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We study the postinflation dynamics of multifield models involving nonminimal couplings using lattice

simulations to capture significant nonlinear effects like backreaction and rescattering. We measure the

effective equation of state and typical timescales for the onset of thermalization, which could affect the

usual mapping between predictions for primordial perturbation spectra and measurements of anisotropies

in the cosmic microwave background radiation. For large values of the nonminimal coupling constants, we

find efficient particle production that gives rise to nearly instantaneous preheating. Moreover, the strong

single-field attractor behavior that was previously identified persists until the end of preheating, thereby

suppressing typical signatures of multifield models. We therefore find that predictions for primordial

observables in this class of models retain a close match to the latest observations.
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Introduction.—Postinflation reheating plays a critical

role in our understanding of the very early Universe (see

Ref. [1] for a recent review). By the end of the reheating

phase—and before big bang nucleosynthesis (BBN) can

commence [2]—the Universe must achieve a radiation-

dominated equation of state and become filled with (at

least) a thermal bath of standard model particles at an

appropriately high temperature. Although the earliest

stages of reheating can be studied within a linearized

approximation, some of the most critical processes arise

from nonlinear physics, including backreaction and rescat-

tering among the produced particles.

In addition to setting appropriate conditions for BBN, the

reheating phase plays a critical role in comparisons

between inflationary predictions and recent high-precision

measurements of the cosmic microwave background

(CMB). In particular, if there were a prolonged period

after inflation before the Universe attained a radiation-

dominated equation of state (EOS), that would impact the

mapping between perturbations on observationally relevant

length scales and when those scales first crossed outside the

Hubble radius during inflation [3–6]. Residual uncertainty

on the duration of reheating, Nreh, is now comparable to

statistical uncertainties in measurements of CMB spectral

observables. Hence understanding the timescale Nreh is

critical for evaluating observable predictions from infla-

tionary models.

In this Letter we study the nonlinear dynamics of the

early preheating phase of reheating in a well-motivated

class of models. These models include multiple scalar

fields, as typically found in realistic models of high-energy

physics [7,8], and each scalar field ϕ has a nonminimal

coupling to the spacetime Ricci curvature scalar R of the

form ξϕ2R. Such nonminimal couplings are quite generic:

they are induced by quantum corrections for any self-

interacting scalar field in curved spacetime, and they are

required for renormalization [9,10]. Moreover, the dimen-

sionless coupling constants ξ grow with energy scale under

renormalization-group flow, with no UV fixed point [11].

Hence they can attain large values at inflationary energy

scales. Upon transforming to the Einstein frame, such

models feature curved field-space manifolds [12].

Multifield models with nonminimal couplings naturally

yield a plateaulike phase of inflation at large field values,

of the sort most favored by recent observations [13].

During inflation the fields generically evolve within a

single-field attractor, thereby suppressing typical multi-

field effects that could spoil agreement with observations,

such as large primordial non-Gaussianities and isocurva-

ture perturbations [14–16].

Previous work, which studied the onset of preheating

in this class of models semianalytically, identified three

regimes that yielded qualitatively distinct behavior:

ξ≲Oð1Þ, ∼Oð10Þ, and ≳Oð102Þ [17–19]. In this Letter

we significantly expand this work, employing lattice
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simulations to study the complete preheating phase, deep

into the nonlinear regime. We restrict attention to coupled

scalar fields, and neglect the production of standard model

particles such as fermions or gauge fields [20–33].

Nonetheless, we are able to analyze the typical timescales

required for the Universe to achieve a radiation-dominated

EOS, for the produced particles to backreact on the inflaton

condensate, ultimately draining away its energy, and for

rescattering among the particles to yield a thermal spec-

trum. For large couplings, ξ≳ 102, of the sort encountered

in Higgs inflation [34], we find very efficient preheating,

typically completing within the first two e-folds after

the end of inflation, thereby protecting the close match

between predictions for primordial observables and the

latest CMB measurements.

