PHYSICAL REVIEW D 100, 063543 (2019)

Preheating in full general relativity

John T. Giblin, Jr.®"*" and Avery J. Tishue®'*"
lDepartment of Physics, Kenyon College, Gambier, Ohio 43022, USA
*CERCA/ISO, Department of Physics, Case Western Reserve University,
10900 Euclid Avenue, Cleveland, Ohio 44106, USA

3Department of Physics and Astronomy, Dartmouth College,
6127 Wilder Laboratory, Hanover, New Hampshire 03755, USA

® (Received 7 August 2019; published 30 September 2019)

We investigate the importance of local gravity during preheating, the nonlinear dynamics that may be

responsible for starting the process of reheating the Universe after inflation. We introduce three numerical

methods that study a simple preheating scenario while relaxing gravitational assumptions, culminating in

studying the process in full numerical relativity. We confirm that perturbation theory is no longer valid

when one considers modes whose wavelengths are comparable to the size of the horizon at the end of

inflation; however, this breakdown does not necessarily lead to a breakdown of the preheating process in

nonlinear gravity. For the specific model we test we find no evidence for the creation of primordial black

holes from the instabilities in this model. Finally, we remark on the opportunity for future numerical study
of nonlinear gravitational dynamics in the early Universe.
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I. INTRODUCTION

If inflation occurred in the early Universe, it must have
come to an end—at least locally. While measurements of
the cosmic microwave background and large scale structure
constrain inflationary models during inflation, the final
moments of the inflationary period and the subsequent
preheating of the Universe may provide clues for how
inflation fits into our models of high energy physics. The
lack of a unique mathematical model of inflation is a
compelling reason to search for testable predictions from
the inflationary and preheating periods. Most models of
inflation employ a field (or fields) whose homogeneous
value(s) determines the final dynamics of this epoch; in
many of these, the field ends up oscillating about a
minimum of the potential. Frequently in these scenarios,
nonlinear processes take over to accelerate the decay of the
inflaton field in a family of scenarios known as preheating,
see, e.g., Ref. [1] for a review.

While the processes of the field sectors of preheating
have been examined closely throughout the past decades,
the effects of gravity during preheating have not yet been
extensively studied. At the same time, there exist some
exciting possibilities from the preheating period. Large,
nonthermal, and nonlinear inhomogeneities are character-
istic of this period and detailed numerical study is needed to
understand the role of this physics.
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In this paper we aim to do a first investigation of
nonlinear gravity during the violent process of preheating
in the early Universe.

To date, cosmological perturbation theory (CPT) has
been an effective and predictive way to study departures
from a purely homogeneous and isotropic, Friedmann-
LeMaitre-Robertson-Walker (FLRW), universe. All pre-
vious work studying gravity during and after preheating
exists in this scenario. The first was done using DEFROST,
[2], where it was shown that local gravitational effects seem
to be small, an observation that has been confirmed in other
numerical simulations. More recent work continues to
study the generation of linear gravitational perturbations
during preheating, [3,4], where gravitational effects show
promise in helping to understand the rich phenomenology
of this period.

However, CPT is inherently limited, by construction, to a
linearized treatment of gravity and is not able to resolve the
strong-field regime. Equally important is that linearized
gravity, by definition, does not allow for gravitational modes
to couple, hiding potentially important aspects of the
preheating process. As such, the search for new physics
beyond the perturbative regime strongly motivates the
application of full general relativity (GR) to the study of
cosmology. Applying nonlinear gravity to cosmological
scenarios is a recent advancement in high resolution and
accurate numerical simulations. The formalisms employed to
do full numerical relativity [5—10] have been recently applied
to late universe scenarios [11-21] as well as preinflationary
scenarios [22-25] and oscillons [26]. Other work along these
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lines include adding gravitational effects for scalar metric
perturbations, beyond linear order, [27,28] during the pre-
heating period. Other works include fully nonlinear gravity,
either in one dimension [29] or in a restricted gauge
in Ref. [30].

In CPT, the linearized Einstein’s equations couple spatial
derivatives of the Newtonian gravitational potential ® to
local inhomogeneities in the energy density, dp. When
inhomogeneities grow, the gravitational response may
be large.

The idea that preheating can amplify gravitational degrees
of freedom (d.o.f.) dates back to early work [31,32] where the
authors noticed that gravitational modes can be excited
via parametric instabilities. This work was significantly
extended by Refs. [33-36], where the authors set out to
understand where linear perturbation theory breaks down
and point out that nonlinear gravity is necessary to study the
gravitational effects of preheating [34].

More recently, it has been noted that overdensities on
fixed subhorizon scales might collapse due to nonlinear
gravitational effects [37,38]—a generic feature of preheat-
ing which could lead to the formation of primordial
black holes, e.g., Ref. [39]. Additionally, it was shown
in Ref. [40] that an instability exists for modes near the
Hubble scale at the end of inflation. These modes
provide the dominant contribution to the density contrast
6(1,X) = 6p(t,X)/{p), causing it to become large. This may
signal the breakdown of linear perturbation theory and the
need for a nonlinear treatment.

Our primary goal here is to increase the robustness of
gravitational approximations during the preheating stage,
culminating in studying the problem in full numerical
relativity. We begin with a standard implementation of
the Grid and Bubble Evolver GABE in an FLRW universe
before including localized linear gravity in Newtonian
gauge. We then introduce GABERel, an adaptation of
GABE [41] that numerically evolves the full set of
Einstein’s field equations on an expanding background.
We utilize GABERel to evolve nonlinear inflaton modes in
the postinflationary Universe during parametric resonance
preheating. This provides a precise numerical treatment of
the nonlinear effects that lead to the breakdown of coherent
oscillations in the postinflationary Universe and demon-
strates the ability of GABERel to move beyond limitations of
linear perturbation theory. We confirm prior work that
predicts the breakdown of perturbation theory at the end of
infation; however, we go further to show that full numerical
relativity safely controls these inhomogeneities which do
not end up being catastrophic: by either causing the
coherent modes of the inflaton to break down or by seeding
primordial black holes.

