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Abstract

We examine how cosmological expansion arises in a universe containing a 

lattice of spinning black holes. We study averaged expansion properties as 

a function of fundamental properties of the black holes, including the bare 

mass of the black holes and black hole spin. We then explore how closely 

the expansion properties correspond to properties of a corresponding matter-

dominated FLRW universe. As residual radiation present in the initial data 

decays, we ind good agreement with a matter-dominated FLRW solution, 

and the effective density in the volume is well-described by the horizon mass 

of the black hole.

Keywords: FLRW universe, black hole lattice, inhomogeneous cosmology, 

Kerr black hole, numerical relativity

(Some igures may appear in colour only in the online journal)

1. Introduction

Cosmological systems are often modeled as perturbations around a homogeneous, isotropic 

Friedmann–Lemaître–Robertson–Walker (FLRW) spacetime where the background dynamics 

are described by homogeneous and isotropic stress-energy sources. Yet, the homogeneity of 
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the stress-energy tensor is manifestly broken on smaller length scales where discrete objects 

exist, and inhomogeneous structures and well-isolated astrophysical systems predominate. 

A notion of homogeneity and isotropy can still be recovered through averaging, in which 

small-scale structures in the Universe are coarse-grained and an effective FLRW cosmology 

emerges. Observations support the picture that we live in an approximately homogeneous and 

isotropic FLRW universe [1, 2]; what remains uncertain is the precise relationship between the 

actual Universe, with its extreme inhomogeneity on many scales, and the perturbed homoge-

neous isotropic cosmology we use as a model.

In recent years, numerical studies have begun to explore some of the differences between 

these pictures [3, 4], giving rise to many questions including: how do beams of light and gravi-

tational waves propagate in a warped cosmological vacuum rather than a perturbed perfect 

luid [5, 6]? What microphysics best describes the manner in which isolated objects contribute 

to global cosmological expansion? 

In this work, we begin to examine the latter of these questions by simulating a lattice of 

spinning black holes and examining properties of the spacetime, which is shown to develop 

an overall average FLRW-like cosmological expansion. Black hole lattice models have been 

employed as toy models for cosmological systems in order to ask such questions in the past 

[5–12] (and see [13] for a recent review), and these models and similar semianalytic models 

have been able to provide insights into both the physics of spatial hypersurfaces in these 

models and, more recently, observables [14–16]. Such models have been found to reproduce 

FLRW-type behavior with varying degrees of idelity, with properties that depend on the pre-

cise details of the inhomogeneous structure [17–20]. This dependence is interesting in and 

of itself, as it suggests that the cosmological properties of inhomogeneous spacetimes do not 

always provide insight into the more fundamental small-scale properties of a spacetime. For 

example, different measures of the mass contained within these spacetimes have been found 

to disagree by orders of magnitude: some deinitions of mass appear to coincide with FLRW 

expectations, while others do not [7, 21, 22].

Here we extend these models to a lattice of spinning (rather than purely static) black holes. 

We lay down initial conditions and follow the subsequent evolution of the spacetime using 

numerical general-relativistic simulations. For black holes parametrized by a given mass and 

spin, we examine the expansion rate within the box, and explore how different energy comp-

onents contribute to cosmological expansion. Although we do not calculate cosmological 

observables here, this work lays down the foundation for a series of future work regarding 

observational consequences.

We irst describe our procedure for setting initial conditions with a spinning black hole in 

a periodic spacetime in section 2. This is motivated by previous solutions found within the 

conformal-transverse-traceless decomposition [6], now extended to obtain a solution simi-

lar to the Bowen–York solution in the vicinity of the black hole. We provide details of the 

numerical scheme used to evolve the spacetime in section 3, and review deinitions of mass 

useful for characterizing properties of the spacetime. In section 4 we describe the different 

contributions to the Hamiltonian constraint equation, showing how various terms contribute 

to cosmological expansion. We ind that our initial conditions contain a substantial anisotropic 

energy density exterior to the black hole that quickly decays; the remaining spinning black 

hole sources curvature which continues to give rise to expansion within the lattice. We then 

evaluate the behavior of different statistical measures of lattice properties, concluding that 

volume-averaged properties appropriately describe the behavior, and inding that the horizon 

mass, including both the irreducible (bare) mass and the angular momentum, is suficient for 

describing the observed expansion. Lastly, we examine the averaged expansion rate, and com-

pare this to the cosmological expansion rate one might infer based on the mass of the black 
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hole. We ind that the expansion rate initially behaves as a mixture of matter and radiative 

content, consistent with residual radiation present in the initial data, with the radiative content 

decaying and matter-dominated behavior emerging.