Model.—In the Jordan frame, the nonminimal coupling

between the N scalar fields and the spacetime Ricci scalar

R̃ remains explicit in the action through the term fðϕIÞR̃.
Upon rescaling g̃μνðxÞ → gμνðxÞ ¼ Ω

2ðxÞg̃μνðxÞ, with

Ω
2 ¼ 2fðϕIÞ=M2

pl, we transform the action into the

Einstein frame. (Here Mpl ≡ 1=
ffiffiffiffiffiffiffiffiffi

8πG
p

¼ 2.43 × 1018 GeV

is the reduced Planck mass.) The Einstein-frame potential is

stretched by the conformal factor, VðϕIÞ ¼ ṼðϕIÞ=Ω4,

compared to the Jordan-frame potential ṼðϕIÞ. Taking

canonical scalar fields in the Jordan frame, the nonminimal

couplings induce a curved field-space manifold in the

Einstein frame, with field-space metric given by GIJðϕKÞ ¼
½M2

pl=ð2fÞ�fδIJ þ 3f;If;J=fg [12]. The equation of motion

for the fields in the Einstein frame is then

□ϕI þ gμνΓI
JK∂μϕ

J∂νϕ
K − GIJV ;J ¼ 0; ð1Þ

where ΓI
JKðϕLÞ is the Christoffel symbol constructed from

GIJ. We consider an unperturbed, spatially flat Friedmann-

Lemaître-Robertson-Walker (FLRW) spacetime metric, so

the Einstein field equations yield H2ðtÞ ¼ ρtotal=ð3M2

plÞ,
where ρtotal is the total energy density of the system,

HðtÞ≡ _a=a, and overdots denote derivatives with respect

to cosmic time.

We consider two-field models, ϕI ¼ fϕ; χg, with

fðϕIÞ ¼ 1

2
½M2

pl þ ξϕϕ
2 þ ξχχ

2�;

ṼðϕIÞ ¼ λϕ

4
ϕ4 þ g

2
ϕ2χ2 þ λχ

4
χ4: ð2Þ

The topography of the Einstein-frame potential generically

includes “ridges” and “valleys” along certain directions

χ=ϕ ¼ const. For non-fine-tuned parameters, the fields

quickly fall to a local minimum (valley) of the potential,

and the background dynamics obey a strong “single-field

attractor” [15–17]. For symmetric couplings, with ξϕ ¼ ξχ
and λϕ ¼ g ¼ λχ , any initial angular motion within field

space damps out within a few e-folds after the start of

inflation, and the system flows toward the minimum of the

potential along a single-field trajectory [35]. Within a

single-field attractor, the predictions for the spectral index

ns, the tensor-to-scalar ratio r, the running α ¼ dns=d ln k,
primoridal non-Gaussianities fNL, and isocurvature pertur-

bations βiso remain consistent with the latest observations

across large regions of phase space and parameter space

[15–17].

Field fluctuations in these models are sensitive to the

curvature of the field-space manifold, which is greatest near

the origin. During preheating, as the inflaton condensate

oscillates through zero, the effective mass for the fluctua-

tions δχ receives quasiperiodic “spikes” proportional to a

component of the field-space Riemann tensor. In the limit

ξI ≫ 1, these scale as Rχ
ϕϕχ ∝ ξϕ. These large spikes lead

to sharp violations of the adiabatic condition for those

modes, driving efficient particle production [17–19,36].

Within the single-field attractor, the amplitude of pri-

mordial perturbations scales as ½λϕ=ξ2ϕ�1=2 [15]. Present

constraints on the tensor-to-scalar ratio therefore require

λϕ=ξ
2

ϕ ≤ 1.4 × 10−8. We fix λϕ=ξ
2

ϕ ¼ 10−8 and consider

various values for ξχ=ξϕ, λχ=λϕ, and g=λϕ. We consider two

typical cases: (A) ξχ ¼ 0.8ξϕ, g ¼ λϕ, and λχ ¼ 1.25λϕ,

and (B) ξχ ¼ ξϕ and λϕ ¼ g ¼ λχ . For the “generic” case

(A) the single-field attractor lies along χ ¼ 0, while we are

free to choose the same attractor direction for the sym-

metric case (B). Once the ratios of couplings are fixed,

the dynamics of the system change as we vary ξϕ across

≲Oð1Þ;∼Oð10Þ, and ≳Oð102Þ.
Results.—We employ a modified version of Grid and

Bubble Evolver (GABE) [37] to evolve the fields and the

background, according to Eq. (1) and the Friedmann

equation. Whereas the original software was used to

simulate nonminimally coupled degrees of freedom

(d.o.f.) [38], we have modified the code significantly to

allow for a curved field-space metric in both the dynamics

of the fields as well as the initial conditions. We start the

simulations when inflation ends, defined by ϵðtinitÞ ¼ 1

where ϵ≡ − _H=H2; the Hubble scale at this time is Hend.