We also present the formalism one can use to calculate the
(first-order) gauge-invariant Bardeen potentials in the frame-
work of full GR. We use this as a test of GABERel’s robustness
and to compare these potentials to the Newtonian simulation

in an equivalent preheating context. We also use GABERel to
evolve a single black hole of mass M to assess its ability to
resolve strong-field dynamics to demonstrate the accuracy of
this new technique.

This paper is organized as follows. In Sec. II we
introduce our model of preheating and its numerical
implementation in three simulations with increasingly
comprehensive treatments of gravitational dynamics. In
Sec. III we outline our initialization procedure and give
computational details. We present our results in Sec. IV and
a discussion in Sec. V. Appendix A contains information
regarding how to calculate the Bardeen potentials in a fully
general-relativistic simulation. Appendix B outlines meth-
ods by which we validate the accuracy of GABERel’s
gravitational dynamics.

II. MODEL

We are primarily interested in the effects of gravity on
preheating; hence, we study a canonical model of preheat-
ing with two scalar fields: the inflaton, ¢, and a coupled,
massless, matter field, ¢,. For convenience we use upper-
case latin letters, I, J, etc., as a field index to simplify
notation when we need to sum over fields; we use ¢; when
we need to generally refer to one or all of the scalar fields
and repeated field indices imply a sum. The matter
Lagrangian for our system is

1
Ly = (2 3”(P16p(01) - V(gr) (1)
with a potential

1 1

Vig) = 3m1 +5 90103 (2)
Throughout this work, we take the coupling to be ¢*> =
25x 1077 and m = 10‘6mp1 as a toy model that has been
studied extensively in the literature [42]. This is an
interesting model both because it has been repeatedly used
as a benchmark preheating scenario and is widely recog-
nized, but also because it exhibits broad resonance—see,
e.g., Fig. 3 in Ref. [1]—where linear analysis predicts
efficient preheating. Since the dynamics of this model are
so well known, it is an ideal case to study as a first try even
though this inflationary model is disfavored [43] and this
specific model of preheating needs extensions to com-
pletely deplete the energy in the inflaton, e.g., Ref. [44]. In
this model, when inflation ends the vast majority of the
energy density of the Universe is trapped in the inflaton
condensate. As the homogeneous mode of the inflaton field
oscillates at the minimum of the potential it parametrically
amplifies modes of the matter field until the ¢, particles
scatter into the ¢, field and nonlinear physics leads to the
breakdown of the condensate. We want to be careful here to
delineate the different phases of the process. The first of
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these phases, I, is where the ¢, field is being amplified, but
the inflaton condensate is mostly unaffected by any back-
scattering. The next phase, I, is characterized by back-
scattering onto ¢; and an amplification of the variances of
both the ¢, and ¢, fields. The final phase, III, sees dramatic
nonlinear amplifications of both fields; this phase is
important as significant power is transferred between
different modes. When studying this process on a finite
grid, it is important to note that we almost always reach a
stage at which significant power is transferred to the
smallest-resolvable scales. We will note this moment in
the following sections as it becomes more dangerous as the
dynamics become more complicated.

Since we are interested in gravitational effects, and want
to be able to include any effects that arise when d = 0, we
start our simulations one e-folding before inflation ends. In
this model, that corresponds to a (homogeneous) field value
of ¢y~ 0.415my,; and velocity (jﬁo ~ —0.154 my,. Inflation
ends when the field passes ¢y ~ 0.201 my,;. Throughout the
work here we denote the subscript “0” to refer to quantities
evaluated at the beginning of the simulation, i.e., we take
ap = e~!, and the subscript “x+” will refer to quantities
evaluated at the end of inflation, a, = 1.

In all simulations, we will initialize our scalar field
modes to be in the Bunch-Davies vacuum,

1
2y

Jou(0P) =5 G)
where @ = \/k* + mZ%;. In an expanding universe, this
approximation is only good for modes (well) inside the
horizon—however there are known adaptations that work
for horizon-sized modes [2]. Since we start our simulations
before the end of inflation, it allows the entire (or most of
the) box to be subhorizon on the initial slice. In doing so we
can trust our initial conditions while still allowing the fields
to evolve to be superhorizon by the time inflation ends—
knowing that there could be instabilities on the scale
of k/a~H,.

In the next three subsections we present three increas-
ingly comprehensive treatments of the gravitational physics
in this model. First we introduce the canonical treatment in
a rigidly expanding spacetime, the FLRW limit. We then
study the problem in perturbation theory in Newtonian
gauge in CPT, followed by an introduction of the fully
nonlinear methods using the BSSN formalism [9,10].

A. The FLRW limit
In general, studies of preheating are done in the FLRW
regime, where the line element is

" = diag(—1,a% (1), a*(1). a*(1)) (4)

and the dynamics of the scale factor are determined by
the 00-component of Einstein’s equations, Friedmann’s
equation,

a 8

1 = (—) = (5)

where the (...) denote an average over a constant-time
hypersurface, and

==Vl + 3 (507 + ). o)

24>

As usual each of the scalar fields evolve according to the
Klein Gordon equation,

v2§01 aV
)1 +3Hp; ———+-—=0. 7
§0[ + (/71 az + a(pl ( )

To be comprehensive, Eq. (7) implies similar—but cru-
cially different—equations of motion for the inflaton and
matter field in this preheating model,

v2¢'1
22

@) +3Hgp, — + @13 +m*p, =0, (8)

.. . V2¢2
¢ +3Hp, - e

+ Fpip, = 0. 9)

Figure 1 illustrates the importance of these differences in
this canonical process for a simulation with L, =5 m~!.
While this box is slightly superhorizon at the end of
inflation it becomes subhorizon very quickly after; shaded
regions in this figure show the three phases of preheating as
described above. To track the production of particles across
the box, we use the variance of the fields,

Var(gr) = 1/ (1) — (¢1)*, (10)
as a way to assess inhomogeneity as a function of time. In
the FLRW regime, Friedmann’s equation contains all of the
gravitational physics and there is no local gravitational
collapse; the fields simply evolve in an expanding back-
ground, preheating the Universe.

