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Abstract—As core counts increase, lock acquisition and release
become even more critical because they lie on the critical path of
shared memory applications. In this paper, we show that many
applications exhibit regular and repeating lock sharing patterns.
Based on this observation, we introduce SpecLock, an efficient
hardware mechanism which speculates on the lock acquisition
pattern between cores. Upon the release of a lock, the cache
line containing the lock is speculatively forwarded to the next
consumer of the lock. This forwarding action is performed via
a specialized prefetch request and does not require coherence
protocol modification. Further, the lock is not speculatively
acquired, only the cache line containing the lock variable is
placed in the private cache of the predicted consumer. Speculative
forwarding serves to hide the remote core’s lock acquisition
latency. SpecLock is distributed and all predictions are made
locally at each core. We show that SpecLock captures 87% of
predictable lock patterns correctly and improves performance by
an average of 10% with 64 cores. SpecLock incurs a negligible
overhead, with a 75% area reduction compared to past work.
Compared to two state of the art methods, SpecLock provides a
speedup of 8% and 4% respectively.

[. INTRODUCTION

As core counts increase [60], [7], [14], [5], [28], [24], com-
munication distances and contention lead to higher latencies
between levels of the memory system. This causes thread-
level load imbalance which, by Amdahl’s law, directly limit
application scalability. This is exacerbated by applications that
share large amounts of data between threads [55], [54].

Prior work focuses on hiding latency using multithread-
ing [47], prefetching [6], [16], data value prediction [56], and
a plethora of other techniques [35]. While these techniques
reduce the impact of private data memory accesses, they do
little to address the latency associated with coordinating shared
memory accesses between threads, sometimes even slowing
these accesses down, exactly the form of latency that becomes
more critical as multithreaded applications scale. One such
example is the latency associated with lock acquisition and
release [55], [54]. Lock acquisition and release, by definition,
constitute the serial (critical) path of the application. Paral-
lel performance is fundamentally limited by synchronization
through critical sections [15].

A large body of prior work in accelerating lock acquisition
focuses on reducing the acquisition latency of highly con-
tended locks [49], [20], [33], [18]. We find that often locks
are not in direct contention, but rather much of the latency
in critical sections comes from the movement of the cache
line containing a lock to the current lock requester driven
by the cache coherence protocol. This action can consume
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Fig. 1: Lock sharing and directory based cache coherence.

hundreds of cycles [55], [54], right at a time when latency is
most critical. Unlike this large body of past work, we aim to
hide the coherence latency to fetch a lock-containing cache
line from a remote core. Thus, our proposed mechanism ben-
efits non-contended and contended locks alike. We show that
prior simplistic lock acquisition predictors for non-contended
locks [38], [35], [21], [27], [44] may often harm performance
because they do not accurately model local lock reacquisition
patterns. Further, we find that dynamic lock behavior is highly
data dependent and lock acquisition is typically initiated via
an OS or system software call. Thus, software prefetching
techniques are unsuitable to the problem.

To illustrate the problem, Fig. 1(a) shows two threads being
synchronized via a lock. Core 1 first enters its critical section
by acquiring the lock from its own private cache ((D). Some
time later, core 2 enters its critical section and issues an LL
(load linked) for the cache line containing the lock. A request
is made to the directory for an exclusive copy, @. At (), this
request leads to an invalidation request to core 1. At ®), core
I’s private cache issues a write-back to the LLC of the line
containing the lock. Finally, at (), this line is then forwarded
to core 2 and core 2’s critical section can proceed (@®). Note
that in this case, as is often true, core 2’s critical section is not
actually waiting on the completion of core 1’s critical section.
Simply the action of cache coherence pulling the lock from one
private cache to another is impeding critical section execution.
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If the lock sharing pattern could be predicted to allow
locks to be preemptively forwarded to the next core that
will use them, significant performance improvements could
be achieved [38]. As shown in Fig. 1(b), immediately after
the release of the lock at the end of core 1’s critical section
(D), core 2 receives a message (@) informing core 2 to
preemptively request (prefetch) the lock cache line. Core 2
then initiates the request for the lock cache line (3)-@) far
ahead of its demand fetch during core 2’s critical section (@®).
Thus, when core 2 is ready to acquire the lock, the cache
line containing the lock will be in its local private cache.
This is the primary goal of our proposed technique. Note that
forwarding the lock cache line in no way means that the lock is
speculatively acquired by core 2, it simply means that should
core 2 try to acquire the lock it will take less time.

