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Abstract—When Proof-of-Stake (PoS) underlies a consensus
protocol, parties who are eligible to participate in the protocol
are selected via a public selection function that depends on
the stake they own. Identity and stake of the selected parties
must then be disclosed in order to allow verification of their
eligibility, and this can raise privacy concerns.

In this paper, we present a modular approach for addressing
the identity leaks of selection functions, decoupling the problem
of implementing an anonymous selection of the participants,
from the problem of implementing others task, e.g. consensus.

We present an ideal functionality for anonymous selection
that can be more easily composed with other protocols. We then
show an instantiation of our anonymous selection functionality
based on the selection function of Algorand.

Keywords-Blockchain, Proof-of-Stake, Privacy

I. INTRODUCTION

Permissionless Blockchain. Permissionless blockchains,

first introduced in Bitcoin [1], are open systems where

any party is allowed to participate by provably investing

in some type of resource. Following this principle, many

other permissionless blockchains have been developed which

use different type of user resources (computation [1], mem-

ory [2], money [3], [4], [5], time [6], etc).

At the core of all permissionless blockchains, lies a

mechanism for selecting the party that will decide how to

extend the blockchain, that is, decide what will be the next

added block. This is a challenging task in a permissionless

setting, but thanks to the enforcement of provable user

resources and assuming a fixed upper bound of adversarial

resources, several selection methods have been shown to be

effective. For example, in Bitcoin, the selection method is

based on Proof-of-Work. The party to be selected is the

one to first solve a computationally hard puzzle (which is

fresh for each block and randomly generated by the system

protocol). To participate in the selection, a party only needs

to start working on the problem. Once a party finds a solution

it can announce it and gain the right to extend the blockchain

(as well as receive some rewards).

In Proof-of-Stake (PoS) blockchains (e.g., [3], [7]) in-

stead, the selection is performed according to the amount of

stake (e.g., tokens) a party owns in the system. For example,

Research Supported by NSF grants #1012798,#1764025

assuming that stake is money, a party is selected via a

randomized process, with probability that is proportional to

the amount of money she owns.

There is, however, a key difference between the two types

of selection. In proof-of-work, the proof of winning the

selection is a solution to a fresh, random puzzle, which

can be completely disconnected from the identity of the

winning party. As an example, let us consider the case of

Bitcoin. The first step of any party that wishes to participate

in the selection process is to assemble the block Bi+1 to

be added next on the blockchain if the party gets selected.

This block includes a pointer to the previous block Bi,

a set of transactions and a Bitcoin address to which the

potential reward will be sent. The exact information included

in the block defines the puzzle that the party needs to

solve. If a party solves the puzzle before hearing about

any other solution, it announces the block and the solution

(B, solution). As long as the solution is valid and this was

the first party to announce a solution for the next block, the

party gets elected. What is interesting to note in this process

is that the selection process does not depend on the identity

of the party (the address included in the block B can always

be a fresh one) – the proof of being selected is simply a valid

puzzle solution for a given block. In contrast, in Proof-of-

Stake selection it is not possible for parties to disconnect

their identity from the proof of winning the selection, since

their identity is part of the proof.

Anonymous Selection in Proof-of-stake Settings. The

selection function used in known proof-of-stake consensus

protocols must satisfy the following properties: privately

evaluated, publicly verifiable and fair. The first property says

that only the stakeholder can learn if she is eligible to speak

next, thus, the selection function can be evaluated only with

the knowledge of the secret key. This property is necessary

for preventing adaptive corruption of the selected party, and

is crucial for achieving consistency and chain-quality prop-

erties. The second property says that, a stakeholder PKi can

prove that she is eligible, by producing a proof that can be

verified by anyone having access to PKi (and corresponding

stake). The last property says that the probability of being

eligible follows a fixed and public metric of eligibility. This
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metric can be different in different applications. For proof-

of-stake consensus, the metric of fairness is that a party

wins with probability that is proportional to its stake. In

general, PoS protocols can have different eligibility criteria

(where the weight is scaled after a certain threshold, so that

rich people are not selected too often). Independently of the

eligibility criteria, a crucial property is that fairness must

hold even in case parties generate their keys maliciously.

That is, an adversary should not be able to craft keys that

allow her to hit the eligibility criteria with higher probability.
In this work we focus on anonymizing the selection

function in the Proof-of-Stake setting. Our goal is to provide

a formal definition of anonymous selection, and show an

instantiation.

A. Our Contributions
We now give an overview of our main contributions.

A Flexible Definition of Anonymous Selection. An anony-

mous Proof-of-Stake selection function should have all the

properties of a regular PoS selection (e.g., privately eval-

uated, publicly verifiable, fair), but additionally it should

guarantee that the proof of selection hides the identity of
the winner.

To capture all the above properties, we design an ideal

functionality that we call FAnon-Selection. Our ideal function-

ality allows parties to register their identity Pi (along with

associated stake stakei when relevant). Once all parties are

registered, any party can start making eligibility queries

which are associated to a “tag” tag. The semantic of a

tag depends on the application that invokes the selection

procedure. For example, in Algorand [7], a tag is a tuple

(round,step,seed) since this is the information that defines

when a new selection process must be performed. Similarly,

in Ouroboros PoS [3], a tag is of the form (epoch nonce,
slot number). A party Pi can ask FAnon-Selection if she

is eligible to speak for a certain tag. FAnon-Selection is

parameterized by an eligibility predicate Eligible, which on

input the tag tag and other information, such as stake,

returns a bit b ∈ {0, 1}. FAnon-Selection correctly evaluates

the predicate Eligible for Pi.
If eligible, Pi can then send FAnon-Selection a message m,

and obtain a proof π, for m and tag tag. For example, in

Algorand m could be a protocol message for the underlying

Byzantine Agreement, or a block proposed by a leader. Only

Pi can check her own eligibility, and this captures the private
evaluation property. The fairness property is captured by

the fact that FAnon-Selection only computes a valid proof for

parties that pass Eligible.
The proof π does not have any identity attached – cap-

turing the anonymity property. Any other party P (even if

not registered in the system) can later query FAnon-Selection
to verify that π is a valid proof for m, tag, and get yes/no

as an answer. This captures the public verifiability property.

Furthermore, only proofs that are generated by FAnon-Selection

will correctly verify, and this captures the correctness and

fairness of the system. An ideal functionality for anonymous

lottery is also defined in a concurrent work [8] (that we

discuss in more details in Section I-B). Their definition

differs from ours in the following crucial aspect. In [8],

when an eligible party asks the functionality to send m for

tag entry, the ideal functionality will broadcast the message

m to all parties in the system. This indeed captures what

typically happens in a consensus protocol, where messages

are broadcast to all parties. However, this approach presents

some potential drawbacks. First, anonymous selection and

anonymous broadcast seem to be problems of different na-

ture – one is at application level, the other is at network level.

In particular, the guarantees that one can achieve against

an adversary that can only act at application level might be

much stronger than the guarantees one could hope to achieve

against an adversary that works at network level. Indeed, it

has already been observed in previous work (see Sec VI - C

of [9], Sec 5.1 and 5.2 of [5] and Sec 4.2 of [10]) that there

is some seemingly inherent leakage at network level that an

adversary can exploit. Therefore, the anonymity guarantee

promised by the functionality described in [8] might not

be necessarily realizable (even in the ideal anonymous

broadcast hybrid model). Second, an ideal functionality that

enforces broadcast cannot be used in protocols where parties

do not need/want to broadcast their eligibility to the entire

network.

Our ideal functionality instead provides a proof π of

eligibility for a party Pi and does not enforce any further

action. This proof is an actual string that Pi can use in

another protocol. This makes our ideal functionality more

flexible and, we think, more easily composable with other

protocols. In our work we first present an ideal functionality

that allows parties to be eligible with the same weight. This

can capture the lottery of Ouroboros style protocols where

parties are selected with the same weight (but are selected

more often based on their stake - in different tag). Our

functionality also captures the lottery of Algorand if we

assume that each user is associated with one unit of stake. To

capture the lottery functionality of Algorand where parties

with different stake amounts are selected with different

weights, we present a modification of our ideal functionality

for the multi-stake setting FAnon-Selection-MS in Appendix B.

Note that the ideal functionality of [8] does not capture this

selection with multiple weights and cannot be used directly

to replace the lottery function of Algorand.

Instantiation from Algorand Selection Function. We

provide an implementation of FAnon-Selection based on the

underlying selection function of the Algorand protocol (as

described in [7], which works as follows. In Algorand, a

party Pi is identified by its public key pki. In order to check

availability for a certain tag, she uses her private (signing)

key ski to compute a signature on tag : σi = SIGski(tag).
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This signature is given as input to a random oracle H, i.e.

y = H(σi). The random output y is then used to check

eligibility: if y is below a threshold T , the party is selected,

and the proof is simply the pair (y, σi). In order to verify

such a proof one needs to use pki to verify the signature, and

this obviously requires leaking the identity of the selected

party.

