
Efficient Noninteractive Certification
of RSA Moduli and Beyond

Sharon Goldberg1(B) , Leonid Reyzin1 , Omar Sagga1 ,
and Foteini Baldimtsi2

1 Boston University, Boston, MA, USA
{goldbe,reyzin}@cs.bu.edu, osagga@bu.edu
2 George Mason University, Fairfax, VA, USA

foteini@gmu.edu

Abstract. In many applications, it is important to verify that an RSA
public key (N, e) specifies a permutation over the entire space ZN , in
order to prevent attacks due to adversarially-generated public keys.
We design and implement a simple and efficient noninteractive zero-
knowledge protocol (in the random oracle model) for this task. Appli-
cations concerned about adversarial key generation can just append our
proof to the RSA public key without any other modifications to exist-
ing code or cryptographic libraries. Users need only perform a one-time
verification of the proof to ensure that raising to the power e is a per-
mutation of the integers modulo N . For typical parameter settings, the
proof consists of nine integers modulo N ; generating the proof and veri-
fying it both require about nine modular exponentiations.

We extend our results beyond RSA keys and also provide efficient
noninteractive zero-knowledge proofs for other properties of N , which
can be used to certify that N is suitable for the Paillier cryptosystem, is
a product of two primes, or is a Blum integer. As compared to the recent
work of Auerbach and Poettering (PKC 2018), who provide two-message
protocols for similar languages, our protocols are more efficient and do
not require interaction, which enables a broader class of applications.

1 Introduction

Many applications use an RSA public key (N, e) that is chosen by a party who
may be adversarial. In such applications, it is often necessary to ensure that
the public key defines a permutation over ZN : that is, raising to the power e
modulo N must be bijective, or, equivalently, every integer between 0 and N −1
must have an eth root modulo N . An attacker who deliberately generates a
bad key pair may subvert the security of other users—see for example, [MRV99,
CMS99,MPS00,LMRS04]. In particular, our work was motivated by TumbleBit
[HAB+17], a transaction-anonymizing system deployed [Str17] on top of Bitcoin,
in which a bad key pair can lead to a devastating attack (see footnote 2 in Sect. 5
for the attack specifics).

Interactive proofs for correctness of RSA keys are available (see, for example,
[AP18] and references therein), but interaction with the key owner is often not
c© International Association for Cryptologic Research 2019
S. D. Galbraith and S. Moriai (Eds.): ASIACRYPT 2019, LNCS 11923, pp. 700–727, 2019.
https://doi.org/10.1007/978-3-030-34618-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34618-8_24&domain=pdf
http://orcid.org/0000-0002-1002-3332
http://orcid.org/0000-0002-2052-8203
http://orcid.org/0000-0002-5554-027X
http://orcid.org/0000-0003-3296-5336
https://doi.org/10.1007/978-3-030-34618-8_24

Efficient Noninteractive Certification of RSA Moduli and Beyond 701

possible in the application. Thus, the folklore solution, used, for example, in
[MRV99,CMS99,MPS00,LMRS04], is to choose the public RSA exponent e such
that e is prime and larger than N . This solution has two major drawbacks.

First, because the folklore solution requires e > N , e is not in the set of
standard values typically used for e in RSA implementations e.g., e ∈ {3, 17, 216+
1}. Unless a large prime value for e is standardized, before using the public key,
one would have to perform a one-time primality test on e, to ensure that e really
is prime. This primality test is quite expensive (see Sect. 5).

Second, most RSA implementations choose a small value for e, typically
from a set of standard values e ∈ {3, 17, 216 + 1}. Choosing a small e signifi-
cantly reduces the cost of performing RSA public key operations. However, this
efficiency advantage is eliminated in the folklore solution, which requires e > N .
Unlike the previous drawback, which results in a one-time cost for each public
key used, this drawback makes every public-key operation about two orders of
magnitude more expensive.

In addition, this solution is not compatible with existing RSA standards
and off-the-shelf implementations. This is because the folklore solution does not
ensure that the public key operation is a permutation over ZN , where ZN =
{0, 1, ..., N − 1}. Instead, it ensures only that the public key operation defines
a permutation over the set Z

∗
N , where Z

∗
N is the set of values in ZN that are

relatively prime with N . Thus, there are no assurances about the values in the set
ZN −Z

∗
N , i.e., the set of values that are less than N but not relatively prime with

N . (To see this, consider the example N = 9 and e = 11.) If the RSA public key
is generated honestly, this is not a problem, because the set ZN − Z

∗
N contains

only a negligible fraction of ZN . However, if an adversary chooses the RSA
public key (N, e) maliciously, then it could choose N so that the set ZN −Z

∗
N is

a large fraction of ZN .1 To address this attack, the folklore solution additionally
requires a gcd check along with every RSA public-key operation, to ensure that
the exponentiated value is relatively prime with N .

1.1 Our Contributions

Proving that an RSA Key Specifies a Permutation over all of ZN We present a
simple noninteractive zero-knowledge proof (NIZK) in the random oracle model,
that allows the holder of an RSA secret key to prove that the corresponding
public key defines a permutation over all of ZN , without leaking information
about the corresponding secret key. Our NIZK can be used even when the RSA
exponent e is small, which is useful for applications that require fast RSA public
key operations. In addition to the NIZK algorithm and a concrete security proof,

1 It has been observed that such an N could be detected by checking if N has small
divisors. However, the risk of being detected is not usually an adequate deterrent,
unless implemented and deployed as part of a protocol. But if such a check is
deployed, then the adversary, knowing what check has been deployed, could set
divisors of N to be just slightly larger than the limits of the check, and thus still
ensure that ZN − Z

∗
N is a nonnegligible fraction of ZN .

702 S. Goldberg et al.

we present a detailed specification of the prover and verifier algorithms, as well as
production-quality implementation and an analysis of its performance. Because
our NIZK is for all values in ZN , it is compliant with existing cryptographic
specifications of RSA (e.g., RFC8017 [MKJR16]).

For typical parameter settings, our NIZK consists of 9 elements of ZN . Gen-
erating the NIZK costs roughly 9 full-length RSA exponentiations modulo N .
Meanwhile, each verifier pays the one-time cost of verifying our NIZK, which
is also roughly equal to 9 full-length exponentiations. When compared to the
folklore solution we described earlier, our solution (1) avoids the more expensive
one-time primality test and (2) allows the verifier to continue using a small value
of e, resulting in better performance for every public-key verification.

We view this result as of most immediate practical applicability (in fact, it has
already been deployed). We therefore present not only a high-level explanation
of this protocol (Sect. 3.3), but also its detailed specification (AppendixC) and
implementation results (Sect. 5 and code at [cod]).

Suitability for Paillier and Other Properties of N . We also present simple NIZK
proofs for several other properties of N , such as ensuring that N is square-free
(Sect. 3.2), is suitable for Paillier encryption (required in [Lin17] and [HMRT12];
see Sect. 3.2), is a product of exactly two primes (Sect. 3.4), or is a Blum inte-
ger (i.e., product of two primes that are each 3 modulo 4; see Sect. 3.5). Most
of these problems have been addressed only via interactive protocols in prior
literature [AP18]. Noninteractive proofs have considerably broader applicability
than interactive ones, because the owner of the public key can simply generate
a nonineractive proof once and publish it once together with the public key,
whereas in the interactive, the owner needs to be online, handle potentially high
query loads, and be subject to denial of service attacks.

Our proofs for square-freeness and suitability for Paillier are of similar effi-
ciency to the permutation proof, requiring only 8 elements in ZN for typical
parameter settings and 8 full-length modular exponentiations. Our proofs for
products of two primes and Blum integers require the proof of square-freeness
and a test for prime powers (same as in [AP18]), plus one more component, which
is less efficient for the prover, but more efficient for the verifier. For 128-bit secu-
rity, this additional component requires about 1420 square root operations ZN

by the prover (note, however, that this is done one-time during key generation).
The verifier, on the other hand, needs to perform only Jacobi-symbol computa-
tions and modular squarings, which are much more efficient, making the verifier
cost comparable to the cost of just a few full-length modular exponentiation.
This additional component requires the publication of 1420 elements of ZN .

All of our protocols are presented first as two-message public-coin honest-
verifier protocols. We then convert them to noninteractive using the Fiat-Shamir
heuristics, by obtaining the verifier’s public-coin message through an application
of the random oracle to the protocol input (see Sect. 4). They all have per-
fect completeness, perfect honest-verifier zero-knowledge, and statistical sound-
ness, with the exception of the protocol for showing that N is a product of

Efficient Noninteractive Certification of RSA Moduli and Beyond 703

two primes, which has computational honest-verifier zero-knowledge under the
quadratic residuosity assumption.

1.2 Related Work

Auerbach and Poettering [AP18] present two-message interactive protocols in the
random oracle model for the same problems as we consider, with the exception of
proving that (N, e) specifies a permutation over ZN (they prove only that (N, e)
specifies a permutation over Z

∗
N , which, would require users to modify their

RSA implementations to add a gcd computation to every public-key operation).
As already mentioned, noninteractive protocols have broader applicability than
interactive ones. It is much more appealing to be able to post, say an RSA public
key along with a NIZK proof of being well formed, as opposed to be expected
to run an online, interactive protocol with each verifier. Their protocols for
proving that (N, e) specifies a permutation, N is square-free, or is suitable for
Paillier, are all considerably less efficient than ours, requiring 81–128 modular
exponentiations for 128-bit security level. Their protocols for proving that N is
a product of exactly two primes or is a Blum integer are also less efficient for the
verifier (because the first step in those protocols is proving square-freeness); they
are about 10 times more efficient for the prover if we consider only one-time use,
but, because they are interactive, they must be run repeatedly by the prover,
while in our noninteractive case, the prover needs to run them only once.

