verify a message signed using sk;** a party
needs to know the M PK and 7, s.

Adaptive secure protocol idea : To achieve adaptive
security in our protocol we assume erasures and ephemeral
signatures as in Algorand. We describe the modifications to
the protocol below:

Initialization : A party P; generates a signature key pair
(SIG.msk;, SIG.mvk;) < SIG.KeyGen and a fixed number
(say t) of ephemeral secret keys {esk’ }§=1 such that for any
4 Verify(SIG.mvk;, Sig(esk!, m)) = 1. P; erases SIG.msk;
after computing these ephemeral keys. After ¢ number of
tag has elapsed, the party generates new signature keys. We
assume each key esk®®€ is linked to an tag as in Algorand
where - (mvk, tag) is used to verify a signature signed using
esk*?e,

Create Proof : The party P; now has to prove an additional
statement which says - “I know a master public key that can
verify a signature signed by an ephemeral key for a particular
tag”. More formally:

Statement : © = (rty, tag)

Witness : w = (esk;"%, pk; = (-, SIG.mvk;, -), path,,)

Proof : Verify(SIG.mvk;, Sig(esk; ¢, m||tag)) 1 and
validPathy, (pathy, rty, pk;) =1

Remark. We note that in order to achieve adaptive security,
we need to make new assumptions and additionally pay
higher computational costs. In terms of efficiency, each party
now has to maintain a large number of ephemeral keys. They
need to update these keys after a certain number of tag. In
terms of assumptions we need to assume secure erasures
and that all parties erase their keys after they use them in
a specific tag. We do not have these issues if we assumed
a weaker static adversary, but are necessary for an adaptive
adversary.
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Since we only claim adaptive security for the correctness
of the protocol, the simulator Sanon-Selection €an simulate the
protocol. The only change would be that the simulator now
sets up a master verification key in the pk for all parties.

B. Multi-stake setting

Our protocol in section IV-B assumes that each pk; is
associated with exactly one unit of stake. In the following
we give an intuition as to how we can associate multiple
units of stake to each public key. The key idea is that if
a party has multiple stake then the party is selected with a
weight denoted wt;, similar to the sortition algorithm shown
in [19] (See Fig 11). The challenge we observe here is that
we cannot reveal wt;, since wt; is proportional to the stake
of the party. Therefore for a party P; to publish a message
it sends wt; unlinkable proofs for the same message msg;.
We refer to each unit of wt as an index. We must ensure that
the party P; does not send more than wt; messages nor does
it send different messages with different proofs for the same
index, else a malicious party could send more messages than
wt;.

Multi-stake protocol idea: We describe the modifica-

tions required of the protocol H,E:i':lz clection described above:

Initialization : We assume that parties create commitments
to their stake, cm; = Com(v;) and publish this commitment
to create a merkle tree of coin commitments (MTree(cm)
with root rtem).

Eigibility Check: The function Eligible now returns wt;®
instead of by

Create Proof: We first modify the “deterministic commit-
ment” - CF as Cf, yo, = F'(PRF.sk;, [|v;|tag|lindex). The
party evaluates wt; number of C7; .., (basically for each
index € [1, wt;]. This ensures that a party can create exactly

one proof for one index.
P; now proves the following statements:

o “I know wv;, such that Yzag [i]] = frrP.pk, (vi)”

e “I know the path from cm; which is the leaf of a
Merkle tree MTree(cm), that contains commitment of
my stake; to the root of the Merkle tree.”

« “Iam eligible to speak for tag according to randomness

v; and stake stake; with weight wt;.”

“Cllindex is correctly computed as

F(PRF.sk;, v;||tag|lindex) and index € [1,wt;]”

e “I know the path from pk; which is the leaf of a
Merkle tree MTree(pk), that contains commitment of
my PRF secret key, trapdoor public key and signature
verification key, to the root of the Merkle tree.”

o “I know the path from ﬁag [¢], which is the leaf of a
Merkle tree MTree(‘Zag) that contains all the elements

in vector Vigg, to the root of the Merkle tree. ”

,—(Function Eligible(v;, stake;, tag)} \

Global variables for the protocol are totalStake
and 7. totalStake defines the total stake of the
parties in the network and 7 is the expected num-
ber of parties to be selected (this depends on the
tag). Here B(k;stake,p) = (Stzke)pk(l — p)stake—k
and Zzti(gB(k;stake,p) =1 as in [19]

r
H e —
P totalStake
wt; < 0
wt; wt; +1
. Vi
while QZTI(W) ¢ [Z B(k; stake;, p), Z B(k; stake;, p)
k=0 k=0
wt; = wt; +1
return wt;
Figure 11. The eligibility function for multi stake

