Classical and Quantum Gravity

PAPER

. . o Recent citations
Cosmic expansion from spinning black holes s
- General relativistic cosmological N-boay

simulations. Part |. Time integration

To cite this article: John T Giblin Jr et al 2019 Class. Quantum Grav. 36 195009 David Daverio et al

View the article online for updates and enhancements.

This content was downloaded from IP address 138.28.246.214 on 02/09/2020 at 15:44



10P Publishing

Classical and Quantum Gravity

Class. Quantum Grav. 36 (2019) 195009 (17pp) https://doi.org/10.1088/1361-6382/ab3bf2

Cosmic expansion from spinning black

holes

John T Giblin Jr'2, James B Mertens>*>
Glenn D Starkman? and Chi Tian>°

! Department of Physics, Kenyon College, 201 N College Rd, Gambier, OH 43022,
United States of America

2 CERCA/ISO, Department of Physics, Case Western Reserve University,

10900 Euclid Avenue, Cleveland, OH 44106, United States of America

3 Department of Physics and Astronomy, York University, Toronto, Ontario, M3J 1P3,
Canada

4 Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada

3> Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto,

ON MS5H 3H8, Canada

E-mail: cxt282@case.edu

Received 11 March 2019, revised 23 July 2019
Accepted for publication 16 August 2019
Published 11 September 2019 @
CrossMark
Abstract
We examine how cosmological expansion arises in a universe containing a
lattice of spinning black holes. We study averaged expansion properties as
a function of fundamental properties of the black holes, including the bare
mass of the black holes and black hole spin. We then explore how closely
the expansion properties correspond to properties of a corresponding matter-
dominated FLRW universe. As residual radiation present in the initial data
decays, we find good agreement with a matter-dominated FLRW solution,
and the effective density in the volume is well-described by the horizon mass
of the black hole.

Keywords: FLRW universe, black hole lattice, inhomogeneous cosmology,
Kerr black hole, numerical relativity

(Some figures may appear in colour only in the online journal)

1. Introduction

Cosmological systems are often modeled as perturbations around a homogeneous, isotropic
Friedmann—-Lemaitre-Robertson—Walker (FLRW) spacetime where the background dynamics
are described by homogeneous and isotropic stress-energy sources. Yet, the homogeneity of
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the stress-energy tensor is manifestly broken on smaller length scales where discrete objects
exist, and inhomogeneous structures and well-isolated astrophysical systems predominate.
A notion of homogeneity and isotropy can still be recovered through averaging, in which
small-scale structures in the Universe are coarse-grained and an effective FLRW cosmology
emerges. Observations support the picture that we live in an approximately homogeneous and
isotropic FLRW universe [1, 2]; what remains uncertain is the precise relationship between the
actual Universe, with its extreme inhomogeneity on many scales, and the perturbed homoge-
neous isotropic cosmology we use as a model.

In recent years, numerical studies have begun to explore some of the differences between
these pictures [3, 4], giving rise to many questions including: how do beams of light and gravi-
tational waves propagate in a warped cosmological vacuum rather than a perturbed perfect
fluid [5, 6]7 What microphysics best describes the manner in which isolated objects contribute
to global cosmological expansion?

In this work, we begin to examine the latter of these questions by simulating a lattice of
spinning black holes and examining properties of the spacetime, which is shown to develop
an overall average FLRW-like cosmological expansion. Black hole lattice models have been
employed as toy models for cosmological systems in order to ask such questions in the past
[5-12] (and see [13] for a recent review), and these models and similar semianalytic models
have been able to provide insights into both the physics of spatial hypersurfaces in these
models and, more recently, observables [14—16]. Such models have been found to reproduce
FLRW-type behavior with varying degrees of fidelity, with properties that depend on the pre-
cise details of the inhomogeneous structure [17-20]. This dependence is interesting in and
of itself, as it suggests that the cosmological properties of inhomogeneous spacetimes do not
always provide insight into the more fundamental small-scale properties of a spacetime. For
example, different measures of the mass contained within these spacetimes have been found
to disagree by orders of magnitude: some definitions of mass appear to coincide with FLRW
expectations, while others do not [7, 21, 22].