Kakvi, Kiltz, and May [KKM12] show how to verify that RSA is a permuta-
tion by providing only the RSA public key (N, e) and no additional information,
as long as e > N1/4. They also show that when e is small, it is impossible,
under reasonable complexity assumptions, to verify that (N, e) is a permutation
without any additional information [KKM12, Section 1]. Thus, their approach
cannot be used when e is small. We circumvent their impossibility by having the
prover additionally provide our NIZK (rather than just (N, e)) to the verifier.

Wong, Chan, and Zhu [WCZ03, Section 3.2] and Catalano, Pointcheval, and
Pornin [CPP07, Appendix D.2] present interactive protocols (using techniques
similar to ours) that, like the protocols of [AP18], also work only over Z∗

N rather
than the entire ZN .

The protocols given by Camenisch and Michels [CM99, Section 5.2] and
Benhamouda et al. [BFGN17] achieve much stronger goals. The former proves
N = pq is a product of two safe primes (i.e., p, q, (p − 1)/2, and (q − 1)/2 are all
prime); the second can prove that any prespecified procedure for generating the
primes p and q was followed. These protocols can be used to prove that (N, e)
specifies a permutation by imposing mild additional conditions on e (and the
prime generation procedure for [BFGN17]). However, these stronger goals are
not necessary for our purposes. Our protocol is considerably simpler and more
efficient, and does not restrict p and q in any way.

Our protocol for showing that (N, e) specifies a permutation over ZN builds
on the protocol of Bellare and Yung [BY96], who showed how to prove that

704 S. Goldberg et al.

any function is “close” to a permutation. However, “close” is not good enough
for our purposes, because the adversary may be able to force the honest par-
ties to use the few values in ZN at which the permutation property does not
hold. Thus, additional work is required for our setting. This additional work is
accomplished with the help of a simple sub-protocol from Gennaro, Micciancio,
and Rabin [GMR98, Section 3.1] for showing the square-freeness of N (a similar
sub-protocol in the interactive setting was discovered earlier by Boyar, Friedl,
and Lund [BFL89, Section 2.2]). We demonstrate how to combine the ideas of
[BY96] and [GMR98] to prove that (N, e) specifies a permutation over ZN .

2 Preliminaries

Some number-theoretic preliminaries are presented in AppendixA.
Here, we first recall the standard notion of honest-verifier zero-knowledge

(HVZK).

Definition 1. (Honest-Verifier Zero Knowledge (HVZK)) An interactive proof
system between a prover and verifier (P, V) for a NP language L is said to be
honest-verifier zero knowledge if the following properties hold:

1. (perfect) Completeness. For every x ∈ L and every NP-witness w for x,

Pr[〈P (x,w), V (x)〉 = 1] = 1.

2. (statistical) Soundness. For every x �∈ L and every interactive algorithm P ∗

Pr[〈P ∗(x), V (x)〉 = 1] = negl(|x|)

3. HVZK. There exists a probabilistic polynomial-time simulator S such that for
all x ∈ L and all PPT distinguishers D we have:

viewD〈P (x,w),V (x)〉 ≈ viewDS(x).

We say (P, V) is public coin if all the messages sent by verifier V to prover
P are random coin tosses.

Promise Problems. We also recall the notion of a promise problem, which is a
generalization of the notion of a language. A promise problem consists of two
disjoint sets: Lyes and Lno. In a language, Lno = Lyes, but in a promise problem,
there may be strings that are neither in Lyes nor Lno, and we generally do not
care what happens if such a string is input. Thus, in a ZK proof for a promise
problem, completeness and zero-knowledge need to hold for inputs in Lyes, while
soundness needs to hold for inputs in Lno.

Efficient Noninteractive Certification of RSA Moduli and Beyond 705

3 HVZK Proofs for Properties of N and e

3.1 HVZK Proof for a Permutation over Z
∗
N

Bellare and Yung [BY96] showed how to certify that any function is close to a
permutation. The idea is to simply ask the prover to invert the permutation on
random points. It is a standard fact from number theory (Lemma8) that raising
to eth power is either a permutation of Z∗

N or very far from one—in fact, it is
either a permutation or an e′-to-1 function, where e′ is the smallest prime divisor
of e. Here, we adapt the protocol of [BY96] to show that the RSA function is
not just close to a permutation, but is actually a permutation over Z

∗
N : if we

check that e′ is high enough, then not many random points will be needed.
It is also a standard fact (recalled in Lemma2) that raising to the power e

defines a permutation over Z∗
N if and only if e is relatively prime to φ(N). Thus,

let
LpermZ

∗
N

= {(N, e) |N, e > 0 and gcd(e, φ(N)) = 1} .

Let
Le′ = {(N, e) |N, e > 0 and no prime less than e′ divides e} .

(In typical RSA implementations, e is a fixed small prime, such as 3, 17, or
65537, and one would use e′ = e.)

The following is an HVZK protocol for LpermZ
∗
N

∩ Le′ with perfect complete-
ness, perfect zero-knowledge, and statistical soundness error 2−κ. We emphasize
that, while the protocol is similar to that of [BY96], it is not identical. Specifi-
cally, the addition of Le′ and the verifier check in Step 4a allow us to guarantee
that the RSA function is a permutation over Z∗

N much more efficiently than the
protocol of [BY96].
Protocol PpermZ

∗
N

1. Both prover and verifier let m = �κ/ log2 e′	.
2. The verifier chooses m random values ρi ∈ Z

∗
N and sends them to prover.

3. The prover sends back eth roots of ρi modulo N :

σi = (ρi)e−1 mod φ(N) mod N

for i = 1 . . . m.
4. The verifier accepts that N ∈ LpermZ

∗
N

∩Le′ if all of the following checks pass.
(a) Check that N, e, and σi for i = 1 . . . m are positive integers, and that

e not divisible by all the primes less than e′ (if e is a fixed prime as in
typical RSA implementations, this check simply involves checking that
e = e′).

(b) Verify that ρi = (σi)e mod N for i = 1 . . . m.

Theorem 1. PpermZ
∗
N

is a 2-message public-coin protocol with perfect complete-
ness, perfect honest-verifier zero-knowledge, and statistical soundness error 2−κ

for the language LpermZ
∗
N

∩ Le′ .

706 S. Goldberg et al.

Proof. It is a standard fact that raising to the power N is a permutation of
Z

∗
N whenever e ∈ LpermZ

∗
N

, and the inverse of this permutation is raising to the
power (e−1 mod φ(N)) (see Lemma 2). This fact gives perfect completeness and a
perfect HVZK simulator who simply chooses σi and computes ρi = (σi)e mod N
for i = 1 . . . m (recall that by definition, completeness and HVZK apply only to
(N, e) ∈ LpermZ

∗
N

∩ Le′). Statistical soundness with error 2−κ follows from the
fact that if (N, e) /∈ LpermZ

∗
N

but (N, e) ∈ Le′ , then size the image of the map
σ
→ σe is at most |Z∗

N |/e′ by Lemma 8. Thus, the probability that a σi exists
for every ρi is at most 1/(e′)m = 2−m log2 e′ ≤ 2−κ.
�

3.2 HVZK Proofs for Paillier and Square-Free N

The Paillier cryptosystem requires a modulus N that is relatively prime with
φ(N). Thus, let

Lpailler-N = {N > 0 | gcd(N,φ(N)) = 1} .

We emphasize that, unlike [AP18], we do not verify the properties of the gen-
erator g in the Paillier cryptosystem—but since the common choice is to use
g = N + 1 per [DJ01], verifying that N ∈ Lpailler-N is sufficient for the common
case.

Let

Lsquare-free = {N > 0 | there is no prime p such that p2 divides N} .

Note that to be in Lpailler-N , N has to be in Lsquare-free and also have no prime
divisors p, q such that p | q−1 (by definition of φ(N), as recalled in AppendixA),
so Lpailler-N ⊂ Lsquare-free (see Lemma 3).

Thus, letting

Lgap = {N ∈ Lsquare-free|N has two prime divisors p, q such that p divides q −1},

we know that Lsquare-free − Lgap = Lpailler-N .
Our protocols for proving suitability for Paillier or square-freeness will depend

on a parameter α and the corresponding language

Lα = {N > 0 | no prime less than α divides N} .

We now describe the protocol Ppailler-N , an HVZK protocol for Lα ∩Lpailler-N with
perfect completeness, perfect zero-knowledge, and statistical soundness error
2−κ. This protocol builds on the protocol from [GMR98, Section 3.1], but is
not identical to it: specifically, the addition of Lα and verifier’s Step 4a gives
better performance. Setting α = 2 gives a protocol for Lpailler-N , but a higher
setting of α will improve efficiency (see Sect. 5 for a discussion of how to pick α).

The idea of the protocol is to ask the prover to take Nth roots of random
points—they will not exist for many points if N /∈ Lpailler-N , because raising to

Efficient Noninteractive Certification of RSA Moduli and Beyond 707

the power N will be far from a permutation. The protocol is the same as the
protocol LpermZ

∗
N

described in Sect. 3.1, replacing e with N and e′ with α.

Protocol Ppailler-N :

1. Both prover and verifier let m = �κ/ log2 α	.
2. The verifier chooses m random values ρi ∈ Z

∗
N and sends them to prover.