B. Cosmological perturbation theory

To include the effects of local gravity, it is natural to next
look to cosmological perturbation theory. In this limit we
introduce a scalar perturbation to Eq. (4), in our case in
Newtonian gauge [45-47],

CPT _

- (-(1 +20) 0

0 a*(1)(1 —2\11)>' ()

The metric perturbations @ and ¥ are the Newtonian
gravitational potentials. They are equal when the scalar
anisotropic stress vanishes, an assumption we will make.
While this is not strictly true for a scalar field source, it is a
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FIG. 1. The stages of parametric resonance preheating in the
FLRW limit. The top panel illustrates the evolution of the
variances of the scalar fields ¢, (black) and ¢, (red). In the first
shaded region, inflaton oscillations amplify modes of the ¢, field
through the potential coupling, but backscattering has yet to
break down the inflaton condensate. In between the two shaded
regions, there are enough ¢, particles to backscatter into the
inflaton field, causing the variances of both fields to grow. In the
second shaded region, both field variances grow rapidly indicat-
ing power is being distributed over many modes. These three
phases of field variances are characteristic of parametric reso-
nance preheating. In the bottom panel, the orange curve tracks the
initially matterlike evolution of the inflaton condensate as it
oscillates around the potential minimum.

good approximation when the stress-energy tensor is
almost diagonal. We also note that we are not choosing
to use the (first-order) gauge invariant Mukhanov-Sasaki
variables [48], as is commonly done in CPT; here we wish
to keep the metric and field perturbations separate with an
eye toward going beyond the linear analysis. The energy
density can be decomposed at linear order into a back-
ground value and a perturbation,

p = (p) + dp. (12)

so that we can study Finstein’s equations order by order.
The 00 component yields Friedmann’s equation, Eq. (4), at
zeroth order, and

V20 — 3Ha*(® 4+ H®) = 4nGa’sp (13)

at first order. It is common to drop the second term of
Eq. (13) in the nonrelativistic limit; however, since our
sources are scalar fields, we can calculate the second term
by simultaneously solving the divergence of the Oi terms of
Einstein’s equations, §70,Go; = 8z/m2,670,T;,

. Az ..
VXD + HO) = —870,(0,0:0001).  (14)

7 Ml

The effects of local gravity enters into the equations
of motion for the scalar fields, 9,(,/=g¢9"0,¢;) =

/—gdV /dg;, resulting in

40 + 1 . . ov
a 2

(15)

In practice we use a spectral method to solve Egs. (13)
and (14) simultaneously. We take the Fourier transform of
the right-hand side of these two equations and then invert
the Laplacians in momentum space to get the Fourier

transform of @ as well as the combination (® + H®); we

then inverse Fourier transform these to get @ and @ in
configuration space.

Local gravity during preheating has been studied in
Refs. [2,27,28], where the size of the Newtonian potential
was found to be small. On the other hand, an examination
of Eq. (13) shows that the magnitude of the Newtonian
potential depends on the volume of the simulation. As the
wavelength of a density perturbation approaches to the
Hubble scale k — H, the resulting size of the gravitational
response @ grows, even if dp/(p) is constant. Therefore
allowing density perturbations to exist at near-horizon
scales (by including more modes in the simulation)
amplifies the size of the Newtonian potential.

This is the case in Ref. [40], where there is a mechanism
through which the Universe becomes inhomogeneous at the
Hubble scale at the end of preheating. In this scenario
inflaton modes with k ~ a,H, contribute significantly to
the extrinsic curvature as well as the density contrast,
eventually spoiling linearity. We demonstrate this effect in
Sec. IV, Fig. 6 by including these modes in the CPT
simulation; after enough time in the phase of coherent
oscillations, roughly ~2-3 e-foldings, these modes grow
nonlinearly and the validity of the perturbative treatment
breaks down. This breakdown, discussed at length in
Sec. 1V, necessitates a fully general-relativistic treatment
of the postinflationary Universe’s gravitational dynamics,
raising the possibility of primordial gravitational wave
production during preheating as well as the nonlinear
growth of density perturbations in a strong gravitational
regime [39].
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C. Fully nonlinear gravity

The BSSN formalism—an adaptation of the ADM
formalism of GR [9,10,49]—utilizes a 3 + 1 decomposi-
tion of the field equations, with the metric parametrized as

gBSSN — <—a2 AP > (16)

y71% _
Bi 94(/)71']'

The variables a and ' are called the lapse and the shift and
parametrize gauge d.o.f. The spatial metric y;; is confor-
mally rescaled, y;; = ey, ;» such that the conformal metric
has unit determinant det|7;;| = 1. This notation will be
general so that quantities written with overbars are related
to the conformal spatial metric, y;;. Then, the field
equations can be expressed as a system of first order
differential equations in these metric variables,

1 ) 1 )
0 = —605[( +p 0,9 +gaiﬂla (17)

0yii = —205;‘1',' + Oy + 70,

2
+ 71,08 — gl_ﬂjaxﬂk, (18)

. I |
8,K = yl]DjDia + a(AijAl] + §K2>
+4ra(p + S) + pO,K, (19)

8tAij = €_4¢(—DjDi(X + a(R,-j - 87{Sij))TF
+ (Z(KAU - 2A11A§) + ﬁkakAij

- - 2.
+ Ay 0;p* + Ay;0,5¢ — gAi 0B (20)

In addition to these evolution equations, the BSSN
formalism improves numerical stability by defining an
auxiliary variable " = )7f’<l_“§.k = —0,7", which is evolved
independently,

_ o 2
9,01 = —248,a 4 2a (r;kAkf - 3770,K
— 8771, + 6Affa.i¢) + PO T8,

+§1‘“"ajﬂf +%7“8,ajﬂ/ +79,0,p". (21)
Using the auxiliary variables effectively promotes the
“divergence” of the conformal metric to an independent
variable so that its second spatial derivatives do not need to
be directly calculated via lattice stencils. This promotion
makes the problem hyperbolic which, hopefully, causes
numerical noise to remain bounded in the simulation.