We show that many applications exhibit regular and repeat-
able lock! sharing patterns. Thus, we introduce SpecLock, an
efficient hardware mechanism to predict which thread will
request each lock upon its release. This prediction is made
locally at each core using a small lookup table in the private
caches that records past lock sharing patterns. When a lock
is released, this table is accessed to determine if the cache
line containing the lock should be preemptively forwarded to
the core predicted to be the next acquirer, without waiting
for an explicit request from that core. Speculative forwarding
serves to hide the latency for the remote core to acquire the
lock. In the event a misprediction occurs and the cache line
containing the lock has been forwarded to the wrong core,
the demand request for the lock from the correct core causes
the coherence mechanism to forward that lock to the correct
core. Mispredictions do not typically increase lock acquisition
latency because, even if the lock is sent to a core that does
not use it, the core that ends up actually requesting the lock
would nevertheless have to fetch the lock from a remote core.

SpecLock has a distributed implementation, with no direct
global communication. It applies to barriers and other syn-
chronization constructs in addition to locks, does not affect
program semantics, and natively supports nested locks. Im-
portantly, SpecLock does not modify the coherence protocol,
as that would require significant validation efforts [32], [9].

While simple, SpecLock captures 87% of the sharing pat-
terns in our benchmarks correctly. By reducing lock acqui-
sition latency, SpecLock provides a 7% average speedup for
16 cores and 10% for 64 cores. Compared to delayed lock
release [49] and most-frequent acquirer [38] schemes which
are popular alternatives, for 16 cores, these numbers become
4% and 8% respectively. SpecLock outperforms traditional
prefetchers because it is initiated by the holder of the lock,
only when that core is done using the lock and thus can better
predict when to transfer the lock. SpecLock incurs a small
power overhead of 0.14% and area of 0.2% compared to on-
chip caches, 75% less than prior work. SpecLock does not pe-
nalize performance even for our less predictable benchmarks.

'we use the term “lock” broadly to imply any synchronization construct

which leverages hardware synchronization constructs such as LLSC.
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Fig. 2: Lock acquisition latency breakdown (16 cores).
II. MOTIVATION

Fig. 2 shows average and maximum non-local lock acquisi-
tion latencies per benchmark. Here we define a non-local lock
as one which resides in either a remote private cache or only
in the shared LLC. Across all benchmarks, the average latency
to acquire a non-local lock is ~35 cycles, a considerable
amount of time, while the average maximum is ~655 cycles.
Further, both the average and maximum latencies increase with
core count due to increased distances and the possibility of
contention. By contrast, the latency to acquire a lock that
resides in the local L1 cache is the same as any other L1
cache hit, 3 cycles in this particular case.

Unfortunately, acquiring a lock from the local L1 cache
is not the common case. In these experiments 77% of locks
resided in a remote L1 at the time the lock is requested.
These remote L1 locks incur long latencies because the local
core must request the lock-containing cache line via the
coherence mechanism from the remote code, facing possible
contention and long distance of communication. Fetching a
lock-containing cache line from the shared LLC (L2) incurs
a somewhat better latency than that of a remote L1 request.
However, only 2% reside in the shared LLC. Just 21% of locks
are found in a core’s local L1 cache once the core attempts
to acquire the lock. The fraction of locks found in “main
memory” is vanishingly small and barely visible in the figure.
Thus, lock acquisition latency is more often than not that of a
remote acquisition. As shown in Fig. 2, the average latency of
remote lock acquisition is ~10x that of a local acquisition.

A. Lock Sharing Patterns

Fig. 3 shows the various lock sharing patterns typically
seen in some PARSEC benchmarks. In the figure, each node
represents a core which acquires a given lock. Edges represent
lock acquisition requests that can be local (loopback edges) or
to remote cores. We see that different patterns have varying
degrees of predictability. For example the “Weighted ping-
pong” and “Long sequence” patterns (Fig. 3a and 3b), are
perfectly predictable for each of the involved cores. We label
this class of lock sharing patterns Perfectly predictable. The
“Two way alternating ping-pong” and “One way alternating
ping-pong” patterns (Fig. 3c and 3d) represent cases with
highly-predictable behavior, where most of the cores involved
can be accurately predicted most of the time. We classify
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Fig. 3: Common lock acquisition patterns. (a) Weighted ping-
pong - The lock is handed back and forth between two cores
with multiple local iterations between handoffs. (b) Long
sequence - A repeated, long sequence of lock sharers. (c)
Two way alternating ping-pong - The lock is handed back and
forth between two cores with multiple local iterations between
handoffs, the iteration number alternates for both cores. (d)
One way alternating ping-pong - The lock is handed back and
forth between two cores with multiple local iterations between
handoffs, the iteration number alternates for one of the cores.
(e) Star sequence - The lock is passed from one primary core
followed by one of a set of other cores.

these patterns as Highly predictable. The “Star sequence” and
the “Alternating sequence” patterns (Fig. 3e represents cases
were at least some of the cores show predictable behavior
(e.g. Cores B - F in Fig. 3e), although some are not easily
predictable (e.g. Core A). We classify this set of patterns as
Predictable. We classify lock acquisition patterns that appear
random as Unpredictable.