3. The prover sends back Nth roots of ρi modulo N :

σi = (ρi)N−1 mod φ(N) mod N

for i = 1 . . . m.
4. The verifier accepts that N ∈ Lpailler-N ∩Lα if all of the following checks pass.

(a) Check that N is a positive integer and is not divisible by all the primes
less than α.

(b) Check that σi is a positive integer for i = 1 . . . m.
(c) Verify that ρi = (σi)N mod N for i = 1 . . . m.

Theorem 2 (GMR98). Ppailler-N is a 2-message public-coin proof with perfect
completeness, perfect honest-verifier zero-knowledge, and statistical soundness
error 2−κ for the language Lα ∩ Lpailler-N .

Note that choosing elements in Z
∗
N in step 2 of the protocol requires a gcd

computation by the verifier (because the verifier cannot be sure that the differ-
ence between ZN and Z

∗
N is negligible). To avoid this computation, the verifier

can choose values in ZN instead. Then the verifier may have a lower probability
of rejecting inputs outside of Lα∩Lpailler-N , but is still guaranteed to reject inputs
outside of Lα ∩Lsquare-free with probability 1− 2−κ, as we show in Lemma 6. Per-
fect completeness and zero-knowledge still hold for Lα∩Lpailler-N , and thus for an
honestly generated RSA modulus. Let us call this modified protocol Psquare-free.

Protocol Psquare-free: Same as the protocol Ppailler-N described above, replacing
Z∗

N with ZN in step 2 and N ∈ Lpailler-N ∩ Lα with N ∈ Lsquare-free ∩ Lα in step
4. Specifically,

1. Both prover and verifier let m = �κ/ log2 α	.
2. The verifier chooses m random values ρi ∈ ZN and sends them to prover.
3. The prover sends back Nth roots of ρi modulo N :

σi = (ρi)N−1 mod φ(N) mod N

for i = 1 . . . m.
4. The verifier accepts that N ∈ Lsquare-free ∩ Lα if all of the following checks

pass.
(a) Check that N is a positive integer and is not divisible by all the primes

less than α.
(b) Check that σi is a positive integer for i = 1 . . . m.
(c) Verify that ρi = (σi)N mod N for i = 1 . . . m.

708 S. Goldberg et al.

Theorem 3. Psquare-free is a 2-message public-coin proof with perfect complete-
ness, perfect honest-verifier zero-knowledge, and statistical soundness error 2−κ

for the promise problem (Lyes = Lα ∩ Lpailler-N ,Lno = Lα ∩ Lsquare-free).

Proof. It is a standard fact that raising to the power N is a permutation of
ZN whenever N ∈ Lpailler-N , and the inverse of this permutation is raising to
the power (N−1 mod φ(N)) (see Lemmas 3 and 4, setting f = N). This fact
gives perfect completeness and a perfect HVZK simulator who simply chooses
σi and computes ρi = (σi)N mod N for i = 1 . . . m (recall that by definition,
completeness and HVZK apply only to N ∈ Lyes). Statistical soundness with
error 2−κ follows from the fact that if p ≥ α is a prime such that p2|N , then
the map σ
→ σN is at least α-to-1 over ZN (per Lemma 6); thus, the probability
that a σi exists for every ρi is at most 1/αm = 2−m log2 α ≤ 2−κ.
�

3.3 HVZK Proof for Permutation over Entire ZN

As explained in the introduction, ensuring that raising to the power e is a per-
mutation over the entire ZN is more desirable than ensuring only that it is a
permutation over Z∗

N . In this section, we show that a careful combination of pro-
tocols Psquare-free and PpermZ

∗
N

gives an efficient two-message public-coin HVZK
protocol for proving that an RSA public key defines a permutation over the
entire ZN .

Let LpermZ
∗
N

and Le′ be as in Sect. 3.1, and Lα, Lsquare-free, Lpailler-N , and Lgap

be as in Sect. 3.2, except defined not just on integers N , but on pairs (N, e) for
an arbitrary e > 0.

Let LpermZN
= {(N, e) |N, e > 0 and raising to the power e is a permutation

over ZN}.
Note that

(
Lpailler-N ∩ LpermZ

∗
N

) ⊂ (
Lsquare-free ∩ LpermZ

∗
N

) ⊂ LpermZN
.

(the first ⊂ property follows from Lemma 3; the second ⊂ property follows from
Lemma 4). Note that the only pairs (N, e) in LpermZN

− (
Lsquare-free ∩ LpermZ

∗
N

)

are those for which e = 1 and N is not square-free (per Lemma 5).
We want to design a protocol for LpermZN

. For efficiency reasons, we will focus
instead on LpermZN

∩ Lα ∩ Le′ , i.e., require N and e to not have divisors smaller
than α and e′, respectively. Moreover, just like in protocol Psquare-free of Sect. 3.2,
we will consider slightly weaker completeness: if N is square-free, but has two
prime divisors p, q such that p | (q − 1) (i.e., falls into Lgap), the verifier will be
permitted to reject N . Thus, let

Lyes = Lpailler-N ∩ LpermZ
∗
N

∩ Lα ∩ Le′

Lno = LpermZN
∪ Lα ∪ Le′

The gap between Lyes and Lno (i.e., the only pairs (N, e) not in Lyes ∪Lno) is
almost the same as in Theorem 3: namely, Lgap ∩ Le′ ∩ Lα, as well as some pairs

Efficient Noninteractive Certification of RSA Moduli and Beyond 709

(N, e) with e = 1. Naturally occurring RSA moduli should never fall into this
gap. Every (N, e) in the gap still defines a permutation over the entire ZN , but
the prover may be unable to show this fact.

We now present a protocol PpermZN
for the promise problem (Lyes,Lno). The

protocol PpermZN
is not simply a combination of Psquare-free and PpermZ

∗
N

: we save
space by using the same ρi for both eth roots and Nth roots. Because any value
that has an (eN)th root also has an eth root and an Nth root, we combine the
two protocols simply by checking the ρi values have eNth roots.

The protocol PpermZN
depends on two parameters α and e′, which are both

primes, at most about 16 bits long. The verifier will reject any N that is divisible
by a prime less than α and any e that is divisible by a prime less than e′. Any
setting of α and e′ is valid for security; varying these parameters affects only
efficiency. An optimal setting of these parameters is implementation-dependent,
since larger e′ and α will result in some additional work for the verifier, but will
also reduce work for the prover and verifier since m1 and m2 in Eq. (1) below
become smaller. When e is a fixed prime like 3, 17, or 216 + 1, as is standard
for many RSA implementations, then we set e′ equal to e. We further discuss
parameter settings in Sect. 5.

The prover’s witness is the prime factorization of N . Recall that κ is a security
parameter. The protocol will achieve statistical soundness error 2−κ.

Protocol PpermZN
:

1. Both prover and verifier let

m1 = �κ/ log2 α	 and m2 =
⌈
−κ/ log2

(
1
α

+
1
e′

(
1 − 1

α

))⌉
. (1)

Notice that m2 ≥ m1 since e′ > 1.
2. The verifier chooses m2 random values ρi ∈ ZN and sends them to Prover.
3. The Prover sends back

σi = (ρi)(eN)−1 mod φ(N) (mod N)

for i = 1 . . . m1 (for convenience, we call this a “weird RSA signature”) and

σi = (ρi)e−1 mod φ(N) (mod N)

for i = m1 + 1 . . . m2 (which is just a regular RSA signature).
4. The verifier accepts that (N, e) defines a permutation over all of ZN if all of

the following checks pass.
(a) Check that N > 0 and N is not divisible by all the primes less than α.

(Equivalently, one can let P be the product of all primes less than α (also
known as α − 1 primorial) and verify that gcd(N,P) = 1).

(b) Check that e > 0 and is e not divisible by all the primes less than e′.
(In most implementations of RSA, e is a fixed prime, in which case the
verifier can just check that e = e′).

(c) Verify that ρi = (σi)eN (mod N) for i = 1 . . . m1.
(d) Verify that ρi = (σi)e (mod N) for i = m1 + 1 . . . m2.

710 S. Goldberg et al.

Note that for many natural choices of parameters (e, κ, α), we have m1 = m2,
and so step 4d disappears.

Theorem 4. PpermZN
is a 2-message public-coin proof with perfect complete-

ness, perfect honest-verifier zero-knowledge, and statistical soundness error 2−κ

for the promise problem

Lyes = Lpailler-N ∩ LpermZ
∗
N

∩ Lα ∩ Le′

Lno = LpermZN
∪ Lα ∪ Le′

Proof. It is a standard fact (per Lemmas 3 and 4) that raising to a power f is
a permutation of ZN whenever N ∈ Lpailler-N and gcd(f, φ(N)) = 1, and that
the inverse of this permutation is raising to the power (f−1 mod φ(N)). This
fact, when we set f = eN for i = 1 . . . m1 and f = N for i = m1 + 1, . . . ,m2,
gives perfect completeness. It also gives a perfect HVZK simulator who simply
chooses σi and computes ρi = (σi)eN mod N for i = 1 . . . m1 and ρi = (σi)e for
i = m1 + 1, . . . , m2 (recall that, by definition, the simulator needs to work only
for (N, e) ∈ Lyes).

To show soundness, suppose (N, e) ∈ Lno. If x ∈ Lα ∪ Le′ , the verifier will
reject in steps 4a or 4b, and soundness holds. Therefore, assume (N, e) ∈ Lα∩Le′ .
This means (N, e) /∈ LpermZN

.
Suppose (N, e) /∈ Lsquare-free. Since the smallest prime divisor of N is at least

α, by applying Lemma6, we know at most 1/α fraction of ZN will have an Nth
root. By choosing m1 elements of ZN and verifying that they have Nth roots,
we ensure that the chances that the prover passes Step 4c with N that is not
square-free are at most (1/α)m1 ≤ 2−κ.