We see this same technique in a moment when we discuss
the scalar field evolution.

The Oy components of the field equations furnish four
constraint equations which must be satisfied at all times
throughout the system’s evolution to ensure that the
numerical simulation remains a valid solution. These read

=i T 4) e¢— 65¢~I-»~
HEO:]/JDiDje —§R+?AJAU
e
— EKZ + 2ﬂ€5¢p, (22)

. _ - 2 _. .
MP =0 = Dj(eMAT) = S DIK - 8re's',  (23)
in which
St = —y"n"T,;, (24)

where the vector n¢ = (a~',—a~'$") is normal to the
spatial hypersurface.

Satisfying these Hamiltonian, Eq. (22), and momentum
Eq. (23), constraints—or showing that they are bounded—
is a central challenge of performing fully relativistic
simulations, which we discuss in Appendix B.

Because the lapse and shift are gauge variables, we are
free to define how they evolve; this process fixes a slicing
of spacetime which makes it possible to choose the
coordinates best fit for different problems. One common
choice, geodesic slicing or synchronous gauge, fixes @ = 1
and ' =0, so an observer at fixed spatial coordinates
travels along a geodesic. Another extensively studied
choice for the evolution of a is a family of coordinate
systems called 1 + log slicing

(0, —p9;)a = -2aK. (25)

Here we almost exclusively employ a variant of Eq. (25),
where the extrinsic curvature is replaced by its deviation
from its average on our spatial hypersurfaces (K),

0,a = =2a(K — (K)). (26)

When using Eq. (26), we will use the hyperbolic Gamma-
driver condition for the shift,

.3 .
op = ZB , (27)

9,B' = 9, — B (28)

The combination of Egs. (25), (27), and (28) have proven to
be highly robust choices suitable for black hole simula-
tions. The parameter # is a constant often related to the total
mass in the simulation [50]. In this work we find good
numerical results with # ~ 50m.
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Following previous work [50,51], the scalar field equa-
tions are split into two first-order differential equations
where the momentum of the fields are replaced with I1;,

0, =~ (0,9, —ﬁiaifﬂl) (29)

1
a
o1, = B o1, + v (00,01 + 0,¢0,0,)

y ov
+ a KII; — yTk -— .
a( 1 = r/T50p; 8¢1> (30)

As mentioned earlier when discussing I in Eq. (21),
we also promote the spatial derivative of the scalar field
to an independent variable, y;; = 0,¢;, which evolves
according to

Owir = P Ojwi + w0 + ad Il + 0a.  (31)

In the following section, we discuss how we initialize this
system of fully general-relativistic equations of motion and
how we implement the evolution on a finite grid.

III. NUMERICAL SIMULATIONS

A. Initial conditions

The initial conditions must satisfy the constraint equa-
tions, Eqs. (22) and (23), and be physically motivated. We
initialize our parametric resonance scenario in correspon-
dence with the standard semiclassical, linearized treatment
of this model’s postinflationary dynamics. This choice will
facilitate a comparison between GABERel and well-known
results from CPT, allowing us to analyze the ability of a
fully general-relativistic simulation to evolve the nonlinear
dynamics and breakdown of coherent oscillations predicted
in Ref. [40].

As stated in Sec. II, the mean power in each mode is
set by the Bunch Davies vacuum, Eq. (3). To realize
such initial conditions, we randomly generate Gaussian-
distributed power spectra for each component of each
field’s Fourier mode. The amplitude of each Fourier mode
is then drawn from a Rayleigh distribution

Plon) = 25 e i, (32)

where 6% = L3 /47*w,. A random realization of Eq. (32) is
then inverse Fourier transformed, giving us an initial field
configuration in configuration space.

In order to connect our results with CPT we begin by
linearizing the BSSN variables, setting 7;; = 6;; + hyj,
A =0+a; ¢=0+5p, K=Ky+05K, a=1+da,
and ' =0+ 6p'. We set h;; =0, so that gravitational
waves do not enter at first order. This choice fixes R = 0.
We also choose ' =0 and a;; = 0.

To draw a correspondence with Newtonian Gauge
perturbation theory, we also have

Sa=® (33)
and
op = —D/2. (34)

Linearizing the Hamiltonian constraint, Eq. (22), makes it
clear that K, = —3H. Working with the Fourier transform
of our variables (denoted by overtildes) this constraint is
then equivalent to satisfying

4ra?

2
mpl

—k*® = 8p + a*H*6K, (35)

which should look identical to the CPT expression,
Eq. (13), if we make the identification that

5K = 3(d + H®). (36)

The choice a;; = 0 reduces the momentum constraint to
— T, (37)

which is equivalent to the CPT expression, Eq. (14), with
the same identification, Eq. (36).

These identifications mean that any solution to the set of
perturbation theory equations, Eqgs. (13) and (14), also
satisfy the linearized constraints, Egs. (22) and (23), so long
as we use the identifications, Egs. (33), (34), and (36). Of
course, this is only strictly true at the linear level, but is
sufficient for the simulations here, as can be seen in
Appendix B.