2. Creating a spinning-black-hole lattice cosmology

We begin by reviewing the 3  +  1 decomposition of Einstein’s equations, and writing the con-

straint equations from this formalism in a form suitable for numerically setting initial condi-

tions with spinning black holes. We restrict this discussion to vacuum solutions, although this 

formalism can be generalized to include stress-energy sources. We will in particular make 

use of the conformal transverse-traceless (CTT) decomposition of Einstein’s equations [23], 

which extends the standard 3  +  1 decomposition, in order to obtain solutions on spatial 

hypersurfaces.

We begin by writing the line element as

ds2
= −α2dt2

+ γij

(

dxi
+ βidt

) (

dx j
+ β jdt

)

. (1)

The non-dynamical Einstein’s equations, projected onto spatial hypersurfaces described by 

this metric, can be written as

R + K2
− KijK

ij
= 0,

DjK
j
i − DiK = 0,

 (2)

respectively known as the Hamiltonian and momentum constraint equations. The derivatives 

Di are covariant with respect to the three-metric γij  and R is the associated 3D Ricci scalar. The 

extrinsic curvature, Kij, can be further decomposed into its trace, K, and a traceless tensor, Aij,

Kij = Aij +
1

3
γijK. (3)

In an FLRW model, the trace, K, parameterizes the Hubble expansion rate with HFLRW = −K/3, 

while K is instead zero on time-symmetric hypersurfaces, for example asymptotically lat space-

times in appropriate coordinates [24].

The three-metric can also be conformally decomposed, γij = Ψ4γ̃ij, A
ij = Ψ−10Âij , allow-

ing us to rewrite the constraint equation (2) in terms of these new variables,

D̃iD̃
i
Ψ−

1

8
R̃Ψ+

1

8
ÂijÂ

ij
Ψ

−7
+ 2πΨ5

−

1

12
K2

Ψ
5
= 0

D̃jÂ
ij
−

2

3
Ψ

6D̃iK = 8πΨ10Si,

 

(4)

where D̃i  and R̃ are now associated with the conformal metric γ̃ij . The CTT decomposition 

further breaks Âij into longitudinal and transverse pieces,

Âij
= Â

ij
L + Â

ij
TT . (5)

Here Â
ij
TT  is transverse and traceless, satisfying D̃jÂ

ij
TT = 0. The longitudinal piece Â

ij
L can be 

written in terms of a vector Xi as

Â
ij
L = D̃iX j

+ D̃ jXi
−

2

3
D̃kXkγ̃ij

≡

(

L̃X
)ij

. (6)

The transverse-traceless component Â
ij
TT  contains information about transverse gravitational 

radiation, and can be set to zero in order to minimize the gravitational radiation content of a 
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solution. However, this will not completely eliminate gravitational radiation, which can be 

sourced nonlinearly, especially in a strong-gravity regime such as we are considering here. 

The longitudinal component, on the other hand, contains information about the ‘vector mode’ 

content of the spacetime, including frame-dragging and anisotropic effects. Generally, vector 

modes are ignored in a cosmological setting, but their presence here will be important for 

obtaining spinning-black-hole solutions.

Based on the above arguments, we further simplify the constraints by setting ÂTT
ij = 0 , and 

choosing the metric to be three-conformally lat, γ̃ij = δij . We then obtain

∇
2
Ψ+

1

8

(

L̃X
)

ij

(

L̃X
)ij

Ψ
−7

−
1

12
K2

Ψ
5
= 0

∇
2Xi

+
1

3
∂i∂jX

j
−

2

3
Ψ

6∂iK = 0,

 

(7)

where ∇2 is the Cartesian Laplacian and

(

L̃X
)ij

= ∂iX j
+ ∂ jXi

−

2

3
δij∂kXk. (8)

When K  =  0, and in an asymptotically lat spacetime, a solution for Xi known as the 

Bowen–York solution is given by

Xi = ǫ̃
ijk xjJk

r3
, (9)

where xi are the Cartesian coordinates, r is the coordinate distance from the origin, and Ji is a 

vector satisfying D̃iJj = 0. Here ǫ̃ijk ≡
√
γ̃ǫ

ijk  is the 3D Levi-Civita tensor associated with the 

conformal metric γ̃ij , so that D̃iǫ̃
ijk

= 0.

