
IET Information Security

Research Article

Leakage-resilient lattice-based partially blind
signatures

ISSN 1751-8709
Received on 26th March 2019
Revised 17th June 2019
Accepted on 24th July 2019
E-First on 10th September 2019
doi: 10.1049/iet-ifs.2019.0156
www.ietdl.org

Dimitrios Papachristoudis1 , Dimitrios Hristu-Varsakelis1, Foteini Baldimtsi2, George Stephanides1

1Computational Systems and Software Engineering Laboratory, Department of Applied Informatics, University of Macedonia, Thessaloniki,
Greece
2Department of Computer Science, George Mason University, Fairfax, Virginia, USA

 E-mail: dpapachristoudis@uom.edu.gr

Abstract: Blind signature schemes (BSS) play a pivotal role in privacy-oriented cryptography. However, with BSS, the signed
message remains unintelligible to the signer, giving them no guarantee that the blinded message he signed actually contained
valid information. Partially BSS (PBSS) were introduced to address precisely this problem. In this study, the authors present the
first leakage-resilient, lattice-based PBSS in the literature. The proposed construction is provably secure in the random oracle
model and offers quasi-linear complexity w.r.t. key/signature sizes and signing speed. In addition, it offers statistical partial
blindness and its unforgeability is based on the computational hardness of worst-case ideal lattice problems for approximation
factors in O

~(n4) in dimension n. The proposed scheme benefits from the subexponential hardness of ideal lattice problems and
remains secure even if a (1 − o(1)) fraction of the signer's secret key leaks to an adversary via arbitrary side-channels. Several
extensions of the security model, such as honest-user unforgeability and selective failure blindness, are also considered and
concrete parameters for instantiation are proposed.

1 Introduction
Typical digital signatures allow one party, termed the signer, to
issue signatures on messages or documents, validating their
authenticity. Such schemes primarily safeguard against
impersonation of parties, tampering with messages, and
repudiation. However, when it comes to privacy-sensitive
applications such as electronic voting, e-cash, e-auctions,
anonymous authentication via digital credentials, wireless sensor
networks, or other cases in which preserving the confidentiality of
a user is paramount, the functionality of conventional digital
signatures falls short.

Blind signature schemes (BSS) are a variant of digital
signatures that were pioneered by Chaum in 1982 [1], and have
since become a central point of industrial and academic interest.
BSS separate the owner of a message from the signer by allowing
the owner of the message to interact with the signer and obtain a
signature on it that remains unintelligible from the signer's view.
The resulting signature can still be verified against the signer's
public key, just like with typical digital signatures. However,
nobody – including the signer himself – can link a message–
signature pair to a signing transcript. As one would suspect though,
such a high level of privacy has some grave drawbacks. First, by
design, blind signatures provide perfect confidentiality for the
receiving user with regards to the message being signed. As a
result, blind signatures can potentially provide a gateway for
committing ‘perfect’ crimes [2] such as money laundering,
blackmailing, and so on. Second, blind signing provides no
guarantee to the signer that the blinded message he signed is of the
right ‘format’ or contains some valid information that should be
included in the message (e.g.: the denomination of a digital coin,
the date a voucher was issued etc.). Moreover, given that the only
attributes over which the signer has control are those bound to his
public key, we might end up in a case where multiple keys need to
be managed, resulting to an increased complexity for both the
signer and verifiers [which is even more problematic if devices
with constrained memory (e.g. smart-cards) are being used [3]].
Consider for example a signer that issues blind signatures which
expire at the end of the week, then the signer's public key needs to
be updated every week, or consider the case of e-cash with

multiple denominations: the signer/bank will need to use a different
public key for each allowable coin denomination. These major
shortcomings of blind signatures spurred the research community
to invent primitives with features that could bypass these issues.

The two major models that have been proposed, in an effort to
overcome these issues are: fair BSS [4, 5] and partially BSS
(PBSS) [3, 6]. Fair blind signatures allow a trusted third party to
revoke blindness in order to identify either the session during
which a given signature was issued (session tracing), or a
signature, given a signer's view of a specific session (signature
tracing). On the other hand, partially blind signatures allow a
signer and a user to include a commonly agreed upon piece of
information (denoted info) to the signature. The key idea for
achieving this in [6] was to adapt a method proposed in [7] by
letting the signer use a secret key, along with two public keys, one
of which includes info, with the help of a public hash function. As
a result, the final signature is bound to these public keys and thus,
to info as well. This approach has the benefit of greatly simplifying
key management, because the signer only needs a single key in
order to be able to include any auxiliary information (i.e. expiration
date or denomination value). Note that PBSS do not immediately
solve the problem of whether the blinded message to be signed is
of the right format (this problem would be solved generically by
including a zero-knowledge proof of knowledge on the format of
the message), however, they provide an efficient way to make sure
that the info part of the message included the necessary to
application information and is of the right format. We would also
like to mention that the more recent work of Rückert and Schröder
[8] proposed a unified security model called fair partially blind
signatures (FPBSS), which combines the security models of both
aforementioned primitives into a single. Building a construction in
that model would be ideal for real-world applications, balancing
the individual needs of customers (blindness), service providers
(partial control), and authorities (fairness), and is currently an open
problem.

However, when designing secure cryptographic schemes, one
has to be mindful of developments both in technology and also in
the field of cryptanalysis. Indeed, following the formulation of
Shor's algorithm [9] in 1994, the need for alternative hardness
assumptions that remain intractable even in the presence of

IET Inf. Secur., 2019, Vol. 13 Iss. 6, pp. 670-684
© The Institution of Engineering and Technology 2019

670

Authorized licensed use limited to: George Mason University. Downloaded on September 02,2020 at 14:13:48 UTC from IEEE Xplore. Restrictions apply.

quantum computers became as imperative as ever. By now, lattice-
based cryptography is one of the predominant approaches for
constructing provably secure and efficient cryptographic primitives
that can withstand attacks even by a quantum computer. This is
largely due to the fact that unlike number-theoretic hardness
assumptions, there are no known algorithms for solving the lattice
problems that are typically used at the foundation of cryptographic
constructions, which has led to their conjectured intractability even
against quantum computer attacks. Aside from quantum-resistance,
lattices additionally have the unique feature of allowing for worst-
case to average-case reductions. Phrased differently, a randomly
selected (according to some distribution) problem instance is at
least as hard to solve as some related lattice problem in the worst
case. This feature not only allows us to reliably base security on
worst-case hardness, but also greatly simplifies key selection for
constructed cryptosystems. This extraordinary observation was first
made by Ajtai in [10]. Moreover, lattice-based constructions are
characterised by simplicity, efficiency, and parallelisability as one
typically has to perform linear operations on vectors and matrices,
as well as reductions modulo some small integer. Finally, lattice-
based cryptography offers great versatility and is suitable for a
plethora of advanced applications like: fully-homomorphic
encryption, attribute-based encryption, general-purpose code
obfuscation, hierarchical ID-based constructions, and much more.
For a more detailed listing of applications, the reader is referred to
surveys like [11].

1.1 Contributions and related work

A previous attempt to construct partially blind signatures from
lattices was made in [12]. However, the construction of [12] does
not prove partial blindness concretely and in fact seems to prove
something weaker than the required notion as it relies on
qualitative (if not ambiguous) properties of the signer that cannot
be captured by the security model of PBSs. Furthermore, its scope
is more limited compared to our proposal because it allows
disclosures of the signed message which are acceptable in some
applications (e-cash) but unacceptable in others (e-voting, e-
auctions). Finally, the scheme of [12] is vulnerable to side-channel
attacks, because of the use of discrete Gaussian sampling for the
blind signing step [13–15].

We propose the first leakage-resilient, lattice-based PBSS in the
literature. Our construction is inspired by the work of Rückert [16]
which is currently the best known leakage-resilient BSS based on
lattices. However, being a regular BSS, it is subject to the
limitations discussed above. Our approach represents a significant
step forward for PBSS because:

• First, because the vast majority of previous PBSS proposals [3,
6, 17–20] are based on number-theoretic assumptions, such as
the hardness of large integer factorisation, or the computation of
discrete logarithms. Unfortunately, the security of these schemes
would be in jeopardy should a reasonable scale quantum
computer be constructed, thanks to Shor's algorithm [9].
Consequently, all of these constructions are ill-suited for the
post-quantum era.

• Second, although a tremendous amount of progress has been
made in the design of conventional digital signatures from
lattices over the past decade [21–30], there is a serious relative
dearth when it comes to lattice-based blind signatures [16, 31]
(the latter of which has recently been shown to be problematic
[32]) despite their importance for privacy-preserving
applications.

• Regarding efficiency, our construction is as efficient as the state-
of-the-art lattice-based BSS in [16], both in terms of key sizes
(ours are slightly smaller) and in computational complexity.
However, our construction is not only one step closer to
practical applications by allowing the inclusion of a commonly
agreed piece of information in the final signature, but also relies
on a milder – by a factor of n (the security parameter) – hardness
assumption for the underlying worst-case lattice problem. This
is important because one has to rely on as mild assumptions as
possible in anticipation of attacks arising from emerging

technologies. We show that all of the extensions considered in
[16] are also satisfied by our scheme, along with an additional
extension discussed in Section 5.1. In that case, we show that
the efficient transformation that was proposed in [33] can also
be used for PBSS, which we believe might be a result of interest
on its own when designing such schemes.

1.1.1 Our technique and main challenges: Extending [16] to a
PBSS was conjectured to be possible in [34]. However, no
suggestions as to how this could be realised were given, and the
problem was not formally addressed until now as it apparently
involved several technical challenges. As per the security model of
PBSS [6], we need to show that our scheme is complete, partially
blind, and unforgeable. Unfortunately, lattices lack the algebraic
structure that is present in (finite) cyclic groups, and which very
naturally allows one to achieve partial blindness by simply
computing the product/sum of any group element with a random
group element. This problem can be rectified through rejection
sampling [16, 23], which allows us to make the distributions of
exchanged messages, independent of the respective messages that
they ‘hide’. However, this comes at the price of added complexity.
Reducing this complexity is by no means trivial: being able to
avoid/simplify rejection sampling would in turn impact many other
lattice-based constructions such as [16, 23, 26, 29]. The complexity
introduced by rejection sampling makes all of the aforementioned
security properties (as well as the extensions that we consider) non-
trivial to achieve simultaneously because they are interconnected to
one another. In particular:

• Completeness is hindered, meaning that even if both parties
involved in the signature issuing protocol are honest, the
protocol may need to be restarted. We address this issue in the
same way as [16]. However, since it is possible for the signature
issuing protocol to restart, it is important to make sure that both
partial blindness and unforgeability hold, even across restarts.

• Regarding partial blindness, PBSS are built by combining the
framework of [6] with witness-indistinguishable identification
protocols. For this work, we will use (a slight variant of) the
witness-indistinguishable identification scheme of [23] as a
basis. However, due to the aforementioned rejection sampling
strategy, it is not possible to apply the transformation of [6] in a
straightforward manner. This is due to the fact that rejection
sampling causes the coefficients of a blinded message to come
from a larger set (roughly by a factor of at least n) than the
original message's, whenever applied. This turns out to be
problematic when we want to ‘unblind’ to produce the final
signature. We address this issue by having the user send a
‘shrinked’ version of the blinded challenge to the signer (i.e.
reducing it modulo the range of the challenge space's
coefficients – typically, modulo 3), by carefully setting our
scheme's multiple interconnected parameters, and analysing the
distributions of messages exchanged between the two parties.
Our scheme is shown to be partially blind and an important
implication of our approach is obtaining a milder by n hardness
assumption for our scheme's unforgeability property. In addition,
we employ a statistically hiding commitment scheme to make
sure that partial blindness is preserved across protocol restarts.

• Proving unforgeability is also non-trivial because a malicious
user might falsely claim that he failed to obtain a valid signature
out of a protocol execution, thus causing the protocol to abort
and potentially ‘buying’ himself multiple valid signatures (this
scenario would obviously be catastrophic for applications like e-
cash or e-voting). We address this issue by introducing a fourth
move to our signature issuing protocol, which serves as a special
proof of failure in case the protocol has to be restarted and is
akin to [16]. As in [16], we need to show that a malicious user
cannot obtain a valid signature out of an aborted protocol
execution, unless he is able to solve a computationally hard
lattice problem. However, as we will see in Section 4.3.3, this is
considerably trickier to achieve compared to [16] because in our
PBSS setting there are multiple scenarios which may cause the
protocol's restart (in [16] there is only one). Nevertheless, our
construction's security will be formally proven in the random

IET Inf. Secur., 2019, Vol. 13 Iss. 6, pp. 670-684
© The Institution of Engineering and Technology 2019

671

Authorized licensed use limited to: George Mason University. Downloaded on September 02,2020 at 14:13:48 UTC from IEEE Xplore. Restrictions apply.

oracle model (ROM) [35] under standard worst-case lattice
problems pertaining to ideals [36].

• Finally, with respect to leakage resilience, we will show that if
we impose an additional requirement on the size of one of our
scheme's parameters, then it is also resistant against key-leakage
via arbitrary side-channels.