We use a grid with N ¼ 2563 points and a comoving box

size L ¼ π=Hend so that the longest wavelength in our

spectra corresponds to k ¼ Hend=2. We match the two-

point correlation functions of ϕðtinit;xÞ and χðtinit;xÞ to

corresponding distributions for quantized field fluctuations.

Fourier modes of the quantized fluctuations evolving

during inflation within the single-field attractor may be

parametrized as δϕI
k ¼

ffiffiffiffiffiffi

GII
p

vIkðτÞ=aðτÞ (no sum on I),

where dτ≡ dt=aðtÞ is conformal time [17]. Near the end

of inflation, we use the Wentzel-Kramers-Brillouin (WKB)

approximation to estimate amplitudes jvIkðτinitÞj ¼
½2ΩðIÞðk; τinitÞ�−1=2, where Ω

2

ðIÞðτÞ ¼ k2 þ a2ðτÞm2

eff;IðτÞ.
The effective masses m2

eff;I include distinct contributions

from the curvature of the potential and from the curvature
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of the field-space manifold, and are analyzed in detail in

Refs. [17–19]. (Here we neglect contributions from coupled

metric perturbations). The initial spectra of the fields

are subject to a window function that suppresses high-

momentum modes above some UV suppression scale,

kUV ¼ 50Hend.

Figures 1 and 2 show results for case A with ξϕ ¼ 10,

100. In Fig. 1, we plot the evolution of the inflaton

condensate after the end of inflation as calculated in a

linearized treatment (akin to Ref. [19]), and as calculated

from the spatial average hϕi on the lattice. Backreaction of

produced particles—which is absent in linearized analyses—

becomes significant beginning around 2.7 e-folds after the
end of inflation for ξϕ ¼ 10. For ξϕ ¼ 100 backreaction is

strong enough to completely drain the inflaton condensate

within the first 2 e-folds. Figure 2 shows the evolution

of the peak values of the spatial averages hϕi and hχi as

well as the growth of fluctuations, characterized by ϕrms ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hϕ2i − hϕi2
p

and χrms ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hχ2i − hχi2
p

. (Growth of field

fluctuations corresponds to particle production [1].)We have

confirmed that the early growth of δϕ and δχ fluctuations in

our lattice simulations closely matches the behavior calcu-

lated via Floquet analysis in Ref. [18]. Beginning around 2.6

e-folds, nonlinear rescattering among the δχ fluctuations

drives rapid growth of the δϕ fluctuations for ξϕ ¼ 10. For

ξϕ ¼ 100 the same effect occurs within the first e-fold.

Backreaction and rescattering generally become significant

at distinct times as one varies couplings [39].

The dynamics of the δϕ and δχ fluctuations vary with

coupling ξϕ, as shown in Fig. 3. For ξϕ ¼ 1, 10 parametric

resonance due to the contribution from the potential to

m2

eff;χ leads to a slow growth of δχ fluctuations; these

eventually rescatter, leading to the growth of δϕ fluctua-

tions and lowering the χrms=ϕrms ratio. For ξϕ ≥ 40 the

“Ricci spike” [17,36] leads to a fast growth of δχ fluctua-

tions. This is seen in Fig. 3 as an early rise of the χrms=ϕrms

ratio. When χrms grows enough it rescatters with δϕ

fluctuations, eventually leading to χrms=ϕrms ∼ 1. The case

of ξϕ ¼ 25 is the most interesting, since it displays several

distinct phases. The initial growth occurs due to adiaba-

ticity violation caused by the Ricci spike. After 1.5 e-folds
the height of the Ricci spike has redshifted, making it

comparable to the potential contribution to the effective

mass, thereby shutting off particle production [17]. When

the Ricci spike redshifts even more, around 2.5 e-folds,
a second stage of parametric resonance commences, due

to the potential term alone. Subsequently, rescattering

enhances the δϕ fluctuations, lowering the χrms=ϕrms ratio.

The situation is qualitatively similar for the symmetric

case (B) [39].