Now suppose (N, e) ∈ Lsquare-free but (N, e) /∈ LpermZN
. Since N is square free,

the smallest prime divisor of N is at least α, and the smallest prime divisor of e
is at least e′, we can apply Lemma 7 to conclude that at most 1/α+(1−1/α)/e′

fraction of ZN have an eth root. By choosing m2 elements of ZN and verifying
that they have eth roots, we ensure that the chances that the prover passes Steps
4c and 4d are at most

(
1
α

+
1
e′

(
1 − 1

α

)′)m2

≤ 2−κ .

�

A Possible Optimization. Instead of choosing the ρi values from ZN , the prover
could choose ρi values from Z

∗
N (this requires m2 gcd computations), and set

a potentially lower m2 = max (�κ/ log2 e′	 ,m1). The proofs of completeness
and zero-knowledge proofs remain the same (because if (N, e) define a per-
mutation over ZN , they also define a permutation when restricted to Z

∗
N).

The proof of soundness changes in the last paragraph. Observe that, since(
Lsquare-free ∩ LpermZ

∗
N

) ⊂ LpermZN
, if (N, e) ∈ Lsquare-free but (N, e) /∈ LpermZN

,

Efficient Noninteractive Certification of RSA Moduli and Beyond 711

then (N, e) /∈ LpermZ
∗
N

. Thus, per Lemma 8, the chances that the prover passes
steps 4c and 4d are at most

(
1
e′

)m2

≤ 2−κ .

For example, for κ = 128 and e = α = 65537, this optimization reduces the
value of m2 from 9 to 8. This reduction in m2 is at the expense of gcd(ρi, N)
computations, and so it may or may not improve overall performance, depending
on the implementation and the parameter values. We emphasize, however, that
the lower m2 value will not give security 2−κ without the gcd computations on
the part of the verifier, so implementers of this optimization should ensure the
verifier rejects if gcd(ρi, N) �= 1 for some i.

3.4 HVZK Proof for a Product of Two Primes

In this section, we consider the language

Lppp = {N > 0 | N is odd and has exactly two distinct prime divisors} .

Note that the more interesting language is

Lpp = {N > 0 | N is odd and is a product of two distinct primes } =
(Lppp ∩ Lsquare-free) ⊃ (Lppp ∩ Lpailler-N) ,

because it rules out prime powers as factors of N .
We obtain a two-round public-coin HVZK proof for the promise problem

Lyes = Lpp and Lno = Lppp (note that only N not in Lyes ∪ Lno are those that
have exactly two distinct odd prime divisors and are not square-free). We can
obtain an HVZK proof for Lpp (with a similar gap for the case p|q − 1) by
combing the protocol in this section with the protocol for and Lsquare-free, similar
to [AP18]. The combination can be space-saving, similar to Protocol PpermZN

in
Sect. 3.3.

Let JN denote the subset of Z
∗
N with Jacobi symbol 1. Let QRN denote

the subset of JN that consists of quadratic residues in Z
∗
N . The following is an

HVZK protocol for for the promise problem (Lyes = Lpp, Lno = Lppp). Let κ be
the statistical security parameter.

Protocol Pppp

1. Both the Prover and the Verifier let m = �κ · 32 · ln 2	.
2. The Verifier chooses m random values ρi ∈ JN and sends them to Prover.
3. For every ρi ∈ QRN , the Prover sends back σi ∈ Z∗

N such that σ2
i mod N =

ρi. Of the four square roots, the Prover chooses one at random. For other ρi,
the prover sends back 0.

4. Verifier first checks that N is a positive odd integer and is not a prime or a
prime power (see [Ber98,BLP07] and references therein). If these checks pass,
then the Verifier accepts if the number of nonzero responses is at least 3m/8,
and for every nonzero σi, it holds that ρi = (σi)2 mod N .

712 S. Goldberg et al.

Note that our design choice to have the verifier pick values in JN rather than
in all of Z∗

N results in improved efficiency by a factor of four as compared to the
hash-then-solve protocol presented in [AP18]. This is because when the verifier
chooses elements in JN , at least 1/2 of them have square roots for N ∈ Lpp, vs.
1/4 for N /∈ Lppp. In contrast, when the verifier chooses elements in all of Z∗

N ,
the fractions change to 1/4 and 1/8, respectively. But the number of repetitions
m required to distinguish 1/4 from 1/8 is four times greater than the number of
repetitions required to distinguish 1/2 from 1/4, for any fixed confidence level
2−κ (this follows from bounds on the tail of the binomial distribution; see the
proof of Theorem 5).

Theorem 5. Pppp is a 2-message public-coin protocol for the promise problem
(Lyes = Lpp, Lno = Lppp) with statistical completeness error 2−κ, computational
honest-verifier zero-knowledge, and statistical soundness error 2−κ.

Proof. In order to show completeness, we need to show that the honest prover
will be able to carry out Step 3, and the verifier’s checks in Step 4 will pass.
Since the prover knows the factorization of N = pq, it can efficiently check if
ρi ∈ QRN by determining if it is a quadratic residue module each prime divisor
p and q of N .

Then, given that ρi ∈ QRN , it is easy for the prover to compute σi such that
σ2

i mod N = ρi. To do so, the prover computes βi = ρi mod p and γi = ρi mod q.
Then the prover finds solutions ±b to σ2

i mod p = β, and ±c to σ2
i mod q = γ,

using any of the available algorithms for finding square roots modulo primes.
Finally, the prover uses the Chinese Remainder Theorem to obtain four solutions
(corresponding to pairs (b, c), (−b, c), (b,−c), (−b,−c)) to σ2

i mod N = ρi. Thus,
the prover can indeed carry out Step 3.

Let us now discuss why the verifier’s checks in Step 4 will pass with prob-
ability close to 1. As discussed above if ρi ∈ QRN the prover can always send
back valid σi’s. So in order to achieve completeness, we need to make sure that
among the ρi’s sent from the Verifier to the Prover in Step 2, at least 3m/8 of
them are in QRN . Since N ∈ Lpp, |JN | = φ(N)/2 while |QRN | = φ(N)/4 (it is
in this step that we use the fact that that N ∈ Lpp and not just in Lppp; because
|JN | when is N is a product of two prime powers can be more than twice |QRN |
if one or both the powers is even).

By applying the classic Hoeffding bound [Hoe63, Theorem 2] for m = �κ ·32 ·
ln 2	, we see that Pr[the number of ρi’s ∈ QRN < 3m/8] < e−2m(1/2−3/8)2 =
2−2m/(64 ln 2) ≤ 2−κ. Thus we conclude that our protocol has statistical com-
pleteness with error probability at most 2−κ.

To show soundness, suppose that N �∈ Lppp , i.e., N is even, a prime, a prime
power, or has at least three prime divisors. If N is even, a prime, or a prime
power, the verifier will reject. If N has at least three prime divisors, then at
most 1/4 of the elements of JN have square roots. But the prover can cheat
only if 3m/8 of the ρi values have square roots. Thus, probability of cheating is
Pr[the number of squares is ≥ 3m/8] ≤ e−2m(3/8−1/4)2 ≤ 2−κ by the Hoeffding
bound.

Efficient Noninteractive Certification of RSA Moduli and Beyond 713

Finally, we argue that our protocol is computational honest-verifier zero-
knowledge. We first recall the QR assumption [GM84].

Assumption 6 (QR assumption). For any N = pq, a randomly chosen
ρ ∈ JN , and any PPT algorithm A,

Pr[σ = QR(ρ) | N = pq, ρ ← JN , A(ρ,N) → σ ∈ {±1}] ≤ 1/2 + negl(κ).

The HVZK simulator (which, by definition, needs to work only when N ∈ Lpp)
will pick random values σi and square them getting ρi. For each number, it will
flip a coin and, depending on the coin’s output the simulator will either output
(σi, ρi) or (0, ρ′

i) for a random ρ′
i ∈ JN . Because of the QR assumption (the

distributions of JN and QRN are computationally indistinguishable) the view of
the simulator is computationally indistinguishable from that of an honest verifier
interacting with a prover.
�

3.5 HVZK Proof for a Blum Integer

In this section we consider the language Lblum−powers = {N > 0 | N = paqb for
primes p ≡ q ≡ 3 (mod 4)}. Note, similar to Sect. 3.4, that the more interesting
language is the language of Blum integers Lblum = Lsquare-free ∩ Lblum−powers.

In this section we obtain a two-round public-coin HVZK protocol for the
promise problem (Lyes = Lblum,Lno = Lblum−powers). We can obtain a protocol
for Lblum (with a similar gap for the case p | q − 1 as in Sect. 3.2) by combing
the proofs for Lblum−powers and Lsquare-free. Remarks at the beginning of Sect. 3.4
apply here, as well.

The protocol for Lblum−powers is very similar to the protocol for Lppp but
instead of considering square roots, we now consider 4th roots. Note that if N
is a Blum integer then among the four roots of ρi ∈ QRN , one and only one is
a quadratic residue.

Protocol Pblum−powers

Same as protocol Pppp described in Sect. 3.4 but in step 3 the prover computes
4th roots instead and in step 4 the verifier checks 4th roots.

1. Both the Prover and the Verifier let m = �κ · 32 · ln 2	.
2. The Verifier chooses m random values ρi ∈ JN and sends them to Prover.
3. For every ρi ∈ QRN , the Prover sends back σi ∈ Z∗

N such that σ4
i mod N =

ρi, choosing one at random from among four possibilities. For other ρi, the
prover sends back 0.