To anonymize this selection function, a naı̈ve approach

would be to simply send y, and add a zero-knowledge

proof for the statement: “y is the correct output of the

random oracle evaluated on input a signature σ that verifies

under some pki present in the system (i.e., in the set of

all published public keys).” Note that the pre-image σi of

the random oracle must remain hidden, since it reveals the

identity of the stake-holder.

This straightforward approach, however, fails when H is

modeled as a random oracle, since it can only be used as a

black-box in the protocol. Thus one cannot prove properties

of pre-images of the random oracle unless the random oracle

is used as a black-box in the zero-knowledge proof (and no

succinct reusable black-box proofs are known to exist so

far). On the other hand, we stress that one cannot simply

replace H with a concrete hash function in the proof, since

the perfect unpredictability property of the random oracle is

crucially used in the proof of security, when arguing security

against maliciously chosen keys (for example see Sec. 3.2

of [11]).

Thus, as our second contribution we show how to over-

come the above issue and avoid using the random oracle in

the zero-knowledge proof, while still maintaining the same

selection function of Algorand. We devise a method that

allows one to prove properties about the “pre-image” of the

output of the random oracle, while still using the random

oracle as a black-box. Our approach is the following. Instead

of proving a statement about a secret function applied on the

input of the random oracle H we prove a statement about

a secret function applied to the output of H, which can

be public. Crucially, we need that the function applied to

the output y does not disturb the unpredictability properties

we get from the random oracle. To do so, we use trapdoor

permutations.

Our anonymous selection function therefore works as

follows. For each tag tag, there is a public value associated

to a party Pi which is Vi = H(i|tag), and can (but it

does not have to) be computed by everyone. Each party

Pi also has associated a public key TRP.pki for a trapdoor

permutation f . To check if eligible to speak for tag tag,

a party Pi proceeds as follows. She uses her trapdoor

key TRP.ski to compute vi = f−1
TRP.ski

(Vi) and then use

randomness vi to run predicated Eligible, which in Algorand

simply consists to check if vi < T . If eligible, Pi computes

a succinct non-interactive ZK argument (e.g. [12], [13])

proving that she knows a pre-image of one of the Vi that

makes her eligible. Note that values V1, . . . , VN can be

computed by everyone since they do not require any secret.

In fact they can be pre-computed in advance, and consumed

as the protocol proceeds. Note also that the statement of

the zero knowledge proofs does not need to contain the list

V1, . . . , VN but only their accumulated representation, that

is, the root of a Merkle Tree.

B. Related Work

Concurrently and independently to our work there have

been two relevant proposals: a framework of anonymous

PoS proposed by Ganesh, Orlandi and Tschudi [8] (in

Eurocrypt’19) and the “Ouroboros Crypsinous” protocol

proposed by Kerber, Kohlweiss, Kiayias and Zikas [5] (in

IEEE S&P’19). We will discuss both results and explain how

we differ.

The work by Ganesh et al. [8] is the most closely related

to ours. They introduce a clean framework to capture and

abstract the lottery aspect of proof-of-stake with an ideal

functionality, that they call Flottery. As discussed earlier,

the main difference with our formulation is that their ideal

lottery functionality captures more than just lottery, since

it also enforces broadcast of eligible messages, and this

modeling choice could present potential drawbacks. We also

note that even though Flottery abstracts the lottery from the

claimed results, it is unclear how Flottery is/can be used as a

black-box. Concretely, when claiming that “Ourobors Praos

instantiated with private lottery results in a private proof-

of-stake protocol” (See Corollary 1 of [8]), the informal
proof does not actually use the ideal lottery functionality

Flottery, parameterized with the eligibility predicate used in

Ouroboros Praos. Rather it uses the specific (game-based)

security properties of the specific implementations of the

anonymized version of the VRF used in Ouroboros Praos.

This raises some confusion about whether one should think

that Ouroboros Praos (with Anonymized VRF) is a secure

realization of Flottery or whether Flottery can be used as a

building block to realize a “private-proof-of-stake” protocol

(though no definition of “private-proof-of-stake” protocol is

provided in [8]).

Finally, [8] originally implemented Flottery by employing

the VRF used in Ouroboros Praos, which is anonymized

by simply adding a SNARK to prove that the VRF veri-

fies correctly. Such implementation required the verification

algorithm to evaluate the random oracle, and thus suffered

from the issue of proving a property about the output of

a random oracle (which we discussed above). An updated

version of [8] can be found in [14] which replaces the

VRF of Ouroboros Praos with the one used in Ouroboros

Crypsinous[5] and avoids using the random oracle in the

verification circuit used in the SNARK. We instead give

an implementation based on Algorand’s selection function.

Similarly to us, [8] guarantees anonymity only in presence

of static adversaries. Note however that our construction
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could actually provide adaptive security for correctness (not

anonymity). We discuss such an extension in Section VI-A.

Summing up, the key differences between our work

and [8] is in the definition – our allows composability

with more general protocols besides consensus– and in the

instantiation – we use the selection function of Algorand,

while [8] instantiate it using Ouroboros’s VRF.

Ouroboros Crypsinous [5] does not focus on the gen-

eral problem of anonymous selection in proof-of-stake set-

ting, rather it focuses on defining private proof-of-stake

blockchains. They provide an ideal “private ledger function-

ality” that aims to capture privacy of blocks and transactions.

They then show how to build a private blockchain for pay-

ments extending the Ouroboros protocol with a confidential-

ity layer. Confidentiality is preserved in presence of “semi-

adaptive” adversaries, that is, adversary that can corrupt a

party at any time, but cannot access the state of the corrupted

party immediately after corruption. Although their tech-

niques are very interesting, they are tied to the Ouroboros

PoS designs and private blockchains. Our work instead does

not aim at adding anonymity to the Ouroboros blockchain

specifically (though our technique could be used to hide the

stakeholder identity in the Ouroboros blockchain).

II. PRELIMINARIES

We start by setting the notation to be used throughout the

paper. By PPT we denote a probabilistic polynomial-time

algorithm. Let λ be the security parameter and ‖ denote

concatenation. We denote the uniform sampling of a value

r from a set D as r ← D and r1, · · · , rn ← D indicates

that we sample from D a uniformly random subset of n
elements. We use bold symbols for vectors of elements.

For a vector v, by v[i] we denote the ith entry of the

vector. We say a function f is negligible in λ if for every

polynomial p there exists a constant c such that f(λ) < 1
p(λ)

when λ > c. Two ensembles X = {Xλ,z}λ∈N,z∈{0,1}∗ and

Y = {Yλ,z}λ∈N,z∈{0,1}∗ of binary random variables are said

to be indistinguishable, X ≈ Y , if for all z it holds that

|Pr[Xλ,z = 1]− Pr[Yλ,z = 1]| is negligible in λ.

Let R be an efficiently computable binary relation. For

pairs (stmt, w) ∈ R we call stmt the statement and w the

witness. Let L be the language consisting of statements in

R.

Non-Interactive Zero Knowledge Proof (NIZK). We recall

the definition of a non-interactive zero knowledge proof

system (adapted from [15] and [16]).

A non-interactive zero-knowledge proof system for a rela-

tionR is defined as a set of probabilistic polynomial time al-

gorithms NIZK = (NIZK.Setup,NIZK.Prove, NIZK.Verify).
NIZK.Setup is a common reference string generation al-

gorithm that produces a common reference string crs of

length Ω(λ). The prover takes as input (crs, stmt, w) and

by running NIZK.Prove produces a proof π. The verifier

takes as input (crs, stmt, π) and runs NIZK.Verify to verify

the proof. The following properties need to be satisfied:

• Completeness: The NIZK proof system is complete if

an honest prover with a valid witness can convince an

honest verifier. For all adversaries A we have:

Pr[crs← NIZK.Setup(1λ); (stmt, w)← A(crs);
π ← NIZK.Prove(crs, stmt, w) :

NIZK.Verify(crs, stmt, π) = 1 ∧ (stmt, w) ∈ R] = 1

• Soundness: A NIZK proof system is sound if it is infea-

sible to convince an honest verifier when the statement

is false. For all polynomial size families {stmtλ} of

statements stmtλ /∈ L and all adversaries A we have:

Pr[crs←NIZK.Setup(1λ);π ← A(crs, stmtλ) :

NIZK.Verify(crs, stmtλ, π) = 1] ≤ negl(λ)

• Zero-Knowledge: A NIZK proof system is zero-

knowledge if the proofs π do not reveal any information

about the witness. That is, if there exists a polynomial

time simulator S = (S1,S2), where S1 returns a

simulated common reference string crs together with

a simulation trapdoor τ and an extraction key ek. The

trapdoor τ enables S2 to simulate proofs without access

to the witness. For all non-uniform polynomial time

adversaries A we have:

Pr[crs← NIZK.Setup(1λ) : ANIZK.Prove(crs,·,·)(crs) = 1]

≈ Pr[(crs, τ, ek)← S1(1λ) : AS(crs,τ,·,·)(crs) = 1]

where S(crs, τ, stmt, w) = S2(crs, τ, stmt) for

(stmt, w) ∈ R and both oracles output failure if

(stmt, w) /∈ R. Notice that we define the simulator

S1 as in [16], where S1 not only outputs a simulated

crs and a trapdoor τ , but also an extraction key ek.