Substituting this solution (9) into expression (6), we obtain

Â
ij
L =

(

L̃X
)ij

=
6

r3
x(i

ǫ̃
j)klJkxl/r2. (10)

This solution is commonly considered to contain a spinning black hole with spin Jk [24]. The 

value of Â
ij
L given by (10) agrees with that of a Kerr black hole at spatial ininity, implying 

this is true, however near the black hole this solution is not equivalent to the Kerr metric. The 

Bowen–York solution has been found to contain some residual gravitational radiation, and a 

maximum possible spin of ‖J‖ = 0.93 [25]. We can nevertheless use this solution as inspira-

tion for constructing initial conditions in a cosmological setting, where the spacetime is no 

longer asymptotically lat.

Due to the discontinuity at the boundary, the Bowen–York solution (9) is incompatible 

with periodic boundary conditions. However, following a procedure similar to [6, 7], we can 

regularize the solution by multiplying parameters M and Ji in the metric ields by a transition 

function

W(r;σ, l) =







0 0 � r < l

((r − l − σ)6
σ
−6

− 1)6 l � r < l + σ

1 l + σ � r

, (11)

such that W  =  0 at the origin, and transitions to W  =  1 over some distance scale σ beginning 

at r  =  l. The vector Xi is then regularized as

Xi
≈ ǫ̃

ijk xjJk

r3
(1 − W(r)). (12)

J T Giblin et alClass. Quantum Grav. 36 (2019) 195009
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We can also regularize the solution to the conformal factor Ψ as

Ψ ≈ 1 +
M

2r
(1 − W(r)). (13)

Equations (12) and (13) can then be used as an initial guess for solving the constraint equations.

In order for K to be a negative constant at the boundaries, corresponding to FLRW-like 

cosmological expansion, and zero in the center, corresponding to a black hole solution, we 

also modulate the extrinsic curvature using W(r),

K = KcW(r), (14)

where Kc is a constant, similar to [8].

By plugging equation (14) into the Hamiltonian and momentum constraint equations and 

taking the approximate solution from equations  (12) and (13) to be an initial guess with 

Jk  =  (0,0,a) in Cartesian coordinates, we can proceed to solve for Ψ and Xi. The singulari-

ties in the solution are avoided by employing the so-called puncture approach; further details 

regarding this can be found in appendix A. In igure 1 we show snapshots of the absolute dif-

ference (ields u and X′i from equation (A.1)) between the exact solution to equation (7) and 

the approximate solution of equations (12) and (13). The main change seen for Ψ, which is 

initially O(1) at the boundaries and much larger near the black hole as per equation (13), is an 

overall distortion of the physical volume of the spacetime, with additional radial corrections. 

For Xi, the predominant correction is a large radial contribution in the transition region.

3. Lattice evolution

We solve the initial constraints and evolve the spacetime using the grid-based numerical rel-

ativity code cosmograph [26]. We irst solve the constraint equations  using an integrated 

elliptical-equation solver, which employs a standard full multigrid (FMD) iteration scheme 

and an inexact-Newton-relaxation method [27]. We verify the resulting initial conditions by 

checking that the Hamiltonian and momentum constraint equations are satisied with increas-

ing precision as resolution is increased.

After setting initial conditions, spatial slices are advanced using the BSSNOK for mulation 

of numerical relativity [28–30], with 4th order Runge–Kutta timestepping. All ields are dis-

cretized as cell-centered data, and centered 4th-order inite-difference stencils are used for 

all derivatives except for advection terms  ∼βi∂i, where upwind derivatives are used instead. 

Note that the BSSNOK scheme evolves Ãij = Ψ−4Aij, rather than the Âij deined when setting 

initial conditions.

