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We investigate the importance of local gravity during preheating, the nonlinear dynamics that may be

responsible for starting the process of reheating the Universe after inflation. We introduce three numerical

methods that study a simple preheating scenario while relaxing gravitational assumptions, culminating in

studying the process in full numerical relativity. We confirm that perturbation theory is no longer valid

when one considers modes whose wavelengths are comparable to the size of the horizon at the end of

inflation; however, this breakdown does not necessarily lead to a breakdown of the preheating process in

nonlinear gravity. For the specific model we test we find no evidence for the creation of primordial black

holes from the instabilities in this model. Finally, we remark on the opportunity for future numerical study

of nonlinear gravitational dynamics in the early Universe.
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I. INTRODUCTION

If inflation occurred in the early Universe, it must have

come to an end—at least locally. While measurements of

the cosmic microwave background and large scale structure

constrain inflationary models during inflation, the final

moments of the inflationary period and the subsequent

preheating of the Universe may provide clues for how

inflation fits into our models of high energy physics. The

lack of a unique mathematical model of inflation is a

compelling reason to search for testable predictions from

the inflationary and preheating periods. Most models of

inflation employ a field (or fields) whose homogeneous

value(s) determines the final dynamics of this epoch; in

many of these, the field ends up oscillating about a

minimum of the potential. Frequently in these scenarios,

nonlinear processes take over to accelerate the decay of the

inflaton field in a family of scenarios known as preheating,

see, e.g., Ref. [1] for a review.

While the processes of the field sectors of preheating

have been examined closely throughout the past decades,

the effects of gravity during preheating have not yet been

extensively studied. At the same time, there exist some

exciting possibilities from the preheating period. Large,

nonthermal, and nonlinear inhomogeneities are character-

istic of this period and detailed numerical study is needed to

understand the role of this physics.

In this paper we aim to do a first investigation of

nonlinear gravity during the violent process of preheating

in the early Universe.

To date, cosmological perturbation theory (CPT) has

been an effective and predictive way to study departures

from a purely homogeneous and isotropic, Friedmann-

LeMaître-Robertson-Walker (FLRW), universe. All pre-

vious work studying gravity during and after preheating

exists in this scenario. The first was done using DEFROST,

[2], where it was shown that local gravitational effects seem

to be small, an observation that has been confirmed in other

numerical simulations. More recent work continues to

study the generation of linear gravitational perturbations

during preheating, [3,4], where gravitational effects show

promise in helping to understand the rich phenomenology

of this period.

However, CPT is inherently limited, by construction, to a

linearized treatment of gravity and is not able to resolve the

strong-field regime. Equally important is that linearized

gravity, by definition, does not allow for gravitational modes

to couple, hiding potentially important aspects of the

preheating process. As such, the search for new physics

beyond the perturbative regime strongly motivates the

application of full general relativity (GR) to the study of

cosmology. Applying nonlinear gravity to cosmological

scenarios is a recent advancement in high resolution and

accurate numerical simulations. The formalisms employed to

do full numerical relativity [5–10] have been recently applied

to late universe scenarios [11–21] as well as preinflationary

scenarios [22–25] and oscillons [26]. Otherwork along these
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lines include adding gravitational effects for scalar metric

perturbations, beyond linear order, [27,28] during the pre-

heating period. Other works include fully nonlinear gravity,

either in one dimension [29] or in a restricted gauge

in Ref. [30].

In CPT, the linearized Einstein’s equations couple spatial

derivatives of the Newtonian gravitational potential Φ to

local inhomogeneities in the energy density, δρ. When

inhomogeneities grow, the gravitational response may

be large.

The idea that preheating can amplify gravitational degrees

of freedom (d.o.f.) dates back to earlywork [31,32]where the

authors noticed that gravitational modes can be excited

via parametric instabilities. This work was significantly

extended by Refs. [33–36], where the authors set out to

understand where linear perturbation theory breaks down

and point out that nonlinear gravity is necessary to study the

gravitational effects of preheating [34].

More recently, it has been noted that overdensities on

fixed subhorizon scales might collapse due to nonlinear

gravitational effects [37,38]—a generic feature of preheat-

ing which could lead to the formation of primordial

black holes, e.g., Ref. [39]. Additionally, it was shown

in Ref. [40] that an instability exists for modes near the

Hubble scale at the end of inflation. These modes

provide the dominant contribution to the density contrast

δðt; x⃗Þ ¼ δρðt; x⃗Þ=hρi, causing it to become large. This may

signal the breakdown of linear perturbation theory and the

need for a nonlinear treatment.

Our primary goal here is to increase the robustness of

gravitational approximations during the preheating stage,

culminating in studying the problem in full numerical

relativity. We begin with a standard implementation of

the Grid and Bubble Evolver GABE in an FLRW universe

before including localized linear gravity in Newtonian

gauge. We then introduce GABERel, an adaptation of

GABE [41] that numerically evolves the full set of

Einstein’s field equations on an expanding background.

We utilize GABERel to evolve nonlinear inflaton modes in

the postinflationary Universe during parametric resonance

preheating. This provides a precise numerical treatment of

the nonlinear effects that lead to the breakdown of coherent

oscillations in the postinflationary Universe and demon-

strates the ability of GABERel to move beyond limitations of

linear perturbation theory. We confirm prior work that

predicts the breakdown of perturbation theory at the end of

infation; however, we go further to show that full numerical

relativity safely controls these inhomogeneities which do

not end up being catastrophic: by either causing the

coherent modes of the inflaton to break down or by seeding

primordial black holes.

We also present the formalism one can use to calculate the

(first-order) gauge-invariant Bardeen potentials in the frame-

work of full GR.We use this as a test of GABERel’s robustness

and to compare these potentials to the Newtonian simulation

in an equivalent preheating context. We also use GABERel to

evolve a single black hole of mass M to assess its ability to

resolve strong-field dynamics to demonstrate the accuracy of

this new technique.

This paper is organized as follows. In Sec. II we

introduce our model of preheating and its numerical

implementation in three simulations with increasingly

comprehensive treatments of gravitational dynamics. In

Sec. III we outline our initialization procedure and give

computational details. We present our results in Sec. IVand

a discussion in Sec. V. Appendix A contains information

regarding how to calculate the Bardeen potentials in a fully

general-relativistic simulation. Appendix B outlines meth-

ods by which we validate the accuracy of GABERel’s

gravitational dynamics.