We require the NIZK arguments to satisfy the following

simulation extractability property as defined in [16].

• Simulation Extractability: Simulation extractability is

a strong notion which requires that even after seeing

many simulated proofs (even for false theorems), when-

ever the adversary generates a new proof, a simulator is

able to extract a witness. More formally, a NIZK proof

system is said to be simulation extractable if it satisfies

computational zero-knowledge and additionally, there

exists a polynomial-time algorithm Extract, such that

for any polynomial-time adversary A, it holds that

Pr[(crs, τ, ek)← S1(1λ); (stmt, π)← AS2(crs,τ,·)(crs, ek);
w ← Extract(crs, ek, stmt, π) : stmt /∈ Q∧
∧ (stmt, w) /∈ L ∧ NIZK.Verify(crs, stmt, π) = 1] = negl(n)

where Q is the list of queries made by A.

Trapdoor Permutation. We adapt the definition of trapdoor

permutation from Bellare and Yung [17].
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Definition 1 (Trapdoor Permutation). We say that
(TRP.KeyGen, f, f−1) is a trapdoor permutation if the
following conditions hold:

• Generation: For all λ > 0, the output of TRP.KeyGen
on input 1λ is a pair of λ-bit strings TRP.pk,TRP.sk.

• Permutation: For all λ > 0 and (TRP.pk,TRP.sk) ∈
TRP.KeyGen(1λ), the maps fTRP.pk(·) and f−1

TRP.sk(·)
are permutations of {0, 1}λ which are inverse of
each other. That is f−1

TRP.sk(fTRP.pk(x)) = x and
fTRP.pk(f

−1
TRP.sk(y)) = y for all x, y ∈ {0, 1}λ.

• Security: For all probabilistic polynomial-time (PPT)
adversaries A, ∃ a negligible function negl(·) such that

Pr[fTRP.pk(x) = y : (TRP.pk,TRP.sk)← TRP.KeyGen(1λ );

y ← {0, 1}λ;x← A(1λ,TRP.pk, y)] ≤ negl(λ)

III. IDEAL FUNCTIONALITY FOR POS ANONYMOUS

SELECTION

We present a definition of our anonymous selection func-

tionality FEligible
Anon-Selection in the UC-framework of [18].

Assumptions. We start by stating our assumptions.

Stake: We consider a setting where each party is associated

with exactly one unit of stake. This ideal functionality can be

used to replace selection in lottery based protocols like [11]

and [7] if, for [7], we assume that each party is associated

with one unit of stake. We take this approach to describe a

lottery functionality to pick winners with the same weight

(=1). This simpler functionality will allow to showcase how

anonymity can be achieved in a simpler protocol, without

trivializing the problem. To keep the notation general we use

stakei to denote the stake of party Pi. We also describe a

modification of our ideal functionality to capture the lottery

of [7] in the multi-stake scenario (under the assumption that

majority of stake belongs to honest parties) where parties are

selected with some weight in Section VI-B and Appendix B.

Registration: Before the execution of the functionalities,

all parties register along with their stakes - (Pi, stakei) with

the functionality. By n we denote the number of registered

parties. Similar to [8] we consider a static setting where

new parties cannot register once the functionalities are being

executed.

Corruption model: We assume static corruption, i.e. the

corrupted parties are fixed throughout the entire execution.

Note that we can achieve security against an adaptive

adversary for correctness but achieve only static security for

anonymity.

Our proposed functionality. We describe our anonymous

selection functionality FEligible
Anon-Selection in Figure 1. By tag

we denote all public values corresponding to one execution

of the protocol such as round and step number, random

seed for the current round etc. Each registered party checks

if it is “eligible” to speak for a tag tag by using the

EligibilityCheck command which returns a bit b ∈ {0, 1}. If

the party is eligible to speak for tag, then b = 1, otherwise

b = 0. We stress that we add stake as an input for generality

only. As mentioned above we assume that stakei = 1.

The ideal functionality is parameterized by an

Eligible predicate and maintains the following

elements: (1) A global set of registered parties

P = ((P1, stake1), . . . , (Pn, staken)). (2) A

table T , which has one row per party and a

column for each tag ∈ N given by parties when

checking eligibility. The table stores the eligibility

information of each party in each tag. (3) A list

L, to store a proof π corresponding to a message

msg in some tag.

• Upon receiving (EligibilityCheck, sid, tag)
from a party Pi do the following :

1) If Pi ∈ P and T (Pi, tag) is undefined,

sample r ∈ {0, 1}� run

Eligible(r, stakei, tag) to get b ∈ {0, 1}.
Set T (Pi, tag) = b

2) Output (EligibilityCheck, T (Pi, tag)) to

Pi

• Upon receiving (CreateProof, sid, tag,msg)
from a party Pi:

1) If T (Pi, tag) = 1, send

(Prove, tag,msg) to A. Else, send

(Declined, tag,msg) to Pi.

2) Upon receiving (Done, ψ, tag,msg)
from A. Set π ← ψ and record

(π, tag,msg) in L. Send

(Proof, π, tag,msg) to Pi

• Upon receiving (Verify, sid, π, tag,msg)
from some party P ′:

1) If (π, tag,msg) ∈ L output

(Verified, sid, (π, tag,msg), 1) to P ′.
2) If (π, tag,msg) /∈ L, send

(Verify, sid, (π, tag,msg)) to A and

wait for a witness w from the adversary

A. Check if w is valid as follows:

– Parse w = (Pi, tag,msg) and check

that T (Pi, tag) = 1
– If yes, store (π, tag,msg) in the list

L and send

(Verified, sid, (π, tag,msg), 1) to P ′.
If either of these checks are false output

(Verified, sid, (π, tag,msg), 0) to P ′.

Figure 1. Anonymous selection functionality

Functionality FEligible
Anon-Selection
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If a party is eligible to speak and wishes to send the

message msg, she can later query the ideal functionality

via the command (CreateProof, tag,msg) to obtain a proof

π that she can use in any other protocol. Note that the

FEligible
Anon-Selection will provide such proof if the party was

marked as Eligible for the tag. Any party that receives such

a pair (msg, π) for a tag, can verify that the proof is correct

by simply querying (Verify, π, tag,msg) to FEligible
Anon-Selection.

Note that the verification does not require any information

on the identity of the sender of the proof, thus capturing

the property of anonymity. Moreover, we note that the ideal

functionality only maintains a list of proofs and does not

store the identity of the party along with the proof in the

list L.

Our implementation additionally requires the standard

random oracle functionality FRO which is defined in Fig-

ure 2.

The functionality is parameterized by the security

parameter λ. We write T [x] = ⊥ to denote the

fact that no pair of the form (x, ·) is in T .

• Upon receiving (EVAL, x) from a party P do:

1) If T [x] = ⊥, sample a value y
uniformly at random from {0, 1}λ, set

T [x]← y and add (x, T [x]) to T .

2) Return (EVAL, x, T [x]) to the requester.

Figure 2. The random oracle functionality

Functionality FRO

IV. REALIZATION OF FEligible
Anon-Selection

In this section we propose a protocol ΠEligible
Anon-Selection to

realize the ideal functionality FEligible
Anon-Selection from Section

III. Our realization is inspired by the selection algorithm

of Algorand [7], which is run by every party to check if

they are selected into a committee. To ease presentation

we first describe how the selection algorithm of Algorand

works in Section IV-A before we present our implementation

ΠEligible
Anon-Selection in Section IV-B.

A. Selection Function in Algorand

In Figure 3 we describe the selection function used in

Algorand (that we recast using our notation). Specifically, we

consider the function described in the so called “theoretical

paper” [7] where it is assumed that each public key is

associated with one unit of stake. This implies that during the

selection process each party is either selected to participate

in the next round of the Algorand protocol or not1. This

1Note that in a later paper which describes the implementation of the
Algorand system [19], it is assumed that each public key can have variable
amounts of stake and during the selection process each selected party
receives a weight that defines the power of the party in the later steps.

is a quite natural property of lottery protocols where each

party holds one or more tickets (public keys for the case

of Algorand) and some of them are selected while others

aren’t. Though our main construction is in this single-stake

setting we give an intuition to extend the protocol to the

multistake setting in Section VI-B.

A party (Pi, stakei) runs the selection algorithm

to check if it is eligible to send messages in a

following step of Algorand’s protocol. Each party

maintains a Table that stores the tag the party is

eligible to speak in.