Here we extend these models to a lattice of spinning (rather than purely static) black holes.
We lay down initial conditions and follow the subsequent evolution of the spacetime using
numerical general-relativistic simulations. For black holes parametrized by a given mass and
spin, we examine the expansion rate within the box, and explore how different energy comp-
onents contribute to cosmological expansion. Although we do not calculate cosmological
observables here, this work lays down the foundation for a series of future work regarding
observational consequences.

We first describe our procedure for setting initial conditions with a spinning black hole in
a periodic spacetime in section 2. This is motivated by previous solutions found within the
conformal-transverse-traceless decomposition [6], now extended to obtain a solution simi-
lar to the Bowen—York solution in the vicinity of the black hole. We provide details of the
numerical scheme used to evolve the spacetime in section 3, and review definitions of mass
useful for characterizing properties of the spacetime. In section 4 we describe the different
contributions to the Hamiltonian constraint equation, showing how various terms contribute
to cosmological expansion. We find that our initial conditions contain a substantial anisotropic
energy density exterior to the black hole that quickly decays; the remaining spinning black
hole sources curvature which continues to give rise to expansion within the lattice. We then
evaluate the behavior of different statistical measures of lattice properties, concluding that
volume-averaged properties appropriately describe the behavior, and finding that the horizon
mass, including both the irreducible (bare) mass and the angular momentum, is sufficient for
describing the observed expansion. Lastly, we examine the averaged expansion rate, and com-
pare this to the cosmological expansion rate one might infer based on the mass of the black
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hole. We find that the expansion rate initially behaves as a mixture of matter and radiative
content, consistent with residual radiation present in the initial data, with the radiative content
decaying and matter-dominated behavior emerging.

2. Creating a spinning-black-hole lattice cosmology

‘We begin by reviewing the 3 4 1 decomposition of Einstein’s equations, and writing the con-
straint equations from this formalism in a form suitable for numerically setting initial condi-
tions with spinning black holes. We restrict this discussion to vacuum solutions, although this
formalism can be generalized to include stress-energy sources. We will in particular make
use of the conformal transverse-traceless (CTT) decomposition of Einstein’s equations [23],
which extends the standard 3 + 1 decomposition, in order to obtain solutions on spatial
hypersurfaces.
We begin by writing the line element as

ds? = —a2d2 + Vi (dxi + Bidt) (dxj + Bjdt) . @))

The non-dynamical Einstein’s equations, projected onto spatial hypersurfaces described by
this metric, can be written as

R+K*— K;K' =0, ®
DK’ — DK =0,

respectively known as the Hamiltonian and momentum constraint equations. The derivatives
D; are covariant with respect to the three-metric +;; and R is the associated 3D Ricci scalar. The
extrinsic curvature, Kj;, can be further decomposed into its trace, K, and a traceless tensor, A,

1
K,'j = A,‘j + g’Y,'jK. (3)

In an FLRW model, the trace, K, parameterizes the Hubble expansion rate with Hg rw = —K /3,
while Kis instead zero on time-symmetric hypersurfaces, for example asymptotically flat space-
times in appropriate coordinates [24].

The three-metric can also be conformally decomposed, ~; = W*3;, A7 = W—194% allow-
ing us to rewrite the constraint equation (2) in terms of these new variables,

- o~ 1~ 1~ ~. 1
D:D'V — gR‘If + gA,;;AU\II_7 + 2700 — EK%IP =0

- 2 - .
DAY — g\1:61)’1< = 8rv's, )

where D; and R are now associated with the conformal metric ;- The CTT decomposition
further breaks AV into longitudinal and transverse pieces,

AT = AT+ AY 5)
Here AiTJT is transverse and trqceless, satisfying DJA';T = 0. The longitudinal piece AZ can be
written in terms of a vector X* as

. o~ 2 - N
AT = DX/ + DIX' — ngXWJ = (Lx)". (6)

The transverse-traceless component A%, contains information about transverse gravitational
radiation, and can be set to zero in order to minimize the gravitational radiation content of a
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solution. However, this will not completely eliminate gravitational radiation, which can be
sourced nonlinearly, especially in a strong-gravity regime such as we are considering here.
The longitudinal component, on the other hand, contains information about the ‘vector mode’
content of the spacetime, including frame-dragging and anisotropic effects. Generally, vector
modes are ignored in a cosmological setting, but their presence here will be important for
obtaining spinning-black-hole solutions.