II. MODEL

We are primarily interested in the effects of gravity on

preheating; hence, we study a canonical model of preheat-

ing with two scalar fields: the inflaton, φ1, and a coupled,

massless, matter field, φ2. For convenience we use upper-

case latin letters, I, J, etc., as a field index to simplify

notation when we need to sum over fields; we use φI when

we need to generally refer to one or all of the scalar fields

and repeated field indices imply a sum. The matter

Lagrangian for our system is

Lm ¼
�

1

2
∂μφI∂μφI

�

− VðφIÞ ð1Þ

with a potential

VðφIÞ ¼
1

2
m2φ2

1
þ 1

2
g2φ2

1
φ2
2
: ð2Þ

Throughout this work, we take the coupling to be g2 ¼
2.5 × 10−7 and m ¼ 10−6mpl as a toy model that has been

studied extensively in the literature [42]. This is an

interesting model both because it has been repeatedly used

as a benchmark preheating scenario and is widely recog-

nized, but also because it exhibits broad resonance—see,

e.g., Fig. 3 in Ref. [1]—where linear analysis predicts

efficient preheating. Since the dynamics of this model are

so well known, it is an ideal case to study as a first try even

though this inflationary model is disfavored [43] and this

specific model of preheating needs extensions to com-

pletely deplete the energy in the inflaton, e.g., Ref. [44]. In

this model, when inflation ends the vast majority of the

energy density of the Universe is trapped in the inflaton

condensate. As the homogeneous mode of the inflaton field

oscillates at the minimum of the potential it parametrically

amplifies modes of the matter field until the φ2 particles

scatter into the φ1 field and nonlinear physics leads to the

breakdown of the condensate. We want to be careful here to

delineate the different phases of the process. The first of
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these phases, I, is where the φ2 field is being amplified, but

the inflaton condensate is mostly unaffected by any back-

scattering. The next phase, II, is characterized by back-

scattering onto φ1 and an amplification of the variances of

both the φ1 and φ2 fields. The final phase, III, sees dramatic

nonlinear amplifications of both fields; this phase is

important as significant power is transferred between

different modes. When studying this process on a finite

grid, it is important to note that we almost always reach a

stage at which significant power is transferred to the

smallest-resolvable scales. We will note this moment in

the following sections as it becomes more dangerous as the

dynamics become more complicated.

Since we are interested in gravitational effects, and want

to be able to include any effects that arise when ä ¼ 0, we

start our simulations one e-folding before inflation ends. In
this model, that corresponds to a (homogeneous) field value

of ϕ0 ≈ 0.415mpl and velocity _ϕ0 ≈ −0.154mpl. Inflation

ends when the field passes ϕ0 ≈ 0.201mpl. Throughout the

work here we denote the subscript “0” to refer to quantities

evaluated at the beginning of the simulation, i.e., we take

a0 ¼ e−1, and the subscript “�” will refer to quantities

evaluated at the end of inflation, a� ¼ 1.

In all simulations, we will initialize our scalar field

modes to be in the Bunch-Davies vacuum,

hjφIðkÞj2i ¼
1

2ω
; ð3Þ

where ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2

eff

p

. In an expanding universe, this

approximation is only good for modes (well) inside the

horizon—however there are known adaptations that work

for horizon-sized modes [2]. Since we start our simulations

before the end of inflation, it allows the entire (or most of

the) box to be subhorizon on the initial slice. In doing so we

can trust our initial conditions while still allowing the fields

to evolve to be superhorizon by the time inflation ends—

knowing that there could be instabilities on the scale

of k=a ∼H�.
In the next three subsections we present three increas-

ingly comprehensive treatments of the gravitational physics

in this model. First we introduce the canonical treatment in

a rigidly expanding spacetime, the FLRW limit. We then

study the problem in perturbation theory in Newtonian

gauge in CPT, followed by an introduction of the fully

nonlinear methods using the BSSN formalism [9,10].

A. The FLRW limit

In general, studies of preheating are done in the FLRW

regime, where the line element is

gFLRWμν ¼ diagð−1; a2ðtÞ; a2ðtÞ; a2ðtÞÞ ð4Þ

and the dynamics of the scale factor are determined by

the 00-component of Einstein’s equations, Friedmann’s

equation,

H2 ≡

�

_a

a

�

2

¼ 8π

3m2

pl

hρi; ð5Þ

where the h…i denote an average over a constant-time

hypersurface, and

ρ≡ −T0

0
¼ VðφIÞ þ

X

I

�

1

2
_φI
2 þ ð∇φIÞ2

2a2

�

: ð6Þ

As usual each of the scalar fields evolve according to the

Klein Gordon equation,

φ̈I þ 3H _φI −
∇2φI

a2
þ ∂V

∂φI

¼ 0: ð7Þ

To be comprehensive, Eq. (7) implies similar—but cru-

cially different—equations of motion for the inflaton and

matter field in this preheating model,

φ̈1 þ 3H _φ1 −

∇2φ1

a2
þ g2φ1φ

2
2
þm2φ1 ¼ 0; ð8Þ

φ̈2 þ 3H _φ2 −

∇2φ2

a2
þ g2φ2

1
φ2 ¼ 0: ð9Þ

Figure 1 illustrates the importance of these differences in

this canonical process for a simulation with L� ¼ 5 m−1.

While this box is slightly superhorizon at the end of

inflation it becomes subhorizon very quickly after; shaded

regions in this figure show the three phases of preheating as

described above. To track the production of particles across

the box, we use the variance of the fields,

VarðφIÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hφ2
I i − hφIi2

q

; ð10Þ

as a way to assess inhomogeneity as a function of time. In

the FLRW regime, Friedmann’s equation contains all of the

gravitational physics and there is no local gravitational

collapse; the fields simply evolve in an expanding back-

ground, preheating the Universe.

B. Cosmological perturbation theory

To include the effects of local gravity, it is natural to next

look to cosmological perturbation theory. In this limit we

introduce a scalar perturbation to Eq. (4), in our case in

Newtonian gauge [45–47],

gCPTμν ¼
�

−ð1þ 2ΦÞ 0

0 a2ðtÞð1 − 2ΨÞ

�

: ð11Þ

The metric perturbations Φ and Ψ are the Newtonian

gravitational potentials. They are equal when the scalar

anisotropic stress vanishes, an assumption we will make.