1.1.2 Relationship between the present work and
impossibility results for BSS: In [37], the authors give an
impossibility result for three-move BSS with the help of a meta-
reduction (i.e. a reduction between reductions). Their approach
plays the two security requirements of BSS (blindness and
unforgeability) against each other, resulting in a proof that finding
black-box reductions from unforgeability to non-interactive
problems (like RSA, or discrete logarithm) is hard, unless the
problems involved were already easy. Their work covers a broad
class of BSS in the literature [1, 17, 38] and subsumes many prior
impossibility results for BSS [39–41]. However, the main result of
[37] does not apply to our construction. First, the results of [37] are
given for BSS rather than PBSS which means that one would first
have to show that a corresponding result also holds for PBSS.
Second, [37] does not rule out reductions in the ROM [42, p. 3].
Third and most importantly, [37] only applies to BSS with at most
three moves, that admit statistical signature-derivation checks (i.e.
an observer can determine only from the public data and messages
exchanged between a malicious signer and an honest user, whether
the user successfully obtained a valid signature or not). In our four-
move scheme however, it is impossible for one to tell whether the
user truly obtained a valid signature or not within three moves
because the user has not revealed all of the relevant information
that he uses to produce his final signature. This is important
because the components of the final signature must satisfy a certain
relation but also fall within certain bounded domains for the
signature to be deemed valid. This originates from our rejection
sampling strategy and is in sharp contrast to previous number-
theoretic BSS (and PBSS), where all of the final signature's
components would always fall within some finite group (e.g. ℤN in
the case of [1]), and thus checks like these would trivially be true
due to finite group arithmetic rules. This is in accordance with an
observation made by Fischlin and Schröder [37], stating that if the
user sends a second message to the signer, which depends on his
first message, then the resetting strategy of their meta-reduction
cannot be applied. The same argument can also be used for [16].
Additionally, the fairly more recent results of [42] also do not
apply to our work. The reason is that the results of that paper only
concern schemes with a unique-witness relation between the public
and secret key. While many constructions like the original Schnorr
BSS fall under that category, our construction relies on a many-to-
one witness relation between its public and secret keys (see Lemma
5 in Section 4.3.3).

1.2 Organisation of the paper

The remainder of the paper is organised as follows. Section 2 sets
the required theoretical and notational groundwork. In Section 3,
we describe the formal security model of leakage-resilient PBSS.
In Section 4, we give a detailed description of our construction and
show that it abides by the formal security model of PBSS, and that
it is leakage resilient. Once we have established the baseline
security, we examine additional security properties for our
proposal.

2 Preliminaries
2.1 Notation

Throughout this paper, n will be used to denote the main security
parameter. In order to formally define partially blind signatures, we
adopt the following notation from [43]. Let X and Y be two
algorithms. We denote by (a, b) ← ⟨X(x), Y(y)⟩, the joint
execution of X and Y in an interactive way with private inputs x
and y, respectively. The respective private outputs are a for X and
b for Y. By ⟨X(x), Y(y)⟩k, we mean that the interaction can occur

at most k times, where k ∈ ℕ+ ∪ {∞}. Accordingly, if Y can
invoke an unbounded number of executions of an interactive
protocol with X in arbitrarily interleaved order, we write
Y⟨X(x), . ⟩∞

(y). Finally, Y⟨X(x0), . ⟩1, ⟨X(x1), . ⟩1
(y) means that Y can invoke

arbitrarily ordered executions with X(x0) and X(x1), but interact
with each algorithm only once. An algorithm is considered efficient
if it runs in probabilistic polynomial time. For asymptotics, we
assume the standard Landau notation [44]. Additionally, we will
use ‘soft-O’ notation to ignore any polylogarithmic factors.

We will write x ←$ S if x is sampled uniformly from a finite set
S. If A is a probabilistic algorithm, we will write y ←$ A to denote
that the output of A is assigned to y, and that A is running with
randomly chosen coins. All logarithms are considered to be base 2.
We denote the concatenation of strings or matrix columns by ∥. A
positive function f (n) is called negligible in n if for any
polynomial p(n), there exists a n0 ∈ ℕ, such that
f (n) ≤ 1/ p(n), ∀n ≥ n0. A positive function f (n) is called
noticeable (or non-negligible), if there exists a positive polynomial
p(n) and a n0 ∈ ℕ, such that f (n) ≥ 1/ p(n), ∀n ≥ n0. A function
f (n) is called overwhelming if 1 − f (n) is negligible.

Statistical distance provides us with a means of quantifying
how ‘far apart’ two probability distributions (or random variables)
are. Although there are many definitions of statistical distance in
the literature, our analysis uses the following.
 

Definition 1: (Statistical distance): Let X and Y be two discrete
random variables over a (countable) set S. The statistical distance
Δ(X, Y) between X and Y is defined as
Δ(X, Y) := 1

2 ∑v ∈ S Prob[X = v] − Prob[Y = v] .
A well-known property of statistical distance is that it does not

increase if we apply a function f to its arguments [45].
 

Lemma 1: : Let S and T be finite sets, X and Y are random
variables taking values in S, and f :S → T be a function. Then
Δ(f (X), f (Y)) ≤ Δ(X, Y).

2.2 Rejection sampling

Rejection sampling is a technique that allows us to draw samples
from arbitrarily complex probability distributions. In [23], it was
shown how this technique can be utilised to construct a canonical
identification scheme from lattices. As this technique is a crucial
component to understanding our construction, we give here a brief
overview.

Let 0 < A ≤ B be two integer numbers. Now, consider the set of
constant random variables {Xc := c:c ∈ { − A, …, A}} with
respective probability mass functions: f Xc(x) := 1, if x = c, and 0
otherwise. Furthermore, let Y be an independent, discrete uniform
random variable, taking values in the set
{ − B, …B} ⊇ { − A, …, A} and with probability mass function:
gY(y) := (1/2B + 1), if y ∈ { − B, …, B}, and 0 otherwise.

We now define a new random variable Zc as the sum of Xc and
Y, for any fixed c ∈ { − A, …, A}. Obviously, Zc takes values in the
set { − (A + B), …, A + B}. The distribution hZc of Zc is thus the
convolution of distributions f Xc and gY, and its probability mass
function is given from the formula [46]:
hZc(z) = ∑k = − ∞

∞ f Xc(k)gY(z − k) = ∑k = − A + B
A + B f Xc(k)gY(z − k)

= Prob Y = z − c
.

Notice that if z − c > B, then the above probability is zero. On the
other hand, if z − c ≤ B, i.e. if −B + c ≤ z ≤ B + c, then the
above probability equals 1/(2B + 1). Therefore, the probability
mass function of hZc is
hZc(z) := (1/(2B + 1)), if z ∈ { − B + c, …, B + c}, and 0
otherwise.

Thus, hZc is just a ‘shifted’ version of gY by c ‘places’. It is not
difficult to notice that Zc is uniformly distributed over
{ − (B − A), …, B − A}, ∀c ∈ { − A, …, A}. Thus, if we compute
Zc := Xc + Y = c + Y , and only output the result if it falls within

672 IET Inf. Secur., 2019, Vol. 13 Iss. 6, pp. 670-684
© The Institution of Engineering and Technology 2019

Authorized licensed use limited to: George Mason University. Downloaded on September 02,2020 at 14:13:48 UTC from IEEE Xplore. Restrictions apply.

{ − (B − A), …, B − A} (and resample Y otherwise), then each
value z ∈ { − (B − A), …, B − A} will be equally likely to occur.
As a result, we can use this technique to ‘hide’ the value of c (in
other words, Zc is distributed independently of c). We will revisit
this discussion more formally in Section 4.3.2.

2.3 Commitment schemes

Commitment schemes are fundamental cryptographic primitives
that lie at the heart of many modern cryptographic protocols.
Informally, they allow a party to commit to a certain value (or
statement), while keeping the actual value hidden from all others,
with the ability to reveal that value at a later point.
 

Definition 2: (Commitment schemes): Let
com:{0, 1}∗ × {0, 1}n → {0, 1}∗ be a deterministic polynomial time
algorithm, where n is a security parameter. A (non-interactive)
commitment scheme consists of two protocols between two parties
which are typically named ‘sender’ and ‘receiver’:

Commit phase: The sender commits to a value μ ∈ {0, 1}∗ by
computing C ← com(μ, r), where randomness r ←$ {0, 1}n, and
sends C to the receiver.
Reveal phase: The sender ‘opens’ commitment C ← com(μ, r) by
revealing the ‘decommitment’ parameter r to the receiver. The
receiver can then verify that C = com(μ, r).

Commitment schemes need to satisfy two properties: hiding and
binding. The hiding property requires that C does not reveal any
information about the committed message μ, whereas the binding
property requires that no algorithm can substitute the committed
message μ with some other message μ′ ≠ μ, in such a way that
C = com(μ′r) = com(μ, r′), for some randomness r′ ∈ {0, 1}n. A
commitment scheme is (t, θ)-hiding (resp. binding) if no algorithm
exists running in time at most t, that can break the hiding (resp.
binding) property with a probability of at least θ. Both properties
can be satisfied computationally or unconditionally. It has been
shown that a commitment scheme cannot be unconditionally hiding
and unconditionally binding at the same time [47]. For our
construction, we will assume a statistically θcom

(h) -hiding and
computationally (tcom, θcom

(b))-binding commitment scheme. As with
[16], we can use a lattice-based cryptographic hash function such
as [48] as a message authentication code to construct a purely
lattice-based scheme.

2.4 Lattices

A lattice is a set of points in n-dimensional space with a periodic
structure. The easiest way to represent a lattice is as the set of all
integer linear combinations Λ = ∑i = 1

d xibi xi ∈ ℤ of d linearly
independent vectors b1, …, bd ∈ ℝn. These vectors are called a
basis for the lattice Λ and are often represented as a matrix
B = b1 ∥ … ∥ bd ∈ ℝn × d. We will write Λ = Λ(B) to express this
fact. We say that the rank of the lattice is d and its dimension is n.
If d = n, the lattice is called full-rank. One of the main
computationally hard problems involving lattices is the shortest
vector problem (SVP) [10].
 

Definition 3: (The approximate SVP – SVPγ
p): Let Λ = Λ(B) be

a lattice and γ ≥ 1. Find a vector v ∈ Λ∖{0}, such that
∥ v ∥p ≤ γ minw ∈ Λ∖{0} (∥ w ∥p).

SVP is conjectured to remain computationally intractable for
polynomial approximation factors, even by quantum algorithms
[49].

Here, we will focus on a special family of lattices that possess
additional algebraic structure, called ideal lattices. In particular,
throughout this paper, R will denote the polynomial ring
ℤq[x]/⟨ f⟩, where q is a prime and f ∈ ℤ[x] is any monic,
irreducible polynomial of degree n. For efficiency reasons, the
preferred choice for f is xn + 1, where n is a power of 2 (although

the ring-structure induced by this choice of f allows for much
shorter key-sizes and makes operations more efficient through the
fast Fourier transform, it provides no further functionality [24, p.
2]). Furthermore, the ring of integers modulo q will be identified
with the set

− q − 1
2 , …, q − 1

2 .

It is not hard to see that Rm ≅ ℤq
mn, ∀m ∈ ℕ+ with vector addition

corresponding to polynomial addition, and matrix–vector
multiplication corresponding to the convolution product ∑i = 0

m − 1 aibi
(modulo f and q) of polynomials in R. We will identify any
polynomial g ∈ R with its coefficient vector g = (g0, …, gn − 1) ∈ ℤq

n

(i.e. we will treat polynomials of R and vectors of ℤq
n as

equivalent). Conventionally, we will denote vectors in R with
boldface letters and m-tuples of vectors in Rm with boldface letters
and a hat. We slightly abuse notation and define
∥ g ∥∞ := maxi gi and ∥ g^ ∥∞ := maxi (∥ gi ∥∞). A lattice
corresponds to an ideal I ⊂ R, iff every lattice vector is the
coefficient vector of a polynomial in I. The SVP problem easily
translates to ideal lattices and is called Ring-SVP.

The average-case problem upon which we will base our
construction's security is that of finding short vectors in the kernel
of the family ℋ(R, m) of module homomorphisms
hâ ∈ Rm: Rm → R, x̂ ↦ a^ ⊛ x̂ := ∑i = 0

m − 1 aixi, when restricting the
domain to D ⊂ R, i.e. restricting the coefficients of the input to
{ − d, …, d}. This is the collision problem [36], which we now
formally state.
 

Definition 4: (Collision problem): Given a function
h ←$ ℋ(R, m), the collision problem Col(ℋ(R, m), D) is to find a
distinct pair of preimages x^ , y^ ∈ Dm × Dm such that h(x^) = h(y^).

Evidently, h is linear over Rm, i.e. it satisfies
h(ax̂ + by^) = ah(x̂) + bh(y^), ∀a, b ∈ R, and ∀x̂, y^ ∈ Rm. The
collision problem can trivially be shown to be as hard as Ring-SIS
[45] in the average case and transitively, at least as hard as Ring-
SVP in the worst case. The next theorem from [36] provides this
connection.
 

Theorem 1: (Worst-case to average-case reduction): Let
D = { f ∈ R: ∥ f ∥∞ ≤ d}, where m > log(q)/log(2d), and
q ≥ 4dmn nlog(n). An adversary A that solves the Col(h, D)
problem, i.e. finds preimages x^ , y^ ∈ Dm such that x^ ≠ y^ and
h(x^) = h(y^), can then use them to solve Ring − SVPγ

∞ with
approximation factors γ ≥ 16dmnlog2(n) in the worst case.

3 Syntax and security model of leakage-resilient
PBSS
PBSS is an extension of regular blind signatures [1, 38, 50] and a
simplification of FPBSS [8]. The security model for PBSS was
formalised in [6]. A PBSS is comprised by three algorithms
(KG, Sign = ⟨S, U⟩, Vf), where Sign is an interactive protocol
executed between S and U. Their specification is the following:

Key generation: Algorithm KG(1n) outputs a private signing key sk
and a corresponding public verification key pk.
Signature issuing protocol: Protocol Sign(sk, μ, info) jointly
executes algorithms S(sk, info) and U(pk, μ, info) in an interactive
manner. The signer's private output is a view V consisting of all
messages exchanged between the parties, and the user's private
output is a signature σ on message μ and the common information
info under sk. The common information info is agreed upon by the
signer and the user prior to the protocol's execution and is assumed
to be a common input to both parties. We also assume that the
protocol generates a status message like ‘ok’ or ⊥ for the signer,
denoting success or failure, respectively.