Based on the above arguments, we further simplify the constraints by setting Ag’r =0,and
choosing the metric to be three-conformally flat, 7;; = J;;. We then obtain

1 - N 1
VAU + - (LX) (LX) 077 — KT’ =0
8 i 12
. 1 . .2 .
VX' + 300X~ 5\1/68’1( =0, 7)
where V? is the Cartesian Laplacian and
N . 2
(Lx)" = 'X7 + 0'Xx" — 307 0X". (8)

When K =0, and in an asymptotically flat spacetime, a solution for X’ known as the
Bowen—York solution is given by

C L Xl
X' =@, )
where x' are the Cartesian coordinates, r is the coordinate distance from the origin, and Jiisa
vector satisfying D,Jj = 0. Here &% = \/5¢U* is the 3D Levi-Civita tensor associated with the
conformal metric 7;;, so that D;é/* = 0.
Substituting this solution (9) into expression (6), we obtain

P N 6 . _.
Af = (Lx)" = Sx(& /1. (10)

This solution is commonly considered to contain a spinning black hole with spin J; [24]. The
value of Az given by (10) agrees with that of a Kerr black hole at spatial infinity, implying
this is true, however near the black hole this solution is not equivalent to the Kerr metric. The
Bowen—York solution has been found to contain some residual gravitational radiation, and a
maximum possible spin of ||J|| = 0.93 [25]. We can nevertheless use this solution as inspira-
tion for constructing initial conditions in a cosmological setting, where the spacetime is no
longer asymptotically flat.

Due to the discontinuity at the boundary, the Bowen—York solution (9) is incompatible
with periodic boundary conditions. However, following a procedure similar to [6, 7], we can
regularize the solution by multiplying parameters M and J in the metric fields by a transition
function

0 0<r<l
W(ro )= ((r=1-0)c°=1)° I<r<li+o, (1D
1 I+o<r

such that W = 0 at the origin, and transitions to W = 1 over some distance scale o beginning
at r = [. The vector X' is then regularized as

. X
X~ guk%u —W(r)). (12)
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We can also regularize the solution to the conformal factor ¥ as

v+ 20w (13)
2r
Equations (12) and (13) can then be used as an initial guess for solving the constraint equations.
In order for K to be a negative constant at the boundaries, corresponding to FLRW-like
cosmological expansion, and zero in the center, corresponding to a black hole solution, we
also modulate the extrinsic curvature using W(r),

K =KW(r), (14)

where K. is a constant, similar to [8].

By plugging equation (14) into the Hamiltonian and momentum constraint equations and
taking the approximate solution from equations (12) and (13) to be an initial guess with
Jr = (0,0,a) in Cartesian coordinates, we can proceed to solve for ¥ and X' The singulari-
ties in the solution are avoided by employing the so-called puncture approach; further details
regarding this can be found in appendix A. In figure 1 we show snapshots of the absolute dif-
ference (fields u and X’ from equation (A.1)) between the exact solution to equation (7) and
the approximate solution of equations (12) and (13). The main change seen for ¥, which is
initially O(1) at the boundaries and much larger near the black hole as per equation (13), is an
overall distortion of the physical volume of the spacetime, with additional radial corrections.
For X', the predominant correction is a large radial contribution in the transition region.

3. Lattice evolution

We solve the initial constraints and evolve the spacetime using the grid-based numerical rel-
ativity code COSMOGRAPH [26]. We first solve the constraint equations using an integrated
elliptical-equation solver, which employs a standard full multigrid (FMD) iteration scheme
and an inexact-Newton-relaxation method [27]. We verify the resulting initial conditions by
checking that the Hamiltonian and momentum constraint equations are satisfied with increas-
ing precision as resolution is increased.