The gauge condition used in our simulation is a revised version of the widely employed 

‘1  +  log’ and ‘Gamma-driver’ gauge condition:

∂tα = −2ηα(K − 〈K〉edge) + βi∂iα,

∂tβ
i = Bi,

∂tB
i =

3

4
∂tΓ

i − Bi.

 

(15)

This differs from the usual ‘1+log’ gauge by introducing a reference expansion rate, 〈K〉edge, 

which is the conformal average of the extrinsic curvature K along all edges of the computa-

tional domain box deined in equation (23). This gauge choice has been demonstrated to have 

powerful singularity-avoidance properties [31]; the modiication we make by subtracting K 
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relative to the average boundary value allows the spatial slice to be driven towards FLRW-like 

expansion away from the black hole.

Because of the collapsing nature of the black hole, we have also integrated an adaptive 

mesh reinement (AMR) framework into the time evolution, provided by the code SAMRAI 

[32], an open-source structured adaptive-mesh-reinement application infrastructure. By 

building hierarchies of grid levels with different resolution, dividing and distributing patches 

into computational nodes, SAMRAI realizes high-eficiency adaptive-mesh reinement and 

parallelization. To synchronize data on different levels, we use tri-cubic Hermite interpolation 

[33], which we ind results in a high degree of numerical stability.

We also require a technique to locate apparent horizons. Because of the aspherical nature 

of spinning black holes, there is no symmetry of the apparent horizon that makes it simple to 

locate. We therefore use the AHFinderDirect package [34] to ind the apparent horizon on a 

given spatial hypersurface. The deinition and the method of extracting angular momentum 

from an isolated horizon come from [35], where the angular momentum of a black hole J is 

deined as

J =
1

8π

∮
(ϕaRbKab)d

2V . (16)

Note here Rb is an outgoing vector normal to the horizon and ϕa is not a Killing vector of the 

full spacetime but a symmetry vector deined locally on the horizon that preserves the induced 

metric qab, so that

Lϕqab = 0 (17)

(see [35] for more detail). The eigenvalue closest to unity associated with the symmetry vec-

tor is within a percent of unity, indicating the spacetime is very close to axisymmetric in the 

vicinity of the black hole.

We then track the black hole’s irreducible mass, spin, and horizon mass, as well as the 

expansion history of the spacetime. The irreducible and horizon masses are deined as

Figure 1. 2D slices show the corrections to the initial guesses when solving equation (7) 
with a relaxation scheme. The initial guesses are given by equations (12) and (13) and 
the differences between those guesses and the exact solution are shown for ield Ψ (left) 
and Xi (right). These also correspond to the ields u and X′i as deined in equation (A.1). 
The choice of parameters for this solution correspond to R3 in table 1.

J T Giblin et alClass. Quantum Grav. 36 (2019) 195009
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M2
H ≡ M2

irr +
J2

4M2
irr

M2
irr ≡ A/16π.

 

(18)

Here A is the area of the horizon, deined as A ≡
∮ √

qd2V , where q is the determinant of the 

induced metric on the horizon.

In order to examine how well the spinning-black-hole-lattice universe corresponds to a 

FLRW universe with similar expansion properties, or to check how well the lattice obeys a 

Friedmann-like equation, we need to deine an effective density of the spacetime, ρeff , and an 

average spacetime expansion rate, 〈K〉. We then deine a dimensionless parameter

C ≡
ρeff

〈K〉2/24π
. (19)

According to the Friedmann equation, one should have C = 1 for an appropriately chosen ρeff  

and 〈K〉 as the effective Hubble parameter equals 〈K〉/3.

We irst consider whether, in deining ρeff  and 〈K〉, it is more appropriate to use a volume-

averaging operation or to average over edges of the box. We can set ρeff = ρedge, eff , given by

ρedge, eff ≡ Meff/(D
2
⊥D‖). (20)

Meff  can be either MH or Mirr, while D⊥ and D‖ are distances along edges of the box in direc-

tions that are perpendicular and parallel to the spin direction respectively, Di ≡
∫

dxi√γii for 

a Cartesian direction i (where no sum over i is implied).

An alternative is to make ρeff = ρvol, eff, with

ρvol, eff ≡ Meff/V , (21)

where

V ≡

∫
r>rH

d3x
√
γ (22)

is the conformal volume exterior to the black-hole horizon.