More formally, the NIZK statement and proof for the lan-
guage L characterized by the relation R is computed as
follows (we denote in red the differences in the statements
we prove for the single stake setting):

7 < NIZK.Prove(crs, z, w) 3

v

o statementx = (rty, . rtp, rtem, tag, msg, Cingec: Veag)
o witness w = (i, wt;,stake;, index, PRF.sk;, v;, o,
Spri, Pk;, pathy, pathvtag, path.,,,cm;),
where pk; = (TRP.pk;, Sig.vk;, Cprs).
e R(z,w) =1 if and only if:
1) C}igex = F(PRF.sk;, v;[[tag||index)
2) index € [1, wt;]
3) 71 = Com(PRF.sk;; sp,.7)
4) cm; = Com(stake;)
5) Vi = frre.pk, (v3)
6) Vi = Viggli]
7) Eligible(v;, stake;, tag) = wt;
8) o = SIG.Sign(SIG.sk;, msg||tag)
9) SIG.Ver(SIG.vk;, o, msg|tag) =1
10) validPathy, (path,, rtpr, pk;) = 1
11) vaIidPathh(path‘Zag, rtVtag,Vtag[z']) =1
12) validPathy, (path,,, rtem,cm;) = 1

Remarks. Note that this protocol does not realize the
ideal functionality defined in Figure 1, instead it realizes
a modified functionality for multi-stake presented in Ap-
pendix B. Note that for multiple stake we assume that we
have commitments to stake as in Zerocash [9]. For this work
we do not consider updates to stake.

The simulator Sanon-Selection Will be modified in the fol-
lowing way to simulate the multi-stake protocol. In ini-
tialization create a cm; = Com(0*;7) for each honest

Authorized licensed use limited to: George Mason University. Downloaded on September 02,2020 at 13:47:53 UTC from IEEE Xplore. Restrictions apply.



party P; and publish it. Create a merkle tree MTree(cm)
with root rt.,. The statement of the proofs created in
response to Prove will now include rt.,. For Verify,
when the simulator extracts the witness it now includes
stake;, wt;, path_,, and cm;. Sanon-Selection NOW sends to
Fanon-Selection @ message (CreateProof, sid, tag, msg) at
most wt; times. If it receives (Declined, sid, tag, msg)
for any of these queries, output “GetProofFailure”. In
the simulation of JFro the simulator now receives
wt; when it sends (EligibilityCheck, sid,tag) to the
FAnon-Selection- The simulator then finds an » such that
Eligible(r, stake;, tag) = wt; (pick an 7 in the interval
[0, B(k; stakes, p), vt " B(k; stakes, p)) )

k=0
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APPENDIX
A. Security Proof

Proof:

Indistinguishability Proof. We prove that the real execu-
tion of the protocol in the Fro-hybrid world is indistinguish-
able from the execution in the simulated world through a
series of hybrids.

« Let the hybrid Hj denote the real world execution.

o Hybrid H; is the same as Hy except that any calls
to random oracle Fro is replaced with simulated
responses as shown in Figure 13. When the simulation
aborts, it outputs “ROFailure”. Note that Hy and H;
can be distinguished in the event of “ROFailure”. We
prove in Lemma 1 that Hy and H; are indistinguish-
able, since the event “ROFailure” occurs with negligible
probability.

« Hybrid Hs executes in the same way as H;y, except
that the crs is now replaced by a simulated crs and all
honest proofs are now simulated.
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Hll
crs < NIZK.Setup(1*)

7 < NIZK.Prove(crs, stmt, w)

HQI
(crs, ek, T) + S1(1%)

7 < So(crs, T, stmt)

H, and H; are computationally indistinguishable due
to the computational zero-knowledge property of NIZK
as proved in Lemma 2.