After setting initial conditions, spatial slices are advanced using the BSSNOK formulation
of numerical relativity [28-30], with 4th order Runge—Kutta timestepping. All fields are dis-
cretized as cell-centered data, and centered 4th-order finite-difference stencils are used for
all derivatives except for advection terms ~[310;, where upwind derivatives are used instead.
Note that the BSSNOK scheme evolves A,-j = \Il_4Aij, rather than the A,j defined when setting
initial conditions.

The gauge condition used in our simulation is a revised version of the widely employed
‘1 4 log’ and ‘Gamma-driver’ gauge condition:

O = —2na(K — (K)edge) + B,
at/Bi = Bi,
OB = i@,F" — B (15)
4
This differs from the usual ‘1+log” gauge by introducing a reference expansion rate, (K)edge,
which is the conformal average of the extrinsic curvature K along all edges of the computa-

tional domain box defined in equation (23). This gauge choice has been demonstrated to have
powerful singularity-avoidance properties [31]; the modification we make by subtracting K
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Figure 1. 2D slices show the corrections to the initial guesses when solving equation (7)
with a relaxation scheme. The initial guesses are given by equations (12) and (13) and
the differences between those guesses and the exact solution are shown for field ¥ (left)
and X’ (right). These also correspond to the fields « and X" as defined in equation (A.1).
The choice of parameters for this solution correspond to R3 in table 1.

relative to the average boundary value allows the spatial slice to be driven towards FLRW-like
expansion away from the black hole.

Because of the collapsing nature of the black hole, we have also integrated an adaptive
mesh refinement (AMR) framework into the time evolution, provided by the code SAMRAI
[32], an open-source structured adaptive-mesh-refinement application infrastructure. By
building hierarchies of grid levels with different resolution, dividing and distributing patches
into computational nodes, SAMRALI realizes high-efficiency adaptive-mesh refinement and
parallelization. To synchronize data on different levels, we use tri-cubic Hermite interpolation
[33], which we find results in a high degree of numerical stability.

We also require a technique to locate apparent horizons. Because of the aspherical nature
of spinning black holes, there is no symmetry of the apparent horizon that makes it simple to
locate. We therefore use the AHFinderDirect package [34] to find the apparent horizon on a
given spatial hypersurface. The definition and the method of extracting angular momentum
from an isolated horizon come from [35], where the angular momentum of a black hole J is
defined as

= — ¢ (¢"R°Kap)d?V.

8 (¢ ab) (16)
Note here R” is an outgoing vector normal to the horizon and ¢ is not a Killing vector of the
full spacetime but a symmetry vector defined locally on the horizon that preserves the induced
metric g,p, SO that

Lt,a‘]ab =0 17

(see [35] for more detail). The eigenvalue closest to unity associated with the symmetry vec-
tor is within a percent of unity, indicating the spacetime is very close to axisymmetric in the
vicinity of the black hole.

We then track the black hole’s irreducible mass, spin, and horizon mass, as well as the
expansion history of the spacetime. The irreducible and horizon masses are defined as
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JZ
4M?

ur

M. = A/167. (18)

Here A is the area of the horizon, defined as A = f \/t?dZV, where ¢ is the determinant of the
induced metric on the horizon.

In order to examine how well the spinning-black-hole-lattice universe corresponds to a
FLRW universe with similar expansion properties, or to check how well the lattice obeys a
Friedmann-like equation, we need to define an effective density of the spacetime, pe¢r, and an
average spacetime expansion rate, (K). We then define a dimensionless parameter

My =M +

Peff
(K)2)24n (19)

According to the Friedmann equation, one should have C = 1 for an appropriately chosen pe
and (K) as the effective Hubble parameter equals (K) /3.