More generically, we deine an averaged physical quantity Q on the edge or volume

〈Q〉edge ≡
∑

all edges

∫
dxi√γiiQ∑

all edges Di

〈Q〉vol ≡
1

V

∫
r>rH

d3x
√
γQ.

 (23)

We can now deine the ratio of the left and right hand sides of the effective Friedmann 

equations as

Cedge, eff =
ρedge, eff

〈K2〉edge/24π
, Cvol, eff =

ρvol, eff

〈K2〉vol/24π
. (24)

4. Results

In this section, we will present our main result. We will mainly focus on the the expansion his-

tory and effects of spins. We will also investigate time evolution of dimensionless parameter 

C and evaluate the effect of statistics.

J T Giblin et alClass. Quantum Grav. 36 (2019) 195009
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4.1. Initial condition effects on physical lattice properties

The free parameters in our setup are the box size L, the mass scale M, the spin a, the extrinsic 

curvature at the periodic boundary Kc, and the parameters appearing in the transition function 

(11), l, and σ. To demonstrate the impact that varying these parameters has on the physical 

properties of the spacetime (namely the black hole masses, densities, and C), we have listed 

these properties and the corresponding parameters in table 1 for ten representative simulations.

In this table, only the irst 2nd–6th columns are free parameters that were chosen initially, 

while the 7th–11th columns are derived parameters that can only be calculated after initial 

constraints are fully solved. The ρeff  used in columns for Cedge, H and Cvol, H  are calculated 

using MH. The convergence rate for each run on initial slice is represented by parameter c 

whose deinition can be found in equation (B.1). In all runs, we do not vary M, instead choos-

ing to work in units where M  =  1.

Examining these initial conigurations, we can observe the following:

 •  Although the input parameter M is equal to MH for a Kerr spacetime with asymptotic 

lat boundary, the resulting MH in the table only roughly tracks M, depending on other 

parameters as well.

 •  Both Cedge, H and Cvol, H  are somewhat less than 1 initially, and change very little when the 

spin parameter a, box size L, or boundary extrinsic curvature Kc are varied. This implies 

that the initial spatial slice is always ‘close’ to FLRW.

 •  Only by changing the combination of l and σ does Cedge, H change signiicantly; However, 

the value of Cvol, H  still does not change.

 •  Increasing the box size L (comparing R9 and R10 to R2) does not increase the physical 

size of the box.

 •  Changing the boundary extrinsic curvature Kc (comparing R7 and R8 to R2) will change 

the effective density and physical box length signiicantly, but still keeps the ratio in the 

last two columns unchanged.

To summarize, the parameters that predominantly determine physical properties of the system 

are Kc, M, and a. These strongly affect the simulation volume and black hole mass and spin. 

L, l, and σ instead affect the coordinate description of the spacetime, and only weakly affect 

physical properties.

The initial value of the ratio C quantiies the deviation from the FLRW universe, and is 

found to be relatively independent of our parameter choices. We now wish to study its time 

Table 1. Parameters of initial setups.

Runs L a Kc l σ Mirr MH MH/V Cedge, H Cvol, H c

R1 10 0 −0.21 1 3.5 1.023 1.023 0.000 414 0.897 0.829 7.7

R2 10 0.6 −0.21 1 3.5 1.107 1.140 0.000 404 0.894 0.817 7.7

R3 10 0.9 −0.21 1 3.5 1.180 1.240 0.000 395 0.891 0.807 7.4

R4 10 0 −0.21 0.1 3 0.982 0.982 0.000 467 0.996 0.844 8.3

R5 10 0.6 −0.21 0.1 3 1.072 1.108 0.000 456 0.994 0.828 7.4

R6 10 0.9 −0.21 0.1 3 1.147 1.212 0.000 446 0.993 0.815 8.1

R7 10 0.6 −0.15 1 3.5 1.246 1.269 0.000 216 0.900 0.842 7.6

R8 10 0.6 −0.1 1 3.5 1.453 1.468 0.000 101 0.904 0.865 7.6

R9 11 0.6 −0.21 1 3.5 1.058 1.096 0.000 420 0.921 0.827 7.4

R10 12 0.6 −0.21 1 3.5 1.018 1.060 0.000 432 0.941 0.832 7.4

J T Giblin et alClass. Quantum Grav. 36 (2019) 195009
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evolution as well as the best way to it ρeff  to a FLRW universe. Those topics are our main 

interests and will be discussed in the following sections.