IET Inf. Secur., 2019, Vol. 13 Iss. 6, pp. 670-684
© The Institution of Engineering and Technology 2019

673

Authorized licensed use limited to: George Mason University. Downloaded on September 02,2020 at 14:13:48 UTC from IEEE Xplore. Restrictions apply.

Signature verification: Algorithm Vf(pk, μ, info, σ) returns 1 if σ is
a valid signature on message μ and common information info under
public key pk, and 0 otherwise.

Signer views can be interpreted as random variables and we will
consider two views V1 and V2 ‘equal’ if no computationally
unbounded algorithm A exists that distinguishes them with non-
negligible probability.

A PBSS needs to satisfy three properties: completeness, partial
blindness, and unforgeability [6, 34].

Completeness for PBSS is defined as in regular digital
signatures, i.e. if both the signer and the user comply with the
signature issuing protocol, then the user successfully obtains a
valid signature with overwhelming probability.

Partial blindness generalises the notion of blindness [38, 50],
and informally requires that it is infeasible for a malicious signer to
link any valid signature to the exact instance of the signature
issuing protocol in which it was created. A formal definition is
given by means of the following experiment [6, 34]:
 

Definition 5: (Partial blindness): A partially blind signature
scheme PBSS = (KG, ⟨S, U⟩, Vf) is partially blind if for any
efficient algorithm S∗ (working in modes find, issue, and guess),
the probability that experiment ExpS∗, PBSS

partiallyblind(n) evaluates to 1 is
negligibly close to 1/2 (as a function of n), where

Experiment ExpS∗, PBSS
partiallyblind(n)

(pk, sk) ←$ PBSS . KG(1n)
(μ0, μ1, info, statefind) ←$ S∗(find, 1n)
b ←$ {0, 1}

stateissue ←$ S ∗ ⟨ . , U(pk, μb, in f o)⟩1, ⟨ . , U(pk, μ1 − b, info)⟩1
(issue, statefind)

Let σb and σ1 − b be the private outputs of U(pk, μb,
info) and U(pk, μ1 − b, info), respectively .

If σ0 = ⊥ or σ1 = ⊥
b′ ←$ S∗(guess, ⊥, ⊥, stateissue)

Else
b′ ←$ S∗(guess, σ0, σ1, statefind)

Return 1 iff b′ = b .
Notice that the notion of partial blindness closely resembles that

of blindness [38], the only difference being that now there is an
additional commonly known factor, info, that needs to be taken into
account. In the above experiment, the malicious signer, S∗,
generates his public/secret keys via the scheme's key generation
algorithm (we relax this requirement in Section 5.2). He then
selects messages μ0, μ1 and common information info on his own
(mode find). He then interacts with honest users U(pk, μb, info) and
U(pk, μ1 − b, info), after a secret coin flip b ←$ {0, 1} (mode issue).
If either user instance aborts before completion, the signer is
merely notified of the event, but receives no signature. After seeing
the unblinded signatures in the original order, the signer's task is to
correctly guess b (mode guess). We further parameterise the
definition of partial blindness. We will say that a PBSS is (t, θ)-
partially blind, if there is no adversary S∗, running in time at most
t, that wins in the above experiment with advantage of at least θ,
where S∗'s advantage is defined as

AdvS∗, PBSS
partiallyblind = Prob[ExpS∗, PBSS

partiallyblind(n) = 1] − 1
2 .

We will call a PBSS statistically partially blind if it is (∞, θ)-
partially blind for a negligible θ, and perfectly partially blind if θ is
0.

Unforgeability of PBSS is stronger than the one defined for
regular blind signatures [38, 50], since ‘recombination’ attacks
should be ruled out [8]. Additionally, the adversarial user is

allowed to select both the messages and the common information
info that he queries, in an adaptive manner. Put another way, a
malicious user should be unable to generate a valid signature for a
new info, instead of just for a new message [8]. The notion of
unforgeability of PBSS is defined in terms of the following game,
which we derive from the more general game of [8], where ℋ
denotes a family of random oracles:
 

Definition 6: (Unforgeability of PBSS): An interactive partially
blind signature scheme PBSS = (KG, ⟨S, U⟩, Vf) is unforgeable if
the following holds: for any efficient algorithm U∗, the probability
that experiment ExpU∗, PBSS

om f (n) evaluates to 1 is negligible (as a
function of n), where

Experiment ExpU∗, PBSS
omf (n)

H ←$ ℋ(1n)
(pk, sk) ←$ PBSS . KG(1n)
For each info, let kinfo denote the number

of successful, complete interactions:
((μ1, info, σ1), …, (μkinfo + 1, info, σkinfo + 1)) ←$

U ∗ H(.), ⟨S(sk), . ⟩∞
(pk)

Return 1 iff
1. μi ≠ μj, ∀i, j = 1, …, kinfo + 1 with i ≠ j, and
2. PBSS . Vf(pk, μi, info, σi) = 1, ∀i = 1, …, kinfo + 1.

Note that in the above experiment, the adversarial user outputs
kinfo + 1 valid message–signature pairs that correspond to a single
info, where 0 ≤ kinfo ≤ qsig denotes the number of successful,
complete interactions that took place. To further parameterise
matters, we say that a PBSS is (t, qSig, qH, θ)-unforgeable if there is
no adversary U∗, running in time at most t, making at most qSig
signature queries and at most qH hash oracle queries, that wins at
the above experiment with probability at least θ.

Leakage-resilient cryptographic primitives are designed to
remain secure even if an arbitrary, but bounded portion of the
secret key (and/or other internal state information in general) of an
honest party leaks to an adversary during computation. This
augmentation of the notion of unforgeability helps safeguard
against various forms of side-channel attacks, such as: timing
attacks [13, 14], data remanence attacks, power-monitoring attacks
[15], or implementations using poor random number generation.
Unfortunately, the authors in [13, 14] provide clear evidence that
cache timing attacks in particular are a practical threat to post-
quantum cryptographic constructions. As a result, proving that a
scheme is resistant against key leakage is a very important property
if we want to consider long-term security, and constructions
possessing it grant us a very high level of confidence when
deploying them in practice.

To model leakage resilience in the context of unforgeable
PBSS, we refer to [51], and grant the adversarial user access to a
leakage oracle, Leak(.), in the above unforgeability experiment
(our scheme satisfies the properties required by Katz and
Vaikuntanathan [51]). The adversary can adaptively query a series
of functions f i, i ∈ {1, …, κ} to this oracle, and receive f i(sk). We
consider the signer's secret state to consist solely of his secret key
and that his secret key does not change over time. We also consider
the same bounded leakage model as in [16]. More precisely, we
impose the constraint ∑i = 1

n f i(sk) < λ(sk), where λ = λ(⋅) is a
function of the length of the secret key, and dictates the amount of
tolerable leakage. Of course, this extension only makes sense as
long as λ(sk) < min { sk , σ }, where ⋅ denotes bit-length, and
σ is a signature. The experiment modelling leakage resilience for
the unforgeability of PBSS is defined below.
 

Definition 7: (Leakage resilience of PBSS): An interactive
partially blind signature scheme PBSS = (KG, ⟨S, U⟩, Vf) is
leakage-resilient with parameter λ, if the following holds: for any

674 IET Inf. Secur., 2019, Vol. 13 Iss. 6, pp. 670-684
© The Institution of Engineering and Technology 2019

Authorized licensed use limited to: George Mason University. Downloaded on September 02,2020 at 14:13:48 UTC from IEEE Xplore. Restrictions apply.

efficient algorithm U∗, the probability that experiment
ExpU∗, PBSS

omf, λ − Leak(n) evaluates to 1 is negligible (as a function of n),
where

Experiment ExpU∗, PBSS
omf, λ − Leak(n)

H ←$ ℋ(1n)
(pk, sk) ←$ PBSS . KG(1n)

For each info, let kinfo denote thenumber of
successful, complete interactions:

((μ1, info, σ1), …, (μkin f o + 1, info, σkinfo + 1)) ←$

U ∗ H(.), ⟨S(sk), . ⟩∞, Leak(sk, .)(pk)
Let f 1, …, f κ be the leakage queries of U∗,

each with output length λi .
Return 1 iff
1 . μi ≠ μj, ∀i, j = 1, …, kinfo + 1 with i ≠ j,
2. PBSS . Vf (pk, μi, info, σi) = 1, ∀i = 1, …, kinfo + 1, and

3. ∑i = 1

κ λi ≤ λ(sk) .

4 PBSS from Ring-SIS
We now present our lattice-based PBSS. Its time and space
complexity are quasi-linear, O~ (n) in the security parameter, and its
security will be proven in the ROM under the worst-case
assumption that Ring − SVPγ

∞ is hard to solve in the ring R for
γ = O~ (n4). Notice that it is possible for our scheme to be
instantiated with regular q-ary lattices and thus have its security
based on regular SIS and SVP instead. Here we describe only the
more efficient ideal lattice variant. Our scheme relies on carefully
setting multiple interconnected parameters which are detailed in
Table 1 (sorted by order of appearance in our construction). All
sets are subsets of R = ℤq[x]/⟨xn + 1⟩ and are defined by means of
a l∞−norm bound. The third column gives an indication of the
asymptotic magnitude of the corresponding parameter/set w.r.t. the
main security parameter n. The last column provides insight as to
the role(s) that the corresponding parameter/set has in the

interactive protocol, shown in its entirety in Fig. 1. Some sets
introduce a completeness defect which can be rectified by
increasing the value of parameter ϕ, which improves performance
but requires a slightly stronger hardness assumption (by some
constant factor). As in [16], we do not unwind the parameters ds
and dϵ in favour of making the proofs of some lemmas that involve
them, easier to understand. In particular, for our scheme dϵ will be
the constant 1, but one can increase it in order to be able to sign
hash values of bit-length > nlog(3).

4.1 Our construction

We go on to provide definitions for the triplet of algorithms
(KG, Sign = ⟨S, U⟩, Vf) comprising our PBSS. Sample parameters
are given in Table 2.

• Key generation: PBSS.KG(1n) chooses a secret key s^ ←$ Ds
m

(see Table 1), and a homomorphic hash function h ←$ ℋ(R, m).
Next, it selects a function com ←$ C(1n) and a hash function
H ←$ ℋ(1n) mapping {0, 1}∗ → Dϵ ⊂ D, where C(1n) is a
family of commitment schemes, mapping
{0, 1}∗ × {0, 1}n → {0, 1}n. It also selects a public hash function
ℱ:{0, 1}∗ → R that maps arbitrary strings to a random public
key, whose secret key is not known by anyone [6]. The
algorithm computes the public key S ← h(s^) and gives the pair
(s^, S) to the signer. For simplicity, we will treat h, com, H, ℱ and
the rest of the parameters in Table 1 as globally known.
Alternatively, the signer can set the parameter values and
include them in the public key.

• Signature issuing protocol: The signature issuing protocol is
described by the joint execution of algorithms S and U as
depicted in Fig. 1. The signer's private input is his secret key s^,
whereas the user's private input is the message to-be-signed, μ.
The common information info is assumed to be negotiated
outside the signature scheme and is thus treated as common
input to both parties. Eventually, the user obtains a signature
(r, ẑ, ω, σ^, δ) for message μ and common information info. If the
protocol needs to be restarted during step 2, the user only selects
new a ←$ Da and a′ ←$ Da′, and repeats the operations that
involve those, while keeping the same r ∈ {0, 1}n. However, if
the protocol is aborted during either step 3 or step 5, the user
must select a new r as well, to make the protocol executions

Table 1 Scheme parameters for main security parameter n
Parameter Value Asymptotics Purpose
n power of 2 — main security parameter
ds positive integer constant < q/(4n) O(1) secret key size, unforgeability
Ds { f ∈ R: ∥ f ∥∞ ≤ ds} O(1) secret key space
cm > 1/log(2ds) O~ (1) witness indistinguishability, leakage resilience
m ⌊cmlog q⌋ + 1 Ω(log(n)) worst-case to average-case reduction
Dε { f ∈ R: ∥ f ∥∞ ≤ dϵ := 1} O(1) hash output size
ϕ positive integer constant ≥ 1 O(1) completeness, speed
Da { f ∈ R: ∥ f ∥∞ ≤ da := ϕndϵ} O(n) partial blindness
Da′ { f ∈ R: ∥ f ∥∞ ≤ da′ := ϕn(da + dϵ) + dϵ} O(n2) partial blindness
Gε { f ∈ R: ∥ f ∥∞ ≤ da′ − (da + dϵ)} O(n2) partial blindness
Dy { f ∈ R: ∥ f ∥∞ ≤ dy := ϕmn2dsdϵ} O~ (n2) witness indistinguishability

G∗ { f ∈ R: ∥ f ∥∞ ≤ dG∗ := dy − ndsdϵ} O~ (n2) witness indistinguishability, completeness defect

Dβ { f ∈ R: ∥ f ∥∞ ≤ dβ := ϕmndG∗} O~ (n3) partial blindness

G { f ∈ R: ∥ f ∥∞ ≤ dG := dβ − dG∗} O~ (n3) partial blindness, completeness defect

Gω { f ∈ R: ∥ f ∥∞ ≤ dω := da − dϵ} O~ (n) partial blindness, completeness defect
Gσ { f ∈ R: ∥ f ∥∞ ≤ dσ := dβ − dG∗} O~ (n3) partial blindness, completeness defect

Gδ { f ∈ R: ∥ f ∥∞ ≤ dδ := da′ − dϵ} O(n2) partial blindness, completeness defect
D { f ∈ R: ∥ f ∥∞ ≤ dD := dG∗ + dβ + ndsdω} O~ (n3) collisions under h

q ≥ 4dDmn nlog(n) Θ~ (n4 n) worst-case to average-case reduction

IET Inf. Secur., 2019, Vol. 13 Iss. 6, pp. 670-684
© The Institution of Engineering and Technology 2019

675

Authorized licensed use limited to: George Mason University. Downloaded on September 02,2020 at 14:13:48 UTC from IEEE Xplore. Restrictions apply.