The rapid growth of fluctuations yields an efficient

transfer of energy from the inflaton condensate into

radiative d.o.f. Within the single-field attractor, we may

FIG. 1. Evolution of the inflaton condensate (in units of Mpl)

versus e-foldsN after the end of inflation for case Awith ξϕ ¼ 10,

100, as calculated in linearized analysis (blue, green) and as

computed from the spatial average hϕi on the lattice (red, black).

FIG. 2. Lattice evolution of various fields (in units of Mpl)

versus e-folds N after the end of inflation for case Awith ξϕ ¼ 10

(solid) and ξϕ ¼ 100 (dotted): peak values of the spatial averages

hϕi (blue) and hχi (black); and values of the fluctuations ϕrms

(green) and χrms (red).

FIG. 3. The ratio χrms=ϕrms versus e-folds N after the end of

inflation, for case Awith ξϕ ¼ 1, 10, 25, 40, 55, 70, 85, 100 (red

to blue, respectively).
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approximate the energy density in the inflaton condensate

as [17]

ρbg ≃
1

2
Gϕϕh _ϕi2 þ

λϕM
4

plhϕi4
4ðM2

pl þ ξϕhϕi2Þ2
; ð3Þ

where we evaluate Gϕϕ with ϕ → hϕi and χ ∼ 0. Figure 4

shows that across cases A and B the fraction of energy

density in the inflaton condensate falls sharply within the

first few e-folds after the end of inflation; for ξϕ ≥ 100,

virtually all of the energy density has been transferred out

of the inflaton condensate within the first N ¼ 1.5 e-folds.
The rapid transfer of energy to radiative d.o.f. is similarly

reflected in Fig. 5, which shows the evolution of the EOS,

w ¼ ptotal=ρtotal, where ρtotal and ptotal are the total energy

density and pressure for the system, respectively. In this

case, the system approaches w ¼ 1=3 rapidly for small

couplings ξϕ ∼Oð1Þ, because in that regime the Einstein-

frame potential for the inflaton approximates a quartic

form, so that even the condensate’s oscillations correspond

to w ≃ 1=3 [17]. As ξϕ increases, the Einstein-frame

potential for ϕ approaches a quadratic form, for which

the condensate’s oscillations behave like w ≃ 0 [17], but in

that case, the stronger coupling yields more efficient

particle production, so that the system eventually becomes

dominated by radiative d.o.f. For ξϕ ¼ 100, we find a

transient phase with a stiff EOS, w > 1=3, which likely

arises because typical momenta for the fluctuations are

comparable tomeff;I , and the contributions to ρtotal and ptotal

from kinetic and spatial-gradient terms are weighted by

components of GIJ, which are significant for ξϕ ≫ 1. At

later times, as meff;I → 0, the system relaxes to a gas of

massless particles with w ¼ 1=3. Across a wide range of

couplings for this family of models, we therefore find that

the Universe rapidly achieves a radiation-dominated EOS

within Nrad ∼ 2–2.5 e-folds after the end of inflation.

Preheating in α-attractor models with α ¼ Oð1Þ, in con-

trast, can lead to a prolonged period with w ≃ 0 [40],

shifting the pivot scale accordingly and thereby offering a

means to empirically distinguish between such models and

the family we consider here.

The strong rescattering among fluctuations yields an

efficient start to the process of thermalization, by transferring

power between particles of different momenta. In Fig. 6 we

show the spectra in field fluctuations δϕ and δχ for case A

with ξϕ ¼ 10. Although the spectra are dominated at early

times by increased power in distinct resonancebands, by later

times rescattering has flattened out the distributions for both

δϕ and δχ. ByNtherm ¼ 2.8 e-folds after the end of inflation,
both fields have attained a spectrum consistentwith a thermal

distribution, jδϕI
kj2 ∝ ½kðexp½k=T� − 1Þ�−1, at a temperature

Treh ∼OðHendÞ. We find comparable behavior across cases

A and B for ξϕ ≥ 1 [39].

The rapid thermalization means that the system reaches

the adiabatic limit soon after the end of inflation. We denote

Nad ¼ min½Nbg; Ntherm�, where Nbg is the time by which

FIG. 5. Averaged effective equation of state hwi for

ξϕ ¼ 1, 10, 100 and the two representative cases, generic (A)

and symmetric (B).