« Hybrid Hj executes in the same way as Ho, except that
the simulator extracts a witness for a message (msg, )
that was not generated by it. That is, it runs Extract
(crs, ek, stmt, mnizk). If the output is L, then the ex-
periments terminates with output “ExtractionFailure”.
We prove in Lemma 3 that this occurs with negligible
probability, and hence Hs and H» are computationally
indistinguishable.

o Hybrid Hy works in the same way as Hj, except
that if Extract(crs, ek,stmt, m) = w, and the wit-
ness corresponds to an honest party whose 7 is not
in £, then the experiment terminates with output “
SoundnessFailure”. We prove by Lemma 4 that this
happens with negligible probability, and hence H4 and
Hj3 are computationally indistinguishable.

o Hybrid H; works the same way as Hy, except that
the simulator sends (CreateProof,tag, msg) to the
ideal functionality (and when asked will later provide
m). If the functionality replies with (Declined), output
“GetProofFailure”. We prove by Lemma 5 that this
happens with negligible probability, which therefore
implies that H; and Hy are computationally indistin-
guishable.

« Hybrid Hg works the same way as Hj, except that the
outputs of the pseudorandom functions are replaced by
totally random strings.

H5Z
C? = F(PRF.sk;, v;| tag)

Hﬁ:
Cv « {0,1}*

By the pseudorandomness property of pseudorandom
functions as shown in Lemma 6, Hg and Hs are
computationally indistinguishable.

o Hybrid H; works the same way as Hg, except that
the commitments to PRF secret keys are replaced by
commitments to the zero string.

HGZ
CP" < Com(PRF.sky; s,r7)

H72
r <« {0,1}*

C’frf « Com(0*;7)

By the hiding property of the commitment scheme, as
shown in Lemma 7, H7 and Hg are computationally
indistinguishable.
Note that H~ is identical to the simulated world as described
in Figure 12. By a summation over the previous hybrids we
show that Hy ~ H7 by presenting the following supporting
lemmas.

Lemma 1. If Fro is modeled as random oracle then the
event ROFailure happens with negligible probability.

Proof: Recall from Figure 13 that when Sanon-Selection
receives a query = for Fro it parses * = (tag,i). Three
cases may arise:

1) Case 1: P, is honest : In this case, Sanon-Selection
simply outputs a random value y. This output is
distributed identically to the output of Fgro.

2) Case 2: P; is malicious and eligible : In this case

Shnon-Selection repeatedly samples a random value 7
until Eligible(r, stake, tag) = 1. This is done by
picking an 7 such that r < p - 2!*(*) (See Definition
of of Eligible in Figure 4).
Now, note that since » = v; is a random value, and
since f is a permutation, it follows that V; is also
random and thus is distributed identically to the output
of ]:RO'

3) Case 3: P; is malicious and not eligible :
argument as Case 2.

Similar

The bad case is when the simulator Sanon-Selection Obtains
a value V. = f(TRP.pk,r) that was already provided in
output for a previous Fro query (i.e., there exists a pair
(z',V) € Q). In this case the simulator aborts and outputs
ROFailure.

The probability of such event is gk, where ¢ is the number
of queries to the random oracle made by the adversary,
which is negligible.

|

Lemma 2. Assuming the zero-knowledge property of NIZK
proof, hybrid H1 and hybrid Hy are computationally indis-
tinguishable.

Proof: Assuming that there exists a PPT adversary A;,
such that :

PrlA(H,) =1] - Prl[A(Hy) =1] >p

then we can construct a PPT reduction Byzk that uses A1
as a subroutine to break the zero-knowledge property of
NIZK. We prove this by showing a challenger that interacts
with the Byizk adversary and outputs fail with negligible
probability.
Challenger Cnizk

1) Flip a coin b « {0,1}. If b = 0: crs is generated by

crs < NIZK.Setup(1*) else: (crs, 7, ek) < S1(1*)
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2) Give crs to Byjzk and get back b'. If b = b’ output fail
Bz (17)

1) Receive a common reference string crs from a NIZK
challenger CNIZK

Forward crs to the adversary A;, internally.

Execute the Initialization phase and ELIGIBLE phase
for all honest parties as in Hj.

In the CreateProof phase:

2)
3)

4)

o stmt = (rty, rtpy, tag, msg, CY)
o w = (i, PRF.sk;, v, 04, spr s, Pk;, pathy, pathg)
o Forward (stmt, w) to the NIZK challenger Cjzk

5)
6)
7

Receive back a NIZK proof mnzk
Send (msg, tag, m = (rty, rtp, C7, Tuizk)) to A
Output the bit &’ received from A;

Note that when b = 0, the view of the adversary Aj; is
exactly the same as in hybrid H;. When b = 1, then the
view of the adversary A, is exactly the same as in hybrid
Ho.