We first consider whether, in defining pesr and (K), it is more appropriate to use a volume-
averaging operation or to average over edges of the box. We can set pefr = pedge, eff» given by

Pedge, eff = Meff/(Di_DH)- (20)

Mg can be either My or M, while D and D are distances along edges of the box in direc-

C=

tions that are perpendicular and parallel to the spin direction respectively, D; = [ dx',/7; for
a Cartesian direction i (where no sum over i is implied).
An alternative is to make pesr = pPyol, eff, With

Pol,eft = Mese/V, (21)

where

V= / dPx/y (22)
r>ry

is the conformal volume exterior to the black-hole horizon.
More generically, we define an averaged physical quantity Q on the edge or volume

Zall edges f dxl\/%Q

<Q>edge =

| Zall edges Di (23)
(D)o = V/ d3xﬁQ.
r>ry

We can now define the ratio of the left and right hand sides of the effective Friedmann
equations as

onl, eff

Pedge, eff
Cedge, eff = < g Cvol, eff = W (24)
Vo

K?)cdge /24T’

4. Results

In this section, we will present our main result. We will mainly focus on the the expansion his-
tory and effects of spins. We will also investigate time evolution of dimensionless parameter
C and evaluate the effect of statistics.
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Table 1. Parameters of initial setups.

Runs L a K. 1 o My, My My/V Ceage.i Cvom €

R1 10 0 —0.21 1 35 1.023 1.023  0.000414 0.897 0.829 7.7
R2 10 0.6 —0.21 1 35 1.107 1.140 0.000404 0.894 0817 7.7
R3 10 09 —0.21 1 35 1.180 1.240 0.000395 0.891 0.807 7.4
R4 10 O -021 01 3 0982 0982 0.000467 0.99 0.844 83
RS 10 06 —-021 01 3 1.072  1.108  0.000456 0.994 0828 7.4
R6 10 09 —021 01 3 1.147  1.212  0.000446 0993 0.815 8.1
R7 10 06 —015 1 35 1246 1269 0.000216 0900 0.842 7.6
R8 10 06 —0.1 1 35 1453 1468 0.000101 0904 0865 7.6
R9 11 06 —0.21 1 35 1.058 1.096 0.000420 0921 0827 74
R10 1206 —0.21 1 35 1.018 1.060 0.000432 0941 0832 74

4.1. Initial condition effects on physical lattice properties

The free parameters in our setup are the box size L, the mass scale M, the spin a, the extrinsic
curvature at the periodic boundary K, and the parameters appearing in the transition function
(11), I, and o. To demonstrate the impact that varying these parameters has on the physical
properties of the spacetime (namely the black hole masses, densities, and C), we have listed
these properties and the corresponding parameters in table 1 for ten representative simulations.

In this table, only the first 2nd—6th columns are free parameters that were chosen initially,
while the 7th—11th columns are derived parameters that can only be calculated after initial
constraints are fully solved. The pes used in columns for Ceqge, # and Cyo i are calculated
using My. The convergence rate for each run on initial slice is represented by parameter ¢
whose definition can be found in equation (B.1). In all runs, we do not vary M, instead choos-
ing to work in units where M = 1.

Examining these initial configurations, we can observe the following:

e Although the input parameter M is equal to My for a Kerr spacetime with asymptotic
flat boundary, the resulting My in the table only roughly tracks M, depending on other
parameters as well.

o Both Ceqge, # and Cyo1, # are somewhat less than 1 initially, and change very little when the
spin parameter a, box size L, or boundary extrinsic curvature K, are varied. This implies
that the initial spatial slice is always ‘close’ to FLRW.

e Only by changing the combination of / and o does C.qgc, # change significantly; However,
the value of Cyq, g still does not change.

e Increasing the box size L (comparing R9 and R10 to R2) does not increase the physical
size of the box.

e Changing the boundary extrinsic curvature K. (comparing R7 and R8 to R2) will change
the effective density and physical box length significantly, but still keeps the ratio in the
last two columns unchanged.

To summarize, the parameters that predominantly determine physical properties of the system
are K., M, and a. These strongly affect the simulation volume and black hole mass and spin.
L, I, and o instead affect the coordinate description of the spacetime, and only weakly affect
physical properties.