FIG. 6. Spectra for the fluctuations δϕ (dashed) and δχ (solid)

versus k=Hend, where k is comoving wave number, for case A

with ξϕ ¼ 10 at N ≃ 2, 2.4, 2.65, 2.8, 2.9 e-folds after the end

of inflation (purple, orange, blue, red, green, respectively). The

black-dotted curve shows a thermal spectrum.

FIG. 4. Fraction of energy density that has left the inflaton

condensateversuse-foldsN after the endof inflation for thegeneric

case (A) and the symmetric case (B) with ξϕ ¼ 1, 10, 100.
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super-Hubble coherence of the inflaton condensate is lost,

indicated by ϕrms > hϕi. Any significant turning of the

system within the field space between the end of inflation

and Nad could amplify non-Gaussianities and isocurvature

perturbations, thereby threatening the close agreement

between predictions in these models and measurements

of the CMB [41–44]. In Fig. 7, we plot ω=H across cases

of interest, where ω ¼ jωIj is the covariant turn rate [45].

Even as the Hubble rate falls over time, we nonetheless

find ω=H < 0.1 throughNad, indicating minimal turning of

the system within field space.

Our late-time results were unchanged as we varied the

initial UV suppression scale kUV ¼ bHend between b ¼ 25,

50, and 100, and the number of grid points between 1283,

2563 and 5123. We discuss this and related numerical

convergence tests in Ref. [39].

Conclusions.—Multifield models of inflation with non-

minimal couplings generically yield predictions for pri-

mordial observables in close agreement with the latest

observations, deriving from the strong single-field attractor

behavior of these models [15–17]. Throughout the cases we

have examined and across parameter space, we find that

this single-field attractor behavior remains robust until the

system reaches the adiabatic limit after inflation, with no

significant turning in field space even in the midst of

strongly nonlinear dynamics.

Preheating in this class of models is efficient, draining

the energy density from the inflaton condensate within

Nbg ≲ 1.5 e-folds in the limit of strong couplings, ξI ∼ 100.

The system typically reaches a radiation-dominated equa-

tion of state within Nrad ≲ 2.5, while rescattering yields a

rapid onset of thermalization within Ntherm ≲ 3, thereby

fulfilling several of the most critical requirements of the

reheating phase. We defer to future work such questions as

possible impact of coupled metric perturbations on the fully

nonlinear preheating dynamics, and the coupling of the

scalar fields ϕ and χ to standard model particles.

R. N. received support from a Clare Booth Luce

Undergraduate Research Award, Grant No. 9601. R. N.

and J. T. G. are supported by the National Science

Foundation Grant No. PHY-1719652. J. v. d. V. and E. I. S.

acknowledge support from the Netherlands Organization for

Scientific Research (NWO). R. N., J. v. d. V., and J. T. G.

would also like to thank the MIT Center for Theoretical

Physics for itswarmandgenerous hospitality. Portions of this

work were conducted in MIT’s Center for Theoretical

Physics and supported in part by the U.S. Department of

Energy under Contract No. DE-SC0012567.

*
nguyenr@kenyon.edu

†
jorindev@nikhef.nl

‡
evans@nikhef.nl

§
giblinj@kenyon.edu

∥
dikaiser@mit.edu

[1] M. A. Amin, M. P. Hertzberg, D. I. Kaiser, and J. Karouby,

Nonperturbative dynamics of reheating after inflation: A

review, Int. J. Mod. Phys. D 24, 1530003 (2015).

[2] R. H. Cyburt, B. D. Fields, K. A. Olive, and T.-H. Yeh, Big

bang nucleosynthesis: Present status, Rev. Mod. Phys. 88,

015004 (2016).

[3] P. Adshead, R. Easther, J. Pritchard, and A. Loeb, Inflation

and the scale dependent spectral index: Prospects and

strategies, J. Cosmol. Astropart. Phys. 02 (2011) 021.

[4] L. Dai, M. Kamionkowski, and J. Wang, Reheating Con-

straints to Inflationary Models, Phys. Rev. Lett. 113, 041302

(2014).

[5] V. Vennin, K. Koyama, and D. Wands, Encyclopædia

curvatonis, J. Cosmol. Astropart. Phys. 11 (2015) 008.