4. Verifier first checks that N is a positive odd integer and is not a prime or a
prime power (see [Ber98,BLP07] and references therein). The Verifier accepts
if the number of nonzero responses is at least 3m/8, and for every nonzero
σi, it holds that ρi = (σi)4 mod N .

Theorem 7. Pblum−powers is a 2-message public-coin protocol with statistical
completeness error 2−κ, perfect honest-verifier zero-knowledge, and statistical
soundness error 2−κ, for the promise problem (Lyes = Lblum,Lno = Lblum−powers).

714 S. Goldberg et al.

Proof. Similar to the proof of Theorem5, we get statistical completeness with
error 2−κ. The prover knowing the factorization of N can efficiently compute the
4th roots for N ∈ Lyes, and completeness relies on receiving enough ρi’s ∈ QRN .
Also we get the same statistical soundness error 2−κ.

Finally, Pblum−powers achieves perfect honest-verifier zero-knowledge since −1
is always a Jacobi symbol 1 non-square. Then we can construct a simulator that,
after computing ρi by raising a random σi to the fourth power, flips a coin and
sends either (0,−ρi) or (σi, ρi).
�

4 Making Our Protocols Noninteractive via Fiat-Shamir

We use the Fiat-Shamir paradigm [FS86] to convert each of the 2-message public-
coin HVZK interactive protocols presented above into a non-interactive zero-
knowledge (NIZK) protocol. The transformation is very simple, because the first
message in every protocol we present always consists of the verifier sending some
challenges ρ1, . . . , ρm to the prover. The challenges are uniformly distributed in
some space with easy membership testing (such as ZN or Z

∗
N , for example).

Thus, to make our protocols noninteractive, Prover samples ρi by herself
using the random oracle. To make sure values ρi are in the correct space, such as
ZN or Z

∗
N , the prover performs rejection sampling for each ρi using a counter,

trying multiple random-oracle outputs until obtaining the first one that lands
in the desired space. Thus, each ρi is obtained by computing the output of the
random oracle over the concatenation of (1) the protocol input—e.g., the RSA
public key (N, e); (2) a salt given as a system parameter; (3) the index i; and
(4) the counter value. If the result is in the correct space, the prover uses this
ρi; if not, she increments the counter and tries again.

Thus, the protocol input and the salt determine the set of ρi ∈ ZN . The
verifier can therefore compute ρi on his own, by following the same procedure
as the prover, and subsequently perform verification. Note that the verifier, just
like the prover, will need to perform rejection sampling.

The noninteractive proof then is simply the message that the prover sends
to the verifier in the interactive protocol.

The security of this transformation is standard; we provide some formal
details in AppendixB.

5 Specification, Implementation and Performance for
NIZK of Permutations over ZN

Specification. Here we provide a more precise specification the protocol of
Sect. 3.3 made non-interactive using the Fiat-Shamir paradigm as described in
Sect. 4. The goal of this specification is to make the protocol precise enough
for implementation and compatibility. The full specification is available in
AppendixC. It assumes e is a fixed prime and thus sets e′ = e. It takes in

Efficient Noninteractive Certification of RSA Moduli and Beyond 715

α and the salt as system parameters. The random oracle used to deterministi-
cally select the ρi values is a “full-domain hash” [BR93] instantiated with the
industry-standard MGF1 Mask Generation Function as defined in [MKJR16,
Sec. B.2.1]. We use the industry-standard I2OSP and OS2IP to convert between
octet strings and integers [MKJR16, Sec. 4.1] and the industry-standard RSASP
to perform an RSA secret key operations [MKJR16, Sec. 5.2.1], and RSAVP for
RSA public-key operations [MKJR16, Sec. 5.2.2].

Implementation. An open-source implementation of our specification in C#,
based on the bouncycastle cryptographic library [bou], is publicly available [cod].
We hope that our implementation will become a part of bouncycastle.

Integration with TumbleBit. Our implementation has already been inte-
grated into the open-source reference implementation of TumbleBit, which is
currently being developed for production use [Ntu,Str17]. TumbleBit [HAB+17]
is a unidirectional Bitcoin payment hub that allows parties to make fast, anony-
mous, off-blockchain payments through an untrusted intermediary called the
Tumbler. The security of the TumbleBit protocol rests on the assumption that
the Tumbler’s RSA public key (N, e) defines a permutation over ZN . In the
absence of this assumption, the Tumbler can steal bitcoin from payers.2 Thus,
in addition to publishing (N, e), a Tumbler publishes our NIZK proof that (N, e)
defines a permutation, which is verified, during a setup phase, by any payer or
payee who wants to participate in the protocol with this Tumbler. Integration
with TumbleBit was easy. No modification to the existing TumbleBit protocol
or codebase were required; instead, our NIZK was simply added to TumbleBit’s
setup phase.

Parameters and Performance for TumbleBit. When used with TumbleBit,
our NIZK has parameters κ = 128, the RSA key length is |N | = 2048, the public
RSA exponent is e = e′ = 65537, and the salt is the SHA256 hash of the Genesis
block of the Bitcoin blockchain.

The performance of our NIZK largely depends on our choice of the parameter
α. A shorter α means that the verifier has to spend less time trying to divide N
by primes less than α, but also increases m1 and m2, the number of RSA values

2 Specifically, in TumbleBit, the Tumbler provides the payee Bob with a value z called
a “puzzle,” and a proof that its solution will transfer some of Tumbler’s money to
Bob. This solution is a value ε such that z = εe mod N . The protocol crucially relies
on uniqueness of ε, because the proof that the solution will unlock money applies to
only one of the solutions of z. When Alice wants to pay Bob, she learns the solution
to the puzzle in exchange for paying money to the Tumbler, and then gives that
solution to Bob as payment. If RSA is not a permutation, then a malicious Tumbler
can provide the payee Bob with a puzzle z that has two valid solutions ε1 �= ε2, where
z = (ε1)

e = (ε2)
e mod N , and a proof that ε1 transfers money. Then, to steal money,

the Tumbler gives payer Alice the solution ε2 in exchange for her money, which does
not permit Bob to obtain the Tumbler’s money and complete the transaction.

716 S. Goldberg et al.

in the NIZK. The relationship between α and m1,m2 is determined by Eq. (1).
Specifically for the TumbleBit parameters, we show this relationship in Fig. 1.
To evaluate the performance of our NIZK, we choose the smallest value of α
that corresponds a given pair of (m1,m2) values, and benchmark proving and
verifying times for our NIZK for the RSA key length |N | = 2048 bits in Table 1
on a single-core of an Intel Xeon processor. We can see from the table that
choosing α = 319567 (so that m1 = 7 and m2 = 9) gives optimal performance,
though performance for α = 65537 is roughly similar and the optimal choice is
likely implementation-dependent.

For the optimal choice of α, proving takes about 237 ms (a small fraction of
the key generation cost, which is 2022 ms) and verifying takes about 713 ms. For
comparison, verification of our NIZK is about 8 times faster than the folklore
solution discussed in Sect. 1, which requires the verifier to spend 5588 ms to
perform the Rabin-Miller primality test on a 2048-bit RSA exponent, and also
slows down every public-key operation by a factor of about 60 because e is 2048
bits long (instead of e = 65537, which is 17 bits long). We should note that even
though our solution is much faster than the folklore one, and adds only 12% to
the prover’s normal RSA key generation cost, it is still relatively expensive for
the verifier: for comparison, the public key operation (encryption or signature
verification) with e = 65537 takes only about 1.4ms.

From Table 1 we also see that verifying is generally slower than proving (until
α gets so big that divisibility testing takes too long for the verifier). This follows
because proving involves m1 modular exponentiations (using RSASP), which
can be done separately modulo p and modulo q for N = pq (with the exponent
reduced modulo p−1 and q−1), and then combined using the Chinese Remainder
Theorem (CRT). Meanwhile, the verifier does not know p and q, and so cannot
use (CRT); moreover, the exponent used for modular exponentiations (using
RSAVP) is slightly longer than φ(n), but the verifier does not know φ(N) and
so cannot reduce it. Thus, exponentiations performed by the verifier are slower
than those performed by the prover.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 105

0

5

10

15

20

nu
m

be
r o

f v
al

ue
s s

en
t (

m
1,

 m
2)

prime α

m1
m2

Fig. 1. Values of m1 and m2 versus the choice of parameter α for our NIZK, when
κ = 128 and e = e′ = 65537.

Efficient Noninteractive Certification of RSA Moduli and Beyond 717

Table 1. Proving and verifying times for our C# implementation as observed on an
Azure DS1 v2 virtual machine running Windows Server 2016 Datacenter (single-core
2.4 GHz Intel Xeon E5-2673 v3 Haswell processor, 3.5GiB RAM). Time is given in ms.
Public exponent is e = e′ = 65537 and security parameter is κ = 128.

Parameters Permutation Proof
α m1 m2 Prove Verify

41 24 24 632 2326
89 20 20 518 1925

191 17 17 443 1612
937 13 13 334 1216

1667 12 12 311 1127
3187 11 12 308 1042
3347 11 11 281 1025
7151 10 11 284 943
8009 10 10 256 948

19121 9 10 254 853
26981 9 9 233 854
65537 8 9 230 768

319567 7 9 237 713
2642257 6 9 234 956

50859013 5 9 230 6756

Acknowledgements. The authors thank Ethan Heilman, Alessandra Scafuro and
Yehuda Lindell for useful discussions. This research was supported, in part, by US
NSF grants 1717067, 1350733, and 1422965.