B. Other numerical details

GABERel solves differential equations in full numerical
relativity on a finite, expanding lattice under periodic
boundary conditions. In this work, our lattice resolution
is N3 at N = 64 and we use a time step At = Ax/20 (where
Ax = L,/N is the initial lattice spacing) with one excep-
tion, see Fig. 8. Choosing the time step to be a small
fraction of the initial lattice spacing provides good reso-
lution and puts us far from the regime in which causality
becomes an issue.

Simulations on a finite grid eventually reach a stage at
which significant power is transferred to the smallest
resolvable scales (i.e., the Nyquist frequency, fnyq =
21/3zN/L). This is dangerous because the difficulty in
resolving such modes leads to a gradual increase in
numerical inaccuracy, eventually spoiling the validity of
the simulation. One way we alleviate this problem is by
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initializing this system without very much power on these
small scales, thereby delaying the onset of this power
growth. We do this by smoothly suppressing power in
modes with frequencies larger than the cutoff frequency f,
defined by the dimensionless parameter &. = f./fnyq
which we always choose to be less than 1. This is done
by filtering the power in all modes by a window function on
the initial slice,

W(f) = % (1 — tanh HfZL—”— \/§N§C>D. (38)

Here, « is a parameter between zero and one that determines
the sharpness of the window function; in this work we set
k = 0.75 and &£, = 1/8. In this way we lower power in the
smallest resolvable scales, which do not participate in the
initial stages of preheating and make it difficult to satisfy
the Hamiltonian and momentum constraints.

IV. RESULTS

We begin by examining the effect local gravitational
physics has on preheating. In this case (as in Ref. [2]) we
expect to see growth of the Newtonian potential during the
preheating stages. We also expect that the statistics of the
Newtonian potential will depend on which modes we are
able to resolve. As we discussed in Sec. II B, when the
density contrast, 5p/(p)(k) is amplified at the same level,
modes near the Hubble scale create larger gravitational
deviations from homogeneity than do smaller wavelength
disturbances. Figure 2 confirms this by showing the
maximum and minimum values of the Newtonian potential
as a function of time for three different box sizes. Larger
box sizes include longer-wavelength modes which create
larger maximum and minimum values of the gravitational
potential.

0.010F
0.001
1074
1075

107

107}

0 50 100 150 200
t(m™)

FIG. 2. The absolute value of the maximum (solid) and
minimum (dotted) values of the Newtonian potential @, across
the box for three different simulations. The three colors corre-
spond to different box sizes, L, =2 m™' (red), L, =5 m™!
(blue), and L, = 11 m~! (black).

The three box sizes we study in Fig. 2 represent three
distinct regimes: the smallest of these sizes, L, = 2 m', is
always subhorizon, that is the longest resolvable wave-
length mode is bigger than H~! throughout the simulation.
The second case, L, = 5 m~!, represents a marginal case
where the longest wavelength mode becomes superhorizon
just at the end of inflation and then quickly retreats inside
the Hubble radius. The third, L, = 11 m~!, has a long-
wavelength mode that stays smaller than H~' for a few
oscillations of the scalar field. We note that the largest of
these boxes, L, = 11 m~! has an initial superhorizon mode
which mildly breaks our assumptions of Eq. (3). Figure 3
shows a comparison of the physical size ratio of the
smallest resolvable wave vector, k., = 27/aL, compared
to the Hubble scale H.

For the three box sizes featured in Figs. 2 and 3, we
expect that nonlinear gravity should have a minimal effect
on the simulations. The size of the Newtonian potential
does not significantly grow, and we expect to only see small
changes in the fields resulting from different realizations of
the initial vacuum states. This is a good regime, then, in
which to validate GABERel and confirm that no nonlinear
gravitational effects enter on these scales.

To achieve this validation, we look to see if we can
calculate the (first-order) gauge-invariant metric perturba-
tions. Generically, scalar perturbations to the metric can be
written as [47]

ds? = —(1 +2®)ds* + 2a(t)B ;dx'dt

In terms of these variables, the Bardeen potentials are (see,
e.g., Ref. [52])

101 ]

5 i
T
g
k:

1t b

05h ]

0.5 1 5 10 50 100
t(m™)
FIG. 3. Ratio of the lowest-k mode Newtonian potential to the

Hubble rate for three different simulations: L, =2 m™' (red),
L, =5m" (blue),and L, = 11 m~' (black). N. B. the timescale
in this figure is logarithmic.
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¢ME®—%[M<E—§>} (40)

a

. B
‘PBE‘P—f—HaZ(E——). (41)

a

The translation from the generic form of the metric
perturbation to these new variables is straightforward,
but computationally expensive and we leave the details
on how to calculate these from the BSSN variables to
Appendix A (see Ref. [53] for a similar treatment). In CPT,
where we have assumed no scalar anisotropic stress,
O = Oy = Vg, so we would expect the statistics of these
gauge-invariant potentials to be identical between our
simulations. To test this, we show a comparison of the
power spectra of @ (from a CPT simulation) to the
dimensionless power spectra, k*Pg, as defined by

dink o 2o
S KPoeiD,  (42)

Mwawwwz/

of ®p and W5 from a BSSN simulation in Fig. 4. When
using a 1 + log slicing, we see very good agreement in
these quantities in the regions where we anticipate the
results to coincide, despite the radically different methods
used to calculate these quantities. The very lowest bins are
closest to the horizon where we anticipate CPT and BSSN
to disagree, while at higher frequencies nonlinear dynamics
mode mix in the BSSN simulations and we see greater
power in those simulations. On small scales, where the
power is negligible, differences are due in part to resolving
small differences in comparatively large quantities. We also
note that our two situations also differ in that our CPT
simulations explicitly ignore scalar anisotropic stress
whereas the BSSN ones do not.