4.2. Expansion properties and energy content

We can now analyze the different contributions to the Hamiltonian constraint equation, or the 

different ‘energy’ contributions in the spacetime contributing to expansion. Because we work 

in a vacuum spacetime, there is no actual stress-energy contribution, and all expansion must 

be a result of either curvature or kinetic terms in the constraint equations. We can decompose 

these terms as in Hamilotnian constraint in equation (4) to get

R/8 + ÃijÃ
ij/8 + K2/12 = 0,

 
(25)

and analyze the average behavior of: the curvature 〈R〉/8; the anisotropic expansion term 

〈ÃijÃ
ij〉/8, which contains contributions from vector and tensor modes and their interactions; 

and the expansion itself, 
〈

K2
〉

/12.

In igure 2, we examine the contribution of the ÃijÃ
ij term, which contains information 

about gravitational-wave and vector-mode energy content. It shows that the vector and tensor 

modes are concentrated near the black hole horizon, especially as the spacetime evolves and 

relaxes away from the naïve initial conditions that we set. This is unsurprising in that vector 

and tensor modes can be sourced nonlinearly in a strong-gravity regime, in contrast to the lin-

ear regime in a cosmological setting, where they are expected to be negligible. The absence of 

this contribution further away from the black hole shows that scalar curvature is the dominant 

contribution to cosmological expansion.

Figure 3 similarly depicts the time evolution of K2, which is the volume expansion rate. 

A behavior very similar to ÃijÃ
ij is identiied—deviations from cosmological-type expansion 

are found near the black hole, that gradually become smooth far away from the black hole, 

especially as the simulation progresses.

Residual oscillations can be seen in the expansion rate, both spatially varying, and as a 

function of time. The behavior of these oscillations depends on both the initial conditions and 

the gauge we choose, and we therefore do not consider these to be indicative of an expansion 

rate that is physically oscillatory, ie. that would strongly impact the way a geodesic observer 

would view the spacetime. We leave this speculation to future work, although see also [13].

We examine the different contributions to the Hamiltonian constraint equation more quanti-

tatively for R2 in igure 4. This demonstrates that the vector and tensor contributions 〈ÃijÃ
ij〉 

are relatively small near the edge, but are appreciable when averaged over the volume exterior 

to the horizon. It is important to note that this interpretation will be affected by gauge choice: 

for example, the irst-order gauge-invariant vector mode usually considered in a cosmological 

setting, as well as true observables (e.g. properties integrated along geodesics according to 

observers), will contain a contribution from the shift that is not shown here.

4.3. Expansion-mass correspondence

As we evolve the spacetime using the gauge choice of equation (15), lengths of edges as well 

as volume of the spatial slice expand in the intuitively expected manner. The coordinate size 

of the black hole apparent horizon initially expands as the solution stabilizes, then shrinks due 

to cosmological expansion, while the area stays the same. We run the code until the black-hole 

horizon becomes too small to be resolved accurately. At this moment, lengths in spatial slices 

have roughly grown by a factor of e2.

J T Giblin et alClass. Quantum Grav. 36 (2019) 195009
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Because of the asymmetric setup, one might expect to see a different expansion rate in 

different directions. However, we ind less than a 0.1% difference in lengths along different 

edges of the computational box (D‖ and D⊥), and thus will ignore this discrepancy and focus 

on the quantities averaging on both parallel and perpendicular edges (see equation (23)).

The masses Mirr and MH on the initial slice of each runs are shown in table 1. During the 

evolution, their time dependence is nearly negligible: the relative luctuation in their values is 

as small as 0.1% and dominated by numerical uncertainty (see appendix B for more detail), 

consistent with the area theorem and conservation of angular momentum.

From igure  5, we can see that Cedge luctuates with a large amplitude, consistent with 

behavior seen in [9], while Cvol gently increases to unity. The difference between choices of 

irreducible mass and horizon mass results in a constant shift between curves, which we inves-

tigate below.