Initialization(1λ)

• Generate signature key pair

(SIG.vki, SIG.ski)← SIG.KeyGen(1λ).
• Generate a master key pair

(MPK,MSK)← KeyGen(1λ).
• Generate ephemeral signature key pairs for

|U | number of tag,

{ESIG.skij,ESIG.vkij}j∈1...|U |.
• Publish (MPK, {ESIG.vkij}, SIG.vki)

CheckEligibility(tag)

• Compute sorthashi = H(SIGski
(tag))

• Run bi ← Eligible(sorthashi, stakei, tag).
• Store Table(tag) = bi.

CreateProof(tag,msg)

• If Table(tag) = 0, output ⊥.

• If Table(tag) = 1, output

(ESIGskitag(msg), SIGski
(tag), sorthashi, tag)

Verify(π, tag,msg)

• Check that SIGski(tag) is a valid signature.

• Check that H(SIGski(tag)) = sorthash.

• Check that Eligible(sorthashi, 1, tag) = 1.

• Output 1, if all checks pass.

Figure 3. Algorand’s selection algorithm

Algorand’s selection algorithm

The Algorand selection process works as follows. Parties

run the Initialization protocol to generate their keys as soon

as they join the network and publish their public keys:

a master public key and a signature verification key, as

(MPK, SIG.pki). Using the master public key, each party

generates a large number of ephemeral keys (U = 106 ×m
according to [7], where m is the expected number of steps

of each execution of the protocol).

Parties run the selection function at different stages of the

protocol to check if they are selected to speak in a specific

stage. In Algorand a stage is identified by step number, round

number and a random seed . We will use the notation tag
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to capture the item for which the party wishes to test if she

is selected. To check if a party can speak for an item tag

the party first computes a value vi = H(σi) where σi is

the signature computed over tag using the signing key. The

random value vi is then used as input to the function Eligible
described in Figure 4.

Note that the Eligible function takes as input stakei as

well, but is not explicitly used since in our setting we assume

that only one unit of stake is associated with each public key.

Parties who are eligible to speak can obtain a publicly ver-

ifiable proof via the algorithm CreateProof, which takes in

input the message they want to send. Note that CreateProof
also includes an ephemeral signature on the message to

ensure adaptive security, that is if the party is corrupted later,

it cannot create a valid signature since the ephemeral key is

deleted immediately.

To verify, parties use procedure Verify, which will check

the validity of the signatures using the public key and check

that the hash satisfies the properties required by the function

Eligible.

B. Our Anonymized Selection Protocol

We now describe the protocol that realizes the

FEligible
Anon-Selection functionality using the selection function

(Eligible) of Algorand. Following [7], we assume that each

public key is associated with one unit of stake. Note that this

does not trivialize the problem, since it is still necessary

to hide the identity of the user eligible to speak. Thus in

our instantiation and all further descriptions, assume that

stakei = 1.

Global variables for the protocol are totalStake
and τ . totalStake defines the total stake of the

parties in the network and τ is the expected

number of parties to be selected (this depends on

the tag).

1 : p← τ

totalStake
2 : bi ← 0

3 : if
vi

2len(vi)
< p then

4 : bi ← 1

5 : return bi

Figure 4. The eligibility predicate

Function Eligible(vi, stakei, tag)

We assume there is a mechanism in place to register the

public keys of the parties. This should ensure that the party

does not create more public keys than the stake it owns.

This bootstrapping ensures that the list of public keys is

fixed before the execution of the protocol and all parties

can see this list of public keys.

We require the following cryptographic primitives:

1) Non-interactive zero knowledge proofs that al-

low the operations NIZK.Setup, NIZK.Prove and

NIZK.Verify.

2) A trapdoor permutation scheme that allows parties to

evaluate a trapdoor permutation on an input x using

their public key TRP.pk by evaluating y = fTRP.pk(x).
The parties can compute the inverse of y using the

corresponding secret key TRP.sk by evaluating x =
f−1
TRP.sk(y).

3) A signature scheme that allows parties to sign a

message using their secret key (SIG.sk) - σ =
SIG.sign(SIG.sk,m) and verification is done by

SIG.Ver(SIG.pk, σ,m)
4) A commitment scheme that allows parties to commit

to a message x, by computing C = Com(x, s) and

a pseudorandom function F , that parties can evaluate

using their secret key PRF.sk by computing Cprf =
F (PRF.sk, x)

We now describe the different steps of the protocol:

Setup(1λ) : The public parameters pp contain the common

reference string of NIZK, crs ← NIZK.Setup(1λ) and a

public list L initialized to ∅.
Initialization(Pi) (Key Generation) : Pi runs the key gen-

eration algorithm, KeyGen, as soon as he registers with the

network. KeyGen takes as input the public parameters pp.

For each unit of stake that Pi owns, it does the following

: Run KeyGen to output a PRF secret key PRF.ski ←
PRF.KeyGen(1λ) , compute a commitment to the PRF secret

key Cprf
i = Com(PRF.ski; sprf ), a trapdoor permutation

key pair (TRP.pki,TRP.ski) ← TRP.KeyGen(1λ) and a

signature key pair (SIG.ski, SIG.vki) ← SIG.KeyGen. Pi

then publishes pki = (TRP.pki, SIG.vki, C
prf
i ) and stores

the secret key ski = (PRF.ski,TRP.ski, sprf , SIG.ski). The

pki is published to a public list L. A Merkle tree, MTree(pk)
with root rtpk is created with this list

L = {(Cprf
i , SIG.vk1,TRP.pk1), · · · , (Cprf

n , SIG.vkn,TRP.pkn)}
and can be viewed by all parties in the world. The initial-

ization protocol is described in Figure 6.

EligibilityCheck(Pi, tag) : For each tag Pi runs the

ProcessRO algorithm (see Figure 5) to compute a vector
�Vtag = (�Vtag[1], �Vtag[2], · · · , �Vtag[n]), where n is the total

number of keys (also equal to totalStake, since one key is

generated for one unit of stake) in the system. The �Vtag is

stored as a Merkle tree, MTree(�Vtag) with root rt�Vtag
. The

idea is that for each key, Pi owns in MTree(pk), there is a

corresponding �Vtag[i] in the same position in MTree(�Vtag).

This vector �Vtag is computed for each tag and serves as

a trapdoor permutation whose inverse (vi) is computed by

the party. Only party Pi can compute the inverse of this

permutation since only Pi knows the trapdoor secret key. To

ensure that the party uses the correct secret key, we require
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that the position of �Vtag[i] and the tuple containing TRP.pki
are the same in the corresponding merkle trees.

The algorithm takes as input a tag and does the

following:

• For all i ∈ [n]:

1) Query (Eval, tag‖i) to the ideal

functionality FRO.

2) Receive message (Eval, tag‖i, Vi) from

FRO.

• Output a vector �V where each element
�V [i] = Vi.

Figure 5. ProcessRO algorithm

Protocol ProcessRO(tag)

1 : Generate (TRP.pki,TRP.ski)← TRP.KeyGen(1λ)

2 : Generate (PRF.ski)← PRF.KeyGen(1λ)

3 : Generate (SIG.pki, SIG.ski)← SIG.KeyGen(1λ)

4 : Sample s← {0, 1}λ and compute

Cprf
i := Com(s,PRF.ski)

The protocol publishes the variables : pki :=
(TRP.pki, SIG.vki, C

prf
i ) as leaves of MTree(pk)

and returns ski = (TRP.ski, SIG.ski, (s,PRF.ski))
to Pi.

Figure 6. Initialization protocol for ΠEligible
Anon-Selection

Protocol Initialization(Pi, sid)

Using this �Vtag[i] Pi computes

vi = f−1
TRP.ski

(�Vtag[i]). (1)

Pi then evaluates the Eligible function as shown in Figure 4

to check if the party can speak for item tag. The eligibility

check is shown in Figure 7.

1 : Call processRO(tag) and receive �Vtag

2 : Compute vi = f−1
TRP.ski

(�Vtag[i])

3 : Call Eligible(vi, stakei, tag) and receive btag

4 : Output (btag, vi, �Vtag).

Figure 7. Eligibility check for ΠEligible
Anon-Selection

Protocol EligibilityCheck(Pi, sid, tag)

CreateProof(Pi, tag,msgi, vi, �Vtag) : If Pi is eligible to

speak for item tag it commits to its winning ticket vi. The

commitment is implemented using a pseudorandom function

F and is constructed as follows : Cv
i = F (PRF.ski, vi‖tag).

We are required to hide the value vi so that identity of

the party is not revealed. (One may simply run fTRP.pki(vi)
for all identities and identify who sent the message).

At the same time we require the commitment to be deter-

ministic, else a malicious party may speak multiple times in

the same tag, with the same vi by just using a different

randomness each time. To ensure that a malicious party

cannot send multiple (potentially conflicting) messages, we

require the commitment to be deterministic and hence use a

PRF.

Pi then constructs a NIZK that proves the following

statements:

• “I know vi, such that �Vtag[i] = fTRP.pki(vi)”
• “I am eligible to speak for tag according to randomness

vi.”
• “Cv

i is correctly computed as F (PRF.ski, vi‖tag)”
• “I know the path from pki which is the leaf of a

Merkle tree MTree(pk), that contains commitment of

my PRF secret key, trapdoor public key and signature

verification key, to the root of the Merkle tree.”