Fig. 1  Five-step, four-move signature issuing protocol (steps shown in boxed numbers) for the proposed PBSS. All parameter and set definitions are given in
Table 1. For brevity, we omit any verifications performed by the two parties w.r.t. the domains from which the protocol messages come from

Table 2 Sample parameter instantiations for our PBSS
Parameter Sample instantiations
n (power of 2) 2048 2048 2048
q (prime ≈ n7) ≈ 277 ≈ 277 ≈ 277

ϕ 1 29 16
ds 1 1 21,619
m 78 78 5
repetitions 148 1.19 1.37
secret key size 31.65 kB 31.65 kB 19.71 kB
public key size 19.71 kB 19.71 kB 19.71 kB
signature size 1868.8 kB 2260.6 kB 168.3 kB
communication 3078.84 kB 3664.6 kB 320.72 kB
Parameters are set so that the collision problem is hard to solve [23, 52]. The parameters in the first column use the mildest hardness assumption, the set of the second column aims to
reduce the number of required repetitions, and the third set aims to decrease the signature size, while keeping the number of required repetitions small (other trade-offs are also
possible). For the second and third column, the optimisation goal is denoted in bold face. In all cases, the Hermite factor is taken to be 1.007, and the estimated security level is 92
bits [49, 53]. To decrease the expected number of repetitions (e5/ϕ as we prove in Theorem 2), we need to increase the value of the parameter ϕ, thus sampling our masking vectors
throughout the protocol from larger sets. Finally, as we discuss in Section 4.2, ϕ must not be a multiple of 3 (in case dϵ = 1).

676 IET Inf. Secur., 2019, Vol. 13 Iss. 6, pp. 670-684
© The Institution of Engineering and Technology 2019

Authorized licensed use limited to: George Mason University. Downloaded on September 02,2020 at 14:13:48 UTC from IEEE Xplore. Restrictions apply.

independent of one another. Finally, by means of step 5 the
signer can thwart a cheating user who has obtained a valid
signature but claims the contrary. In that case, the signer simply
terminates the protocol, leaving the user with what he has
obtained.

• Signature verification: PBSS . Vf(S, μ, info, (r, ẑ, ω, σ^ , δ)))
returns 1 as output iff ẑ ∈ Gm, ω ∈ Gω, σ^ ∈ Gσ

m, δ ∈ Gδ and
ω + δ(mod 2dϵ + 1) = H(h(ẑ) + ωS, h(σ̂) + δℱ(info), ℱ(info),
com(μ, r))

,

and 0 otherwise.

4.2 Protocol description

Our protocol is based on the three-move witness-indistinguishable
identification protocol of [23], in which the signer proves
knowledge of a secret key s^ ∈ Ds

m such that h(s^) = S, where S is
the corresponding public key. The signer also uses a second public
key Z (the ‘tag’ public key), which is generated from the common
information info with the help of a hash function. These two keys
are used in conjunction by the signer to sign a message in such a
way that the resulting protocol is witness-indistinguishable. We
construct our protocol by combining [23] with the framework of
[6].

Upon commencing, the signer selects random nonce vectors
y^1 ∈ Dy

m and y^2 ∈ G∗
m and computes commitments Y1 = h(y^1) and

Y = h(y^2) + γZ, where Z = ℱ(info), which he then sends to the
user. As is the case with all constructions that rely on the Fiat-
Shamir heuristic [54], the user computes the challenge ϵ as a
function (involving H) of Y1, Y, the ‘tag’ public key Z, and the
message to-be-signed, μ, and then ‘blinds’ it by computing
ϵ∗ = ϵ − a − a′(mod 2dϵ + 1), before sending it to the signer. The
signer computes e = ϵ∗ − γ(mod 2dϵ + 1), and then the ‘blinded’
signature ẑ∗ = y^1 − es^. As h is a homomorphism, the user can
check that h(ẑ∗) = Se + Y1 using public knowledge only. Finally,
the user ‘unblinds’ the signature by computing ẑ = ẑ∗ + β

^
 and

ω = e + a, as well as σ^ = y^2 + β^′ and δ = γ + a′, which correspond
to common information info. There are a few issues that need to be
addressed at this point. First, the protocol must be complete.
Second, the messages transmitted by the user must be distributed
independently of the signed message μ, in order to achieve partial
blindness. Finally, to prove unforgeability, we need to make sure
that the messages transmitted by the signer do not leak information
about his secret key to the user. All issues are addressed via
rejection sampling [22, 23].

In step 2, we need to make sure that the blinded challenge ϵ∗

that the user computes, leaks no information about the message
being signed, and that it is uniformly distributed. This is necessary
because ω + δ(mod 2dϵ + 1) = ϵ (both ω and δ will be part of the
final signature) and thus ϵ∗ needs to hide ϵ. This is done in two
steps: computing the blinded challenge, and then ‘shrinking’ it
modulo the range of coefficients in Dϵ. First, to hide ϵ we rejection-
sample ϵ − a − a′ to make sure that it falls within Gϵ. For that
purpose, a′ will need to be picked from a relatively larger set than
ϵ − a to ‘mask’ the difference (and thus ϵ too). Otherwise, the user
performs a ‘local restart’ by picking fresh a and a′. The
completeness defect introduced here can effectively be lowered to
0 because the user can repeat it locally. Second, provided that
ϵ − a − a′ ∈ Gϵ, we have to ensure that
ϵ∗ := ϵ − a − a′(mod 2dϵ + 1) is also distributed uniformly over
Dϵ before sending it to the signer. We achieve this by imposing a
restriction on the ‘shape’ of Gϵ. For our case of dϵ = 1, this can be
achieved by requiring that the range of coefficients in Gϵ is a
multiple of 2dϵ + 1 = 3. However, notice that if we require that
2[da′ − (da + dϵ)] + 1 = 2(ϕ2n2 − 1) + 1 ≡ 0(mod 3), this is
equivalent to ϕ2 ≡ 2(mod 3), which has no solutions. To fix this,
we set the upper bound for the coefficients in Da′ to be slightly
higher, i.e. da′ := ϕn(da + 1) + 1 (or da′ := ϕn(da + dϵ) + dϵ in
general). By following the same rationale as above, for the case of

dϵ = 1, we obtain the congruence ϕ2 ≡ 1(mod 3), which is
satisfied by all natural numbers that are not a multiple of 3. Thus,
we need to select ϕ to be non-congruent to 0 modulo 3, which is
not a steep requirement at all, given the natural density of such
numbers. All of the parameter sets proposed in Table 2 satisfy this
condition.

Upon receiving the ‘shrinked’ blinded challenge ϵ∗, the signer
computes e ← ϵ∗ − γ (mod 2dϵ + 1). Notice that this computation is
done modulo 2dϵ + 1 in correspondence to the computation of ϵ∗

performed by the user during step 2. Since both ϵ∗ and γ are
uniform over Dϵ (which is isomorphic to ℤ2dϵ + 1

n), e is also uniform
over Dϵ. The rationale behind the reduction modulo 2dϵ + 1 is to
make the masking of e possible during the next step of the protocol
(it is otherwise impossible to apply Lemmas 2 and 4). Next, we use
rejection sampling to hide es^ (and thus s^) by adding to it a vector y^1

from a relatively larger set, compared to ∥ es^ ∥∞, and outputting
the result only if it falls within G∗

m. This results in ẑ∗ = y^1 − es^

appearing to be uniform over G∗
m, despite actually being related to

secret key s^. However, if ẑ∗ ∉ G∗
m, the protocol must be restarted.

As we show in the next section, the number of required trials can
be greatly reduced by increasing one of our scheme's parameters.

Finally, rejection sampling is used again in step 4 when the user
attempts to ‘unblind’ the components of the final signature. More
specifically, the user masks e, γ, ẑ∗, and σ̂ with the help of a, a′, β

^
,

and β^′, respectively (which were prepared during step 2).
Unfortunately, rejection sampling needs to be applied four times in
total, which considerably decreases the user's chance of obtaining a
signature without having to restart the protocol (see, e.g. the first
column of Table 2). However, the completeness defect introduced
during step 4 can also be ameliorated by increasing one of the
scheme's parameters (namely, ϕ) at the expense of a slightly
stronger hardness assumption. In particular, if any of
ẑ∗ + β, e + a, y^2 + β^′ or γ + a′ does not fall within Gm, Gω, Gσ

m or
Gδ, respectively, the user sends (C, a, a′, β

^, β^′) to the signer, who
then verifies whether the user has indeed failed to obtain a valid
signature, or not. The signer does so by tracing the computations
performed on the user's side. We stress that without this fifth final
step, it is impossible for the signer to know whether the user
successfully produced a valid signature during step 4, or not.
Indeed, the signer does not know if
ẑ ∈ Gm ∧ ω ∈ Gω ∧ σ^ ∈ Gσ

m ∧ δ ∈ Gδ, because he has never seen
any of the masking terms β

^, a, β^′, a′ that were used to compute
ẑ, ω, σ^ , and δ, respectively. However, as we will prove in Section
4.3.3, the signer cannot be tricked into restarting the protocol by a
malicious user, unless the latter is able to find collisions for h in
D × D. Additionally, for proving unforgeability we will require that
com is binding. Finally, to prevent the signer from learning
information about the signed message, μ, across restarts, we will
require that com is also hiding.

4.3 Analysis and security

We now provide theorems and supporting lemmas showing that our
proposed scheme satisfies the basic security requirements of
leakage-resilient PBSS, namely: completeness, partial blindness,
unforgeability, and leakage resilience. Once we have established
the baseline security of our scheme, we consider further extensions
of the security model.

4.3.1 Completeness: To prove the completeness of our proposed
scheme, we require the following lemma from [16]. Informally, it
guarantees that the number of restarts of our protocol is small,
effectively constant.
 

Lemma 2: Let k = Ω(n), a, b ∈ ℤk with arbitrary
a ∈ {v ∈ ℤk: ∥ v ∥∞ ≤ A} and random

IET Inf. Secur., 2019, Vol. 13 Iss. 6, pp. 670-684
© The Institution of Engineering and Technology 2019

677

Authorized licensed use limited to: George Mason University. Downloaded on September 02,2020 at 14:13:48 UTC from IEEE Xplore. Restrictions apply.

b ←$ {v ∈ ℤk: ∥ v ∥∞ ≤ B}. If B ≥ ϕkA for ϕ ∈ ℕ+, then
Probb[∥ a + b ∥∞ ≤ B − A] > e−1/ϕ − o(1).

The next lemma from [16] is also required for our analysis, as it
provides a bound (w.r.t. the infinity norm) for the product of any
pair of polynomials in R, when they are reduced modulo xn + 1.
 

Lemma 3: Let a, b ∈ R be arbitrary polynomials. Then
∥ abmod(xn + 1) ∥∞ ≤ n ∥ a ∥∞ ∥ b ∥∞.
 

Theorem 2: (Completeness): Let g(n) = ω(log5(n)). Our PBSS
is complete after at most g(n) (or, an expected number of e5/ϕ)
repetitions.
 

Proof: First, note that if no restarts occur, the protocol produces
a valid signature. That is, for all honestly generated key pairs (s^, S),
all messages μ ∈ {0, 1}∗, all common information info ∈ {0, 1}∗,
and all signatures (r, ẑ, ω, σ^, δ) we have:

ẑ ∈ Gm, ω ∈ Gω, σ^ ∈ Gσ
m, δ ∈ Gδ, (1)

and

h(ẑ) + ωS = h(ẑ∗ + β
^) + (e + a)S = h(y^1 − es^ + β

^) + (e + a
)S = Y1 + aS + h(β

^) .
(2)

Additionally, we have:

ω + δ = (e + a) + (γ + a′) = (e + γ) + (a + a′) . (3)

Therefore, by reducing modulo 2dϵ + 1, we obtain:

ω + δ(mod 2dϵ + 1) = (e + γ) + (a + a′)(mod 2dϵ + 1)
= ϵ∗ + a + a′(mod 2dϵ + 1) = ϵ . (4)

Thus, we have shown that:

ω + δ(mod 2dϵ + 1) = H(h(ẑ) + ωS, h(σ^) + δℱ(info), ℱ
(info), com(μ, r)), (5)

and PBSS . Vf(S, μ, info, (r, ẑ, ω, σ^, δ))) returns 1 as its output.
Next, we consider all possible restart cases and address the

introduced completeness defect in each one of them:

Restarts occurring at step 2: Restarts during this step do not affect
completeness at all, because the user just performs them locally. By
applying Lemma 2, with k = n, A = da + dϵ and
B = da′ = ϕn(da + dϵ) + dϵ to ensure that ϵ − a − a′ ∈ Gϵ, we
obtain an expected number of trials which is constant (e1/ϕ), and
which decreases as ϕ increases.
Restarts occurring at step 3: In step 3, the signer rejection-samples
ẑ∗ = y^1 − es^ to ensure that it lies in G∗

m. According to Lemma 3,
∥ es^mod(xn + 1) ∥∞ ≤ ndsdϵ. Therefore, if we apply Lemma 2
with k = mn, A = ndsdϵ, and B = dy, we conclude that the
probability of success is e−1/ϕ and the maximum number of trials is
ω(log(n)) during this step. Thus, after an expected number of e1/ϕ

trials, the protocol successfully proceeds to step 4.
Restarts occurring after step 4: During the ‘unblind phase’ of step
4, the user requires that ẑ∗ + β

^ ∈ Gm, y^2 + β^′ ∈ Gσ
m, e + a ∈ Gω,

and γ + a′ ∈ Gδ. Otherwise, he requests a protocol restart from the
signer. By applying Lemma 2 with k = mn, A = dG∗, B = dβ to
ẑ∗ + β

^
, we obtain a success probability e−1/ϕ and a maximum

number of trials of ω(log(n)). Similarly, for y^2 + β^′ with
k = mn, A = dG∗, B = dβ = ϕmndG∗, Lemma 2 yields a success
probability e−1/ϕ and a maximum number of trials of ω(log(n)). For
e + a, Lemma 2 with k = n, A = dϵ, and B = da = ϕndϵ yields a
success probability of e−1/ϕ. Finally, for γ + a′, if we apply Lemma

2 with k = n, A = da + dϵ, and B = ϕn(da + dϵ) + dϵ yields a
success probability of e−1/ϕ.