We can attempt to reduce the amplitude of oscillations in the edge-averaged case by adjust-

ing l and σ to obtain Cedge ≃ 1 on the initial slice. Comparing the panels in igure 5, we see 

that this does not help in eliminating the luctuations. The large amplitude luctuations we 

see in Cedge apparently arise from a combination of the way we slice the initial spacetime and 

the gauge condition, indicating volume-averaged quantities appear to be a more appropriate 

representation of the physical behavior of the system.

Figure 6 provides us with more insight into the spin dependence of Cvol for different dei-

nitions of mass. Cvol is approximately spin-independent when the horizon mass is used to 

construct ρeff . It appears to approach the expected matter-dominated FLRW value of unity as 

the simulation evolves. Neither of these features are maintained when choosing ρeff = Mirr/V  

(right panel). The diminishing value of Cvol as the spin is increased implies that an energy 

Figure 2. The conformally related trace-free part of the extrinsic curvature, ÃijÃ
ij, on 

two-dimensional slices that intersect the black hole through spatial hypersurfaces. The 

black circles are corresponding slices of apparent horizons. ÃijÃ
ij is shown runs R1, R2 

and R3 with spins a = 0, 0.6, 0.9 (left to right), and at times t = 0, 10 (top to bottom). 

All quantities are in units where M  =  1.
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contribution to the Hamiltonian constraint is not being accounted for. The horizon mass MH 

is thus a better choice than Mirr when considering the effective mass in a spinning-black-hole-

lattice universe.

Lastly, we consider how the averaged values we consider here map to corresponding FLRW 

spacetimes in igure 7. As a function of FLRW scale factor, a ≡ V1/3, with V  as in equa-

tion (22), we note that the horizon mass MH is conserved, implying matter-domination-like 

expansion with ρeff ∝ a−3
FLRW. There is no spin dependence to within numerical uncertainty. 

However, the time-dependence of the effective Hubble parameter relative to an FLRW model 

shows a mix of matter and radiation contributions. The bottom 3 lines in this igure  imply 

that a purely matter dominated expansion (a/a0)
−3 is not a good it, while the top 3 lines 

show the behavior is well-described by including radiative content with a best it function 

0.19(a/a0)
−4 + 0.81(a/a0)

−3.

Figure 3. Time evolution snapshots of K2 in R1, R2 and R3 with a = 0, 0.6, 0.9 (from 
left to right), and t = 0(M), 10(M), 15(M) (from top to bottom).
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Figure 4. Behavior of the contributions 〈R〉 /8, 〈ÃijÃ
ij〉/8 and 

〈

K2
〉

/12 to the 

Hamiltonian constraint in equation  (25) in R2. The left panel shows edge-averaged 

terms, and the right panel shows results with volume-averaged terms.
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/24π) for runs R3 and R6. C is evaluated using edge and 

volume averages, with both Mirr and MH used in ρeff .
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5. Discussion and conclusions

In this paper, we have built a new kind of black-hole-lattice universe by solving the constraint 

equations with a conformal-transverse-traceless decomposition with periodic boundary condi-

tions. A series of space-like hypersurfaces corresponding to expanding universes with spin-

ning black holes were identiied. We found that the expansion features of those initial slices 

were very close to an effective FLRW universe regardless of the initial parameters choices.

We then evolved the initial slices with a singularity-avoiding gauge choice, inding no 

signiicant difference between the expansion in directions parallel and perpendicular to the 

spin. The effective density described by the black hole mass evolved similarly to a matter-

dominated universe, ie. the mass of the black hole was conserved, while the effective Hubble 

parameter only followed matter-dominated behavior at late times. When quantifying the devi-

ation of the expansion rate from FLRW-like behavior, we found that averages taken over 

edges of the simulation coordinate box displayed large luctuations, while volume averaged 

quantities showed much smaller deviations and approached FLRW asymptotically. By itting 

the spinning-black-hole-lattice universe to the FLRW universe, we were able to identify the 

effective mass that governs the expansion as the horizon mass of the black hole, rather than 

the irreducible mass.

In future work, we can track physical observables through the spacetime, to better charac-

terize the effects of highly non-linear non-stationary perturbations on universes that, like are 

own, appear to be on-average homogeneous and statistically isotropic on large scales.

It is noteworthy that the spacetimes that we have considered have a preferred direction, 

determined by the orientation of the spin of the single black hole in the fundamental domain. 