From our hypothesis, Aj> can distinguish the transcripts
with non-negligible probability p, thus the reduction can use
Ajp to break the zero-knowledge property of NIZK with
non-negligible probability. We thus we have a contradiction
since we assumed a secure NIZK proof system. |

Lemma 3. If NIZK has simulation sound extractability, then
“ExtractionFailure” happens with negligible probability.

Proof: If Extract(crs,stmt, ) outputs a w = L1,
this immediately breaks the simulation sound extractability
property of NIZK, since :

Pr[(crs, 7,ek) < Sy (17); (stmt, ) + AS2(7) (crs, ek);
w < Extract(crs, ek, stmt, 7) :
stmt ¢ Q A (stmt,w) ¢ £ A NIZK.Verify(crs, stmt, ) = 1]

~
~

Therefore with only very negligible probability do we get
the case *“ ExtractionFailure”. |

Lemma 4. Assuming the security of trapdoor permuta-
tion TRP, EUF-CMA unforgeability property of signature
scheme SIG and collision resistance of hash function H,
SoundnessFailure happens with negligible probability.
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(—(Simulator SAnon-SeIection }

Setup : Run &7 to generate a simulated crs,
trapdoor 7 and extraction key ek.

Initialization : For each honest party P; :
« Generate a valid TRP.pk; by running
TRP.KeyGen(1%).
o Generate a valid SIG.vk; by running
SIG.KeyGen(1*)
¢ Sample a randomness 7 and commit to zero -
Ccrrf = Com(0; 7).
« Publish pk; = (TRP.pk,, SIG.vk;, C?").
Generate a Merkle tree, MTree(pk) with all pk; as
leaves and obtain the root rtpy.

CreateProof: Upon receiving
(Prove, sid, msg, tag) from ideal functionality
pEligible
Anon-Selection*
« Compute a zero knowledge proof 7z for the
message (msg,tag), by calling the simulator
Sy on (crs, 7, stmt), where
stmt = (rty , rtpk, tag, msg, C), where C is
tag
sampled uniformly at random.
o Setm= (r‘cvmg'7 rtpk,'C’, 7zk) and store
(7, msg, tag) in a list L. N
o Send (Done, 7, tag, msg) to F'AE:fnb_ISdection.

Verify: Upon receiving (Verify, sid, tag, msg, 7)
from a corrupted party.

o If (m,msg, tag) € L, then send
(Verified, sid, 7, tag, msg,1).

« Else, compute V* = ProcessRO(tag) and
create a Merkle tree MTree(Vtag), with all
V*[i] as leaves and set the root of the Merkle
tree as rtg..

o Set stmt = (tag, msg, C, rt~, rty)

o If NIZK.Verify(crs, stmt, 7) = 0, ignore the
message.

« Else run Extract(crs, stmt, 7, ek) to get w.

— If w = 1, output “ExtractionFailure”

— Else let .
w = (i, pk;; sk, vi, 04, Sprfs szfv pathpk7
path», ) be the extracted witness. Obtain
identity 7. If P; is honest and m was not
in £, output “SoundnessFailure”.

o Send gCreateProof7 sid, tag, msg) to

Eligib
Angé'ﬁgiﬂﬁftb” on behalf of P;.
o If 78 replies with

non-Selection
(Prove, sid, tag, msg), then send

(Done, sid, 7, tag, msg)

-¢ Eligible .
o Else if Fy o lceiection replies

(Declined, sid, tag, msg), output
“GetProofFailure”

]_-Ellglble

Simulator for Anon-Selection

Figure 12.




,—| Simulating Fro N

« Initialize list Q = ()

« Upon receiving query = to Fro from some
party P: if there exists (z,y) € Q, output y,
Else parse x = (tag, i) and does the
following.

— if 4 such that P; ¢ set of malicious
parties, sample y randomly and store
Q=0QU(z,y).
else send (EligibilityCheck, sid, tag) to
JFEligible on behalf P; and obtain b.

Anon-Selection

find r such that

Eligible(r, (P;, stake;), tag) = b.

x Compute V = f(TRP.pk,, 7).

« If there exists (z, V) € Q, abort and
output “ROFailure”.

x Set y =V, and store (z,y) € Q.

* Output y.

*

Figure 13. Simulating random oracle queries

Proof: Recall that the difference between H3 and Hy
is that in H4 when the simulator extracts a witness

w = (i, pk,, PRF.sk;, vi, 04, Spry, C’frf7 path,, pathy;)

it outputs SoundnessFailure in the case of a bad event. The
bad event being: the witness belongs to some honest party
i and the proof 7 is not in the list £. For this bad event
to occur, there must exist an adversary AsoundnessFailure> that
can forge a valid proof for some honest party.