In total, after at most g(n) = ω(log5(n)), or an expected number of
e5/ϕ restarts, the protocol is indeed complete. □
 

Remark 1: Note that all operations involved in our scheme
(including restarts), as well as sizes of private keys, public keys
and signatures are of quasi-linear complexity.
 

Remark 2: Also note that the parameter ϕ controls the number
of trials. Increasing its value decreases the expected number of
protocol restarts, and vice-versa.

4.3.2 Partial blindness: The following lemma from [16] is
essential for proving the partial blindness of our scheme. It can be
viewed as a rejection sampling lemma similar to that of [24].
Essentially, it states that all protocol messages are distributed
independently of the message μ, and thus leak no information.
 

Lemma 4: Let k ∈ ℕ, a, a′, b ∈ ℤk with arbitrary
a, a′ ∈ {v ∈ ℤk: ∥ v ∥∞ ≤ A}, and a random
b ←$ {v ∈ ℤk: ∥ v ∥∞ ≤ B} for B > A. If b is such that
max { ∥ a + b ∥∞ , ∥ a′ + b ∥∞ } ≤ B − A, we define the random
variables c ← a + b and c′ ← a′ + b, otherwise, re-sample b. Then,
Δ(c, c′) = 0.

In proving that our construction is partially blind, we follow an
approach similar to [16, p. 14] and show that all protocol messages
exchanged between the user and the signer, along with the final
output, are distributed independently from the signed message. For
our analysis, we treat each of the exchanged messages and the
output signature as random variables.
 

Theorem 3: (Partial blindness): If com is θcom
(h) – hiding, then

our PBSS is (∞, θcom
(h)) – partially blind.

 
Proof: As per ExpS∗, PBSS

partiallyblind(n) (see Section 3), the malicious
signer chooses common information info, and two messages μ0, μ1,
and then interacts with two honest users, U(S, μb, info) and
U(S, μ1 − b, info), after a secret coin flip b ←$ {0, 1}.

Distribution of ϵ∗: Let ϵb
∗, ϵ1 − b

∗ be the first protocol messages of
users U(S, μ0, info) and U(S, μ1, info), respectively. Both are of the
form ϵ − a − a′(mod 2dϵ + 1), with
ϵ − a ∈ { f ∈ R: ∥ f ∥∞ ≤ da + dϵ} and a′ is distributed
uniformly over Da′. First, notice that by Lemma 4 with
k = n, A = da + dϵ and B = da′, it follows that
Δ(ϵb − ab − a′b, ϵ1 − b − a1 − b − a′1 − b) = 0. By applying Lemma 1 to
random variables ϵb − ab − a′b and ϵ1 − b − a1 − b − a′1 − b, with
f (X) = X(mod 2dϵ + 1), we have Δ(ϵb

∗, ϵ1 − b
∗) = 0.

Distribution of ẑ: Let ẑ0, ẑ1 be part of the final output of
U(S, μ0, info) and U(S, μ1, info), respectively; Note that both are of
the form ẑ∗ + β

^
, for ẑ∗ ∈ G∗

m and β
^ ←$ Dβ

m. Additionally, both ẑ0

and ẑ1 lie in Gm because the users perform rejection sampling (step
4) on these random variables. Therefore, their coefficients are
bounded in absolute value by dβ − dG∗. From Lemma 4 with
k = mn, A = dG∗ and B = dβ, we infer that Δ(ẑ0, ẑ1) = 0.
Distribution of ω: Let ω0, ω1 be part of the final output of
U(S, μ0, info) and U(S, μ1, info), respectively. Both are of the form
e + a, for e ∈ Dϵ and a ←$ Da. Additionally, both ω0 and ω1 lie in
Gω because the users perform rejection sampling (during step 4) on
these random variables. Therefore, their coefficients are bounded in
absolute value by da − dϵ. By applying Lemma 4 with
k = n, A = dϵ and B = da = ϕndϵ, we infer that Δ(ω0, ω1) = 0.
Distribution of σ̂: Let σ̂0, σ̂1 be part of the final output of
U(S, μ0, info) and U(S, μ1, info), respectively. Both are of the form

678 IET Inf. Secur., 2019, Vol. 13 Iss. 6, pp. 670-684
© The Institution of Engineering and Technology 2019

Authorized licensed use limited to: George Mason University. Downloaded on September 02,2020 at 14:13:48 UTC from IEEE Xplore. Restrictions apply.

y^2 + β^′, for y^2 ∈ G∗
m and β^′ ←$ Dβ

m. Additionally, both σ^ 0 and σ^ 1 lie
in Gσ

m because the users perform rejection sampling (during step 4)
on these random variables. Therefore, their coefficients are
bounded in absolute value by dβ − dG∗. By applying Lemma 4 with
k = mn, A = dG∗ and B = dβ, we infer that Δ(σ^ 0, σ^ 1) = 0.
Distribution of δ: Let δ0, δ1 be part of the final output of
U(S, μ0, info) and U(S, μ1, info), respectively. Both are of the form
γ + a′, for γ ∈ Dϵ and a′ ←$ Da′. Additionally, both δ0 and δ1 lie in
Gδ because the users perform rejection sampling (step 4) on these
random variables. Therefore, their coefficients are bounded in
absolute value by da′ − dϵ. From Lemma 4 with k = n, A = dϵ and
B = da′ = ϕn(da + dϵ) + dϵ > dϵ, we infer that Δ(δ0, δ1) = 0.
Distribution of Y1, Y, y^2, γ and r: These random variables are all
either sampled uniformly at random from some domain, or
distributed independently from the signed message μ. We note that
e (which can be computed from ϵ∗ and γ) is also uniform over Dϵ,
since its computation is done within Dϵ.
Restarts: Restarts are distinguished into two types: those that occur
during step 2 and can be handled locally by the user, and those that
occur after step 4 and cause the protocol to start over. Notice that
we do not need to deal with restarts occurring in step 3, because
they do not affect partial blindness as per experiment
ExpS∗, PBSS

partiallyblind(n).

• Restarts during step 2: As com is statistically hiding and the user
selects a new set of r, a, a′, β

^, β^′ every time he performs a restart
during step 2 of the signature issuing protocol, each protocol
execution is statistically independent from any preceding
execution. Therefore, our scheme is (∞, θcom

(h)) – partially blind,
since com is statistically θcom

(h) – hiding.
• Restarts caused after step 4: The user submits (C, a, a′, β

^, β^′, ϵ)
to the signer. The signer is then able to trace the computations
performed on the user's side and determines whether a restart is
truly necessary. Note that the signer works with the
commitment, C, instead of the original message, μ. Again, due
to com's statistical hiding property, μ remains statistically hidden
from the signer, since he does not possess the corresponding
decommitment parameter r which would allow him recovery of
μ. Thus, our scheme achieves statistical instead of perfect partial
blindness. □

 
Remark 3: Based on the previous discussion, if com is perfectly

hiding (i.e. θcom = 0), then PBSS is partially blind in a perfect
sense, whereas if com is statistically hiding, PBSS is partially blind
in a statistical sense. In either case, a malicious signer only gains a
negligible amount of information from protocol restarts, at best.

4.3.3 Unforgeability: The generalised forking lemma from [55] is
a probabilistic result that lies at the core of proving the
unforgeability of our scheme, and we include it in the Appendix.
Additionally, to simulate the signing oracle in the unforgeability
experiment of Section 3, we will also need two supporting lemmas.
The first is from [16] and it states that for each public key S in our
protocol, there exist (with overwhelming probability) at least two
distinct corresponding secret keys s^, s^′.
 

Lemma 5: Let h ∈ ℋ(R, m). For every secret key s^ ←$ Ds
m,

there exists (with overwhelming probability) a second s^′ ∈ Ds
m∖{s^}

with h(s^) = h(s^′).
The next lemma is based on Lemma 3.7 from [16], suitably

adapted for our construction (its proof can be found in the
Appendix). Informally, it states that if we interpret the components
of a (malicious) user's view as random variables, then the user is
unable to tell which of (at least) two possible keys
s^, s^′ ∈ h−1(S) ∩ Ds

m was used during the signature issuing protocol,
except with negligible advantage.

 
Lemma 6: : Let h ∈ ℋ(R, m) and S ∈ R. For any message μ

and any two distinct secret keys s^, s^′ ∈ Ds
m with h(s^) = h(s^′), the

resulting protocol views (Y1, Y, ϵ∗, ẑ∗, y^2, γ) and
(Y′1, Y′, ϵ∗′, ẑ∗′, y^2′, γ′) are witness-indistinguishable.

We now prove that our construction is unforgeable, provided
that the commitment scheme is binding, and the collision problem
Col(ℋ(R, m, D)) being hard.
 

Theorem 4: (Unforgeability): Let Sig denote the signature
issuing oracle and H the hashing oracle. Let TSig and TH denote the
cost functions for simulating the oracles Sig and H, respectively,
and let 0 ≤ c < 1 be the probability of restarting the protocol. Our
PBSS is (t, qsig, qH, θ)-unforgeable if com is (t′, θ /2)-binding, and
Col(ℋ(R, m, D)) is (t′, θoverall/2)-hard, where
t′ = t + qH

qsig(qsigTsig + qHTH) and θoverall is noticeable if θ is
noticeable.
 

Proof: Let A be an efficient forger who successfully breaks
unforgeability within time t and with noticeable probability, θ. By
exploiting A's capability of forging signatures in a black-box
manner, we will construct a simulator ℬ, such that ℬ either breaks
the binding property of com, or solves the collision problem.

Setup: Simulator ℬ flips a coin b ←$ {0, 1}. If b = 0, ℬ selects
h ←$ ℋ(R, m). Otherwise, it is given the description of h as input.
ℬ initialises a list LH ← ∅ of query–hash pairs of the form
(R × R × R × {0, 1}∗, Dϵ) and a list LSig ← ∅ of message–signature
pairs of the form ({0, 1}∗ × {0, 1}∗, Gm × Gω × Gσ

m × Gδ). It then
picks s^ ←$ Ds

m and computes S ← h(s^). Moreover, ℬ randomly
pre-selects random oracle answers h1, …, hqH ←$ Dε, a random tape
ρ, and runs A(S; h1, …, hqH; ρ) in a black-box way.
RO queries: On input (u, v, Z, C), ℬ determines if (u, v, Z, C) has
previously been queried to H by checking whether
(u, v, Z, C) ∈ LH. If the answer is affirmative, ℬ returns the same
output ϵ as before, to remain consistent. Otherwise, ℬ returns the
first unused hi and stores ((u, v, Z, C), hi) in LH.
PBS queries: ℬ acts as the signer according to the protocol in
Fig. 1 and fills in LSig after A produces his output.
Forgery: Since adversary A is efficient, he eventually stops,
outputting:
(μ1, info, (r1, ẑ1, ω1, σ^ 1, δ1)), …, (μj, info, (r j, ẑ j, ωj, σ^ j, δj)), where
j = kinfo + 1 for pairwise distinct messages. If b = 0, the reduction
tries to find two pairs (μ1

∗, info, (r1
∗, ẑ∗, ω∗, σ^ ∗, δ∗)) and

(μ2
∗, info, (r2

∗, ẑ∗, ω∗, σ^ ∗, δ∗)) with μ1
∗ ≠ μ2

∗, and returns (μ1
∗, r1

∗), (μ2
∗, r2

∗)
to break com's binding property. If no such pair is found, it simply
aborts. If b = 1, the simulator locates a message–signature pair
((μ†, info), (r†, ẑ†, ω†, σ^ †, δ†)), where (μ†, info) has never been
queried to the signing oracle. The algorithm computes
u† = h(ẑ†) + Sω† and v† = h(σ̂†) + ℱ(info)δ† and rewinds the
adversary to the point where (u†, v†, ℱ(info), com(μ†, r†)) was
queried to the hashing oracle H. Let 1 ≤ I ≤ qH be the index of that
query. ℬ then re-runs A(S; h1, …, hI − 1, h′I, …, h′qH; ρ) with new
random responses to queries with index ≥ I, but using the same
random tape ρ. Eventually, A will output a new forgery ((μ‡, info),
(r‡, ẑ‡, ω‡, σ^ ‡, δ‡)) using the same random oracle query as in the first
run (after polynomially bounded time because A is efficient and all
of his queries are handled efficiently). ℬ then returns
(ẑ† + s^ω†, ẑ‡ + s^ω‡), if ω† ≠ ω‡, as a solution to the collision
problem and aborts otherwise (an event that as we will explain,
occurs with negligible probability).
Analysis: A's environment is perfectly simulated and restarts occur
with the same probability as in the original protocol. Therefore, A
has no advantage whatsoever in distinguishing the simulation.

For b = 0, ℬ(t′, θ /2) breaks com's binding property, if A
successfully attacks com's binding property to break unforgeability.

IET Inf. Secur., 2019, Vol. 13 Iss. 6, pp. 670-684
© The Institution of Engineering and Technology 2019

679

Authorized licensed use limited to: George Mason University. Downloaded on September 02,2020 at 14:13:48 UTC from IEEE Xplore. Restrictions apply.