• “I know the path from �Vtag[i], which is the leaf of a

Merkle tree MTree(�Vtag) that contains all the elements

in vector �Vtag, to the root of the Merkle tree.”

More formally, the NIZK statement and proof for the lan-

guage L characterized by the relation R is computed as

follows:

π ← NIZK.Prove(crs, x, w) (2)

• statement x = (rt�Vtag
, rtpk, tag,msg, C

v
i ,
�Vtag).

• witness w = (i,PRF.ski, vi, σ, sprf , pki, pathpk, path�Vtag
),

where pki = (TRP.pki, Sig.vki, Cprf ).
• R(x,w) = 1 if and only if:

1) Cv
i = F (PRF.ski, vi‖tag)

2) Cprf
i = Com(PRF.ski; sprf )

3) Vi = fTRP.pki(vi)

4) Vi = �Vtag[i]
5) Eligible(vi, stakei, tag) = 1
6) σ = SIG.Sign(SIG.ski,msg‖tag)
7) SIG.Ver(SIG.vki, σ,msg‖tag) = 1
8) validPathh(pathpk, rtpk, pki) = 1

9) validPathh(path�Vtag
, rt�Vtag

, �Vtag[i]) = 1

The protocol for creating the proof is shown in Figure 8.
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1 : Compute Cv
i = F (PRF.ski, vi‖tag)

2 : Let rt�Vtag
be the root of MTree(�Vtag)

3 : Let path�Vtag[i]
be the path to �Vtag[i] in MTree(�Vtag)

4 : Let rtpk be the root of MTree(pk)

5 : Let pathpki be the path to pki in MTree(pk).

6 : Compute σi = SIG.Sign(SIG.ski,msgi‖tag)
7 : Let x = (rt�Vtag

, rtpk, tag,msgi, C
v
i )

8 : Let w = (i,PRF.ski, vi, pki, pathpki , path�Vtag[i]
, σi)

9 : Compute πNIZK := NIZK.Prove(crs, x, w)

as shown in Equation 2

10 : Set πi := (rt�Vtag
, rtpk, C

v
i , πNIZK) and output πi

Figure 8. Creating a proof in ΠEligible
Anon-Selection

Protocol CreateProof(Pi, sid,msgi, tag, vi, �Vtag)

Verify(tag,msg, π) : Party Pi on receiving a message

from another party first runs ProcessRO algorithm to

compute �Vtag. The zero knowledge proof π is parsed

as (rt�V , rtpk, C, πNIZK). Pi then sets the statement x to

be (rt�Vtag
, rtpk, tag, msg, C) and checks if NIZK.Verify

(crs, x, πNIZK) = 1. If it checks out then Pi accepts the

message, else it rejects the message. The protocol for

verification of a message is shown in Figure 10.

The overall protocol is described below in Figure 9.

A party Pi executes the protocol

ΠEligible
Anon-Selection in the following way:

1 : Call Initialization(Pi, sid) to get (pki, ski)

2 : To publish a message msgi in tag :

3 : Call EligibilityCheck(Pi, sid, tag) to get

btag, �Vtag and vi.

4 : if btag = 1 then

call CreateProof(Pi, sid,msgi, tag, vi, �Vtag)

to get πi

5 : Output (msgi, tag, πi)

6 : To verify a message(msg, tag, π) in tag :

7 : Call Verify(sid, tag,msg, π)

and output the bit it returns.

Figure 9. Anonymous Selection protocol - ΠEligible
Anon-Selection

Protocol ΠEligible
Anon-Selection(sid)

1 : Call ProcessRO(tag) and receive �Vtag

2 : Parse π = (rt�Vtag
, rtpk, C, πNIZK)

3 : Set x = (rt�Vtag
, rtpk, C, tag,msg)

4 : Check that NIZK.Verify(crs, x, πNIZK)
?
= 1

5 : If yes, output 1; else output 0

Figure 10. Verifying a proof in ΠEligible
Anon-Selection

Protocol Verify(sid, tag,msg, π)

V. PROOF(SKETCH)

Theorem 1. The protocol πEligible
Anon-Selection (Fig. 9) UC-realizes

the FEligible
Anon-Selection functionality (Fig. 1) in the FRO-hybrid

model, assuming anonymous multicast communications, se-
cure pseudorandom functions, secure simulation-sound ex-
tractable NIZKs, trapdoor permutations and unforgeable
signatures, in the presence of a PPT adversary.

Overview of the Simulator. In order to prove UC-security

we need to show that there exists a PPT simulator inter-

acting with FAnon-Selection that generates a transcript that is

indistinguishable from the transcript generated by the real

world adversary running the protocol πEligible
Anon-Selection.

We first give a high-level description of the simulator

(described in Figure 12 and Figure 13) - SAnon-Selection.

Our simulator leverages the programmability of the random

oracle FRO and the extractability and simulatability of the

underlying NIZK. Hence, the simulator SAnon-Selection will

make use of the NIZK simulators (S1,S2) to correctly setup

the CRS in simulation mode and to simulate NIZK proofs

and the algorithm Extract to extract the witness from proofs

received from the adversary.

SAnon-Selection first sets up a crs using S1. Then, for each

honest party Pi present in the system (recall that we are in

the static setting, so on the onset the simulator knows the

set of honest parties), the simulator generates their public

key: (TRP.pk,SIG.vk, Cprf ). Differently from a honest key,

Cprf is a commitment to 0 instead of the PRF secret key.

When the simulator receives (Prove,msg,tag) from the

ideal functionality FEligible
Anon-Selection, it must provide a proof

for the pair (msg, tag), even without knowing the identity

of the party requiring this proof. The simulator will use

the underlying zero-knowledge simulator S2 to compute the

proof π and return it to the ideal functionality, as well as

storing π in a list L of proofs computed so far.

The simulator detects whether a malicious party is at-

tempting to learn if she is eligible to speak, by monitoring

the queries to the random oracle FRO. When the query has

the form (tag, i) for a index i such that Pi is corrupted,

the simulator will first query FAnon-Selection with command

EligibilityCheck to check if Pi is eligible to speak for tag.
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If so, the simulator will program the random oracle with a

value that makes Pi pass the selection function.

Finally, when the adversary sends Verify for a pair

(msg, π), the simulator SAnon-Selection first checks if this

proof is in the list L. If so, answers Verified to the party.

Otherwise, the simulator checks if π is valid, by running

NIZK.Verify. If the proof is valid, the simulator attempts

to extract the witness using Extract. If the extraction fails,

the simulator will abort with a message ExtractionFailure.

Else, if the extracted witness contains key material from

an honest party, then the simulator abort with a message

SoundnessFailure. Else, the simulator sends CreateProof
to FAnon-Selection on input msg. If FAnon-Selection replies

Declined, then abort the protocol.

SAnon-Selection also simulates the random oracle, where for

any query (i, tag) where Pi belongs to the set of honest

party, the simulator replies with a uniformly sampled random

value.

We prove indistinguishability of the simulation through

a series of hybrids. The crux of the proof is to show that

the probability of the simulator aborting is negligible. In

the following we summarize the failure events and give an

intuition on why they happen with negligible probability.

• ROFailure - The simulator aborts with this message, if

the output of a FRO query from a malicious party is

already stored in the table for some other previously

queried value. We show that this happens with negligi-

ble probability in Lemma 1.

• ExtractionFailure - The simulator aborts with this mes-

sage if it is unable to extract a witness from zero

knowledge proof, using its simulated crs. This occurs

with negligible probability since we assume simulation-

extractable zero knowledge proofs.

• SoundnessFailure - The simulator aborts with this mes-

sage if the extracted witness corresponds to that of

an honest party, and the NIZK proof was not in the

list of proofs that is maintained by the simulator. This

would imply that the real-world adversary spoofed a

valid witness for an honest party, which implies that

the real-world adversary has either broken the one-

wayness of the trapdoor permutation, unforgeability of

the signature scheme, or the collision resistance of the

hash function used in the Merkle tree.

• GetProofFailure - The simulator aborts with this mes-

sage if the ideal functionality FAnon-Selection replies with

message Declined for a query that corresponds to an

eligible party. This occurs with negligible probability

if FRO was programmed correctly and is shown in

Lemma 5.

Finally, we stress that in our proof we will assume that all

messages are exchanged via a secure anonymous multicast

channel. For the full proof please refer to Appendix A.

VI. EXTENSIONS FOR ADAPTIVITY AND THE

MULTI-STAKE SETTING

A. Correctness in Presence of Adaptive Adversaries

Our protocol in section IV-B assumes static corruption

of parties. Below we give an intuition on how to achieve

adaptive security for the correctness of the protocol, though

not for anonymity (since we do not use adaptive secure

NIZKs).

Ephemeral Keys of Algorand[7] - Algorand uses

ephemeral keys and secure erasures to achieve adaptive

security for the safety property. Parties sign a message in

a step of a round with an ephemeral key and then erase this

key as soon as they send their message.