The initial value of the ratio C quantifies the deviation from the FLRW universe, and is
found to be relatively independent of our parameter choices. We now wish to study its time
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evolution as well as the best way to fit per to a FLRW universe. Those topics are our main
interests and will be discussed in the following sections.

4.2. Expansion properties and energy content

We can now analyze the different contributions to the Hamiltonian constraint equation, or the
different ‘energy’ contributions in the spacetime contributing to expansion. Because we work
in a vacuum spacetime, there is no actual stress-energy contribution, and all expansion must
be a result of either curvature or kinetic terms in the constraint equations. We can decompose
these terms as in Hamilotnian constraint in equation (4) to get

R/8 +A;AY/8 + K?/12 =0, (25)

and analyze the average behavior of: the curvature (R)/8; the anisotropic expansion term
(AUA’/> /8, which contains contributions from vector and tensor modes and their interactions;
and the expansion itself, (K?) /12.

In figure 2, we examine the contribution of the A,;,A"j term, which contains information
about gravitational-wave and vector-mode energy content. It shows that the vector and tensor
modes are concentrated near the black hole horizon, especially as the spacetime evolves and
relaxes away from the naive initial conditions that we set. This is unsurprising in that vector
and tensor modes can be sourced nonlinearly in a strong-gravity regime, in contrast to the lin-
ear regime in a cosmological setting, where they are expected to be negligible. The absence of
this contribution further away from the black hole shows that scalar curvature is the dominant
contribution to cosmological expansion.

Figure 3 similarly depicts the time evolution of K2, which is the volume expansion rate.
A behavior very similar to A,,-A’ff is identified—deviations from cosmological-type expansion
are found near the black hole, that gradually become smooth far away from the black hole,
especially as the simulation progresses.

Residual oscillations can be seen in the expansion rate, both spatially varying, and as a
function of time. The behavior of these oscillations depends on both the initial conditions and
the gauge we choose, and we therefore do not consider these to be indicative of an expansion
rate that is physically oscillatory, ie. that would strongly impact the way a geodesic observer
would view the spacetime. We leave this speculation to future work, although see also [13].

‘We examine the different contributions to the Hamiltonian constraint equation more quanti-
tatively for R2 in figure 4. This demonstrates that the vector and tensor contributions <Aiinj )
are relatively small near the edge, but are appreciable when averaged over the volume exterior
to the horizon. It is important to note that this interpretation will be affected by gauge choice:
for example, the first-order gauge-invariant vector mode usually considered in a cosmological
setting, as well as true observables (e.g. properties integrated along geodesics according to
observers), will contain a contribution from the shift that is not shown here.

4.3. Expansion-mass correspondence

As we evolve the spacetime using the gauge choice of equation (15), lengths of edges as well
as volume of the spatial slice expand in the intuitively expected manner. The coordinate size
of the black hole apparent horizon initially expands as the solution stabilizes, then shrinks due
to cosmological expansion, while the area stays the same. We run the code until the black-hole
horizon becomes too small to be resolved accurately. At this moment, lengths in spatial slices
have roughly grown by a factor of ¢,
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Figure 2. The conformally related trace-free part of the extrinsic curvature, AUAU , on
two-dimensional slices that intersect the black hole through spatial hypersurfaces. The
black circles are corresponding slices of apparent horizons. A;A” is shown runs R1, R2

and R3 with spins a = 0, 0.6, 0.9 (left to right), and at times ¢ = 0, 10 (top to bottom).
All quantities are in units where M = 1.

Because of the asymmetric setup, one might expect to see a different expansion rate in
different directions. However, we find less than a 0.1% difference in lengths along different
edges of the computational box (D) and D, ), and thus will ignore this discrepancy and focus
on the quantities averaging on both parallel and perpendicular edges (see equation (23)).

The masses M;; and My on the initial slice of each runs are shown in table 1. During the
evolution, their time dependence is nearly negligible: the relative fluctuation in their values is
as small as 0.1% and dominated by numerical uncertainty (see appendix B for more detail),
consistent with the area theorem and conservation of angular momentum.