[6] K. D. Lozanov and M. A. Amin, Equation of State and

Duration to Radiation Domination after Inflation, Phys. Rev.

Lett. 119, 061301 (2017).

[7] A. Mazumdar and J. Rocher, Particle physics models of

inflation and curvaton scenarios, Phys. Rep. 497, 85 (2011).

[8] D. Baumann and L. McAllister, Inflation and String Theory

(Cambridge University Press, Cambridge, England, 2015).

[9] C. G. Callan Jr., S. R. Coleman, and R. Jackiw, A new

improved energy-momentum tensor, Ann. Phys. (N.Y.) 59,

42 (1970).

[10] T. S. Bunch, P. Panangaden, and L. Parker, On renormal-

ization of λϕ4 field theory in curved space-time, J. Phys. A

13, 901 (1980).

[11] S. D. Odintsov, Renormalization group, effective action and

grand unification theories in curved space-time, Fortschr.

Phys. 39, 621 (1991).

[12] D. I. Kaiser, Conformal transformations with multiple scalar

fields, Phys. Rev. D 81, 084044 (2010).

[13] Y. Akrami et al. (Planck Collaboration), Planck 2018

results. X. Constraints on inflation, arXiv:1807.06211.

[14] D. I. Kaiser, E. A. Mazenc, and E. I. Sfakianakis, Primordial

bispectrum from multifield inflation with nonminimal cou-

plings, Phys. Rev. D 87, 064004 (2013).

FIG. 7. The quantity jωIj=H versus e-folds N after the end of

inflation for the generic case (A) and the symmetric case (B) and

for ξϕ ¼ 1, 10, 100, where ωI is the covariant turn rate [14].

Each curve is shown up to Nad ¼ min½Nbg; Ntherm�.

PHYSICAL REVIEW LETTERS 123, 171301 (2019)

171301-5



[15] D. I. Kaiser and E. I. Sfakianakis, Multifield Inflation after

Planck: The Case for Nonminimal Couplings, Phys. Rev.

Lett. 112, 011302 (2014).

[16] K. Schutz, E. I. Sfakianakis, and D. I. Kaiser, Multifield

inflation after Planck: Isocurvature modes from nonminimal

couplings, Phys. Rev. D 89, 064044 (2014).

[17] M. P.DeCross,D. I. Kaiser, A. Prabhu,C. Prescod-Weinstein,

and E. I. Sfakianakis, Preheating after multifield inflation

with nonminimal couplings. I. Covariant formalism and

attractor behavior, Phys. Rev. D 97, 023526 (2018).

[18] M. P.DeCross,D. I. Kaiser, A. Prabhu,C. Prescod-Weinstein,

andE. I. Sfakianakis, Preheating aftermultifield inflationwith

nonminimal couplings. II. Resonance structure, Phys. Rev. D

97, 023527 (2018).

[19] M. P.DeCross,D. I. Kaiser, A. Prabhu,C. Prescod-Weinstein,

and E. I. Sfakianakis, Preheating after multifield inflation

with nonminimal couplings. III.Dynamical spacetime results,

Phys. Rev. D 97, 023528 (2018).

[20] P. B. Greene and L. Kofman, Preheating of fermions, Phys.

Lett. B 448, 6 (1999).

[21] P. B. Greene and L. Kofman, Theory of fermionic preheat-

ing, Phys. Rev. D 62, 123516 (2000).

[22] M. Peloso and L. Sorbo, Preheating of massive fermions

after inflation: Analytical results, J. High Energy Phys. 05

(2000) 016.

[23] S. Tsujikawa, B. A. Bassett, and F. Viniegra, Multifield

fermionic preheating, J. High Energy Phys. 08 (2000) 019.

[24] A.-C. Davis, K. Dimopoulos, T. Prokopec, and O. Tornkvist,

Primordial spectrumof gauge fields from inflation,Phys. Lett.

B 501, 165 (2001).

[25] J. Garcia-Bellido, M. Garcia Perez, and A. Gonzalez-

Arroyo, Chern-Simons production during preheating in

hybrid inflation models, Phys. Rev. D 69, 023504 (2004).

[26] F. Bezrukov, D. Gorbunov, and M. Shaposhnikov, On initial

conditions for the hot big bang, J. Cosmol. Astropart. Phys.