While this is not strictly true for a scalar field source, it is a
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good approximation when the stress-energy tensor is

almost diagonal. We also note that we are not choosing

to use the (first-order) gauge invariant Mukhanov-Sasaki

variables [48], as is commonly done in CPT; here we wish

to keep the metric and field perturbations separate with an

eye toward going beyond the linear analysis. The energy

density can be decomposed at linear order into a back-

ground value and a perturbation,

ρ ¼ hρi þ δρ; ð12Þ

so that we can study Einstein’s equations order by order.

The 00 component yields Friedmann’s equation, Eq. (4), at

zeroth order, and

∇2
Φ − 3Ha2ð _ΦþHΦÞ ¼ 4πGa2δρ ð13Þ

at first order. It is common to drop the second term of

Eq. (13) in the nonrelativistic limit; however, since our

sources are scalar fields, we can calculate the second term

by simultaneously solving the divergence of the 0i terms of

Einstein’s equations, δij∂iG0i ¼ 8π=m2

plδ
ij∂iT0i,

∇2ð _ΦþHΦÞ ¼
X

I

4π

m2

pl

δij∂ið∂jφI∂0φIÞ: ð14Þ

The effects of local gravity enters into the equations

of motion for the scalar fields, ∂μð
ffiffiffiffiffiffi

−g
p

gμν∂νφIÞ ¼
ffiffiffiffiffiffi

−g
p

dV=dφI , resulting in

φ̈I ¼
�

4Φþ 1

a2

�

∇2φI þ ð4 _Φ − 3HÞ _φI − ð2Φþ 1Þ ∂V
∂φI

:

ð15Þ

In practice we use a spectral method to solve Eqs. (13)

and (14) simultaneously. We take the Fourier transform of

the right-hand side of these two equations and then invert

the Laplacians in momentum space to get the Fourier

transform of Φ as well as the combination ð _ΦþHΦÞ; we
then inverse Fourier transform these to get Φ and _Φ in

configuration space.

Local gravity during preheating has been studied in

Refs. [2,27,28], where the size of the Newtonian potential

was found to be small. On the other hand, an examination

of Eq. (13) shows that the magnitude of the Newtonian

potential depends on the volume of the simulation. As the

wavelength of a density perturbation approaches to the

Hubble scale k → H, the resulting size of the gravitational

response Φ grows, even if δρ=hρi is constant. Therefore

allowing density perturbations to exist at near-horizon

scales (by including more modes in the simulation)

amplifies the size of the Newtonian potential.

This is the case in Ref. [40], where there is a mechanism

through which the Universe becomes inhomogeneous at the

Hubble scale at the end of preheating. In this scenario

inflaton modes with k ∼ a�H� contribute significantly to

the extrinsic curvature as well as the density contrast,

eventually spoiling linearity. We demonstrate this effect in

Sec. IV, Fig. 6 by including these modes in the CPT

simulation; after enough time in the phase of coherent

oscillations, roughly ∼2–3 e-foldings, these modes grow

nonlinearly and the validity of the perturbative treatment

breaks down. This breakdown, discussed at length in

Sec. IV, necessitates a fully general-relativistic treatment

of the postinflationary Universe’s gravitational dynamics,

raising the possibility of primordial gravitational wave

production during preheating as well as the nonlinear

growth of density perturbations in a strong gravitational

regime [39].
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FIG. 1. The stages of parametric resonance preheating in the

FLRW limit. The top panel illustrates the evolution of the

variances of the scalar fields φ1 (black) and φ2 (red). In the first

shaded region, inflaton oscillations amplify modes of the φ2 field

through the potential coupling, but backscattering has yet to

break down the inflaton condensate. In between the two shaded

regions, there are enough φ2 particles to backscatter into the

inflaton field, causing the variances of both fields to grow. In the

second shaded region, both field variances grow rapidly indicat-

ing power is being distributed over many modes. These three

phases of field variances are characteristic of parametric reso-

nance preheating. In the bottom panel, the orange curve tracks the

initially matterlike evolution of the inflaton condensate as it

oscillates around the potential minimum.
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C. Fully nonlinear gravity

The BSSN formalism—an adaptation of the ADM

formalism of GR [9,10,49]—utilizes a 3þ 1 decomposi-

tion of the field equations, with the metric parametrized as

gBSSNμν ¼
�

−α2 þ βlβ
l βj

βi e4ϕγ̄ij

�

: ð16Þ

The variables α and βi are called the lapse and the shift and

parametrize gauge d.o.f. The spatial metric γij is confor-

mally rescaled, γij ¼ e4ϕγ̄ij, such that the conformal metric

has unit determinant det jγ̄ijj ¼ 1. This notation will be

general so that quantities written with overbars are related

to the conformal spatial metric, γ̄ij. Then, the field

equations can be expressed as a system of first order

differential equations in these metric variables,

∂tϕ ¼ −

1

6
αK þ βi∂iϕþ 1

6
∂iβ

i; ð17Þ

∂tγ̄ij ¼ −2αÃij þ βk∂kγ̄ij þ γ̄ik∂jβ
k

þ γ̄kj∂iβ
k
−

2

3
γ̄ij∂Kβ

k; ð18Þ

∂tK ¼ γijDjDiαþ α

�

ÃijÃ
ij þ 1

3
K2

�

þ 4παðρþ SÞ þ βi∂iK; ð19Þ

∂tÃij ¼ e−4ϕð−DjDiαþ αðRij − 8πSijÞÞTF

þ αðKÃij − 2ÃilÃ
l
jÞ þ βk∂kÃij

þ Ãik∂jβ
k þ Ãkj∂iβ

k
−

2

3
Ãij∂kβ

k: ð20Þ

In addition to these evolution equations, the BSSN

formalism improves numerical stability by defining an

auxiliary variable Γ̄
i ≡ γ̄jkΓ̄i

jk ¼ −∂jγ̄
ij, which is evolved

independently,

∂tΓ̄
i ¼ −2Ãij

∂jαþ 2α

�

Γ̄
i
jkÃ

kj
−

2

3
γ̄ij∂jK

− 8πγ̄ijSj þ 6Ãij
∂jϕ

�

þ βj∂jΓ̄
i
− Γ̄

j∂jβ
i

þ 2

3
Γ̄
i∂jβ

j þ 1

3
γ̄li∂l∂jβ

j þ γ̄lj∂j∂lβ
i: ð21Þ

Using the auxiliary variables effectively promotes the

“divergence” of the conformal metric to an independent

variable so that its second spatial derivatives do not need to

be directly calculated via lattice stencils. This promotion

makes the problem hyperbolic which, hopefully, causes

numerical noise to remain bounded in the simulation.

