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Abstract

Summary: Organoid model systems recapitulate key features of mammalian tissues and enable high throughput
experiments. However, the impact of these experiments may be limited by manual, non-standardized, static or quali-
tative phenotypic analysis. OrgDyn is an open-source and modular pipeline to quantify organoid shape dynamics
using a combination of feature- and model-based approaches on time series of 2D organoid contour images. Our
pipeline consists of (i) geometrical and signal processing feature extraction, (ii) dimensionality reduction to differen-
tiate dynamical paths, (iii) time series clustering to identify coherent groups of organoids and (iv) dynamical model-
ing using point distribution models to explain temporal shape variation. OrgDyn can characterize, cluster and model
differences among unique dynamical paths that define diverse final shapes, thus enabling quantitative analysis of
the molecular basis of tissue development and disease.

Availability and Implementation: https://github.com/zakih/organoidDynamics (BSD 3-Clause License).

Contact: newton@usc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

focused on a few spatial descriptors such as distance from centroid
(Maeda et al., 2008), Fourier modes (Sanchez-Corrales et al., 2018),

1 Introduction

Our understanding of cell, developmental and cancer biology relies
upon the analysis of isolated cells cultured at low density on flat,
rigid substrates. Recently, 3D cell culture systems have become
more physiologically relevant models for study cell behavior
(Cheung et al., 2013; Gencoglu et al., 2017; Nguyen-Ngoc et al.,
2012; Nguyen-Ngoc et al,, 2015; Padmanaban et al., 2019;
Schwartz et al., 2017; Shamir and Ewald, 2014). These systems in-
clude 3D cellular spheroids or tumor organoids and 3D matrices in
which to grow and visualize cells akin to the way they grow in the
human body. To fully realize the potential of these 3D culture mod-
els, we urgently need better visualization and analysis methods to
handle the large amount of data that results from time-dependent
analysis of 3D culture models and subsequent 2D projections.
Conventional approaches to quantify the morphologies of di-
verse 3D cell samples have either (i) often been limited to qualitative
scoring systems, such as binned percentages or categorical scales, (ii)

membrane extension and retraction (Satulovsky et al., 2008), roundness
and hollowness (Akerfelt et al., 2015) or (iii) developed compre-
hensive spatial descriptors for non-temporal datasets (Borten
etal.,2018).

OrgDyn introduces techniques for quantifying the dynamical
evolution of organoid morphology by (i) extracting spatio-temporal
shape descriptors from time series of 2D organoid contours, (ii) cap-
turing phenotypic spatio-temporal heterogeneity in clusters and (iii)
modeling and quantifying dynamical variations (Fig. 1A). At the
core of the pipeline are geometrical- and signal processing-based de-
scriptive features of organoid shape, as these are often the focus of
shape assessment studies (Borten et al., 2018; Kriegel et al., 2018;
Meijering et al., 2012; Meijering, 2012; Pincus and Theriot, 2007;
Sanchez-Corrales et al., 2018; Zimmer et al., 2002). We introduce
local curvature shape descriptors, and leverage all these features
concurrently to increase robustness of spatio-temporal phenotypic
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Fig. 1. OrgDyn tools and example. (A) OrgDyn pipeline. (B) Sample FGF2 treated organoid DIC images and contours using OrgDyn script for Image]. (C) Area and polar moment
of area time series for FGF2 and basal organoids. (D) PDM metrics for 39 organoids grouped by (E) hierarchical clustering of 39 organoids’ time series in principal component space

analyses. A standardized and intuitive pipeline of organoid morpho-
metric analysis can benefit the experimental community by provid-
ing a common path to quantification and form a baseline for future
advancements in analytical techniques.

2 Materials and methods

The input for OrgDyn is a time series of 2D organoid contours (step
1 in Fig. 1A). Point distribution models (PDM) of each organoid are
generated, and metrics of dynamical complexity are calculated (step
2 in Fig. 1A). Ten features are extracted per contour: area A, perim-
eter P, form factor ay, solidity aj,, polar moment of area J,,, fraction
of convex f,.x and concave f,, points, and the number of modes
Ny, the mean mode amplitude Agy and standard deviation ooy of
mode amplitudes in the 90% discrete Fourier transform of a contour
(step 3 in Fig. 1A). Together, these features form multivariate time
series for each organoid, and these are cast to principal component
(PC) space and then clustered (steps 4 and 5 Fig. 1A). Detailed meth-
ods are presented in Supplementary Section 2.

2.1 Numerical implementation

The preprocessing, feature extraction and PDM algorithms are
implemented using MATLAB 2017b. Dimensionality reduction and
clustering algorithms are implemented in R version 3.4.3.

3 Example

We demonstrate OrgDyn on a 3D culture model of normal mouse
mammary development (Ewald ez al., 2008; Nguyen-Ngoc et al.,
2015) consisting of basal and FGF2-treated organoid groups. The
organoids were imaged every 30min using differential interference
contrast (DIC) microscopy for 130h, creating a time series of con-
tours of each organoid’s boundary (Fig. 1B). Among the 10 features
(Fig. 1A, step 3), area and the polar moment of area showed a dra-
matic difference in the growth trajectories (Fig. 1C). Each contour of
an organoid’s time series is cast in reduced PC space in Figure 1E, and
connecting together these points creates a reduced dimension time ser-
ies of each organoid which encompasses the majority of variance in
the original features. Clustering the organoids’ PC space time series
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reveals groups of organoids which have similar dynamical histories.
The hierarchical clustering splits cluster-1 from the other clusters first,
forming the division between basal and FGF2 types. However, each
cluster represents unique phenotypes, and clusters 2-5 are all FGF2
subtypes ranging from the most to least complex morphologies in
clusters-2 and cluster-3, respectively (Fig. 1E). Figure 1D shows the
PDM metrics grouped by the clusters in Fig. 1E, where the low
variance captured by the first mode and AUC of the mode-
variance curve confirm that cluster-2 organoids require the great-
est number of dynamical modes to capture their evolution.
Detailed example is presented in Supplementary Section 3.
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