To prove that such a bad event occurs with negligi-
ble probability we construct a reduction which executes
AsoundnessFailure 88 a subroutine to break at least one of the
following properties.

o Security of trapdoor permutation. That is, we construct

a reduction By, that takes as input (TRP.pk,y) from
the trapdoor permutation challenger Cy,, and it uses the
adversary AsoundnessFailure @S @ subroutine to find the
inversion x corresponding to y.

o EUF-CMA unforgeability property of signature scheme.
That is, we construct a reduction Bgg that takes as
input a signature verification key SIG.vk from the
signature challenger Csig and it uses AsoundnessFailure
as a subroutine to find a valid forgery (m,o), where
m = msg||tag.

Collision-resistance of hash function. That is, we con-
struct a reduction Byash that uses AsoundnessFailure aS @
subroutine to find a collision of collision-resistant hash
function and send it to a hash function challenger Cyagh.

Claim 1. Assuming that there exists an adversary
AsoundnessFailure that can forge a valid proof for some honest
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party with non-negligible probability, then we can build a
reduction By, that uses AsoundnessFailure 0 break the one-
wayness of the trapdoor permutation with non-negligible
probability.

Proof: We describe how the reduction By, works.
The reduction By, takes as input a trapdoor permutation
public key TRP.pk and a random value y from the trapdoor
permutation challenger Cir,. The goal of By, is to output a
preimage of y.

Btrp

1) It computes the simulated common reference string crs
by computing (crs, 7, ek) < S;(1*) and forwards crs
to ASoundnessFailure-

2) Guess at random which index i* € H, AsoundnessFailure
will try to forge in the CreateProof phase, where H
is the set of honest parties.

a) Set TRP.pk;. = TRP.pk.

b) Generate each public key pk; for each honest
party, except that when it computes public key
pk,. for the party P;-, it includes the trapdoor
public key TRP.pk;..

Execute EligibilityCheck phase and simulate
Fro as in the previous hybrid but respond with
the random string y;~ = y when the honest party
P;« queries the random oracle.

It runs the adversary AsoundnessFailure O Obtain
(msg, tag, ) from the CreateProof phase, then
it parses ™ = (rtpk, rty, C, mnizk) and runs the
extraction algorithm Extract to extract the wit-
ness w < Extract(crs, ek, stmt, mnizk ), Where

c)

d)

w = (i, pk;, vi, 04, Spr, PRF.sk;, path, , pathy;)

and ¢ is the index of some honest party that the
adversary AsoundnessFailure 18 trying to forge.

3) If the guess i* # i, the reduction simply aborts
and outputs a random string x to the challenger Cyp.
Otherwise, the reduction Brgp forwards x = v; to the
challenger Cyp, as the preimage of y.

When AsoundnessFailure can forge a valid proof for some
honest party P; with some non-negligible probability p,
then the reduction Bygrp can break the security of trapdoor
permutation with non-negligible probability p/|#|, which
contradicts our assumption. ]

Claim 2. Assuming that there exists an adversary
AsoundnessFailure that can forge a valid proof for some honest
party with non-negligible probability, then we can build a
reduction Bsig that uses AsoundnessFailure t0 break the EU-
CMA unforgeability property of signature scheme with non-
negligible probability.

Proof: This proof is using standard techniques and for
completeness we describe it in our full version [20]
|
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Claim 3. Assuming that there exists an adversary
AsoundnessFailure that can forge a valid proof for some honest
party with non-negligible probability, then we can build a
reduction Bhasp that uses the adversary AsoundnessFailure 0
find a collision of the collision-resistant hash function used
in the Merkle tree with non-negligible probability.

Proof: This proof is using standard techniques and for
completeness we describe it in our full version [20]
|
Therefore, assuming AsoundnessFailure €an forge a valid
proof for some honest party with non-negligible probability,
then we can construct a reduction to break at least one of
the following properties: security of trapdoor permutation,
unforgeability of signature and collision resistance of hash
function. However, this contradicts to the assumption we
made. Therefore this completes the proof of the lemma. W

Lemma 5. If the simulation of Fro is correctly pro-
grammed, “GetProofFailure” occurs with negligible prob-
ability.