We see this same technique in a moment when we discuss

the scalar field evolution.

The 0μ components of the field equations furnish four

constraint equations which must be satisfied at all times

throughout the system’s evolution to ensure that the

numerical simulation remains a valid solution. These read

H≡ 0 ¼ γ̄ijD̄iD̄je
ϕ
−

eϕ

8
R̄þ e5ϕ

8
ÃijÃij

−

e5ϕ

12
K2 þ 2πe5ϕρ; ð22Þ

Mi ≡ 0 ¼ D̄jðe6ϕÃijÞ − 2

3
e6ϕD̄iK − 8πe10ϕSi; ð23Þ

in which

Si ¼ −γijnaTaj; ð24Þ

where the vector na ¼ ðα−1;−α−1βiÞ is normal to the

spatial hypersurface.

Satisfying these Hamiltonian, Eq. (22), and momentum

Eq. (23), constraints—or showing that they are bounded—

is a central challenge of performing fully relativistic

simulations, which we discuss in Appendix B.

Because the lapse and shift are gauge variables, we are

free to define how they evolve; this process fixes a slicing

of spacetime which makes it possible to choose the

coordinates best fit for different problems. One common

choice, geodesic slicing or synchronous gauge, fixes α ¼ 1

and βi ¼ 0, so an observer at fixed spatial coordinates

travels along a geodesic. Another extensively studied

choice for the evolution of α is a family of coordinate

systems called 1þ log slicing

ð∂t − βj∂jÞα ¼ −2αK: ð25Þ

Here we almost exclusively employ a variant of Eq. (25),

where the extrinsic curvature is replaced by its deviation

from its average on our spatial hypersurfaces hKi,

∂tα ¼ −2αðK − hKiÞ: ð26Þ

When using Eq. (26), we will use the hyperbolic Gamma-

driver condition for the shift,

∂tβ
i ¼ 3

4
Bi; ð27Þ

∂tB
i ¼ ∂tΓ̄

i
− ηBi: ð28Þ

The combination of Eqs. (25), (27), and (28) have proven to

be highly robust choices suitable for black hole simula-

tions. The parameter η is a constant often related to the total

mass in the simulation [50]. In this work we find good

numerical results with η ∼ 50m.
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Following previous work [50,51], the scalar field equa-

tions are split into two first-order differential equations

where the momentum of the fields are replaced with ΠI,

ΠI ≡
1

α
ð∂tφI − βi∂iφIÞ ð29Þ

∂tΠI ¼ βi∂iΠI þ γijð∂i∂jφI þ ∂jφI∂iαÞ

þ α

�

KΠI − γijΓk
ij∂kφI −

∂V

∂φI

�

: ð30Þ

As mentioned earlier when discussing Γ̄
i in Eq. (21),

we also promote the spatial derivative of the scalar field

to an independent variable, ψ iI ≡ ∂iφI , which evolves

according to

∂tψ iI ¼ βj∂jψ iI þ ψ jI∂iβ
j þ α∂iΠI þ ΠI∂iα: ð31Þ

In the following section, we discuss how we initialize this

system of fully general-relativistic equations of motion and

how we implement the evolution on a finite grid.

III. NUMERICAL SIMULATIONS

A. Initial conditions

The initial conditions must satisfy the constraint equa-

tions, Eqs. (22) and (23), and be physically motivated. We

initialize our parametric resonance scenario in correspon-

dence with the standard semiclassical, linearized treatment

of this model’s postinflationary dynamics. This choice will

facilitate a comparison between GABERel and well-known

results from CPT, allowing us to analyze the ability of a

fully general-relativistic simulation to evolve the nonlinear

dynamics and breakdown of coherent oscillations predicted

in Ref. [40].

As stated in Sec. II, the mean power in each mode is

set by the Bunch Davies vacuum, Eq. (3). To realize

such initial conditions, we randomly generate Gaussian-

distributed power spectra for each component of each

field’s Fourier mode. The amplitude of each Fourier mode

is then drawn from a Rayleigh distribution

PðφIkÞ ¼
φIk

σ2
e−φ

2

Ik
=2σ2 ; ð32Þ

where σ2 ¼ L3=4π4ωk. A random realization of Eq. (32) is

then inverse Fourier transformed, giving us an initial field

configuration in configuration space.

In order to connect our results with CPT we begin by

linearizing the BSSN variables, setting γ̄ij ¼ δij þ hij,

Ãij ¼ 0þ aij, ϕ ¼ 0þ δϕ, K ¼ K0 þ δK, α ¼ 1þ δα,

and βi ¼ 0þ δβi. We set hij ¼ 0, so that gravitational

waves do not enter at first order. This choice fixes R̄ ¼ 0.

We also choose βi ¼ 0 and aij ¼ 0.

To draw a correspondence with Newtonian Gauge

perturbation theory, we also have

δα ¼ Φ ð33Þ

and

δϕ ¼ −Φ=2: ð34Þ

Linearizing the Hamiltonian constraint, Eq. (22), makes it

clear that K0 ¼ −3H. Working with the Fourier transform

of our variables (denoted by overtildes) this constraint is

then equivalent to satisfying

−k2Φ̃ ¼ 4πa2

m2

pl

δρ̃þ a2H2δK̃; ð35Þ

which should look identical to the CPT expression,

Eq. (13), if we make the identification that

δK̃ ¼ 3ð _̃ΦþHΦ̃Þ: ð36Þ

The choice aij ¼ 0 reduces the momentum constraint to

∂iδK ¼ 12π

m2

pl

T0i; ð37Þ

which is equivalent to the CPT expression, Eq. (14), with

the same identification, Eq. (36).

These identifications mean that any solution to the set of

perturbation theory equations, Eqs. (13) and (14), also

satisfy the linearized constraints, Eqs. (22) and (23), so long

as we use the identifications, Eqs. (33), (34), and (36). Of

course, this is only strictly true at the linear level, but is

sufficient for the simulations here, as can be seen in

Appendix B.