We anticipate exploring more general initial conditions with multiple spinning black holes and 

0 total angular momentum. Finally, although the spurious gravitational waves introduced by 

initial gauge ixing (conformally lat and ÂTT
ij = 0) have been shown to not critically affect the 

late-time evolution in both previous work [25, 36] and in our observation of ÃijÃ
ij, it may nev-

ertheless be helpful to explore other schemes, like conformal thin-sandwich (CTS) decompo-

sition, to set more general initial conditions with reduced spurious gravitational wave content.
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Figure 7. Dependence of MH/MH,0 and 〈K2〉vol/〈K2〉vol,0 as a function of scale factor. 

We also compare the averaged expansion rate to an FLRW model, according to a best 

it function with radiation (top 3 lines) and without (bottom 3 lines), showing the actual 
expansion is well-described by a mix of matter and radiation.
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Appendix A. Using puncture method to build initial data

In a black hole lattice, the metric near the black hole center will be close to an isolated black 

hole, so we can expect them to have similar divergence properties, i.e. Ψ diverges as 2M/r and 

Xi diverges as axi/r3 according to the Bowen–York solution in equations (12) and (13) with 

Ji  =  (0,0,a).

We therefore employ the puncture approach by deining

u ≡ Ψ−
M

2r
(1 − W(r))

X′1
≡ X1

−
ya(1 − W(r))

r3

X′2
≡ X2 +

xa(1 − W(r))

r3

X′3
≡ X3.

 

(A.1)

By switching from variables (Ψ, Xi) to (u, X′i), we expect to replace divergent variables with 

regular variables and implicitly incorporate the divergence in the solution.

The constraint equations equation (7) can then be reduced to

∇
2u −∇

2

(

M

2r
W(r)

)

+
1

8

(

L̃X
)

ij

(

L̃X
)ij

Ψ−7
−

1

12
K2Ψ5 = 0

∇
2X′1

+
1

3
∂1∂jX

′ j
−∇

2
(ya

r3
W(r)

)

−
2

3
Ψ6∂1K = 0

∇
2X′2

+
1

3
∂2∂jX

′ j
+∇

2
(xa

r3
W(r)

)

−
2

3
Ψ6∂2K = 0

∇
2X′3

+
1

3
∂3∂jX

′ j
−

2

3
Ψ

6∂3K = 0,

 

(A.2)

which contain no divergent terms. We solve for the variables u and X′i using a standard multi-

grid method (more detail can be found in [37]), and the divergent initial data for Ψ and Xi can 

be restored from them.
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Appendix B. Numerical convergence details

We will show here detail of our convergence test. For three runs with different coarsest resolu-

tions, convergence rate is calculated as

c ≡
|fNc

− fNm
|

|fNm
− fNf

|
, (B.1)

where fNc
, fNm

 and fNf
 are values calculated at resolutions Nc, Nm and Nf , which are from coars-

est to inest. Resolutions are chosen to be 64, 96 and 128 respectively in our tests. As among 

all the simulations in this article the case R3 in table 1 with spin parameter a  =  0.9 exhibited 

the most instability, we will only focus on this case.

We track the evolution history of both the irreducible mass and the horizon mass at dif-

ferent resolutions in order to check for convergence. These are shown in igure B1, and both 

show small luctuations that decrease as numerical precision increases. To within this numer-

ical error, the results we ind are consistent with the area theorem and with conservation of 

angular momentum.
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Figure B1. Behavior of irreducible mass (left) and horizon mass (right) with different 
coarsest resolutions in run R3 with a  =  0.9.
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to top. Second order of convergence can be achieved.
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The L2 norm of the Hamiltonian constraint at different resolutions, as well as the conv-

ergence rate, are shown in igure B2. Note that the L2 norm of the constraint violation is cal-

culated only outside of the black hole horizon. Second order of convergence rate is achieved, 

as shown in the igure. Note that during the evolution, AMR hierarchies are built even on the 

initial slice, the interpolation operations used to build those levels reduce the convergence rate 

of initial violation from 7 (in the last column of table 1) to 4. The mismatch between the 2nd 

order convergence and 4th order stencil mainly results from the truncation error introduced by 

coarse-ine interfaces.
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