06 (2009) 029.

[27] J. Garcia-Bellido, D. G. Figueroa, and J. Rubio, Preheating

in the standard model with the Higgs inflaton coupled to

gravity, Phys. Rev. D 79, 063531 (2009).

[28] J.-F. Dufaux, D. G. Figueroa, and J. Garcia-Bellido, Gravi-

tational waves from Abelian gauge fields and cosmic strings

at preheating, Phys. Rev. D 82, 083518 (2010).

[29] R. Allahverdi, A. Ferrantelli, J. Garcia-Bellido, and A.

Mazumdar, Nonperturbative production of matter and rapid

thermalization after MSSM inflation, Phys. Rev. D 83,

123507 (2011).

[30] J. T. Deskins, J. T. Giblin, and R. R. Caldwell, Gauge field

preheating at the end of inflation, Phys. Rev. D 88, 063530

(2013).

[31] P. Adshead and E. I. Sfakianakis, Fermion production

during and after axion inflation, J. Cosmol. Astropart. Phys.

11 (2015) 021.

[32] P. Adshead, J. T. Giblin, and Z. J. Weiner, Non-Abelian

gauge preheating, Phys. Rev. D 96, 123512 (2017).

[33] E. I. Sfakianakis and J. van de Vis, Preheating after Higgs

inflation: Self-resonance and gauge boson production, Phys.

Rev. D 99, 083519 (2019).

[34] F. Bezrukov and M. Shaposhnikov, The standard model

Higgs boson as the inflaton, Phys. Lett. B 659, 703

(2008).

[35] R. N. Greenwood, D. I. Kaiser, and E. I. Sfakianakis, Multi-

field dynamics of Higgs inflation, Phys. Rev. D 87, 064021

(2013).

[36] Y. Ema, R. Jinno, K. Mukaida, and K. Nakayama, Violent

preheating in inflation with nonminimal coupling, J. Cos-

mol. Astropart. Phys. 02 (2017) 045.

[37] For more information on GABE, see http://cosmo.kenyon

.edu/gabe.html.

[38] H. L. Child, J. T. Giblin, Jr., R. H. Ribeiro, and D. Seery,

Preheating with Nonminimal Kinetic Terms, Phys. Rev.

Lett. 111, 051301 (2013).

[39] R. Nguyen, J. van de Vis, E. I. Sfakianakis, J. T. Giblin, Jr.,

and D. I. Kaiser, Preheating after multifield inflation with

nonminimal couplings: Lattice simulations (work in

progress).

[40] O. Iarygina, E. I. Sfakianakis, D.-G.Wang, andA.Achúcarro,

Universality and scaling in multi-field α-attractor preheating,

J. Cosmol. Astropart. Phys. 06 (2019) 027.

[41] J. Elliston, D. J. Mulryne, D. Seery, and R. Tavakol,

Evolution of fNL to the adiabatic limit, J. Cosmol. Astropart.

Phys. 11 (2011) 005.

[42] J. Elliston, S. Orani, and D. J. Mulryne, General analytic

predictions of two-field inflation and perturbative reheating,

Phys. Rev. D 89, 103532 (2014).

[43] J. Meyers and E. R. M. Tarrant, Perturbative reheating after

multiple-field inflation: The impact on primordial observ-

ables, Phys. Rev. D 89, 063535 (2014).

[44] S. Renaux-Petel and K. Turzynski, On reaching the adia-

batic limit in multi-field inflation, J. Cosmol. Astropart.

Phys. 06 (2015) 010.

[45] The covariant turn-rate ωI ≡Dtσ̂
I , where σ̂I ≡ _φI= _σ,

DtA
I ¼ _φJDJA

I is the covariant directional derivative,

and _σ2 ≡ GIJ _φ
I _φJ [14]. One may show that ω ¼ jωI j ¼

½V ;KV ;Lð _σ2GKL − _φK _φLÞ�1=2= _σ2. To calculate ω during pre-

heating, we evaluate the spatially homogeneous fields via

spatial averages on the lattice, fφI ; _φIg → fhϕIi; h _ϕIig, and
replace the term _σ2 in the denominator with its time average

over each oscillation of the inflaton condensate.

PHYSICAL REVIEW LETTERS 123, 171301 (2019)

171301-6