B. Other numerical details

GABERel solves differential equations in full numerical

relativity on a finite, expanding lattice under periodic

boundary conditions. In this work, our lattice resolution

isN3 atN ¼ 64 and we use a time stepΔt ¼ Δx=20 (where
Δx ¼ L�=N is the initial lattice spacing) with one excep-

tion, see Fig. 8. Choosing the time step to be a small

fraction of the initial lattice spacing provides good reso-

lution and puts us far from the regime in which causality

becomes an issue.

Simulations on a finite grid eventually reach a stage at

which significant power is transferred to the smallest

resolvable scales (i.e., the Nyquist frequency, fNyq ¼
2

ffiffiffi

3
p

πN=L). This is dangerous because the difficulty in

resolving such modes leads to a gradual increase in

numerical inaccuracy, eventually spoiling the validity of

the simulation. One way we alleviate this problem is by
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initializing this system without very much power on these

small scales, thereby delaying the onset of this power

growth. We do this by smoothly suppressing power in

modes with frequencies larger than the cutoff frequency fc,
defined by the dimensionless parameter ξc ≡ fc=fNyq,

which we always choose to be less than 1. This is done

by filtering the power in all modes by a window function on

the initial slice,

WðfÞ ¼ 1

2

�

1 − tanh

�

κ

�

f
L

2π
−

ffiffiffi

3
p

Nξc

���

: ð38Þ

Here, κ is a parameter between zero and one that determines

the sharpness of the window function; in this work we set

κ ¼ 0.75 and ξc ¼ 1=8. In this way we lower power in the

smallest resolvable scales, which do not participate in the

initial stages of preheating and make it difficult to satisfy

the Hamiltonian and momentum constraints.

IV. RESULTS

We begin by examining the effect local gravitational

physics has on preheating. In this case (as in Ref. [2]) we

expect to see growth of the Newtonian potential during the

preheating stages. We also expect that the statistics of the

Newtonian potential will depend on which modes we are

able to resolve. As we discussed in Sec. II B, when the

density contrast, δρ=hρiðkÞ is amplified at the same level,

modes near the Hubble scale create larger gravitational

deviations from homogeneity than do smaller wavelength

disturbances. Figure 2 confirms this by showing the

maximum and minimum values of the Newtonian potential

as a function of time for three different box sizes. Larger

box sizes include longer-wavelength modes which create

larger maximum and minimum values of the gravitational

potential.

The three box sizes we study in Fig. 2 represent three

distinct regimes: the smallest of these sizes, L� ¼ 2 m−1, is

always subhorizon, that is the longest resolvable wave-

length mode is bigger than H−1 throughout the simulation.

The second case, L� ¼ 5 m−1, represents a marginal case

where the longest wavelength mode becomes superhorizon

just at the end of inflation and then quickly retreats inside

the Hubble radius. The third, L� ¼ 11 m−1, has a long-

wavelength mode that stays smaller than H−1 for a few

oscillations of the scalar field. We note that the largest of

these boxes, L� ¼ 11 m−1 has an initial superhorizon mode

which mildly breaks our assumptions of Eq. (3). Figure 3

shows a comparison of the physical size ratio of the

smallest resolvable wave vector, kmin ¼ 2π=aL� compared

to the Hubble scale H.

For the three box sizes featured in Figs. 2 and 3, we

expect that nonlinear gravity should have a minimal effect

on the simulations. The size of the Newtonian potential

does not significantly grow, and we expect to only see small

changes in the fields resulting from different realizations of

the initial vacuum states. This is a good regime, then, in

which to validate GABERel and confirm that no nonlinear

gravitational effects enter on these scales.

To achieve this validation, we look to see if we can

calculate the (first-order) gauge-invariant metric perturba-

tions. Generically, scalar perturbations to the metric can be

written as [47]

ds2 ¼ −ð1þ 2ΦÞdt2 þ 2aðtÞB;idx
idt

þ a2ðtÞ½ð1 − 2ΨÞδij þ 2∂i∂jE�dxidxj: ð39Þ

In terms of these variables, the Bardeen potentials are (see,

e.g., Ref. [52])
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0.001

0.010

t (m–1)

Φ

FIG. 2. The absolute value of the maximum (solid) and

minimum (dotted) values of the Newtonian potential Φ, across

the box for three different simulations. The three colors corre-

spond to different box sizes, L� ¼ 2 m−1 (red), L� ¼ 5 m−1

(blue), and L� ¼ 11 m−1 (black).
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FIG. 3. Ratio of the lowest-k mode Newtonian potential to the

Hubble rate for three different simulations: L� ¼ 2 m−1 (red),

L� ¼ 5 m−1 (blue), and L� ¼ 11 m−1 (black). N. B. the timescale

in this figure is logarithmic.

PREHEATING IN FULL GENERAL RELATIVITY PHYS. REV. D 100, 063543 (2019)

063543-7



ΦB ≡Φ −

d

dt

�

a2
�

_E −

B

a

��

; ð40Þ

ΨB ≡ΨþHa2
�

_E −

B

a

�

: ð41Þ

The translation from the generic form of the metric

perturbation to these new variables is straightforward,

but computationally expensive and we leave the details

on how to calculate these from the BSSN variables to

Appendix A (see Ref. [53] for a similar treatment). In CPT,

where we have assumed no scalar anisotropic stress,

Φ ¼ ΦB ¼ ΨB, so we would expect the statistics of these

gauge-invariant potentials to be identical between our

simulations. To test this, we show a comparison of the

power spectra of Φ (from a CPT simulation) to the

dimensionless power spectra, k3PΦ, as defined by

h0jΦðx⃗ÞΦðy⃗Þj0i ¼
Z

d ln k

2π2
k3PΦe

ik⃗·ðx⃗−y⃗Þ; ð42Þ

of ΦB and ΨB from a BSSN simulation in Fig. 4. When

using a 1þ log slicing, we see very good agreement in

these quantities in the regions where we anticipate the

results to coincide, despite the radically different methods

used to calculate these quantities. The very lowest bins are

closest to the horizon where we anticipate CPT and BSSN

to disagree, while at higher frequencies nonlinear dynamics

mode mix in the BSSN simulations and we see greater

power in those simulations. On small scales, where the

power is negligible, differences are due in part to resolving

small differences in comparatively large quantities. We also

note that our two situations also differ in that our CPT

simulations explicitly ignore scalar anisotropic stress

whereas the BSSN ones do not.