A party Pi generates a master public key and master secret

key (MPKi,MSKi) at initialization. Using the MSK, Pi

generates ephemeral keys of the form skr,si . Here r ∈ [r′ +
1, r′+106] for some r′ and s ∈ [1,m] where m is the upper

bound in number of steps in a round. Once the keys are

generated, Pi erases MSK. Pi also erases skr,si at the end

of the step. To verify a message signed using skr,si a party

needs to know the MPK and r, s.

Adaptive secure protocol idea : To achieve adaptive

security in our protocol we assume erasures and ephemeral

signatures as in Algorand. We describe the modifications to

the protocol below:

Initialization : A party Pi generates a signature key pair

(SIG.mski, SIG.mvki) ← SIG.KeyGen and a fixed number

(say t) of ephemeral secret keys {eskji}tj=1 such that for any

j, Verify(SIG.mvki, Sig(esk
j
i ,m)) = 1. Pi erases SIG.mski

after computing these ephemeral keys. After t number of

tag has elapsed, the party generates new signature keys. We

assume each key esktag is linked to an tag as in Algorand

where - (mvk, tag) is used to verify a signature signed using

esktag.

Create Proof : The party Pi now has to prove an additional

statement which says - “I know a master public key that can

verify a signature signed by an ephemeral key for a particular

tag”. More formally:

Statement : x = (rtpk, tag)

Witness : w = (esktagi , pki = (·, SIG.mvki, ·), pathpk)
Proof : Verify(SIG.mvki, Sig(esk

tag
i ,m‖tag)) = 1 and

validPathh(pathpk, rtpk, pki) = 1

Remark. We note that in order to achieve adaptive security,

we need to make new assumptions and additionally pay

higher computational costs. In terms of efficiency, each party

now has to maintain a large number of ephemeral keys. They

need to update these keys after a certain number of tag. In

terms of assumptions we need to assume secure erasures

and that all parties erase their keys after they use them in

a specific tag. We do not have these issues if we assumed

a weaker static adversary, but are necessary for an adaptive

adversary.
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Since we only claim adaptive security for the correctness

of the protocol, the simulator SAnon-Selection can simulate the

protocol. The only change would be that the simulator now

sets up a master verification key in the pk for all parties.

B. Multi-stake setting

Our protocol in section IV-B assumes that each pki is

associated with exactly one unit of stake. In the following

we give an intuition as to how we can associate multiple

units of stake to each public key. The key idea is that if

a party has multiple stake then the party is selected with a

weight denoted wti, similar to the sortition algorithm shown

in [19] (See Fig 11). The challenge we observe here is that

we cannot reveal wti, since wti is proportional to the stake

of the party. Therefore for a party Pi to publish a message

it sends wti unlinkable proofs for the same message msgi.
We refer to each unit of wt as an index. We must ensure that

the party Pi does not send more than wti messages nor does

it send different messages with different proofs for the same

index, else a malicious party could send more messages than

wti.

Multi-stake protocol idea: We describe the modifica-

tions required of the protocol ΠEligible
Anon-Selection described above:

Initialization : We assume that parties create commitments

to their stake, cmi = Com(vi) and publish this commitment

to create a merkle tree of coin commitments (MTree(cm)
with root rtcm).

Eigibility Check: The function Eligible now returns wttagi

instead of btag

Create Proof: We first modify the “deterministic commit-

ment” - Cv
i as Cv

i,index = F (PRF.ski, ‖vi‖tag‖index). The

party evaluates wti number of Cv
i,index (basically for each

index ∈ [1,wti]. This ensures that a party can create exactly

one proof for one index.

Pi now proves the following statements:

• “I know vi, such that �Vtag[i] = fTRP.pki(vi)”
• “I know the path from cmi which is the leaf of a

Merkle tree MTree(cm), that contains commitment of

my stakei to the root of the Merkle tree.”

• “I am eligible to speak for tag according to randomness

vi and stake stakei with weight wti.”
• “Cv

i,index is correctly computed as

F (PRF.ski, vi‖tag‖index) and index ∈ [1,wti]”
• “I know the path from pki which is the leaf of a

Merkle tree MTree(pk), that contains commitment of

my PRF secret key, trapdoor public key and signature

verification key, to the root of the Merkle tree.”

• “I know the path from �Vtag[i], which is the leaf of a

Merkle tree MTree(�Vtag) that contains all the elements

in vector �Vtag, to the root of the Merkle tree. ”

Global variables for the protocol are totalStake
and τ . totalStake defines the total stake of the

parties in the network and τ is the expected num-

ber of parties to be selected (this depends on the

tag). Here B(k; stake, p) =
(
stake
k

)
pk(1− p)stake−k

and
∑stake

k=0 B(k; stake, p) = 1 as in [19]

p← τ

totalStake
wti ← 0

while
vi

2len(vi)
/∈ [

wti∑

k=0

B(k; stakei, p),

wti+1∑

k=0

B(k; stakei, p))

wti = wti + 1

return wti

Figure 11. The eligibility function for multi stake

Function Eligible(vi, stakei, tag)

More formally, the NIZK statement and proof for the lan-

guage L characterized by the relation R is computed as

follows (we denote in red the differences in the statements

we prove for the single stake setting):

π ← NIZK.Prove(crs, x, w) (3)

• statement x = (rt�Vtag
, rtpk, rtcm, tag,msg, C

v
i,index,

�Vtag)

• witness w = (i,wti, stakei, index,PRF.ski, vi, σ,
sprf , pki, pathpk, path�Vtag

, pathcm, cmi),

where pki = (TRP.pki, Sig.vki, Cprf ).
• R(x,w) = 1 if and only if:

1) Cv
i,index = F (PRF.ski, vi‖tag‖index)

2) index ∈ [1,wti]
3) Cprf

i = Com(PRF.ski; sprf )
4) cmi = Com(stakei)
5) Vi = fTRP.pki(vi)

6) Vi = �Vtag[i]
7) Eligible(vi, stakei, tag) = wti
8) σ = SIG.Sign(SIG.ski,msg‖tag)
9) SIG.Ver(SIG.vki, σ,msg‖tag) = 1

10) validPathh(pathpk, rtpk, pki) = 1

11) validPathh(path�Vtag
, rt�Vtag

, �Vtag[i]) = 1

12) validPathh(pathcm, rtcm, cmi) = 1

Remarks. Note that this protocol does not realize the

ideal functionality defined in Figure 1, instead it realizes

a modified functionality for multi-stake presented in Ap-

pendix B. Note that for multiple stake we assume that we

have commitments to stake as in Zerocash [9]. For this work

we do not consider updates to stake.
The simulator SAnon-Selection will be modified in the fol-

lowing way to simulate the multi-stake protocol. In ini-

tialization create a cmi = Com(0λ; r) for each honest
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party Pi and publish it. Create a merkle tree MTree(cm)
with root rtcm. The statement of the proofs created in

response to Prove will now include rtcm. For Verify,

when the simulator extracts the witness it now includes

stakei, wti, pathcm and cmi. SAnon-Selection now sends to

FAnon-Selection a message (CreateProof, sid, tag,msg) at

most wti times. If it receives (Declined, sid, tag,msg)

for any of these queries, output “GetProofFailure”. In

the simulation of FRO the simulator now receives

wti when it sends (EligibilityCheck, sid, tag) to the

FAnon-Selection. The simulator then finds an r such that

Eligible(r, stakei, tag) = wti (pick an r in the interval

[
∑wti

k=0B(k; stakei, p),
∑wti+1

k=0 B(k; stakei, p)) )
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APPENDIX

A. Security Proof

Proof:
Indistinguishability Proof. We prove that the real execu-

tion of the protocol in the FRO-hybrid world is indistinguish-

able from the execution in the simulated world through a

series of hybrids.

• Let the hybrid H0 denote the real world execution.

• Hybrid H1 is the same as H0 except that any calls

to random oracle FRO is replaced with simulated

responses as shown in Figure 13. When the simulation

aborts, it outputs “ROFailure”. Note that H0 and H1

can be distinguished in the event of “ROFailure”. We

prove in Lemma 1 that H0 and H1 are indistinguish-

able, since the event “ROFailure” occurs with negligible

probability.

• Hybrid H2 executes in the same way as H1, except

that the crs is now replaced by a simulated crs and all

honest proofs are now simulated.

329

Authorized licensed use limited to: George Mason University. Downloaded on September 02,2020 at 13:47:53 UTC from IEEE Xplore.  Restrictions apply. 



H1:

crs← NIZK.Setup(1λ)

π ← NIZK.Prove(crs, stmt, w)

H2:

(crs, ek, τ)← S1(1λ)
π ← S2(crs, τ, stmt)

H2 and H1 are computationally indistinguishable due

to the computational zero-knowledge property of NIZK

as proved in Lemma 2.