For b = 1, we assume that A breaks unforgeability without
attacking com. Since at least one of the produced signatures was
not obtained via an interaction, the probability that ℬ correctly
guesses its index is at least 1/(kinfo + 1). Next, notice that A can
successfully predict the output of the random oracle H with
probability 1/ Dϵ . By applying the general forking lemma of [55],
we can determine that after rewinding, A is again successful in
producing a forgery, using the same random oracle query as in the
first run with probability

θfrk ≥ 1 − c)(θ − 1
Dϵ

θ − 1/ Dϵ
qH

− 1
Dϵ

,

where the additional (1 − c) factor accounts for a potential restart
during the second run. Therefore, with probability at least θfrk, the
following relation holds: h(ẑ†) + Sω† = h(ẑ‡) + Sω‡. This can
equivalently be written as: h(ẑ† − ẑ‡ + s^(ω† − ω‡)) = 0 . We observe
that with overwhelming probability, ω† ≠ ω‡. Indeed:
ω† = ((ϵ ∗ † − γ†) mod (2dϵ + 1)) + a† = ((ϵ† − a† − a′† − γ†) mod
(2dϵ + 1)) + a†

.

Similarly, we have:

ω‡ = e‡ + a‡ = ((ϵ‡ − a‡ − a′‡ − γ‡) mod (2dϵ + 1)) + a‡ (6)

By subtracting, we get:

ω† − ω‡ = ((ϵ† − a† − a′† − γ† − ϵ‡ + a‡ + a′‡ + γ‡) mod
(2dϵ + 1)) + a† − a‡ . (7)

If ω† − ω‡ = 0, then ϵ‡ − γ‡(mod 2dϵ + 1) is determined by
polynomials selected by A and polynomials determined by ℬ
before rewinding. However, both ϵ‡ and γ‡ are randomly selected
by ℬ after rewinding. Therefore, the probability that ω† = ω‡ is
1/ Dϵ = 1/(2dϵ + 1)n which is negligible in n. Thus, ω† ≠ ω‡ with
overwhelming probability 1 − 1/ Dϵ .

Next, if ω† ≠ ω‡ then with a probability of at least 1/4, we have
ẑ† − ẑ‡ + s^(ω† − ω‡) ≠ 0. Indeed, by Lemma 5, there exists another
s^′ ≠ s^ (with overwhelming probability). Furthermore, because of
Lemma 6, the signing protocol is witness-indistinguishable and
therefore there is a probability of at least 1/2 that the signer's output
corresponds to s^′. As the signer possesses the secret key while the
user does not, and because of Lemma 6, all protocol messages are
distributed independently of the secret key, even if
ẑ† − ẑ‡ + s^′(ω† − ω‡) = 0, ℬ has at least 1/2 chance of claiming
that ẑ† − ẑ‡ + s^(ω† − ω‡) ≠ 0. Since ẑ† − ẑ‡ + s^(ω† − ω‡) ≠ 0, we
deduce that ẑ† + s^ω† ≠ ẑ‡ + s^ω‡. Furthermore, since
∥ ẑ† + s^ω† ∥∞ , ∥ ẑ‡ + s^ω‡ ∥∞ ≤ dG + ndsdω < dD, we obtain
(ẑ† + s^ω†, ẑ‡ + s^ω‡) as a collision in D × D, with probability

θcol ≥ 1
4(kinfo + 1) 1 − 1

Dϵ
θfrk,

which is noticeable due to θ.

Restarts: Finally, we argue that the only way for a user to obtain a
valid signature from an aborted interaction is if he can solve the
collision problem for h in D. Indeed, for an abort to occur in step 5,
the user needs to ‘convince’ the honest signer by sending him
result = (C, a, a′, β

^, β^′, ϵ), which together with his view of the
interaction (Y1, Y, ϵ∗, ẑ∗, y^2, γ, e), satisfy the abort criteria

ϵ∗ + a + a′(mod 2dϵ + 1) = ϵ (8)

H(Y1 + Sa + h(β
^), Y + Za′ + h(β^′), Z, C) = ϵ (9)

e + a + γ + a′(mod 2dϵ + 1) = H(h(ẑ∗ + β
^) + S(e + a),

h(y^2 + β^′) + Z(γ + a′), Z, C)
(10)

ẑ∗ + β
^ ∉ Gm ∨ e + a ∉ Gω ∨ y^2 + β^′ ∉ Gσ

m

∨ γ + a′ ∉ Gδ
(11)

Suppose that the malicious user successfully obtains a forged
signature (r0, ẑ0, ω0, σ^ 0, δ0) from an aborted interaction. Thus, we
may assume that (r0, ẑ0, ω0, σ^ 0, δ0) satisfies all of the verification
criteria from Section 4.1. First, observe that the adversarial user
may succeed by hiding ϵ′ ≠ ϵ in the computation of ϵ∗. However, to
achieve this he would need to predict the output of H, which
happens with a negligible probability of 1/ Dϵ . Thus, we have
ϵ = ϵ′ with an overwhelming probability of 1 − (1/ Dϵ). As
ϵ = ω0 + δ0(mod 2dϵ + 1) = ω + δ(mod 2dϵ + 1), it follows from
(10) that h(ẑ∗ + β

^) + S(e + a) = h(ẑ0 + ω0s^). Equivalently, this can
be written as

h(ẑ∗ + β
^ + s^(e + a)) = h(ẑ0 + ω0s^) . (12)

Next, notice that with an overwhelming probability of at least
1 − (1/ Dϵ), we have ω0 = e + a (unless e + a ∉ Gω, in which case
we have a contradiction because we know that ω0 ∈ Gω). Indeed,
the only way for the malicious user to obtain a ω0 ≠ e + a, is if
during step 2 he used an a0 = ω0 − ω + a, which implies that he
would have to successfully guess ω, which he can do only with a
negligible probability of

1
Gω

≤ 1
Dϵ

= 1
(2dϵ + 1)n .

From Bayes’ rule, we can determine that the probability that
e + a ∈ Gω, given that (11) holds is (e−1/ϕ − e−4/ϕ)/(1 − e−4/ϕ), a
constant. Similarly, with an overwhelming probability of at least
1 − (1/ Dε), we have δ0 = γ + a′ (unless γ + a′ ∉ Gδ, in which
case we have a contradiction because δ0 ∈ Gδ). Finally, with an
overwhelming probability of at least 1 − (1/ Dϵ), we have
σ^ 0 = y^2 + β^′ (unless y^2 + β^′ ∉ Gσ

m, in which case we have a
contradiction because we know that σ̂0 ∈ Gσ

m). Thus, the only
possible case for condition (11) to hold, is if ẑ∗ + β

^ ∉ Gm. Observe
that in that case, the arguments of h in (12) cannot be equal because
then ẑ∗ + β

^ = ẑ0, which contradicts the hypothesis that ẑ0 ∈ Gm.
Therefore, we have ẑ∗ + β

^ ≠ ẑ0, and since ∥ ẑ0 + ω0s^ ∥∞ < dD and
∥ ẑ∗ + β

^ + s^(e + a) ∥∞ ≤ dG∗ + dβ + ndsdω = dD, we have a
collision in D. Thus, by applying the law of total probability, we
can deduce that the overall probability of obtaining valid signatures
out of aborted interactions is

θabort ≥ 1 − 1
Dε

4 e−1/ϕ − e−4/ϕ

1 − e−4/ϕ

3

θ,

which is noticeable if θ is noticeable. In conclusion, if b = 1, A's
overall success probability is θoverall ≥ min (θcol, θabort), which is
noticeable if θ is noticeable. □

By combining Theorem 4 with Theorem 1, we obtain the
following.
 

Corollary 1: : The proposed PBSS is unforgeable if solving
Ring − SVPγ

∞ is hard in the worst case, for approximation factors
γ ≥ 16dDmnlog2(n) = O~ (n4), in ideal lattices of R.
 

Remark 4: As a consequence of Theorem 4, if we require that
qsig = o(n), our construction benefits from the subexponential
hardness of ideal lattice problems.
 

680 IET Inf. Secur., 2019, Vol. 13 Iss. 6, pp. 670-684
© The Institution of Engineering and Technology 2019

Authorized licensed use limited to: George Mason University. Downloaded on September 02,2020 at 14:13:48 UTC from IEEE Xplore. Restrictions apply.

Remark 5: As e is reduced modulo 2dε + 1 in step 3 of our
signing protocol, we have a milder worst-case hardness assumption
of O~ (n4), compared with the BSS from [16], which is based on the
worst-case hardness of Ring-SVP for approximation factors in
O~ (n5). We believe that this ‘trick’ could also be used on [16] to
improve the hardness assumption therein.

4.3.4 Leakage resilience: In proving leakage-resilience for our
scheme, we rely on the core observation of [51], which states that
any collision-resistant hash function (our underlying hash-function
is proven collision-resistant in [36]) is a leakage-resilient one-way
hash function when certain conditions are imposed on the leakage
oracle (these conditions are necessary because the recent work of
[56] shows that for some leakage scenarios, leakage-resilience is
impossible to achieve). This observation is also used by other
works to construct leakage-resilient primitives [16, 51].

In the next theorem, we establish leakage resilience for our
construction. In proving leakage resilience, we will show that the
secret key's conditional min-entropy:
H∞(sk Leak(sk)) = minsk′ { − log(Prob[sk = sk′ Leak(sk)])} is
large enough for the scheme to be secure. The proof closely
follows the corresponding proof of [16], with the additional
observation that Z = ℱ(info) is not related to the signer's secret
key, and thus does not leak information about s^ (the proof is
included in the Appendix).
 

Theorem 5: (Leakage resilience): Let cm = ω(1) and let
L := log(Ds

m) = mnlog(2ds + 1) denote the length of the signer's
secret key in the proposed PBSS. Given S = h(s^) and a total secret-
key leakage f (s^) of λ = δL = (1 − o(1))L bits, the conditional min-
entropy H∞ of s^, is positive with overwhelming probability.
 

Remark 6: From Theorem 6, we see that if we additionally
require that cm = ω(1) (e.g. by choosing cm = log(n)) for
m := ⌊cmlog(q)⌋ + 1, then our PBSS retains its quasi-optimal
performance and is also leakage-resilient.

5 Extensions
In this section, we discuss several extensions of the classic security
model of PBSS that are applicable to our construction. We consider
honest-user unforgeability, selective-failure blindness, and
dishonest-key blindness. To the best of our knowledge, none of
these properties have previously been examined in the context of
PBSS.

5.1 Honest-user unforgeability

In [33], the authors propose a strengthened notion of one-more
unforgeability for blind signatures, called unforgeability in the
presence of honest users (or honest-user unforgeability, for short).
The idea is that an adversary could exploit the presence of an
honest user, and use him as an intermediary to indirectly obtain
signatures from the signer (it is not difficult to see that the absence
of such honest users leads to the classic notion of unforgeability of
BSS [38, 50]. However, unforgeability is shown to be weaker than
honest-user unforgeability [33]). That way, the adversary may be
able to produce more signatures than the number of times he
directly interacted with the signer. These kinds of attacks are not
captured by the notion of unforgeability for regular blind
signatures.

Honest-user unforgeability however is given with regular BSS
in mind. Here, we adapt it for PBSS, thus obtaining an even
stronger notion of unforgeability for PBSS. We also show that the
transformation given in [33] is still relevant when it comes to
PBSS, a result which we believe may be of interest in its own right.
Before giving the new definition, we must fix some notation. Let
P(sk, pk, . , .) be an oracle that on input μ (a message) and
common information info, executes the signature issuing protocol
⟨S, U⟩, thus obtaining a signature σ. Let trans denote the transcript
comprised of all messages exchanged between the parties in such
an interaction. When the protocol terminates, P returns (σ, trans).

The execution of ⟨S(sk, info), U(pk, μ, info)⟩ by P is considered to
be atomic, i.e. during a call to P, no other interactions occur. If the
interaction aborts, P returns (⊥, trans), where trans is the transcript
up to that point of execution.
 

Definition 8: (Honest-user unforgeability of PBSS): An
interactive partially blind signature scheme
PBSS = (KG, ⟨S, U⟩, V f) is honest-user unforgeable if Vf is
deterministic, and for any efficient algorithm U∗, the probability
that experiment ExpU∗, PBSS

hu − omf (n) evaluates to 1 is negligible (as a
function of n), where

Experiment ExpU∗, PBSS
hu − omf (n)

(pk, sk) ←$ PBSS . KG(1n)
For each info, let kinfo denote the number of

successful, complete, direct interactions
with the signer S:

((μ1
∗, info, σ1

∗), …, (μkinfo + 1
∗ , info, σkinfo + 1

∗)) ←$

U ∗ ⟨S(sk), . ⟩∞, P(sk, pk, . , .)(pk)
andlet μ1, …, μninfo be the messages pertaining to

info that were queriedto P(sk, pk, . , .) .
Return1iff
1. μi

∗ ≠ μj, ∀i = 1, …, kinfo, and ∀ j = 1, …, ninfo,
2. μi

∗ ≠ μj
∗, ∀i, j = 1, …, kinfo + 1 with i ≠ j, and

3. PBS . Vf(pk, μi
∗, info, σi

∗) = 1, ∀i = 1, …, kinfo + 1.
Note that when counting the interactions in which S returns

‘ok’, we do not count the interactions simulated by P.
We now present a way to turn any unforgeable PBSS into an

honest-user unforgeable PBSS, that is analogous to the one from
[33] (for brevity, we include the proof in the Supplementary
Material). This transformation comes at the expense of a negligible
overhead compared to the original PBSS.
 