_Proof: “GetProofFailure” is output only when
Fargble  ion Teplies with (Declined, tag, msg), when

queried with the message (CreateProof, tag, msg).

Note that Fo&®e - sends the Declined command only

when T'(P;, tag) # 1. N

The ideal functionality Fr &P . sets T(P;, tag) = 1
only if Eligible((P;,stake;), tag,7) = 1. This implies for
P;, the predicate Eligible returned O if it received Declined
from the ideal functionality.

In H; we show that the the simulator creates a y for
malicious parties such that they are eligible or ineligible
according to the predicate Eligible. Therefore if an ex-
tracted witness has v; such that P; is eligible to speak for
tag, then Eligible(y, (P;,stake;),tag) = 1 and therefore
the ideal functionality sets T'(P;,tag) = 1. This implies
FAnon-Selection Will not send back Declined. We thus arrive
at a contradiction.

Therefore the “ GetProofFailure” occurs only with negligi-
ble probability. ]

Lemma 6. Assuming pseudorandomness property of PRFs,
the view of the adversary in hybrid Hs is indistinguishable
from the view of the adversary in hybrid Hg.

Proof:
This proof is using standard techniques and for complete-
ness we describe it in our full version [20] |

Lemma 7. Assuming the hiding property of commitment
scheme Com, the view of the adversary in hybrid Hg is
indistinguishable from the view of the adversary in hybrid
H-.

Proof:
This proof is using standard techniques and for complete-
ness we describe it in our full version [20] |
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This completes the proof of the theorem.

B. The multi-stake ideal functionality

In this section we present an ideal functionality for
anonymous lottery where parties are associated with multiple
units of stake and not necessarily a single unit of stake.

Eligible
’FAnon-Selection-MS )

The ideal functionality is parameterized by an Eligible predicate
and maintains the following elements: (1) A global set of registered
parties P = ((Pi,stakey), ..., (Py,stake,)). (2) A table T,
which has one row per party and a column for each tag given
by parties when checking eligibility. The table stores a tuple
(wt;, wt) of each party in each tag. (3) A list £, to store a
proof 7 corresponding to a message msg in some tag.
e Upon receiving (EligibilityCheck, sid, tag) from a party
P; € P do the following :

1) If P; € P and T'(P;,tag) is undefined, sample a
random number 7 € {0,1}¢ run
Eligible(r, (P;, stake; ), tag) to get a weight value
wt;. Set T(P;, tag) = (wt;, wt, = wt;)
Output (EligibilityCheck, sid, T'(P;, tag)) to P;.
receiving (CreateProof, tag, msg, wt;) from P; € P
Get (wt;,wt}) from T(P;,tag). If wt; > 0 and
wt; —wt; > 0, send (Prove, tag, msg) to A for
each k € [1,wt;]. Else, send (Declined, tag, msg) to
P;.
Upon receiving (Done, ¢, tag, msg) from A for
each k. Set 7y < 1)) and record (7, tag, msg) in
L for each k € [1,wt;]. Send (Proof, 7, tag, msg)
to P; for each k € [1,wt;] and set wt; = wt; — wt;
in T(P;, tag)
receiving (Verify, 7, tag, msg) from some party P’:

2)
e Upon

2)

e Upon
D

2)

If (7, tag, msg) € L output

(Verified, (7, tag, msg), 1) to P’.

If (7, tag, msg) ¢ L, send (Verify, (7, tag, msg) to

A and wait for a reply w from the adversary A.

Check if w is valid If yes :

— Extract (P;,tag, msg) from w and check that
T(P;,tag) >0

— If yes, store (,tag, msg) in the list £ and send
(Verified, (7, tag, msg), 1) to P’.

If either of these checks are false output

(Verified, (7, tag, msg),0) to P’.

Unlike the lottery functionality of Fr8Pe . here
parties receive a weight wt when they check their eligibility.
This wt is the number of messages they are allowed to
propose with a proof. The ideal functionality maintains a
variable wt/, for each party P; such that that for each message
sent in a tag, the functionality decrements wt; by 1 (as long
as wt’ > 0). This ensures that a party cannot create proofs
for > wt; number of messages in one tag. The verification
works like the single stake case, except that the functionality
now checks if T'(P;, tag) > 0 for a witness received from
the adversary. We highlight the differences from the single
stake ideal functionality in blue.

Authorized licensed use limited to: George Mason University. Downloaded on September 02,2020 at 13:47:53 UTC from IEEE Xplore. Restrictions apply.