A Number-Theoretic Lemmas

We present number-theoretic lemmas that are useful for proving security of our
protocols. Some of them are standard and are presented here only to make the
presentation self-contained.

Let ZN = {0, 1, ..., N − 1} for any positive integer N and Z
∗
N be the multi-

plicative group modulo N, i.e., the set of values in ZN that are relatively prime
to N , or else {x ∈ ZN | gcd(x,N) = 1}. We use notation p|N to denote that “p
divides N”.

Euler’s phi or totient function (see, e.g., [Sho09, Section 2.6] for the relevant
background) is defined for all positive integers N as:

φ(N) = |Z∗
N |.

If N = pq where p, q are two distinct primes it holds that φ(N) = (p− 1)(q − 1).
More generally, if the prime factorization of N is N = pα1

1 × · · · × pαk

k , then
φ(N) = (pα1−1

1 × · · ·× pαk−1
k)× ((p1 − 1)× · · ·× (pk − 1)), with φ(1) = 1 [Sho09,

Theorem 2.11]. The following theorem is standard [Sho09, Theorem 2.13]:

Lemma 1 (Euler’s theorem). Let N be a positive integer and a ∈ Z
∗
N . Then

aφ(N) mod N = 1.

718 S. Goldberg et al.

Given positive integers N and e, consider the map x
→ xe mod N . We will
first consider this map as restricted to Z

∗
N . The following lemma is standard.

Lemma 2. The map x
→ xe mod N is a permutation of Z
∗
N if and only if

gcd(e, φ(N)) = 1. If the map is a permutation of Z∗
N , then its inverse is the map

x
→ xd mod N for d = e−1 mod φ(N) (which exists by [Sho09, Theorem 2.5]
because gcd(e, φ(N)) = 1).

Proof. Suppose gcd(e, φ(N)) = 1. Then let d = e−1 mod φ(N). Thus, de =
kφ(N) + 1 for some integer k. For every x ∈ Z

∗
N , (xe)d mod N = xed mod N =

(xφ(N))k · x mod N = 1k · x = x, where the second-to-last equality follows from
Lemma 1.

Now suppose gcd(e, φ(N)) = g �= 1. Let p be a prime divisor of g. Then
p |φ(N), and therefore Z

∗
N contains an element x �= 1 such that xp mod N = 1

[Sho09, Theorem 6.42]. Therefore, xe mod N = (xp)e/p mod N = 1e/p = 1, and
thus the map is not a permutation.
�

A number N is square free if it can be written as N = p1p2 . . . pk for distinct
prime numbers pi. (N is not square free if it is divisible by p2, where p is some
prime.)

Lemma 3. For a positive integer N , if gcd(N,φ(N)) = 1, then N is square-free.

Proof. Indeed, suppose p2 |N for some prime p. Then p |φ(N), so gcd(N,φ(N)) ≥
p > 1.
�

We now extend one direction of Lemma 2 to all of ZN for the case of square-
free N .

Lemma 4. If for some positive integers N and f , N is square-free and gcd(f,
φ(N)) = 1, then the map x
→ xf mod N is a permutation on ZN . Its inverse is
computed as follows: for g = f−1 mod φ(N) (which exists by [Sho09, Theorem
2.5]) and for all x ∈ ZN , xgf mod N = x.

Proof. Let N = p1p2 . . . pk for distinct prime numbers pi. By the Chinese
Remainder Theorem (CRT) [Sho09, Theorem 2.8], the ring ZN is isomorphic
to the product of rings Zp1 × · · · × Zpk

. It therefore suffices to show that
xef mod pi = x for each i. Indeed, fg = tφ(N) + 1 for some integer t, and
therefore xfg = (xpi−1)s · x for some integer s, and the result follows by Fer-
mat’s little theorem [Sho09, Theorem 2.14] when x mod pi �= 0, and trivially
when x mod pi = 0.
�

To extend the other direction of Lemma 2 to all of ZN is a little more com-
plicated.

Lemma 5. If for some positive integers N and f , the map x
→ xf mod N is
a permutation on ZN , then x
→ xf mod N is a permutation on Z

∗
N (and thus

gcd(f,N) = 1 by Lemma 2) and either:

Efficient Noninteractive Certification of RSA Moduli and Beyond 719

– N is square-free, or
– f = 1

Proof. The first part of the lemma follows from the fact that when raised to the
power f modulo N , elements of Z∗

N stay within Z∗
N (because if gcd(x,N) = 1,

then gcd(xf mod N,N) = 1). The second part of the lemma is proven as follows.
Suppose N is not square-free and f > 1. Then let p2 |N for some prime p. The
set {x ∈ ZN : x is divisible by p} contains N/p elements. The image of this
set is contained in {x ∈ ZN : x is divisible by p2}, which contains only N/p2

elements. Thus, the map is not injective.

The following lemma shows that one can validate if an integer N is square-free
by checking if random values in ZN have Nth roots. This lemma generalizes the
result of Gennaro, Micciancio, and Rabin [GMR98, Section 3.1], which worked
over Z

∗
N and thus required a gcd computation every time a random value was

selected.

Lemma 6. Let N be a positive integer and p be a prime such that p2 divides N
(i.e., N is not square free). Then, the fraction of elements of Z∗

N that have an
N th root modulo N is at most 1/p, and the fraction of elements of ZN that have
an N th root modulo N is also at most 1/p.

Proof. Suppose x has an Nth root modulo N . Then there is a value r such that
rN ≡ x (mod N). Hence, N divides rN − x, which means p2 divides rN − x
(since p2 divides N), and therefore r is the Nth root of x modulo p2. Thus, in
order to have an Nth root modulo N , x must have an Nth root modulo p2.
Since a uniformly random element x of ZN is also uniform modulo p2, and a
uniformly random element x of Z∗

N is also uniform in Z∗
p2 when reduced modulo

p2, it suffices to consider what fractions of Z∗
p2 and of Zp2 have Nth roots.

By Lemma 8 below, the number of elements of Z∗
p2 that have Nth roots

is at most φ(p2)/e′, where e′ is the largest prime divisor of gcd(N,φ(p2)) =
gcd(N, p(p − 1)). Since p|N , we have e′ = p. Thus, the number of elements of
Z∗

p2 that have Nth roots is at most φ(p2)/p = p − 1. This shows the first half of
the conclusion.

If x ∈ Zp2 −Z∗
p2 , then p|x. If x has an Nth root r modulo p2, then p2|(rN −x),

hence p|(rN − x), hence p|rN (because p|x and p|(rN − x)), hence p|r (because
p is prime), hence p2|r2, hence p2|rN (because N > 1), and hence p2|x (because
p2|(rN − x) and p2|rN). We therefore have that x ∈ Zp2 and p2|x, which means
that x = 0.

Thus, the total number of elements of Zp2 that have an Nth root is at most
p − 1 elements from Z∗

p2 and one element from Zp2 − Z∗
p2 (namely, the element

x = 0), for a total of at most p elements from Zp2 . Thus, at most a p/|Zp2 | = 1/p
fraction of elements of Zp2 have Nth roots. It follows that at most a 1/p fraction
of elements of ZN has Nth roots.
�

The following lemma shows that if we know that N is square free (which we
can test using Lemma 6), then we can check whether raising to the power e is a
permutation of ZN , by checking if random values in ZN have eth roots.

720 S. Goldberg et al.

Lemma 7. Suppose N > 0 is a square-free integer so that N = p1p2 . . . pk for
distinct prime numbers pi, and e > 0 is an integer. If raising to the power e
modulo N is not a permutation over ZN , then the fraction of elements of ZN

that have a root of degree e is at most

1
p

+
1
e′

(
1 − 1

p

)
,

where e′ is the smallest prime divisor of e and p is the smallest prime divisor
of N (these are well-defined, because if N = 1 or e = 1, then raising to the eth
power is a permutation over ZN).

Proof. By Chinese Remainder Theorem (CRT) [Sho09, Theorem 2.8], the ring
ZN is isomorphic to the product of rings Zp1 × · · · × Zpk

. Note that if raising
to the power e modulo N is not a permutation over ZN , then there exist x �≡ y
(mod N) such that xe ≡ ye (mod N). Let i be such that x �≡ y (mod pi) (it
must exist by CRT); then raising to the power e modulo pi is not a permutation
of Zpi

, because xe ≡ ye (mod pi) (by CRT).
Since a uniformly random element x of ZN is uniform modulo pi, it suffices

to consider what fraction of Zpi
has eth roots. By Lemma 8 below, the number

of elements of Z∗
pi

that have eth roots is at most φ(Z∗
pi

)/e′ = (pi − 1)/e′. The
only element in Zpi

− Z∗
pi

is the element 0. So, in total, at most (pi − 1)/e′ + 1
elements of Zpi

have eth roots. Since pi ≥ p,

(pi − 1)/e′ + 1
pi

=
1
e′ +

1
pi

(
1 − 1

e′

)
≤ 1

e′ +
1
p

(
1 − 1

e′

)
=

1
p

+
1
e′

(
1 − 1

p

)
.

�
The proofs of two lemmas above relied on the lemma below.

Lemma 8. For any positive integers N and e, if raising to the power e modulo
N is not a permutation over Z

∗
N , then gcd(e, φ(N)) > 1 and the number of

elements of Z∗
N that have a root of degree e is at most φ(N)/e′, where e′ is the

largest prime divisor of gcd(e, φ(N)).