• Hybrid H3 executes in the same way as H2, except that

the simulator extracts a witness for a message (msg, π)
that was not generated by it. That is, it runs Extract
(crs, ek, stmt, πNIZK). If the output is ⊥, then the ex-

periments terminates with output “ExtractionFailure”.

We prove in Lemma 3 that this occurs with negligible

probability, and hence H3 and H2 are computationally

indistinguishable.

• Hybrid H4 works in the same way as H3, except

that if Extract(crs, ek,stmt, π) = w, and the wit-

ness corresponds to an honest party whose π is not

in L, then the experiment terminates with output “

SoundnessFailure”. We prove by Lemma 4 that this

happens with negligible probability, and hence H4 and

H3 are computationally indistinguishable.

• Hybrid H5 works the same way as H4, except that

the simulator sends (CreateProof, tag,msg) to the

ideal functionality (and when asked will later provide

π). If the functionality replies with (Declined), output

“GetProofFailure”. We prove by Lemma 5 that this

happens with negligible probability, which therefore

implies that H5 and H4 are computationally indistin-

guishable.

• Hybrid H6 works the same way as H5, except that the

outputs of the pseudorandom functions are replaced by

totally random strings.

H5:

Cv
i = F (PRF.ski, vi‖tag)

H6:

Cv
i ← {0, 1}λ

By the pseudorandomness property of pseudorandom

functions as shown in Lemma 6, H6 and H5 are

computationally indistinguishable.

• Hybrid H7 works the same way as H6, except that

the commitments to PRF secret keys are replaced by

commitments to the zero string.

H6:

Cprf
i ← Com(PRF.ski; sprf )

H7:

r ← {0, 1}λ

Cprf
i ← Com(0λ; r)

By the hiding property of the commitment scheme, as

shown in Lemma 7, H7 and H6 are computationally

indistinguishable.

Note that H7 is identical to the simulated world as described

in Figure 12. By a summation over the previous hybrids we

show that H0 ≈ H7 by presenting the following supporting

lemmas.

Lemma 1. If FRO is modeled as random oracle then the
event ROFailure happens with negligible probability.

Proof: Recall from Figure 13 that when SAnon-Selection
receives a query x for FRO it parses x = (tag, i). Three

cases may arise:

1) Case 1: Pi is honest : In this case, SAnon-Selection
simply outputs a random value y. This output is

distributed identically to the output of FRO.

2) Case 2: Pi is malicious and eligible : In this case

SAnon-Selection repeatedly samples a random value r
until Eligible(r, stake, tag) = 1. This is done by

picking an r such that r < p · 2len(v) (See Definition

of of Eligible in Figure 4).

Now, note that since r = vi is a random value, and

since f is a permutation, it follows that Vi is also

random and thus is distributed identically to the output

of FRO.

3) Case 3: Pi is malicious and not eligible : Similar

argument as Case 2.

The bad case is when the simulator SAnon-Selection obtains

a value V = f(TRP.pk, r) that was already provided in

output for a previous FRO query (i.e., there exists a pair

(x′, V ) ∈ Q). In this case the simulator aborts and outputs

ROFailure.

The probability of such event is q
2λ

, where q is the number

of queries to the random oracle made by the adversary,

which is negligible.

Lemma 2. Assuming the zero-knowledge property of NIZK
proof, hybrid H1 and hybrid H2 are computationally indis-
tinguishable.

Proof: Assuming that there exists a PPT adversary A12

such that :

Pr[A(H1) = 1]− Pr[A(H2) = 1] > p

then we can construct a PPT reduction BNIZK that uses A12

as a subroutine to break the zero-knowledge property of

NIZK. We prove this by showing a challenger that interacts

with the BNIZK adversary and outputs fail with negligible

probability.

Challenger CNIZK

1) Flip a coin b ← {0, 1}. If b = 0: crs is generated by

crs← NIZK.Setup(1λ) else: (crs, τ, ek)← S1(1λ)
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2) Give crs to BNIZK and get back b′. If b = b′ output fail

BNIZK(1
λ)

1) Receive a common reference string crs from a NIZK

challenger CNIZK

2) Forward crs to the adversary A12 internally.

3) Execute the Initialization phase and ELIGIBLE phase

for all honest parties as in H1.

4) In the CreateProof phase:

• stmt = (rt�V , rtpk, tag,msg, C
v
i )

• w = (i,PRF.ski, vi, σi, sprf , pki, pathpk, path�V )
• Forward (stmt, w) to the NIZK challenger CNIZK

5) Receive back a NIZK proof πNIZK

6) Send (msg, tag, π = (rt�V , rtpk, C
v
i , πNIZK)) to A12

7) Output the bit b′ received from A12

Note that when b = 0, the view of the adversary A12 is

exactly the same as in hybrid H1. When b = 1, then the

view of the adversary A12 is exactly the same as in hybrid

H2.

From our hypothesis, A12 can distinguish the transcripts

with non-negligible probability p, thus the reduction can use

A12 to break the zero-knowledge property of NIZK with

non-negligible probability. We thus we have a contradiction

since we assumed a secure NIZK proof system.

Lemma 3. If NIZK has simulation sound extractability, then
“ExtractionFailure” happens with negligible probability.

Proof: If Extract(crs, stmt, π) outputs a w = ⊥,

this immediately breaks the simulation sound extractability

property of NIZK, since :

Pr[(crs, τ, ek)← S1(1λ); (stmt, π)← AS2(crs,τ,·)(crs, ek);
w ← Extract(crs, ek, stmt, π) :

stmt /∈ Q ∧ (stmt, w) /∈ L ∧ NIZK.Verify(crs, stmt, π) = 1] ≈
0

Therefore with only very negligible probability do we get

the case “ ExtractionFailure”.

Lemma 4. Assuming the security of trapdoor permuta-
tion TRP, EUF-CMA unforgeability property of signature
scheme SIG and collision resistance of hash function H ,
SoundnessFailure happens with negligible probability.

Setup : Run S1 to generate a simulated crs,
trapdoor τ and extraction key ek.

Initialization : For each honest party Pi :

• Generate a valid TRP.pki by running

TRP.KeyGen(1λ).
• Generate a valid SIG.vki by running

SIG.KeyGen(1λ)
• Sample a randomness r and commit to zero -

Cprf = Com(0λ; r).
• Publish pki = (TRP.pki, SIG.vki, C

prf ).

Generate a Merkle tree, MTree(pk) with all pki as

leaves and obtain the root rtpk.

CreateProof: Upon receiving

(Prove, sid,msg, tag) from ideal functionality

FEligible
Anon-Selection.

• Compute a zero knowledge proof πZK for the

message (msg, tag), by calling the simulator

S2 on (crs, τ, stmt), where

stmt = (rt�Vtag
, rtpk, tag,msg, C), where C is

sampled uniformly at random.

• Set π = (rt�Vtag
, rtpk, C, πZK) and store

(π,msg, tag) in a list L.

• Send (Done, π, tag,msg) to FEligible
Anon-Selection.

Verify: Upon receiving (Verify, sid, tag,msg, π)
from a corrupted party.

• If (π,msg, tag) ∈ L, then send

(Verified, sid, π, tag,msg,1).

• Else, compute �V ∗ = ProcessRO(tag) and

create a Merkle tree MTree(�Vtag), with all
�V ∗[i] as leaves and set the root of the Merkle

tree as rt�V ∗ .

• Set stmt = (tag,msg, C, rt �V ∗ , rtpk)
• If NIZK.Verify(crs, stmt, π) = 0, ignore the

message.

• Else run Extract(crs, stmt, π, ek) to get w.

– If w = ⊥, output “ExtractionFailure”

– Else let

w = (i, pki, ski, vi, σi, sprf , C
prf
i , pathpk,

path �V ∗) be the extracted witness. Obtain

identity i. If Pi is honest and π was not

in L, output “SoundnessFailure”.

• Send (CreateProof, sid, tag,msg) to

FEligible
Anon-Selection on behalf of Pi.

• If FEligible
Anon-Selection replies with

(Prove, sid, tag,msg), then send

(Done, sid, π, tag,msg)
• Else if FEligible

Anon-Selection replies

(Declined, sid, tag,msg), output

“GetProofFailure”

Figure 12. Simulator for FEligible
Anon-Selection

Simulator SAnon-Selection
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• Initialize list Q = ∅
• Upon receiving query x to FRO from some

party P : if there exists (x, y) ∈ Q, output y,

Else parse x = (tag, i) and does the

following.

– if i such that Pi /∈ set of malicious

parties, sample y randomly and store

Q = Q ∪ (x, y).
– else send (EligibilityCheck, sid, tag) to

FEligible
Anon-Selection on behalf Pi and obtain b.

∗ find r such that

Eligible(r, (Pi, stakei), tag) = b.
∗ Compute V = f(TRP.pki, r).
∗ If there exists (x, V ) ∈ Q, abort and

output “ROFailure”.

∗ Set y = V , and store (x, y) ∈ Q.

∗ Output y.