To complete our comparison in Fig. 4, we also run our
code in geodesic slicing. This slicing condition is known to
violate the linearized Einstein equation [21] much more
quickly than 14 log slicing, which is confirmed by
disagreement in high-frequency modes in Fig. 4. This
discrepancy is a sign that the geodesic slicing simulations
move out of perturbation theory on some scales faster than
those in 1 + log slicing. Finally, we note that we have to
take extreme care when analyzing the output of the BSSN
simulations (see Appendix B). In this code, when power is
moved to the Nyquist frequency, we see that the
Hamiltonian and momentum constraints, Egs. (22) and
(23), are no longer satisfied. We take care not to derive
physical meaning from these simulations after this time.
For all of the BSSN simulations we present here, the
constraints start to grow around ¢ = 110 m~' and become
unsatisfactorily satisfied before + = 130 m™".

Additionally, one can look at the statistics of the two
fields to see agreement between our simulations. Figure 5
shows a comparison of the variances of the two scalar

& 107t

10-8}

& 107t
%

2 5 10 20 50
k (m)

FIG. 4. The dimensionless power spectra of the gravitational
potentials at 3 different times in 3 different, L, =5 m™!,
simulations: CPT (black), BSSN in 1 + log slicing (blue), and
BSSN with geodesic slicing (gray). For the BSSN simulations,
solid lines correspond to @5 and dashed lines correspond to ¥p.
The top panel is taken at + = 0 and shows consistency in our
initial conditions. The middle panel, at 7~ 99 m~!, shows the
period of parametric instability, where the spectra of the fields are
amplified at certain wavelengths. The lower panel, at
t~ 119 m~!, shows the spectra at the end of the final stage of
preheating, when power is about to move to the Nyquist
frequency.

fields—and confirms that there are no notable differences
between the simulations we run across box sizes and
methods. At some box sizes, geodesic slicing alone exhibits
early oscillations in the inflaton variance during the phase
of coherent oscillations. This demonstrates the importance
of slicing conditions when comparing fully relativistic
results to those from CPT and FLRW treatments.
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FIG. 5. Comparison of variances of the inflaton ¢; and matter field ¢, as a function of time for three different simulations: FLRW

(black), CPT (red), BSSN in 1 + log slicing (blue), and BSSN in geodesic slicing (gray). N. B. simulations for L, = 2 m~! do not
include geodesic slicing runs. Simulations are at box sizes of L, = 2 m™! (top panels), L, = 5 m~! (middle panels), and L, = 11 m™!

(bottom panels).

We can now move on to see if there are indications of
stronger gravitational instabilities if we include more
horizon-sized modes for a longer time in the simulation.
For this we consider a box size of L, = 20, so that we have
more modes near the Hubble scale for a longer portion of
the simulation. We note that our initial conditions are also
slightly inconsistent in this scenario, i.e., a small number of
these modes that are not well within the horizon and are not
exactly Bunch-Davies, Eq. (3). Figure 6 shows the ratio of
the physical size of the lowest-frequency mode to the
Hubble scale for a box of size L, =20 along with a
comparison to the same quantity for L, = 11. We see in this
case that the lowest frequency mode stays outside the
horizon for more of the simulation, allowing many modes
to cross into the horizon during the preheating process.
These modes do become inhomogenous as the simulation
proceeds and, as they are entering the horizon, cause the
Newtonian potential to grow to order unity and the
simulation to crash. As predicted in Ref. [40], these

additional modes become nonlinear during the phase of
coherent oscillations; the Universe may undergo a number
of e-foldings before the contribution to the extrinsic
curvature from the shift becomes comparable to that from
the homogeneous evolution. This amplification is exactly
the effect we see in our CPT simulations." BSSN simu-
lations, on the other hand, do not rely on the assumptions of
CPT, and, hence, the code does not crash at this point.
Figure 7 shows a comparison between the CPT simulation
and the BSSN simulations for L, =20 m~' which dem-
onstrates that fully nonlinear gravity is able to resolve the
moderate density contrasts that exist as these modes are
entering the horizon. It is important to note, though, that

"The authors of Ref. [40] work in spatially flat gauge where the
shift contributes to the Bardeen potentials. We then rely on
comparing the (first-order) gauge invariant potentials either ®
(from our CPT simulations) or ®; and Wz—to analyze this
predicted breakdown of linearity.
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FIG. 6. Ratio of the lowest-k mode Newtonian potential to
the Hubble rate for two CPT simulations: L, = 11 m™' (black)
and L, =20 m~! (green). The simulation with the largest box
(and hence the largest wavelength mode) crashes shortly after
@,  enters the horizon. N.B. the timescale in this figure
is logarithmic.

when we move to full GR, we do not see a breakdown of
the coherent oscillations of the inflation field, despite the
fact that the Newtonian potential (or the Bardeen potentials)
grows to be close to order unity.

The bottom panel of Fig. 7 shows that statistics of the
lapse, a for this simulation. This quantity is important when
probing the existence of strong gravity and the possible
creation of primordial black holes. In the simulations we
have run here we see minimal departure in the lapse, and
hence, do not see the creation (or seeds) of primordial
black holes. This statement is, however, a model-dependent
statement and not a generic prediction for all models of
preheating.