Proof. Suppose there exist x and y in Z
∗
N such that xe ≡ ye (mod N) but x �≡ y

(mod N). Then x/y �≡ 1 (mod N) but (x/y)e ≡ 1 (mod N). Therefore, the
multiplicative order of (x/y) is greater than 1 and divides e [Sho09, Theorem
2.12] and φ(N) [Sho09, Theorem 2.13], which implies that gcd(e, φ(N)) > 1. Let
e′ be the largest prime divisor of gcd(e, φ(N)).

Because e′ is a prime that divides φ(N), Z∗
N contains an element z of order e′

[Sho09, Theorem 6.42]. Therefore, the homomorphism that takes each element
of Z∗

N to the power e has kernel of size at least e′ (because this kernel contains
distinct values z, z2, . . . , ze′

which are all eth roots of 1 because e′ divides e).
The image of this homomorphism contains exactly the elements that have roots
of degree e, and the size of this image is equal to φ(N) divided by the size of the
kernel [Sho09, Theorem 6.23], i.e., at most φ(N)/e′.
�

Efficient Noninteractive Certification of RSA Moduli and Beyond 721

B Background on the Fiat-Shamir transform

Any efficient, interactive constant-round, public-coin, honest-verifier zero knowl-
edge (HVZK) proof system can be converted into a noninteractive ZK argument3

(NIZK) through the so called Fiat-Shamir (FS) transformation [FS86]. Apply-
ing FS allows us to replace the verifier V by instead calling a hash function
on input the current transcript. The security of the resulting scheme holds in
the random oracle [BR93] (RO), where a hash function H is evaluated through
calls to an oracle that acts as a random function. The main idea in the security
proof is that the simulator for HVZK can “program” the RO (i.e., the simulator
decides the answer to each specific query). This allows the simulator to convert
the entire transcript of a public-coin HVZK proof into a single message that is
indistinguishable from the message computed by an honest NIZK prover. We
first recall the definition of NIZKs in the RO and then state the Fiat-Shamir
transformation theorem (definitions slightly modified from [FKMV12]).

Let S be a simulator that operates in two modes: (hi, st) ← S(1, st, qi) which
on input a random oracle query qi it responds with hi (usually by lazy sampling),
and (π, st) ← S(2, st, x) which simulates simulates the actual proof. (Note that
calls to S(1, · · ·) and S(2, · · ·) share the common state st that is updated after
each operation).

Definition 2 (NIZK). Let (S1,S2) be oracles such that S1(qi) returns the first
output of (hi, st) ← S(1, st, qi) and S2(x,w) returns the first output of (π, st) ←
S(2, st, x) if (x,w) ∈ RL.

A protocol 〈PH ,VH〉 is said to be a NIZK proof for language L in the random
oracle model, if there exists a PPT simulator S such that for all PPT distinguish-
ers D we have

viewDH(·),PH(·,·) ≈ viewDS1(·),SH
2 (·,·).

We now state and prove the following theorem for the Fiat-Shamir transfor-
mation [FKMV12]:

Theorem 8 (Fiat-Shamir NIZK). Let κ be a security parameter. Consider a
non-trivial constant round, public-coin, honest-verifier zero-knowledge (HVZK)
interactive proof system 〈P,V〉 for a language L. Let H() be a function with range
equal to the space of the verifier’s coins. In the random oracle model the proof
system 〈PH ,VH〉, derived from 〈P,V〉 by applying the Fiat-Shamir transform, is
a noninteractive ZK argument.

Proof. (sketch) All we need to show is that there exists a simulator S as required
in Definition 2. This can be done by invoking the HVZK simulator associated
with the underlying interactive proof system.

3 As opposed to a proof system where soundness needs to hold unconditionally, in an
argument system it is sufficient that soundness holds with respect to a computation-
ally bounded adversary P∗.

722 S. Goldberg et al.

We design S to work as follows:

– To answer to a query q to S1, S(1, st, q) lazily samples a lookup table kept
in state st. It checks whether an answer for q was already defined. If this is
the case, it returns the previously assigned value; otherwise it returns a fresh
random value h and stores the pair (q, h) in the table.

– To answer to a query x to S2, S(2, st, x) calls the HVZK simulator of 〈P,V〉 on
input x to obtain a proof π. Then, it updates the look up table by storing x, π.
If the look up table happens to be already defined on this input, S returns
failure and aborts.

Given that the protocol is non-trivial, the probability of failure in each of the
queries to S2 is negligible.
�

C Detailed Specification for the NIZK of Permutations
over Zn

The following specification is for the NIZK of Permutations over Zn, as described
in Sect. 5. This specification assumes that the RSA exponent e is prime.

C.1 System Parameters

The system parameters are the RSA modulus length len, the security parameter
κ (where by default κ = 128), a small prime α (about 16 bits long or less), and
a publicly-known octet string salt.

C.2 Proving

System Parameters:

1. salt (an octet string),
2. α (a prime number)
3. κ (the security parameter, use 128 by default)
4. e, the fixed prime RSA exponent
5. len, the RSA key length.

Auxiliary Function: getRho, defined in Sect. C.4.

Input: Distinct equal-length primes p and q greater than α such that the RSA
modulus is N = pq is of length len, and e does not divide (p − 1)(q − 1).

Output: (N, e), {σ1, ..., σm2}.

Efficient Noninteractive Certification of RSA Moduli and Beyond 723

Algorithm:

1. Set m1 and m2 as in Eq. 1, Sect. 3.3, with e′ = e.
2. Set N = pq.
3. Obtain the RSA secret key K as specified by [MKJR16, Sec. 3.2]:

K = (p, q, dNP , dNQ , qInv)

4. Compute the “weird RSA” secret key corresponding to public key (N, eN)
(with exponent eN and modulus N) in the [MKJR16, Sec. 3.2] as

K ′ = (p, q, dNP , dNQ , qInv)

where p, q, qInv are the same as in the normal RSA secret key K and

dNP = (eN)−1 mod (p − 1) dNP = (eN)−1 mod (q − 1) (2)

5. For integer i = 1 . . . m2

(a) Sample ρi, a random element of ZN , as

ρi = getRho((N, e), salt, i, len,m2)

(b) If i ≤ m1, let
σi = RSASP1(K ′, ρi)

where RSASP1 is the RSA signature primitive of [MKJR16, Sec. 5.2.1].
In other words, σ is the RSA decryption of ρi using the “weird RSA”
secret key K ′.
(It follows that σi is (eN)th root of ρi.)

(c) Else let
σi = RSASP1(K, ρi)

where RSASP1 is the RSA signature primitive of [MKJR16, Sec. 5.2.1].
In other words, σ is the RSA decryption of ρi using the regular RSA
secret key K.
(It follows that σi is eth root of ρi.)

6. Output (N, e), {σ1, ..., σm2}.

C.3 Verifying

System Parameters:

1. salt (an octet string),
2. α (a prime number)
3. κ (the security parameter, use 128 by default)
4. e, the fixed prime RSA exponent
5. len, the RSA key length

724 S. Goldberg et al.

Auxiliary Function: getRho, defined in Sect. C.4.

Input: RSA public key (N, e) and {σ1, ..., σm2}.

Output: VALID or INVALID

Algorithm:

1. Check that N is an integer and N ≥ 2len−1 and N < 2len. If not, output
INVALID and stop.

2. Check that e is prime. If not, output INVALID and stop.
3. Compute m1 and m2 per Eq. (1), Sect. 3.3, with e′ = e.
4. Check that there are exactly m2 values {σ1, ..., σm2} in the input. If not,

output INVALID and stop.
5. Generate the vector Primes(α−1), which includes all primes up to and includ-

ing α−1. (This can be efficiently implemented using the Sieve of Eratosthenes
when α is small.)
For each p ∈ Primes(α − 1):

– Check that N is not divisible by p. If not, output INVALID and stop.
(Alternatively, let primorial be the product of all values in Primes(α−1).
primorial should be computed once and should be a system parameter.
Check that gcd(primorial, N) = 1.)

6. For integer i = 1 . . . m2

(a) Sample ρi, a random element of ZN , as

ρi = getRho((N, e), salt, i, len,m2)

(b) If i ≤ m1, check that

ρi = RSAVP1((N, eN), σi)

where RSAVP1 is the RSA verification primitive of [MKJR16, Sec. 5.2.2].
In other words, check that ρi is the RSA encryption of σi using the “weird
RSA” public key (N, eN). If not, output INVALID and stop.
(Thus, check that ρi = σeN

i mod N).
(c) Else check that

ρi = RSAVP1(PK , σi)

In other words, check that the ρi is the RSA encryption of σi using the
RSA public key (N, e). If not, output INVALID and stop.
(Thus, check that ρi = σe

i mod N).
7. Output VALID.

C.4 Auxiliary function: getRho

This function is for rejection sampling of a pseudorandom element ρi ∈ ZN . It
is “deterministic,” always producing the same output for a given input.

Efficient Noninteractive Certification of RSA Moduli and Beyond 725

Input:

1. RSA public key (N, e).
2. salt (an octet string)
3. Index integer i.
4. Length of RSA modulus len
5. Value m2, with i ≤ m2.

Output: ρi

Algorithm:

1. Let
|m2| =

⌈
1
8 (log2(m2 + 1))

⌉

be the length of m2 in octets. (Note: This is an octet length, not a bit length!)
2. Let j = 1.
3. While true:

(a) Let PK be the ASN.1 octet string encoding of the RSA public key (N, e)
as specified in [MKJR16, Appendix A].

(b) Let EI = I2OSP(i, |m2|) be the |m2|-octet long string encoding of the
integer i. (The I2OSP primitive is specified in [MKJR16, Sec. 4.2].)