Figure 13. Simulating random oracle queries

Simulating FRO

Proof: Recall that the difference between H3 and H4

is that in H4 when the simulator extracts a witness

w = (i, pki,PRF.ski, vi, σi, sprf , C
prf
i , pathpk, path�V )

it outputs SoundnessFailure in the case of a bad event. The

bad event being: the witness belongs to some honest party

i and the proof π is not in the list L. For this bad event

to occur, there must exist an adversary ASoundnessFailure, that

can forge a valid proof for some honest party.

To prove that such a bad event occurs with negligi-

ble probability we construct a reduction which executes

ASoundnessFailure as a subroutine to break at least one of the

following properties.

• Security of trapdoor permutation. That is, we construct

a reduction Btrp that takes as input (TRP.pk, y) from

the trapdoor permutation challenger Ctrp and it uses the

adversary ASoundnessFailure as a subroutine to find the

inversion x corresponding to y.

• EUF-CMA unforgeability property of signature scheme.

That is, we construct a reduction Bsig that takes as

input a signature verification key SIG.vk from the

signature challenger Csig and it uses ASoundnessFailure

as a subroutine to find a valid forgery (m,σ), where

m = msg‖tag.

• Collision-resistance of hash function. That is, we con-

struct a reduction Bhash that uses ASoundnessFailure as a

subroutine to find a collision of collision-resistant hash

function and send it to a hash function challenger Chash.

Claim 1. Assuming that there exists an adversary
ASoundnessFailure that can forge a valid proof for some honest

party with non-negligible probability, then we can build a
reduction Btrp that uses ASoundnessFailure to break the one-
wayness of the trapdoor permutation with non-negligible
probability.

Proof: We describe how the reduction Btrp works.

The reduction Btrp takes as input a trapdoor permutation

public key TRP.pk and a random value y from the trapdoor

permutation challenger Ctrp. The goal of Btrp is to output a

preimage of y.

Btrp
1) It computes the simulated common reference string crs

by computing (crs, τ, ek)← S1(1λ) and forwards crs
to ASoundnessFailure.

2) Guess at random which index i∗ ∈ H, ASoundnessFailure

will try to forge in the CreateProof phase, where H
is the set of honest parties.

a) Set TRP.pki∗ = TRP.pk.

b) Generate each public key pki for each honest

party, except that when it computes public key

pki∗ for the party Pi∗ , it includes the trapdoor

public key TRP.pki∗ .

c) Execute EligibilityCheck phase and simulate

FRO as in the previous hybrid but respond with

the random string yi∗ = y when the honest party

Pi∗ queries the random oracle.

d) It runs the adversary ASoundnessFailure to obtain

(msg, tag, π) from the CreateProof phase, then

it parses π = (rtpk, rt�V , C, πNIZK) and runs the

extraction algorithm Extract to extract the wit-

ness w ← Extract(crs, ek, stmt, πNIZK), where

w = (i, pki, vi, σi, sprf ,PRF.ski, pathpk, path�V )

and i is the index of some honest party that the

adversary ASoundnessFailure is trying to forge.

3) If the guess i∗ 
= i, the reduction simply aborts

and outputs a random string x to the challenger Ctrp.

Otherwise, the reduction BTRP forwards x = vi to the

challenger Ctrp as the preimage of y.

When ASoundnessFailure can forge a valid proof for some

honest party Pi with some non-negligible probability p,

then the reduction BTRP can break the security of trapdoor

permutation with non-negligible probability p/|H|, which

contradicts our assumption.

Claim 2. Assuming that there exists an adversary
ASoundnessFailure that can forge a valid proof for some honest
party with non-negligible probability, then we can build a
reduction Bsig that uses ASoundnessFailure to break the EU-
CMA unforgeability property of signature scheme with non-
negligible probability.

Proof: This proof is using standard techniques and for

completeness we describe it in our full version [20]
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Claim 3. Assuming that there exists an adversary
ASoundnessFailure that can forge a valid proof for some honest
party with non-negligible probability, then we can build a
reduction Bhash that uses the adversary ASoundnessFailure to
find a collision of the collision-resistant hash function used
in the Merkle tree with non-negligible probability.

Proof: This proof is using standard techniques and for

completeness we describe it in our full version [20]

Therefore, assuming ASoundnessFailure can forge a valid

proof for some honest party with non-negligible probability,

then we can construct a reduction to break at least one of

the following properties: security of trapdoor permutation,

unforgeability of signature and collision resistance of hash

function. However, this contradicts to the assumption we

made. Therefore this completes the proof of the lemma.

Lemma 5. If the simulation of FRO is correctly pro-
grammed, “GetProofFailure” occurs with negligible prob-
ability.

Proof: “GetProofFailure” is output only when

FEligible
Anon-Selection replies with (Declined, tag,msg), when

queried with the message (CreateProof, tag,msg).
Note that FEligible

Anon-Selection sends the Declined command only

when T (Pi, tag) 
= 1.
The ideal functionality FEligible

Anon-Selection sets T (Pi, tag) = 1
only if Eligible((Pi, stakei), tag, r) = 1. This implies for

Pi, the predicate Eligible returned 0 if it received Declined
from the ideal functionality.
In H1 we show that the the simulator creates a y for

malicious parties such that they are eligible or ineligible

according to the predicate Eligible. Therefore if an ex-

tracted witness has vi such that Pi is eligible to speak for

tag, then Eligible(y, (Pi, stakei), tag) = 1 and therefore

the ideal functionality sets T (Pi, tag) = 1. This implies

FAnon-Selection will not send back Declined. We thus arrive

at a contradiction.
Therefore the “ GetProofFailure” occurs only with negligi-

ble probability.

Lemma 6. Assuming pseudorandomness property of PRFs,
the view of the adversary in hybrid H5 is indistinguishable
from the view of the adversary in hybrid H6.

Proof:
This proof is using standard techniques and for complete-

ness we describe it in our full version [20]

Lemma 7. Assuming the hiding property of commitment
scheme Com, the view of the adversary in hybrid H6 is
indistinguishable from the view of the adversary in hybrid
H7.

Proof:
This proof is using standard techniques and for complete-

ness we describe it in our full version [20]

This completes the proof of the theorem.

B. The multi-stake ideal functionality

In this section we present an ideal functionality for

anonymous lottery where parties are associated with multiple

units of stake and not necessarily a single unit of stake.

The ideal functionality is parameterized by an Eligible predicate
and maintains the following elements: (1) A global set of registered
parties P = ((P1, stake1), . . . , (Pn, staken)). (2) A table T ,
which has one row per party and a column for each tag given
by parties when checking eligibility. The table stores a tuple
(wti, wt′i) of each party in each tag. (3) A list L, to store a
proof π corresponding to a message msg in some tag.

• Upon receiving (EligibilityCheck, sid, tag) from a party
Pi ∈ P do the following :

1) If Pi ∈ P and T (Pi, tag) is undefined, sample a
random number r ∈ {0, 1}� run
Eligible(r, (Pi, stakei), tag) to get a weight value
wti. Set T (Pi, tag) = (wti,wt

′
i = wti)

2) Output (EligibilityCheck, sid, T (Pi, tag)) to Pi.

• Upon receiving (CreateProof, tag,msg,wtj) from Pi ∈ P
1) Get (wti,wt

′
i) from T (Pi, tag). If wti > 0 and

wt′i − wtj ≥ 0, send (Prove, tag,msg) to A for
each k ∈ [1,wtj ]. Else, send (Declined, tag,msg) to
Pi.

2) Upon receiving (Done, ψk, tag,msg) from A for
each k. Set πk ← ψk and record (πk, tag,msg) in
L for each k ∈ [1,wtj ]. Send (Proof, πk, tag,msg)
to Pi for each k ∈ [1,wtj ] and set wt′i = wt′i − wtj
in T (Pi, tag)

• Upon receiving (Verify, π, tag,msg) from some party P ′:
1) If (π, tag,msg) ∈ L output

(Verified, (π, tag,msg), 1) to P ′.
2) If (π, tag,msg) /∈ L, send (Verify, (π, tag,msg) to

A and wait for a reply w from the adversary A.
Check if w is valid If yes :

– Extract (Pi, tag,msg) from w and check that
T (Pi, tag) > 0

– If yes, store (π, tag,msg) in the list L and send
(Verified, (π, tag,msg), 1) to P ′.

If either of these checks are false output
(Verified, (π, tag,msg), 0) to P ′.

FEligible
Anon-Selection-MS

Unlike the lottery functionality of FEligible
Anon-Selection, here

parties receive a weight wt when they check their eligibility.

This wt is the number of messages they are allowed to

propose with a proof. The ideal functionality maintains a

variable wt′i for each party Pi such that that for each message

sent in a tag, the functionality decrements wt′i by 1 (as long

as wt′ > 0). This ensures that a party cannot create proofs

for > wti number of messages in one tag. The verification

works like the single stake case, except that the functionality

now checks if T (Pi, tag) > 0 for a witness received from

the adversary. We highlight the differences from the single

stake ideal functionality in blue.
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