Construction 1: Let PBSS′ = (KG′, ⟨S′, U′⟩, V f ′) be an
interactive PBSS. We define a new partially blind signature scheme
PBSS = (KG, ⟨S, U⟩, Vf) through the following algorithms:

• Key generation: Algorithm KG(1n) runs (sk′, pk′) ← KG′(1n)
and returns the key pair.

• Signature issuing protocol: Signer S is identical to the original
signer S′. User U(pk, μ, info) chooses r ←$ {0, 1}n, sets
μ′ ← μ ∥ r, and then invokes the original user U′(pk, μ′, info),
who then interacts with S′(sk, info). When U′ outputs a
signature σ, U computes σ′ ← (σ, r) and returns σ′.

• Signature verification: Algorithm V f (pk, μ, info, σ′) parses σ′ as
(σ, r) and returns the result of V f ′(pk, μ ∥ r, info, σ).

 
Theorem 6: : If complete, partially blind, and unforgeable PBSS

exist, then there exist PBSS which are complete, partially blind,
unforgeable, and also honest-user unforgeable.
 

Remark 7: Our scheme can easily be modified to use this
transformation by having the user commit to μ ∥ r′ for some
r′ ←$ {0, 1}n instead of μ during step 2. If any restarts occur during
step 2, r′ needs to be resampled as well. Finally, r′ will be included
in the final signature and the verification condition becomes:
ω + δ(mod 2dϵ + 1) = H(h(z^) + ωS, h(σ^) + δℱ(info), ℱ(info),
com(μ ∥ r′, r)) .

5.1.1 Dishonest-key blindness: In the definition of (partial)
blindness, we implicitly assumed that the signer generates his
secret and public keys through the scheme's key generation
algorithm. Abdalla et al. [57] proposed an augmented notion of

IET Inf. Secur., 2019, Vol. 13 Iss. 6, pp. 670-684
© The Institution of Engineering and Technology 2019

681

Authorized licensed use limited to: George Mason University. Downloaded on September 02,2020 at 14:13:48 UTC from IEEE Xplore. Restrictions apply.

blindness that allows the signer to select pk on his own. This notion
can also be transferred to PBSS. Our scheme's partial blindness
proof does not rely on any specific properties of the secret key and
thus satisfies this strengthened notion of partial-blindness as well.

5.2 Selective-failure blindness

The notion of blindness does not cover cases in which the protocol
has to be aborted prematurely. However, we would like to ensure
that blindness also holds in cases where the signer is able to cause
one of the protocol executions to abort by choosing one of the
messages μ0 or μ1 from some secret distribution. For that purpose,
Camenisch et al. [58] introduced the stronger notion of selective-
failure blindness, and Fischlin and Schröder [43] later expanded
upon that work by providing a generic transformation for turning
any BSS into a selective-failure BSS, at the expense of only a
negligible computational overhead. This notion can easily be
adapted for PBSS because info is a common input to both user
instances in the partial blindness experiment. Our scheme is
selective-failure blind because it makes use of the transformation
of [43]. Indeed, the signer's view is limited to commitments on the
messages he signs, and uncovering them would require him to
break com's hiding property.

6 Conclusions
In this work, we presented the first leakage-resilient, lattice-based
PBSS in the literature. Our construction has the same four-move
structure and uses a commitment scheme like the scheme from
[16]. Its performance is quasi-optimal and its security is proven in
the ROM under milder worst-case ideal lattice assumptions
compared to [16]. Besides being quantum-resistant, our
construction is also honest-user unforgeable, selective-failure blind,
dishonest-key blind, and can withstand sub-exponential-time
attacks, and limited side-channel attacks against the signer's secret
key thanks to its leakage resilience.

7 Acknowledgments
The authors thank the anonymous reviewers for their helpful
comments in improving this work. Foteini Baldimtsi has received
funding from NSF with award number 1717067.

8 References
[1] Chaum, D.: ‘Blind signatures for untraceable payments’, in Chaum, D.,

Rivest, R.L., Sherman, A.T. (Eds): ‘Advances in cryptology’ (Springer US,
Boston, MA, 1983), pp. 199–203

[2] Von-Solms, S., Naccache, D.: ‘On blind signatures and perfect crimes’,
Comput. Secur., 1992, 11, (6), pp. 581–583

[3] Abe, M., Fujisaki, E.: ‘How to date blind signatures’. Proc. of the Int. Conf.
on the Theory and Applications of Cryptology and Information Security:
Advances in Cryptology (ASIACRYPT), Kyongju, Korea, 1996, pp. 244–251

[4] Stadler, M., Piveteau, J.M., Camenisch, J.: ‘Fair blind signatures’. Advances
in Cryptology – (EUROCRYPT ’95), Saint-Malo, France, 1995, pp. 209–219

[5] Fuchsbauer, G., Vergnaud, D.: ‘Fair blind signatures without random oracles’.
Proc. of the 3rd Int. Conf. on Cryptology, Africa, 2010, pp. 16–33

[6] Abe, M., Okamoto, T.: ‘Provably secure partially blind signatures’. Proc. of
the 20th Annual Int. Cryptology Conf. on Advances in Cryptology, Santa
Barbara, California, USA, 2000, pp. 271–286

[7] Cramer, R., Damgård, I., Schoenmakers, B.: ‘Proofs of partial knowledge and
simplified design of witness hiding protocols’. Proc. of the 14th Annual Int.
Cryptology Conf. on Advances in Cryptology, Santa Barbara, California,
USA, 1994, pp. 174–187

[8] Rückert, M., Schröder, D.: ‘Fair partially blind signatures’. Proc. of the 3rd
Int. Conf. on Cryptology, Africa, 2010, pp. 34–51

[9] Shor, P.W.: ‘Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer’, SIAM J. Comput., 1997, 26, (5), pp.
1484–1509

[10] Ajtai, M.: ‘Generating hard instances of lattice problems (extended abstract)’.
Proc. of the 28th Annual ACM Symp. on Theory of Computing (STOC ’96),
Philadelphia, Pennsylvania, USA, 1996, pp. 99–108

[11] Peikert, C.: ‘A decade of lattice cryptography’, Found. Trends Theor. Comput.
Sci., 2016, 10, (4), pp. 283–424

[12] Tian, H., Zhang, F., Wei, B.: ‘A lattice-based partially blind signature’, Secur.
Commun. Netw., 2016, 9, (12), pp. 1820–1828

[13] Groot-Bruinderink, L., Hülsing, A., Lange, T., et al.: ‘Flush, Gauss, and
reload – a cache attack on the bliss lattice-based signature scheme’, in
Gierlichs, B., Poschmann, A.Y. (Eds): ‘IACR-CHES’ (Springer-Verlag, Berlin,
Heidelberg, 2016), pp. 323–345

[14] Pessl, P., Bruinderink, L.G., Yarom, Y.: ‘To bliss-b or not to be: attacking
strongswan's implementation of post-quantum signatures’. Proc. of the 2017
ACM SIGSAC Conf. on Computer and Communications Security (CCS ’17),
Dallas, Texas, USA, 2017, pp. 1843–1855

[15] Espitau, T., Fouque, P.A., Gérard, B., et al.: ‘Side-channel attacks on bliss
lattice-based signatures: exploiting branch tracing against strongswan and
electromagnetic emanations in microcontrollers’. Proc. of the 2017 ACM
SIGSAC Conf. on Computer and Communications Security (CCS ’17),
Dallas, Texas, USA, 2017, pp. 1857–1874

[16] Rückert, M.: ‘Lattice-based blind signatures’. Advances in Cryptology
(ASIACRYPT 2010), Singapore, 2010, pp. 413–430

[17] Abe, M.: ‘A secure three-move blind signature scheme for polynomially
many signatures’. Proc. of the Int. Conf. on the Theory and Application of
Cryptographic Techniques: advances in Cryptology. (EUROCRYPT ’01),
Innsbruck (Tyrol), Austria, 2001, pp. 136–151

[18] Chow, S.S.M., Hui, L.C.K., Yiu, S.M., et al.: ‘Two improved partially blind
signature schemes from bilinear pairings’. Proc. of the 10th Australasian
Conf. on Information Security and Privacy, Brisbane, Australia, 2005, pp.
316–328

[19] Okamoto, T.: ‘Efficient blind and partially blind signatures without random
oracles’. Proc. of the 3rd Conf. on Theory of Cryptography, New York, NY,
2006, pp. 80–99

[20] Li, F., Zhang, M., Takagi, T.: ‘Identity-based partially blind signature in the
standard model for electronic cash’, Math. Comput. Model., 2013, 58, (1), pp.
196–203. Financial IT & Security and 2010 International Symposium on
Computational Electronics

[21] Gentry, C., Peikert, C., Vaikuntanathan, V.: ‘Trapdoors for hard lattices and
new cryptographic constructions’. Proc. of the 40th Annual ACM Symp. on
Theory of Computing (STOC ’08), Victoria, British Columbia, Canada, 2008,
pp. 197–206

[22] Lyubashevsky, V.: ‘Lattice-based identification schemes secure under active
attacks’. 11th Int. Conf. on Public Key Cryptography Proc. of the Practice and
Theory in Public Key Cryptography (PKC ’08), Barcelona, Spain, 2008, pp.
162–179

[23] Lyubashevsky, V.: ‘Fiat-Shamir with aborts: applications to lattice and
factoring-based signatures’. Proc. of the 15th Int. Conf. on the Theory and
Application of Cryptology and Information Security: Advances in
Cryptology, Tokyo, Japan, 2009, pp. 598–616

[24] Lyubashevsky, V.: ‘Lattice signatures without trapdoors’. Proc. of the 31st
Annual Int. Conf. on Theory and Applications of Cryptographic Techniques,
Cambridge, UK, 2012, pp. 738–755

[25] Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: ‘Practical lattice-based
cryptography: a signature scheme for embedded systems’. Cryptographic
Hardware and Embedded Systems (CHES 2012), Leuven, Belgium, 2012, pp.
530–547

[26] Ducas, L., Durmus, A., Lepoint, T., et al.: ‘Lattice signatures and bimodal
gaussians’. Advances in Cryptology (CRYPTO 2013), Santa Barbara,
California, USA, 2013, pp. 40–56

[27] Alkim, E., Bindel, N., Buchmann, J.A., et al.: ‘Tesla: tightly-secure efficient
signatures from standard lattices’. Cryptology ePrint Archive, Report
2015/755, 2015. Available at https://eprint.iacr.org/2015/755

[28] Lyubashevsky, V.: ‘Digital signatures based on the hardness of ideal lattice
problems in all rings’. Proc. Part II, of the 22nd Int. Conf. on Advances in
Cryptology (ASIACRYPT 2016), Hanoi, Vietnam, vol. 10032, 2016, pp. 196–
214

[29] Ducas, L., Kiltz, E., Lepoint, T., et al.: ‘Crystals-dilithium: a lattice-based
digital signature scheme’, IACR Trans. Cryptographic Hardware Embedded
Syst., 2018, 2018, (1), pp. 238–268

[30] Kiltz, E., Lyubashevsky, V., Schaffner, C.: ‘A concrete treatment of fiat-
shamir signatures in the quantum random-oracle model’. Advances in
Cryptology (EUROCRYPT 2018), Tel Aviv, Israel, 2018, pp. 552–586

[31] Zhu, H., Tan, Y.A., Zhang, X., et al.: ‘A round-optimal lattice-based blind
signature scheme for cloud services’, Future Gener. Comput. Syst, 2017, 73,
(C), pp. 106–114

[32] Cheon, J.H., Jeong, J., Shin, J.S.: ‘Cryptoanalysis on á round-optimal lattice-
based blind signature scheme for cloud services’, Fut Gener. Comput. Syst.,
2019, 95, pp. 100–103

[33] Schröder, D., Unruh, D.: ‘Security of blind signatures revisited’. Public Key
Cryptography (PKC 2012), Darmstadt, Germany, 2012, pp. 662–679

[34] Rückert, M.: ‘Lattice-based signature schemes with additional features’
(Technische Universität, Darmstadt, 2011). Available at http://tuprints.ulb.tu-
darmstadt.de/2393/

[35] Bellare, M., Rogaway, P.: ‘Random oracles are practical: A paradigm for
designing efficient protocols’. Proc. of the 1st ACM Conf. on Computer and
Communications Security (CCS ’93), Fairfax, Virginia, USA, 1993, pp. 62–
73

[36] Lyubashevsky, V., Micciancio, D.: ‘Generalized compact knapsacks are
collision resistant’. Proc. of the 33rd Int. Conf. on Automata, Languages and
Programming - Volume Part II, Venice, Italy, 2006, pp. 144–155

[37] Fischlin, M., Schröder, D.: ‘On the impossibility of three-move blind
signature schemes’. Proc. of the 29th Annual Int. Conf. on Theory and
Applications of Cryptographic Techniques (EUROCRYPT ’10), Monaco,
French Riviera, 2010, pp. 197–215

[38] Pointcheval, D., Stern, J.: ‘Security arguments for digital signatures and blind
signatures’, J. Cryptol., 2000, 13, (3), pp. 361–396

[39] Bresson, E., Monnerat, J., Vergnaud, D.: ‘Separation results on the ‘one-more’
computational problems’. Topics in Cryptology (CT-RSA 2008), San
Francisco, USA, 2008, pp. 71–87

[40] Lindell, Y.: ‘Bounded-concurrent secure two-party computation without setup
assumptions’. Proc. of the 35th Annual ACM Symp. on Theory of Computing
(STOC ’03), San Diego, USA, 2003, pp. 683–692

682 IET Inf. Secur., 2019, Vol. 13 Iss. 6, pp. 670-684
© The Institution of Engineering and Technology 2019

Authorized licensed use limited to: George Mason University. Downloaded on September 02,2020 at 14:13:48 UTC from IEEE Xplore. Restrictions apply.