We can also look towards the density contrast,
8= 68p/{p), to assess the onset of nonlinear gravitational
physics. This provides an intuitive way of assessing the
validity of linear perturbation theory and a consistency
check with Fig 6. CPT is built on the assumption that o is
small. In Fig. 8 we compare two-dimensional slices
of 6 throughout a CPT and a BSSN simulation for
L, =20 m~!. For both simulations, the density contrast
initially grows slowly and remains small, and CPT remains
valid. However, around ¢~ 120 m~'—right after @,
enters the horizon—¢é grows sharply to order 1 in the
CPT and BSSN simulations, with the growth being only
marginally more pronounced in the CPT simulation. The
CPT simulation fails at this point. This confirms the
breakdown of linearity predicted in Refs. [33-36] (and
reinforced in Ref. [40]) and shown in Fig. 6: once the
horizon-sized modes enter the horizon during preheating,
the density contrast quickly exceeds unity and the linear
treatment is no longer valid, necessitating a fully general-
relativistic treatment. Despite this nonlinear instability, we
do not observe strong gravitational collapse or the

-1
10 6'1 + + + + 4 + + + + 4 + + + + 4 + + + H
10-8 +——t——+—+ +———+—+ +——t—+—+ +———+—+

104} 1

Var(a)

1075} E

1076 E

1 " " " " 1 " " " " 1 " " " " 1

0 50 100 150
t(m™)

FIG. 7. The top panel shows a comparison of variances of the
inflaton ¢, and matter field ¢, as a function of time for three
different simulations: CPT (¢, is red, ¢, is green), and BSSN in
1 + log slicing (¢, is blue, ¢, is gray). The bottom panel shows
the variance of « for the BSSN simulation; « has a homogenoues
value that stays at (&) = 1 & 107> throughout the simulation.

formation of PBH during this stage of preheating. The
growth of the density contrast moves out of the regime of
validity of (first-order) CPT after this point, but does not
necessarily signal unbounded growth of overdensities.
However, neither the CPT nor BSSN simulation is valid
shortly after this point. The former because ® becomes
large and the simulation crashes, the latter because power is
moved to the Nyquist frequency and the constraints are no
longer satisfied. Still, there is no indication that the
gravitational instabilities are large enough, in this model,
to continue to collapse. Nevertheless, thanks to the robust-
ness of full numerical relativity, GABERel is able to
successfully resolve these nonlinear physical processes
that are inaccessible to CPT.

V. DISCUSSION

We have explored the effect of adding local gravitational
effects to a toy model of preheating and present a rigorous
analysis of gravitational effects after inflation. For this
model of preheating, we have shown that there are no
unexpected results that arise when local gravity—in either
perturbation theory or in full GR—is included in the
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FIG. 8.

Chronological two-dimensional slices of the density contrast § = §p/{p) in L, = 20 m~' simulations in CPT (top panels) and

GABEREL (bottom panels). From left to right the slices are at t = 0, 7 = 87 m~!, and 7~ 121 m~!. For this final time, the maximum
(minimum) values of the density contrast are 5p/(p) =~ 1.43 (—0.76) for the CPT simulation and §p/(p) ~ 0.73 (—0.40) for the BSSN
simulation. Here we use Ar = Ax/80; this smaller time step ensures that, for the larger box sizes used in this figure, the simulation runs

until the dynamics become truly nonlinear in the final panel.

dynamics of the Universe. When local gravity is included,
we see the excitation of scalar perturbations; in these cases,
the Newtonian potential can get as large as ® ~ 107,
however, the subsequent field dynamics do not allow for
these perturbations to become nonlinear and there is no
indication of compact structures forming. While the
Newtonian potential does grow, it does not seem that this
is enough to cause nonlinearity in the gravitational part of
the system—even when the Newtonian potential becomes
order unity. The variations of the Newtonian potential are
on large scales and do not seem to cause gravitational
collapse.

We have also introduced a new computational tool,
GABERel: software that can evolve scalar fields in full
numerical relativity. We have validated that this software
reproduces expectations from perturbation theory in its
regime of validity and can be extended to regions in which
perturbation theory fails. Using this tool for a canonical
model of preheating shows that nonlinear gravitational
effects stabilize the instabilities present in perturbation
theory. We see that the phenomena of preheating in this

setup shares a background evolution with the unperturbed
FLRW analysis for the entirety of the simulation, even
when departures grow beyond first-order perturbation
theory. It also shows that some choices of coordinates
(slicing) do a better job satisfying the linearized Einstein’s
equations [21,47] than do others.

Finally, it is important to note that the lack of the
formation of collapsed structures is not a generic result. In
addition to previous CPT results hinting towards linear
gravitational physics, the model of preheating studied here,
Eq. (2), is not known to cause large metric perturbations.
We envision that stronger instabilities (such as superhor-
izon or tachyonic instabilities [54—78]) that are closer to the
horizon would be ideal candidates for more dramatic
gravitational physics, and we look forward to studying
more of these models in the future.
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APPENDIX A: BARDEEN VARIABLES

In Sec. IV we relied on the ability to write the Bardeen
potentials strictly in terms of BSSN variables. To calculate
these we draw a correspondence between the BSSN metric,
Eq. (16), and a general form of a metric with scalar
perturbations [47]

ds® = —(1 +2®)ds* + 2a(1)B ;dx'dr

In terms of these variables, the Bardeen potentials are [52]

@Bzcb—%[ﬁ([?—g)}, (A2)
¥, E\P+Ha2(i5—§>. (A3)

We first set the purely spatial parts of the metric to be equal
in both gauges, gp*N = g

a*(1)[(1 = 2¥)5;; + 20,0,E] = e*y,;. (A4)
There are two relationships that we can get from this.