To complete our comparison in Fig. 4, we also run our

code in geodesic slicing. This slicing condition is known to

violate the linearized Einstein equation [21] much more

quickly than 1þ log slicing, which is confirmed by

disagreement in high-frequency modes in Fig. 4. This

discrepancy is a sign that the geodesic slicing simulations

move out of perturbation theory on some scales faster than

those in 1þ log slicing. Finally, we note that we have to

take extreme care when analyzing the output of the BSSN

simulations (see Appendix B). In this code, when power is

moved to the Nyquist frequency, we see that the

Hamiltonian and momentum constraints, Eqs. (22) and

(23), are no longer satisfied. We take care not to derive

physical meaning from these simulations after this time.

For all of the BSSN simulations we present here, the

constraints start to grow around t ¼ 110 m−1 and become

unsatisfactorily satisfied before t ¼ 130 m−1.

Additionally, one can look at the statistics of the two

fields to see agreement between our simulations. Figure 5

shows a comparison of the variances of the two scalar

fields—and confirms that there are no notable differences

between the simulations we run across box sizes and

methods. At some box sizes, geodesic slicing alone exhibits

early oscillations in the inflaton variance during the phase

of coherent oscillations. This demonstrates the importance

of slicing conditions when comparing fully relativistic

results to those from CPT and FLRW treatments.
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k
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FIG. 4. The dimensionless power spectra of the gravitational

potentials at 3 different times in 3 different, L� ¼ 5 m−1,

simulations: CPT (black), BSSN in 1þ log slicing (blue), and

BSSN with geodesic slicing (gray). For the BSSN simulations,

solid lines correspond to ΦB and dashed lines correspond to ΨB.

The top panel is taken at t ¼ 0 and shows consistency in our

initial conditions. The middle panel, at t ≈ 99 m−1, shows the

period of parametric instability, where the spectra of the fields are

amplified at certain wavelengths. The lower panel, at

t ≈ 119 m−1, shows the spectra at the end of the final stage of

preheating, when power is about to move to the Nyquist

frequency.

JOHN T. GIBLIN JR. and AVERY J. TISHUE PHYS. REV. D 100, 063543 (2019)

063543-8



We can now move on to see if there are indications of

stronger gravitational instabilities if we include more

horizon-sized modes for a longer time in the simulation.

For this we consider a box size of L� ¼ 20, so that we have

more modes near the Hubble scale for a longer portion of

the simulation. We note that our initial conditions are also

slightly inconsistent in this scenario, i.e., a small number of

these modes that are not well within the horizon and are not

exactly Bunch-Davies, Eq. (3). Figure 6 shows the ratio of

the physical size of the lowest-frequency mode to the

Hubble scale for a box of size L� ¼ 20 along with a

comparison to the same quantity for L� ¼ 11. We see in this

case that the lowest frequency mode stays outside the

horizon for more of the simulation, allowing many modes

to cross into the horizon during the preheating process.

These modes do become inhomogenous as the simulation

proceeds and, as they are entering the horizon, cause the

Newtonian potential to grow to order unity and the

simulation to crash. As predicted in Ref. [40], these

additional modes become nonlinear during the phase of

coherent oscillations; the Universe may undergo a number

of e-foldings before the contribution to the extrinsic

curvature from the shift becomes comparable to that from

the homogeneous evolution. This amplification is exactly

the effect we see in our CPT simulations.
1
BSSN simu-

lations, on the other hand, do not rely on the assumptions of

CPT, and, hence, the code does not crash at this point.

Figure 7 shows a comparison between the CPT simulation

and the BSSN simulations for L� ¼ 20 m−1 which dem-

onstrates that fully nonlinear gravity is able to resolve the

moderate density contrasts that exist as these modes are

entering the horizon. It is important to note, though, that
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FIG. 5. Comparison of variances of the inflaton φ1 and matter field φ2 as a function of time for three different simulations: FLRW

(black), CPT (red), BSSN in 1þ log slicing (blue), and BSSN in geodesic slicing (gray). N. B. simulations for L� ¼ 2 m−1 do not

include geodesic slicing runs. Simulations are at box sizes of L� ¼ 2 m−1 (top panels), L� ¼ 5 m−1 (middle panels), and L� ¼ 11 m−1

(bottom panels).

1
The authors of Ref. [40] work in spatially flat gauge where the

shift contributes to the Bardeen potentials. We then rely on
comparing the (first-order) gauge invariant potentials either Φ

(from our CPT simulations) or ΦB and ΨB—to analyze this
predicted breakdown of linearity.
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when we move to full GR, we do not see a breakdown of

the coherent oscillations of the inflation field, despite the

fact that the Newtonian potential (or the Bardeen potentials)

grows to be close to order unity.

The bottom panel of Fig. 7 shows that statistics of the

lapse, α for this simulation. This quantity is important when

probing the existence of strong gravity and the possible

creation of primordial black holes. In the simulations we

have run here we see minimal departure in the lapse, and

hence, do not see the creation (or seeds) of primordial

black holes. This statement is, however, a model-dependent

statement and not a generic prediction for all models of

preheating.

We can also look towards the density contrast,

δ ¼ δρ=hρi, to assess the onset of nonlinear gravitational

physics. This provides an intuitive way of assessing the

validity of linear perturbation theory and a consistency

check with Fig 6. CPT is built on the assumption that δ is

small. In Fig. 8 we compare two-dimensional slices

of δ throughout a CPT and a BSSN simulation for

L� ¼ 20 m−1. For both simulations, the density contrast

initially grows slowly and remains small, and CPT remains

valid. However, around t ≈ 120 m−1
—right after Φkmin

enters the horizon—δ grows sharply to order 1 in the

CPT and BSSN simulations, with the growth being only

marginally more pronounced in the CPT simulation. The

CPT simulation fails at this point. This confirms the

breakdown of linearity predicted in Refs. [33–36] (and

reinforced in Ref. [40]) and shown in Fig. 6: once the

horizon-sized modes enter the horizon during preheating,

the density contrast quickly exceeds unity and the linear

treatment is no longer valid, necessitating a fully general-

relativistic treatment. Despite this nonlinear instability, we

do not observe strong gravitational collapse or the

formation of PBH during this stage of preheating. The

growth of the density contrast moves out of the regime of

validity of (first-order) CPT after this point, but does not

necessarily signal unbounded growth of overdensities.