[41] Brown, D.R.L.: ‘Irreducibility to the one-more evaluation problems: more
may be less’. 2007, Cryptology ePrint Archive, Report 2007/435. Available at
https://eprint.iacr.org/2007/435

[42] Baldimtsi, F., Lysyanskaya, A.: ‘On the security of one-witness blind
signature schemes’. Advances in Cryptology (ASIACRYPT 2013),
Bengaluru, India, 2013, pp. 82–99

[43] Fischlin, M., Schröder, D.: ‘Security of blind signatures under aborts’. Proc.
of the 12th Int. Conf. on Practice and Theory in Public Key Cryptography
(PKC ’09), Irvine, CA, USA, 2009, pp. 297–316

[44] Cormen, T.H., Leiserson, C.E., Rivest, R.L., et al.: ‘Introduction to
algorithms’ (The MIT Press, UK, 2009, 3rd edn.)

[45] Micciancio, D., Regev, O.: ‘Worst-case to average-case reductions based on
Gaussian measures’, SIAM J. Comput., 2007, 37, (1), pp. 267–302

[46] Petrov, V.: ‘Sums of independent random variables’ (Springer-Verlag, Berlin,
Heidelberg, 1975, 1st edn.)

[47] Damgård, I.: ‘Commitment schemes and zero-knowledge protocols’, in
Damgård, I.B. (Ed.): ‘Lectures on data security, modern cryptology in theory
and practice, summer school, aarhus, Denmark, July 1998’ (Springer- Verlag,
Berlin, Heidelberg, 1999), pp. 63–86

[48] Arbitman, Y., Dogon, G., Lyubashevsky, V., et al.: ‘Swifftx: a proposal for the
sha-3 standard’, 2008. Available at: https://www.eecs.harvard.edu/~alon/
PAPERS/lattices/swifftx.pdf

[49] Micciancio, D., Regev, O.: ‘Lattice-based cryptography’, in Bernstein, D.J.,
Buchmann, J., Dahmen, E. (Eds): ‘Post-quantum cryptography’ (Springer,
Berlin, Heidelberg, 2009), pp. 147–191

[50] Juels, A., Luby, M., Ostrovsky, R.: ‘Security of blind digital signatures’.
Advances in Cryptology (CRYPTO ’97), Santa Barbara, California, USA,
1997, pp. 150–164

[51] Katz, J., Vaikuntanathan, V.: ‘Signature schemes with bounded leakage
resilience’. Advances in Cryptology (ASIACRYPT 2009), Tokyo, Japan,
2009, pp. 703–720

[52] Rückert, M., Schneider, M.: ‘Estimating the security of lattice-based
cryptosystems’. 2010, Cryptology ePrint Archive, Report 2010/137,
eprint.iacr.org/2010/137

[53] Gama, N., Nguyen, P.Q.: ‘Predicting lattice reduction’. Proc. of the Theory
and Applications of Cryptographic Techniques 27th Annual Int. Conf. on
Advances in Cryptology, Istanbul, Turkey, 2008, pp. 31–51

[54] Fiat, A., Shamir, A.: ‘How to prove yourself: practical solutions to
identification and signature problems’. Proc. on Advances in cryptology
(CRYPTO ’86), Santa Barbara, California, USA, 1987, pp. 186–194

[55] Bellare, M., Neven, G.: ‘Multi-signatures in the plain public-key model and a
general forking lemma’. Proc. of the 13th ACM Conf. on Computer and
Communications Security (CCS ’06), Alexandria, Virginia, USA, 2006, pp.
390–399

[56] Komargodski, I.: ‘Leakage resilient one-way functions: the auxiliary-input
setting’. Proc. Part I of the 14th Int. Conf. on Theory of Cryptography,
Beijing, China, vol. 9985, 2016, pp. 139–158

[57] Abdalla, M., Namprempre, C., Neven, G.: ‘On the (im)possibility of blind
message authentication codes’. Proc. of the 2006 The Cryptographers Track at
the RSA Conf. on Topics in Cryptology, San Jose, CA, USA, 2006, pp. 262–
279

[58] Camenisch, J., Neven, G., Shelat, A.: ‘Simulatable adaptive oblivious
transfer’. Proc. of the 26th Annual Int. Conf. on Advances in Cryptology,
Barcelona, Spain, 2007, pp. 573–590

9 Appendix
 
9.1 Forking Lemma

The generalised forking lemma from [55] is a probabilistic tool for
proving security of cryptographic constructions in the ROM.
Informally, it states that if an algorithm A outputs a pair of values
(I, σ) with I > 0 with noticeable probability acc, then the forking
algorithm FA defined below will with noticeable probability return
(1, σ, σ′) based on two executions of A, sharing an identical prefix
up to the Ith query to H. In other words, the probability of getting
two related runs with the same value of I, and a common prefix of
length I − 1 is not too small.
 

Lemma 7: Fix an integer q ≥ 1 and a set H of size h ≥ 2. Let A
be a randomised algorithm that on input x, h1, …, hq returns a pair,
the first element of which is an integer in the range 0, …, q and the
second element of which we refer to as a side output. Let IG be a
randomised algorithm that we call the input generator. The
accepting probability of A, denoted as acc, is defined as the
probability that J ≥ 1 in the experiment
x ←$ IG; h1, …, hq ←$ H; J, σ ←$ A x; h1, …, hq . The forking
algorithm FA associated to A is the randomised algorithm that
takes input x and proceeds as follows:

Algorithm FA(x)
Pick coins ρ for A at random
h1, …, hq ←$ H
I, σ ← A(x; h1, …, hq; ρ)

If I = 0 then return 0, ϵ, ϵ
h′I, …, h′q ←$ H
(I′, σ′) ← A(x; h1, …, hI − 1, h′I, …, h′q; ρ)
If I = I′ and hI ≠ h′I, then return (1, σ, σ′)
Elsereturn 0, ϵ, ϵ .
Let f rk = Prob[b = 1: x ←$ IG; (b, σ, σ′) ← FA(x)] .

Then f rk ≥ acc acc
q − 1

h .

9.2 Proofs of results from sections 4 and 5

9.2.1 Proof of Lemma 6: Initially, observe that θ f rk and Y′1 do
not depend on the choice of secret key. The same holds for Y and
Y′. Furthermore, ϵ∗ and ϵ∗′ are independent of any particular
y^1 ∈ h−1(Y1) ∩ Dy

m because Y1 statistically hides y^1 through h.
Moreover, y^2 and y^′2, as well as γ and γ′ are all sampled
independently of the secret key. Finally, we have to show that ẑ∗

and ẑ∗′ are also distributed independently of the secret key. For that,
let e be any factor used by the signer during step 3 of our protocol,
to compute ẑ∗, i.e.: ẑ∗ = y^1 − es^ ∈ G∗

m. Next, we set
y^′1 ← y^1 − s^e + s^′e, which implies that ẑ∗ = y^′1 − s^′e. We then
easily see that y^′1 ∈ h−1(Y1) ∩ Dy

m. Indeed, y^′1 ∈ h−1(Y1) because
h(y^′1) = h(y^1 − s^e + s^′e) = Y1 − eS + eS = Y1. Additionally,
y^1 ∈ Dy

m since:

∥ y^′1 ∥∞ = ∥ ẑ∗ + s^′e ∥∞ ≤ ∥ ẑ∗ ∥∞ + ∥ s^′e ∥∞ ≤ dy
− ndsdϵ + ndsdϵ = dy,

(13)

where the last inequality follows from Lemma 3. In conclusion, no
malicious user can distinguish whether the honest signer is using
secret key s^ with a masking term y^1 or s^′ with a masking term y^′1,
both of which yield the same output.

9.2.2 Proof of Theorem 5: We follow the same conservative
approach as in [16] and treat the public key S as additional leakage.
Notice that Z = ℱ(info) is not related to the signer's secret key, and
thus we do not treat it as a source of additional leakage for s^.
Define the function g(s^) := f (s^) ∥ S with a total tolerated leakage
of at most λ′ = λ + nlog(q) bits. Next, apply Lemma 1 from [51] to
g, λ′, and H′ = 1, with s^ being the random variable. As
H = L = mnlog(2ds + 1), we have

Prob[g(s^) ∈ Y] ≥ 1 − 2λ′ − H + H′ = 1 − 2λ + nlog(q) − L + 1, (14)

which we want to be ≥ 1 − 2− p(n). For any function p(n) such that
ω(log(n)) ≤ p(n) ≤ O(nlog(n)), we bound the relative leakage from
above by

δ ≤ 1 − p(n) + nlog(q) + 1
L = 1

− Θ(nlog(n))
cmΘ(nlog(n)) = 1 − 1

ω(1) = 1 − 1
o(1) .

As a result, (14) becomes

Prob[g(s^) ∈ Y] ≥ 1 − 2 1 − p(n) + nlog(q) + 1
L L + nlog(q) − L + 1 = 1 − 2p(n) .

Thus, δL = (1 − o(1))L leakage bits yield a non-zero
conditional min-entropy with overwhelming probability
1 − 2− p(n) ≥ 1 − 2−ω(log(n)).

IET Inf. Secur., 2019, Vol. 13 Iss. 6, pp. 670-684
© The Institution of Engineering and Technology 2019

683

Authorized licensed use limited to: George Mason University. Downloaded on September 02,2020 at 14:13:48 UTC from IEEE Xplore. Restrictions apply.

9.2.3 Proof of Theorem 6: It is trivial to see that if PBSS′ is
complete and partially blind, then so is PBSS. Thus, we only need
to show that PBSS is honest-user unforgeable, if PBSS′ is
unforgeable. We will prove this by contradiction. Assume that
PBSS′ is unforgeable but PBSS is not honest-user unforgeable.
Thus, as per Definition 8, there exists an efficient adversary U∗ that
wins at experiment ExpU∗, PBSS

hu − omf (n) with noticeable probability. We
will construct an attacker ℬ that breaks the unforgeability of
PBSS′:

Setup: Algorithm ℬ receives a public key pk as input and runs U∗

in a black-box manner, simulating the oracles as follows:
Direct signing queries: If U∗ directly invokes the signing oracle S′,
ℬ simply relays all messages exchanged between the malicious
user and the signer.
Indirect signing queries: If U∗ indirectly invokes S′ through oracle
P on message, μ ∈ {0, 1}∗, and common information
info ∈ {0, 1}∗, then ℬ chooses a random r ←$ {0, 1}n, sets
μ′ ← μ ∥ r, and engages in an interactive PBSS with the signer S′,
by assuming the role of the honest user U′. When the protocol
terminates, ℬ obtains a signature σ on message μ′, and common
information info. He sets σ′ ← (σ, r), stores the tuple (μ′, info, σ′)
in a list L, and outputs σ′, along with the corresponding transcript
trans to the adversary U∗.
Forgery: Since U∗ is efficient, he eventually stops and outputs a
single info, and a sequence of message–signature pairs:
(μ1

∗, σ1
∗), …, (μkinfo + 1

∗ , σkinfo + 1
∗). In turn, ℬ retrieves all message–

signature pairs (μ1′, σ1′), …, (μninfo′ , σninfo′) pertaining to that particular
info from L (and discards the rest). He then parses σi

∗ as (σ~i, ri
∗), sets

μ~i ← μi
∗ ∥ ri

∗, ∀i = 1, …, kinfo + 1, and outputs
(μ1′, σ1′), …, (μninfo′ , σninfo′), and (μ~1, σ~1), , …, (μ~kinfo + 1, σ~kinfo + 1).

Analysis: As U∗ runs in polynomial–time and all queries are
handled efficiently, ℬ runs in polynomial time as well. Since U∗

succeeds in ExpU∗, PBSS
hu − omf (n), he outputs a single info and kinfo + 1

valid message–signature pairs. ℬ simulated the honest-user
algorithm U′ to compute the message–signature pairs:
(μ1′, σ1′), …, (μninfo′ , σninfo′), thus all these pairs are valid with
overwhelming probability (due to completeness).

Observe that all messages are pairwise distinct. Indeed, consider
the messages (μ1′, …, μninfo′) and (μ~1, …, μ~kinfo + 1), pertaining to
common information info. These are of the form
μi′ = μi ∥ ri, ∀i = 1, …, ninfo and μ~ j = μj

∗ ∥ r j
∗, ∀ j = 1, …, kinfo + 1,

respectively. As the ri are chosen uniformly at random from
{0, 1}n, it follows that (μ1′, …, μninfo′) are pairwise distinct with
overwhelming probability. Similarly, because U∗ wins in
ExpU∗, PBSS

hu − omf (n), messages (μ1
∗, …, μkinfo + 1

∗) are pairwise distinct and
thus, (μ~1, …, μ~kinfo + 1) are also distinct. Moreover, by definition we
have {μ1, …, μninfo} ∩ {μ1

∗, …, μkinfo + 1
∗ } = ∅, and thus, μi′ ≠ μ~ j, ∀i, j.

Next, we show that ℬ could produce one more message–
signature pair than the number of successful, complete protocol
interactions with S′. As U∗ wins in experiment ExpU∗, PBSS

hu − omf (n), it
follows that in at most kinfo of the protocol executions that ℬ
relayed between U∗ and S′, the signer returned ‘ok’. Furthermore,
ℬ executed a total of ninfo honest-user instances to simulate oracle
P. Since U∗ successfully outputs kinfo + 1 message–signature pairs
for pairwise distinct messages μi, it follows that ℬ has asked a total
of at most kinfo + ninfo queries in which S′ returned ‘ok’. However,
ℬ returned a total of ninfo + kinfo + 1 message–signature pairs for
info, which contradicts our assumption that PBSS is unforgeable.

684 IET Inf. Secur., 2019, Vol. 13 Iss. 6, pp. 670-684
© The Institution of Engineering and Technology 2019

Authorized licensed use limited to: George Mason University. Downloaded on September 02,2020 at 14:13:48 UTC from IEEE Xplore. Restrictions apply.