From figure 5, we can see that Cege. fluctuates with a large amplitude, consistent with
behavior seen in [9], while Cy, gently increases to unity. The difference between choices of
irreducible mass and horizon mass results in a constant shift between curves, which we inves-
tigate below.

We can attempt to reduce the amplitude of oscillations in the edge-averaged case by adjust-
ing [ and o to obtain Cegee ~ 1 on the initial slice. Comparing the panels in figure 5, we see
that this does not help in eliminating the fluctuations. The large amplitude fluctuations we
see in Cegge apparently arise from a combination of the way we slice the initial spacetime and
the gauge condition, indicating volume-averaged quantities appear to be a more appropriate
representation of the physical behavior of the system.

Figure 6 provides us with more insight into the spin dependence of Cyq for different defi-
nitions of mass. Cyo is approximately spin-independent when the horizon mass is used to
construct peg. It appears to approach the expected matter-dominated FLRW value of unity as
the simulation evolves. Neither of these features are maintained when choosing per = M /V
(right panel). The diminishing value of Cyo as the spin is increased implies that an energy

10
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Figure 3. Time evolution snapshots of K?in R1, R2 and R3 with a = 0,0.6, 0.9 (from
left to right), and t = 0(M), 10(M), 15(M) (from top to bottom).

contribution to the Hamiltonian constraint is not being accounted for. The horizon mass My
is thus a better choice than M;,; when considering the effective mass in a spinning-black-hole-
lattice universe.

Lastly, we consider how the averaged values we consider here map to corresponding FLRW
spacetimes in figure 7. As a function of FLRW scale factor, a = V'/3, with V as in equa-
tion (22), we note that the horizon mass My is conserved, implying matter-domination-like

expansion with peg ox a;wa. There is no spin dependence to within numerical uncertainty.
However, the time-dependence of the effective Hubble parameter relative to an FLRW model
shows a mix of matter and radiation contributions. The bottom 3 lines in this figure imply
that a purely matter dominated expansion (a/ag) > is not a good fit, while the top 3 lines

show the behavior is well-described by including radiative content with a best fit function
0.19(a/ag)™* + 0.81(a/ag) .

1
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Figure 4. Behavior of the contributions (R) /8, (A;A7)/8 and (K*) /12 to the
Hamiltonian constraint in equation (25) in R2. The left panel shows edge-averaged
terms, and the right panel shows results with volume-averaged terms.
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Figure 5. C = per/((K)* /247) for runs R3 and R6. C is evaluated using edge and
volume averages, with both M, and My used in peg.
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Figure 6. Behavior of the ratio Cy, with different spins and masses. The horizon mass
is used in the left panel, while the irreducible mass is used in the right.
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Figure 7. Dependence of My /My and (K?)o1/(K?)vor0 as a function of scale factor.
We also compare the averaged expansion rate to an FLRW model, according to a best
fit function with radiation (top 3 lines) and without (bottom 3 lines), showing the actual
expansion is well-described by a mix of matter and radiation.

5. Discussion and conclusions

In this paper, we have built a new kind of black-hole-lattice universe by solving the constraint
equations with a conformal-transverse-traceless decomposition with periodic boundary condi-
tions. A series of space-like hypersurfaces corresponding to expanding universes with spin-
ning black holes were identified. We found that the expansion features of those initial slices
were very close to an effective FLRW universe regardless of the initial parameters choices.

We then evolved the initial slices with a singularity-avoiding gauge choice, finding no
significant difference between the expansion in directions parallel and perpendicular to the
spin. The effective density described by the black hole mass evolved similarly to a matter-
dominated universe, ie. the mass of the black hole was conserved, while the effective Hubble
parameter only followed matter-dominated behavior at late times. When quantifying the devi-
ation of the expansion rate from FLRW-like behavior, we found that averages taken over
edges of the simulation coordinate box displayed large fluctuations, while volume averaged
quantities showed much smaller deviations and approached FLRW asymptotically. By fitting
the spinning-black-hole-lattice universe to the FLRW universe, we were able to identify the
effective mass that governs the expansion as the horizon mass of the black hole, rather than
the irreducible mass.