However, neither the CPT nor BSSN simulation is valid

shortly after this point. The former because Φ becomes

large and the simulation crashes, the latter because power is

moved to the Nyquist frequency and the constraints are no

longer satisfied. Still, there is no indication that the

gravitational instabilities are large enough, in this model,

to continue to collapse. Nevertheless, thanks to the robust-

ness of full numerical relativity, GABERel is able to

successfully resolve these nonlinear physical processes

that are inaccessible to CPT.

V. DISCUSSION

We have explored the effect of adding local gravitational

effects to a toy model of preheating and present a rigorous

analysis of gravitational effects after inflation. For this

model of preheating, we have shown that there are no

unexpected results that arise when local gravity—in either

perturbation theory or in full GR—is included in the
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FIG. 6. Ratio of the lowest-k mode Newtonian potential to

the Hubble rate for two CPT simulations: L� ¼ 11 m−1 (black)

and L� ¼ 20 m−1 (green). The simulation with the largest box

(and hence the largest wavelength mode) crashes shortly after

Φkmin
enters the horizon. N. B. the timescale in this figure

is logarithmic.
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FIG. 7. The top panel shows a comparison of variances of the

inflaton φ1 and matter field φ2 as a function of time for three

different simulations: CPT (φ1 is red, φ2 is green), and BSSN in

1þ log slicing (φ1 is blue, φ2 is gray). The bottom panel shows

the variance of α for the BSSN simulation; α has a homogenoues

value that stays at hαi ¼ 1� 10−5 throughout the simulation.
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dynamics of the Universe. When local gravity is included,

we see the excitation of scalar perturbations; in these cases,

the Newtonian potential can get as large as Φ ∼ 10−1,

however, the subsequent field dynamics do not allow for

these perturbations to become nonlinear and there is no

indication of compact structures forming. While the

Newtonian potential does grow, it does not seem that this

is enough to cause nonlinearity in the gravitational part of

the system—even when the Newtonian potential becomes

order unity. The variations of the Newtonian potential are

on large scales and do not seem to cause gravitational

collapse.

We have also introduced a new computational tool,

GABERel: software that can evolve scalar fields in full

numerical relativity. We have validated that this software

reproduces expectations from perturbation theory in its

regime of validity and can be extended to regions in which

perturbation theory fails. Using this tool for a canonical

model of preheating shows that nonlinear gravitational

effects stabilize the instabilities present in perturbation

theory. We see that the phenomena of preheating in this

setup shares a background evolution with the unperturbed

FLRW analysis for the entirety of the simulation, even

when departures grow beyond first-order perturbation

theory. It also shows that some choices of coordinates

(slicing) do a better job satisfying the linearized Einstein’s

equations [21,47] than do others.

Finally, it is important to note that the lack of the

formation of collapsed structures is not a generic result. In

addition to previous CPT results hinting towards linear

gravitational physics, the model of preheating studied here,

Eq. (2), is not known to cause large metric perturbations.

We envision that stronger instabilities (such as superhor-

izon or tachyonic instabilities [54–78]) that are closer to the

horizon would be ideal candidates for more dramatic

gravitational physics, and we look forward to studying

more of these models in the future.
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APPENDIX A: BARDEEN VARIABLES

In Sec. IV we relied on the ability to write the Bardeen

potentials strictly in terms of BSSN variables. To calculate

these we draw a correspondence between the BSSN metric,

Eq. (16), and a general form of a metric with scalar

perturbations [47]

ds2 ¼ −ð1þ 2ΦÞdt2 þ 2aðtÞB;idx
idt

þ a2ðtÞ½ð1 − 2ΨÞδij þ 2∂i∂jE�dxidxj: ðA1Þ

In terms of these variables, the Bardeen potentials are [52]

ΦB ≡Φ −

d

dt

�

a2
�

_E −

B

a

��

; ðA2Þ

ΨB ≡ΨþHa2
�

_E −

B

a

�

: ðA3Þ

We first set the purely spatial parts of the metric to be equal

in both gauges, gBSSNij ¼ gCPTij

a2ðtÞ½ð1 − 2ΨÞδij þ 2∂i∂jE� ¼ e4ϕγ̄ij: ðA4Þ

There are two relationships that we can get from this.

First, by taking the trace of both sides, where repeated

lower indices implies a sum, we get

a2½3 − 6Ψþ 2∂i∂iE� ¼ γii: ðA5Þ

We can solve this for ∇2E,

∇2E ¼
�

3Ψ −

3

2
þ γii

2a2

�

; ðA6Þ

or in Fourier space variables (denoted by overtildes)

Ẽ ¼ −

1

k2

�

3Ψ̃þ γ̃ii

2a2

�

; ðA7Þ

where we have dropped the 3=2 since it only contributes to

the homogeneous mode which must be zero for a pertur-

bation. We can also take the mixed second derivative of

Eq. (A4), ∂i∂j, where again we sum over repeated down-

stairs indices,

a2½−2∇2
Ψþ 2∇2∇2E� ¼ ∂i∂jγij; ðA8Þ

which can be rearranged

∇2½∇2E −Ψ� ¼ ∂i∂jγij

2a2
; ðA9Þ

and simplified by using Eq. (A6),

∇2

��

3Ψþ γii

2a2

�

−Ψ

�

¼ ∂i∂jγij

2a2
; ðA10Þ

∇2

�

2Ψþ γii

2a2

�

¼ ∂i∂jγij

2a2
: ðA11Þ

This yields an expression for ∇2
Ψ,

∇2
Ψ ¼ 1

4

�

∂i∂jγij

a2
−

∇2γii

a2

�

; ðA12Þ

or in Fourier space,

Ψ̃ ¼ 1

4

�

kikj

k2
γ̃ij

a2
−

γ̃ii

a2

�

: ðA13Þ

This allows us to calculate E strictly in terms of BSSN

variables and a (which will later be replaced by he4ϕi),

Ẽ ¼ −

1

k2

�

3

4

kikj

k2
γ̃ij

a2
−

1

4

γ̃ii

a2

�

: ðA14Þ

The last thing we need is B, which we get from g0i,

2a∂iB ¼ 2βi: ðA15Þ

Introduce a sum by differentiating both sides,

a∂i∂iB ¼ ∂iβi; ðA16Þ

which in Fourier space becomes

B̃ ¼ −

1

a

ikjβ̃j

k2
: ðA17Þ

The scalar metric perturbations in terms of a and BSSN

variables can be summarized
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Ẽ ¼ −