First, by taking the trace of both sides, where repeated
lower indices implies a sum, we get

a2 [3 —_ 6‘1‘ + 28181E] = }/ii' (AS)
We can solve this for V2E,
V2E = 3w -2 i (A6)
2 24%|

or in Fourier space variables (denoted by overtildes)

- 1.~ 7
E=——_|3¥ L A7
K [ + 2a2} (A7)
where we have dropped the 3/2 since it only contributes to
the homogeneous mode which must be zero for a pertur-
bation. We can also take the mixed second derivative of
Eq. (A4), 0;0;, where again we sum over repeated down-

stairs indices,

(12 [—sz‘{‘ + 2V2V2E] = 8,(9]7/,], (AS)
which can be rearranged
0i0)rij
VIVZE - ¥] = —2;2 4, (A9)
and simplified by using Eq. (A6),
N 0,07,
V2| |39 4 Ji| | = 2T Al
H3 * 2a2] ] 2a% (A10)
Vii 0:0;7i
% [2‘P+ 2a2} = 252 : (Al11)
This yields an expression for V2,
1[0:0;r;  Vyy
vro T e
or in Fourier space,
= 1 [kik;j7i; 7

This allows us to calculate E strictly in terms of BSSN
variables and a (which will later be replaced by (e*?)),

1 Fkikj Vi lf’ii]

F=rplieamae) AW

The last thing we need is B, which we get from gy;,

Introduce a sum by differentiating both sides,
aal@,»B = 8iﬁ,~, (A16)
which in Fourier space becomes
3 1ik,p;
B=--——1 Al7
a k? (AL7)

The scalar metric perturbations in terms of @ and BSSN
variables can be summarized
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N 1 [3kik;7;; 17%;
E=—— |21y 1) Al8
K2 [4 kK a2 4a2} (AI8)

5 1ikfp;

B=-——L1 A19
a k? ( )
d=a-1, (A20)
po—_ (LT A21
4[/{2 a? a] (A21)

where repeated indices are summed over. We define
the term common in both Bardeen potentials, Eqs. (A2)
and (A3), as B = a*(E — B/a). In BSSN variables we then
have

3klkj 3klk/ . 1 1 1 1 . lklﬁl
=gy e Hy. +——y. 4
(A22)

where we substitute the Hubble rate with the average
extrinsic curvature H = —(K)/3 as we did when lineariz-
ing the Hamiltonian constraint, Eq. (22). The Bardeen
potentials are then computed strictly in terms of BSSN
variables,

Pp=a—-1-B, (A23)
1 [kikjyij ] (K)
B=z{yzfzf‘773 (A24)

The time derivative in Eq. (A23) is very cumbersome, and
we do not need to evolve the Bardeen potentials as they are
only used to compare our BSSN results with CPT compu-
tations. Therefore it is sufficient to store B from the
previous step and calculate B with a Euler method.

Incidentally, this means we cannot calculate B until the
second time step and also means we introduce a fixed
numerical error of order dx> to ®p.

APPENDIX B: CODE VERIFICATION

We have run a number of tests on GABERel to verify [79]
that our gravitational evolution is accurate. Among these
are the robust stability test and a Schwarzchild black hole
test. In the former we find no exponential noise growth and
the constraint violations remain bounded for long-term
evolution. For the latter, we simulated a Schwarzschild
geometry in trumpet coordinates [80]. In this setup, the
conformal factor ¢, lapse a, and shift A take the form,

[ 1
w=logd=1/1+-.

(B1)

T i r’ (B2)
f=—"__5% (B3)
(r+1)>2

which corresponds to a choice of Ry = M; N. B. for this
test, we use units where G = 1 and, hence, space and time
are in units of M. We chose this particular slicing because
all of the d.o.f. of the extrinsic curvature, K and Ai j» are
nonzero throughout the simulation, even though the sol-
ution is static. The black hole is initially centered dx/4
from a central lattice point. This intentional asymmetry
constitutes a more general and robust test of our code’s
gravitational dynamics than would otherwise be the case if
we impose some artificial symmetry on the system. We
evolve the gauge variables, a and f#, according to 1 + log
and n =0 Gamma-driver conditions, respectively, with
advective shift terms,

(0, =P 0;)a=—a(l —a)K, (B4)

) 3.
(0,-poy)p =" (5)
While the rest of our simulation uses central finite differ-
encing in an RK4 scheme, anything evolved with advective
shift terms uses upwind derivative stencils. Gamma driver
serves to approximate the more difficult to evolve Gamma-
freezing condition, 9,I"" = 0. Figure 9 shows the stability of
our code to this setup. Given our simulation’s periodic
boundary conditions and the asymmetric initial position of
the singularity, we do not necessarily expect that our solution
should approach a perfectly steady state after long-term
evolution. Nevertheless we observe no noticeable changes
between the initial slice and t = 10M. In this simulation, the
box is taken to be L = 8M with N = 643 points.

It is also important for us to verify that we can trust the
code for the simulations presented in Sec. I'V. The constraints
(22) and (23) should remain small and bounded throughout
the system’s evolution. However, the constraints are dimen-
sionful, and so we must normalize them. Here we will show
the Hamiltonian constraint and normalize it by the root sum
of the squares of the terms in the constraint,

— (5 D. D )2 e’ 2\? 65¢~ij~ ?
1/2

5P \2 /
+ <12 K2> + (27e3?)? + (27re5¢p)2]

(B6)

We show the evolution of the Hamiltonian constraint in
Figs. 10 and 11. It is not surprising that the constraint grows
in the third phase of preheating as this is precisely when
significant power is transferred to the smallest resolvable
scales and numerical error grows. After this point, the
numerical evolution is stable but no longer reliable.
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FIG. 9. The conformal factor ¢, lapse a, and radial component of the shift 4", for slices of the Schwarzschild black hole described in
Appendix B. Note that the one-dimensional slice is taken thorough the diagonal of the box, so that it can cut through the center of the
black hole—which is placed between grid points near the middle of the box. The left three panels are at # = 0 and the right three panels

are at t = 10M.
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FIG. 10. Testing numerical convergence via the average,

(H)/[H] (solid), and rms, /Var(H/[H]) (dashed), Hamiltonian

constraint violation in three different L, = 11 m~! simulations:
dt = dx/10 (black), dt = dx/20 (blue), dt = dx/40 (green).
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FIG. 11. Testing numerical convergence via the average,

(H)/[H] (solid), and rms, /Var(H/[H]) (dashed), Hamiltonian
constraint violation in three different L, = 11 m~! simulations:
£, = 1/4 (black), &, = 1/8 (blue), &, = 1/16 (green).
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