In future work, we can track physical observables through the spacetime, to better charac-
terize the effects of highly non-linear non-stationary perturbations on universes that, like are
own, appear to be on-average homogeneous and statistically isotropic on large scales.

It is noteworthy that the spacetimes that we have considered have a preferred direction,
determined by the orientation of the spin of the single black hole in the fundamental domain.
We anticipate exploring more general initial conditions with multiple spinning black holes and
0 total angular momentum. Finally, although the spurious gravitational waves introduced by
initial gauge fixing (conformally flat and Agr = 0) have been shown to not critically affect the
late-time evolution in both previous work [25, 36] and in our observation of A;AY, it may nev-
ertheless be helpful to explore other schemes, like conformal thin-sandwich (CTS) decompo-
sition, to set more general initial conditions with reduced spurious gravitational wave content.
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Appendix A. Using puncture method to build initial data

In a black hole lattice, the metric near the black hole center will be close to an isolated black
hole, so we can expect them to have similar divergence properties, i.e. ¥ diverges as 2M/r and
X' diverges as ax'/r® according to the Bowen—York solution in equations (12) and (13) with
Ji =(0,0,a).

We therefore employ the puncture approach by defining

M
u="-— ;(1 — W(r))
n_ ya(l1 = W(r))
x'=x'— - E—
P (),
= 3
X3 = x3. " (A.1)

By switching from variables (¥, X’) to (u, X"’), we expect to replace divergent variables with
regular variables and implicitly incorporate the divergence in the solution.
The constraint equations equation (7) can then be reduced to

Viu—v? <ZW(r)) + é (ZX)U (Nx)"f' o7 — 11721(2\1;5 =0

viX" %alajx'f -V (W) - %\1166'11{ =0

VX2 + %azajx’f +V2 (5w - %\116821( =0

\Ve) GIE %8381-X’f — %xyﬁa%( =0, (A.2)
which contain no divergent terms. We solve for the variables u and X" using a standard multi-

grid method (more detail can be found in [37]), and the divergent initial data for ¥ and X’ can
be restored from them.
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Figure B1. Behavior of irreducible mass (left) and horizon mass (right) with different
coarsest resolutions in run R3 with a = 0.9.
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Figure B2. Behavior of the L2 norm of Hamiltonian constraint under different coarsest
resolutions and the corresponding convergence rate. Dashed lines in the right plot
indicates the 2nd, 3rd, and 4th order of convergence rate correspondingly from bottom
to top. Second order of convergence can be achieved.

Appendix B. Numerical convergence details

We will show here detail of our convergence test. For three runs with different coarsest resolu-
tions, convergence rate is calculated as

v, — |
v, —fv ]’

where fy,, fn, and fy, are values calculated at resolutions N, N,, and Ny, which are from coars-
est to finest. Resolutions are chosen to be 64, 96 and 128 respectively in our tests. As among
all the simulations in this article the case R3 in table 1 with spin parameter a = 0.9 exhibited
the most instability, we will only focus on this case.

We track the evolution history of both the irreducible mass and the horizon mass at dif-
ferent resolutions in order to check for convergence. These are shown in figure B1, and both
show small fluctuations that decrease as numerical precision increases. To within this numer-
ical error, the results we find are consistent with the area theorem and with conservation of
angular momentum.

Cc =

(B.1)
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The L2 norm of the Hamiltonian constraint at different resolutions, as well as the conv-
ergence rate, are shown in figure B2. Note that the L2 norm of the constraint violation is cal-
culated only outside of the black hole horizon. Second order of convergence rate is achieved,
as shown in the figure. Note that during the evolution, AMR hierarchies are built even on the
initial slice, the interpolation operations used to build those levels reduce the convergence rate
of initial violation from 7 (in the last column of table 1) to 4. The mismatch between the 2nd
order convergence and 4th order stencil mainly results from the truncation error introduced by
coarse-fine interfaces.
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