1

k2

�

3

4

kikj

k2
γ̃ij

a2
−

1

4

γ̃ii

a2

�

; ðA18Þ

B̃ ¼ −

1

a

ikjβ̃j

k2
; ðA19Þ

Φ ¼ α − 1; ðA20Þ

Ψ̃ ¼ 1

4

�

kikj

k2
γ̃ij

a2
−

γ̃ii

a2

�

; ðA21Þ

where repeated indices are summed over. We define

the term common in both Bardeen potentials, Eqs. (A2)

and (A3), as B≡ a2ð _E − B=aÞ. In BSSN variables we then

have

B ¼ 3

2

kikj

k4
Hγij −

3

4

kikj

k4
_γij −

1

2

1

k2
Hγii þ

1

4

1

k2
_γii þ

ikiβi

k2
;

ðA22Þ

where we substitute the Hubble rate with the average

extrinsic curvature H ¼ −hKi=3 as we did when lineariz-

ing the Hamiltonian constraint, Eq. (22). The Bardeen

potentials are then computed strictly in terms of BSSN

variables,

ΦB ≡ α − 1 − _B; ðA23Þ

ΨB ≡
1

4

�

kikj

k2
γij

a2
−

γii

a2

�

−

hKi
3

B: ðA24Þ

The time derivative in Eq. (A23) is very cumbersome, and

we do not need to evolve the Bardeen potentials as they are

only used to compare our BSSN results with CPT compu-

tations. Therefore it is sufficient to store B from the

previous step and calculate _B with a Euler method.

Incidentally, this means we cannot calculate _B until the

second time step and also means we introduce a fixed

numerical error of order dx2 to ΦB.

APPENDIX B: CODE VERIFICATION

We have run a number of tests on GABERel to verify [79]

that our gravitational evolution is accurate. Among these

are the robust stability test and a Schwarzchild black hole

test. In the former we find no exponential noise growth and

the constraint violations remain bounded for long-term

evolution. For the latter, we simulated a Schwarzschild

geometry in trumpet coordinates [80]. In this setup, the

conformal factor ϕ, lapse α, and shift βi take the form,

ψ ≡ logϕ ¼
ffiffiffiffiffiffiffiffiffiffiffi

1þ 1

r

r

; ðB1Þ

α ¼ r

1þ r
; ðB2Þ

β⃗ ¼ r

ðrþ 1Þ2 r̂; ðB3Þ

which corresponds to a choice of R0 ¼ M; N. B. for this
test, we use units where G ¼ 1 and, hence, space and time
are in units of M. We chose this particular slicing because

all of the d.o.f. of the extrinsic curvature, K and Ãij, are

nonzero throughout the simulation, even though the sol-
ution is static. The black hole is initially centered dx=4
from a central lattice point. This intentional asymmetry
constitutes a more general and robust test of our code’s
gravitational dynamics than would otherwise be the case if
we impose some artificial symmetry on the system. We

evolve the gauge variables, α and βi, according to 1þ log
and η ¼ 0 Gamma-driver conditions, respectively, with
advective shift terms,

ð∂t − βj∂jÞα ¼ −αð1 − αÞK; ðB4Þ

ð∂t − βj∂jÞβi ¼
3

4
Γ̄
i: ðB5Þ

While the rest of our simulation uses central finite differ-
encing in an RK4 scheme, anything evolved with advective
shift terms uses upwind derivative stencils. Gamma driver
serves to approximate the more difficult to evolve Gamma-

freezing condition, ∂tΓ̄
i ¼ 0. Figure 9 shows the stability of

our code to this setup. Given our simulation’s periodic
boundary conditions and the asymmetric initial position of
the singularity, we do not necessarily expect that our solution
should approach a perfectly steady state after long-term
evolution. Nevertheless we observe no noticeable changes
between the initial slice and t ¼ 10M. In this simulation, the

box is taken to be L ¼ 8M with N ¼ 643 points.

It is also important for us to verify that we can trust the

code for the simulations presented in Sec. IV. The constraints

(22) and (23) should remain small and bounded throughout

the system’s evolution. However, the constraints are dimen-

sionful, and so we must normalize them. Here we will show

the Hamiltonian constraint and normalize it by the root sum

of the squares of the terms in the constraint,

½H�≡
�

ðγ̄ijD̄iD̄je
ϕÞ2 þ

�

eϕ

8
R̄

�

2

þ
�

e5ϕ

8
ÃijÃij

�

2

þ
�

e5ϕ

12
K2

�

2

þ ð2πe5ϕÞ2 þ ð2πe5ϕρÞ2
�

1=2

: ðB6Þ

We show the evolution of the Hamiltonian constraint in

Figs. 10 and 11. It is not surprising that the constraint grows

in the third phase of preheating as this is precisely when

significant power is transferred to the smallest resolvable

scales and numerical error grows. After this point, the

numerical evolution is stable but no longer reliable.
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FIG. 9. The conformal factor ϕ, lapse α, and radial component of the shift βr, for slices of the Schwarzschild black hole described in

Appendix B. Note that the one-dimensional slice is taken thorough the diagonal of the box, so that it can cut through the center of the

black hole—which is placed between grid points near the middle of the box. The left three panels are at t ¼ 0 and the right three panels

are at t ¼ 10M.
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FIG. 10. Testing numerical convergence via the average,

hHi=½H� (solid), and rms,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðH=½H�Þ
p

(dashed), Hamiltonian

constraint violation in three different L� ¼ 11 m−1 simulations:

dt ¼ dx=10 (black), dt ¼ dx=20 (blue), dt ¼ dx=40 (green).
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FIG. 11. Testing numerical convergence via the average,

hHi=½H� (solid), and rms,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðH=½H�Þ
p

(dashed), Hamiltonian

constraint violation in three different L� ¼ 11 m−1 simulations:

ξc ¼ 1=4 (black), ξc ¼ 1=8 (blue), ξc ¼ 1=16 (green).
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