(c) Let EJ = I2OSP(j, |j|) be the |j|-octet long string encoding of the integer
j, where |j| = � 1

8 log2(j + 1)	.
(d) Let s = PK ||salt||EI||EJ be the concatenation of these octet strings.
(e) Let ER = MGF1-SHA256(s, len) where H1 is the MGF1 Mask Gen-

eration Function based on the SHA-256 hash function as defined in
[MKJR16, Sec. B.2.1], outputting values that are len bits long.

(f) Let ρi = OS2IP(ER) be an integer.
(That is, convert ER to an len bit integer ρi using the OS2IP primitive
specified in [MKJR16, Sec. 4.1].)

(g) If ρi ≥ N , then let j = j + 1 and continue; Else, break.
(Note: This step tests if ρi ∈ ZN .)

4. Output integer ρi.

References

[AP18] Auerbach, B., Poettering, B.: Hashing solutions instead of generating prob-
lems: on the interactive certification of RSA moduli. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 403–430. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-76581-5 14

[Ber98] Bernstein, D.J.: Detecting perfect powers in essentially linear time. Math.
Comput. 67, 1253–1283 (1998)

[BFGN17] Benhamouda, F., Ferradi, H., Géraud, R., Naccache, D.: Non-interactive
provably secure attestations for arbitrary RSA prime generation algo-
rithms. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017.
LNCS, vol. 10492, pp. 206–223. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66402-6 13

https://doi.org/10.1007/978-3-319-76581-5_14
https://doi.org/10.1007/978-3-319-66402-6_13
https://doi.org/10.1007/978-3-319-66402-6_13

726 S. Goldberg et al.

[BFL89] Boyar, J., Friedl, K., Lund, C.: Practical zero-knowledge proofs: giving
hints and using deficiencies. In: Quisquater, J.-J., Vandewalle, J. (eds.)
EUROCRYPT 1989. LNCS, vol. 434, pp. 155–172. Springer, Heidelberg
(1990). https://doi.org/10.1007/3-540-46885-4 18

[BLP07] Bernstein, D.J., Lenstra, H.W., Pila, J.: Detecting perfect powers by fac-
toring into coprimes. Math. Comput. 76(257), 385–388 (2007)

[bou] bouncycastle c# api. https://www.bouncycastle.org/csharp/index.html
[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for

designing efficient protocols. In: Proceedings of the 1st ACM Conference
on Computer and Communications Security, pp. 62–73. ACM (1993)

[BY96] Bellare, M., Yung, M.: Certifying permutations: noninteractive zero-
knowledge based on any trapdoor permutation. J. Cryptol. 9(3), 149–166
(1996). https://cseweb.ucsd.edu/∼mihir/papers/cct.html

[CM99] Camenisch, J., Michels, M.: Proving in zero-knowledge that a number is
the product of two safe primes. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 107–122. Springer, Heidelberg (1999). https://doi.
org/10.1007/3-540-48910-X 8

[CMS99] Cachin, C., Micali, S., Stadler, M.: Computationally private information
retrieval with polylogarithmic communication. In: Stern, J. (ed.) EURO-
CRYPT 1999. LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48910-X 28

[cod] Tumblebit setup implementation. https://github.com/osagga/
TumbleBitSetup

[CPP07] Catalano, D., Pointcheval, D. and Pornin, T. Trapdoor hard-to-invert
group isomorphisms and their application to password-based authentica-
tion. J. Cryptol. 20(1), 115–149, 2007. http://www.di.ens.fr/∼pointche/
Documents/Papers/2006 joc.pdf

[DJ01] Damg̊ard, I., Jurik, M.: A Generalisation, a simplification and some appli-
cations of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC
2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44586-2 9

[FKMV12] Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-
malleability of the Fiat-Shamir transform. In: Galbraith, S., Nandi, M.
(eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 60–79. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-34931-7 5

[FS86] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/
10.1007/3-540-47721-7 12

[GM84] Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci.
28(2), 270–299 (1984)

[GMR98] Gennaro, R., Micciancio, D., Rabin, T.: An efficient non-interactive statis-
tical zero-knowledge proof system for quasi-safe prime products. In: Gong,
L., Reiter, M.K. (eds.) CCS 19, Proceedings of the 5th ACM Conference
on Computer and Communications Security, San Francisco, CA, USA, 3–5
November 1998, pp. 67–72. ACM (1998). http://eprint.iacr.org/1998/008

[HAB+17] Heilman, E., Alshenibr, L., Baldimtsi, F., Scafuro, A. and Goldberg, S.:
Tumblebit: an untrusted bitcoin-compatible anonymous payment hub. In:
24th Annual Network and Distributed System Security Symposium, NDSS.
The Internet Society (2017). https://eprint.iacr.org/2016/575.pdf

https://doi.org/10.1007/3-540-46885-4_18
https://www.bouncycastle.org/csharp/index.html
https://cseweb.ucsd.edu/~mihir/papers/cct.html
https://doi.org/10.1007/3-540-48910-X_8
https://doi.org/10.1007/3-540-48910-X_8
https://doi.org/10.1007/3-540-48910-X_28
https://github.com/osagga/TumbleBitSetup
https://github.com/osagga/TumbleBitSetup
http://www.di.ens.fr/~pointche/Documents/Papers/2006_joc.pdf
http://www.di.ens.fr/~pointche/Documents/Papers/2006_joc.pdf
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
http://eprint.iacr.org/1998/008
https://eprint.iacr.org/2016/575.pdf

Efficient Noninteractive Certification of RSA Moduli and Beyond 727

[HMRT12] Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T.: Efficient RSA key gener-
ation and threshold paillier in the two-party setting. In: Dunkelman, O.
(ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 313–331. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-27954-6 20

[Hoe63] Hoeffding, W.: Probability inequalities for sums of bounded random vari-
ables. J. Am. Stat. Assoc. 58(301), 13–30 (1963)

[KKM12] Kakvi, S.A., Kiltz, E., May, A.: Certifying RSA. In: Wang, X., Sako, K.
(eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 404–414. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-34961-4 25

[Lin17] Lindell, Y.: Fast secure two-party ECDSA signing. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 613–644. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63715-0 21

[LMRS04] Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate
signatures from trapdoor permutations. In: Cachin, C., Camenisch, J.L.
(eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidel-
berg (2004). https://doi.org/10.1007/978-3-540-24676-3 5

[MKJR16] Moriarty, K., Kaliski, B., Jonsson, J., Rusch, A.: RFC 8017: PKCS #1:
RSA Cryptography Specifications Version 2.2. Internet Engineering Task
Force (IETF) (2016). https://tools.ietf.org/html/rfc8017

[MPS00] MacKenzie, P., Patel, S., Swaminathan, R.: Password-authenticated key
exchange based on RSA. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS,
vol. 1976, pp. 599–613. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-44448-3 46

[MRV99] Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In:
40th Annual Symposium on Foundations of Computer Science, FOCS 1999,
17–18 October 1999, New York, NY, USA, pp. 120–130. IEEE Computer
Society (1999)

[Ntu] Tumblebit implementation in.net core. https://github.com/NTumbleBit/
NTumbleBit/

[Sho09] Shoup, V.: A Computational Introduction to Number Theory and Algebra,
2nd edn. Cambridge University Press (2009). http://www.shoup.net/ntb/
ntb-v2.pdf

[Str17] Stratis Blockchain: Bitcoin privacy is a breeze: tumblebit successfully inte-
grated into breeze, August 2017. https://stratisplatform.com/2017/08/10/
bitcoin-privacy-tumblebit-integrated-into-breeze/

[WCZ03] Wong, D.S., Chan, A.H., Zhu, F.: More efficient password authenticated key
exchange based on RSA. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT
2003. LNCS, vol. 2904, pp. 375–387. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-24582-7 28

https://doi.org/10.1007/978-3-642-27954-6_20
https://doi.org/10.1007/978-3-642-34961-4_25
https://doi.org/10.1007/978-3-319-63715-0_21
https://doi.org/10.1007/978-3-540-24676-3_5
https://tools.ietf.org/html/rfc8017
https://doi.org/10.1007/3-540-44448-3_46
https://doi.org/10.1007/3-540-44448-3_46
https://github.com/NTumbleBit/NTumbleBit/
https://github.com/NTumbleBit/NTumbleBit/
http://www.shoup.net/ntb/ntb-v2.pdf
http://www.shoup.net/ntb/ntb-v2.pdf
https://stratisplatform.com/2017/08/10/bitcoin-privacy-tumblebit-integrated-into-breeze/
https://stratisplatform.com/2017/08/10/bitcoin-privacy-tumblebit-integrated-into-breeze/
https://doi.org/10.1007/978-3-540-24582-7_28
https://doi.org/10.1007/978-3-540-24582-7_28

	Efficient Noninteractive Certification of RSA Moduli and Beyond
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	3 HVZK Proofs for Properties of N and e
	3.1 HVZK Proof for a Permutation over ZN*
	3.2 HVZK Proofs for Paillier and Square-Free N
	3.3 HVZK Proof for Permutation over Entire ZN
	3.4 HVZK Proof for a Product of Two Primes
	3.5 HVZK Proof for a Blum Integer

	4 Making Our Protocols Noninteractive via Fiat-Shamir
	5 Specification, Implementation and Performance for NIZK of Permutations over ZN
	A Number-Theoretic Lemmas
	B Background on the Fiat-Shamir transform
	C Detailed Specification for the NIZK of Permutations over Zn
	C.1 System Parameters
	C.2 Proving
	C.3 Verifying
	C.4 Auxiliary function: getRho

	References