Fig. 4, shows a breakdown of lock acquisition patterns
based upon the aforementioned classifications. On average,
26% of the acquisitions are predictable. Because many of
these patterns show multiple local re-acquisitions prior to a
remote acquisition, a predictor must not only predict the next
requester but also accurately predict how many times the lock
will be locally re-acquired prior to a remote request. Further,
the predictor should be conservative to not forward the lock
to a predicted acquirer unless it is certain the lock will not be
re-acquired locally, as this condition could hurt performance.

ITI. SPECLOCK: SPECULATIVE LOCK FORWARDING

SpecLock speculates on the next core to request a given
lock once it is released, and forwards that lock to the predicted
core, hiding the latency of remote lock cache line acquisition.
SpecLock uses a counting algorithm which relies on previ-
ously recorded local lock reacquisition counts to predict when
the lock should be forwarded to the next core. SpecLock’s
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Fig. 4: Lock pattern breakdown. Only a forwarding action (not
hold) is considered.

predictor is distributed with each core’s private caches spec-
ulating on the next acquirer of local locks once those locks
are released. Thus, SpecLock can accurately predict any lock
whose count of local re-acquisitions and next acquiring core
is static (i.e. all cores in Fig. 3a, and 3b, as well as some
of the cores in Fig. 3c, 3d, and 3e. Speclock identifies locks
by the memory addresses synchronization instructions, such
as LLSC, operate on.

SpecLock’s operation can be divided into two phases:
training and prediction. Each lock goes through the train-
ing and prediction phases independently of other locks. The
training phase learns both the number of consecutive local
re-acquisitions by the same core (the loopback edge weights
in Fig. 3, labeled weight from here on), as well as the
most likely next acquiring core. Once SpecLock’s predictor
becomes confident in its predictions for a given lock, the
predictor entry for that lock enters the prediction phase. In
the prediction phase, each time a given lock is re-acquired
from another core, SpecLock will begin counting local re-
acquisitions until the number of local re-acquisitions matches
the expected number. Thereafter, the cache line containing the
lock will be forwarded to the predicted next requesting core.

A. Operation

Fig. 5 and 6 detail SpecLock’s operation. To facilitate
SpecLock’s lock prediction each core’s private caches are
augmented with a small Lock Prediction Table (LPT), shown
in Fig. 5. The purpose of this table is to track the state of
locks recently acquired by the local core. Each LPT entry
contains the following components: a valid bit (V); the lock’s
effective address (Tag); a weighted FIFO, containing the local
reacquisition counts from the last n times this lock has been
acquired by the given core?; the core ID of the last remote
acquisition (LA) (i.e.,, the last core to force an invalidation
of the lock containing line away from this core); a Premature
Forward Counter (PFC) to record the total number of times the
lock was forwarded only to be subsequently reacquired before
it was used at the remote core (we call this false-forward
condition a “premature forward”); and a current acquisition

2Note, in the following example we will define the FIFO depth of n=2,
thus WO and W1 in Fig. 6
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Fig. 6: Lock prediction using SpecLock. The lock pattern is “Weighted Ping-Pong” (Fig. 3a)
where PO acquires the lock twice before P1 acquires the lock once, then the pattern repeats.

counter (CAC), which counts the number of times the most
recently accessed lock has been reacquired by this core.

Fig. 6 follows the life cycle of a single, per-lock, LPT entry,
first through the training phase and then through the prediction
phase. In the training phase (Fig. 6.a), when a previously
unseen lock is first acquired (D in the figure), a new entry
in the LPT is allocated and cleared (the LPT organization
and replacement is discussed in Section III-C). SpecLock only
takes into account successful lock acquisitions. The V bit and
the lock’s Tag are recorded. The CAC is then incremented for
each time the lock is released and reacquired (blue critical
sections on the Core/$ PO line) prior to the lock cache line
being invalidated by being requested by another core. When
another core later invalidates the cache line containing the
lock (@), the core causing the invalidation is noted in the LA
field (P1 in this example), and the number of reacquisitions
is pushed into the weights FIFO (number 2 is placed in W0
here). We note, the training phase works similarly regardless
of whether the lock is currently held at the time an invalidation
arrives, to make SpecLock functional for both contended and
non-contended locks.

To reduce the probability of a premature forward, we bias
the predictor towards predicting to hold the lock by choosing
the maximum of the reacquisition counts in the weights FIFO
(W0 and W1 in Fig. 6). We make this choice because prema-
ture forwards actually introduce a latency penalty compared to
a baseline system where the lock would remain and simply be
reacquired by the releasing core; by contrast, conservatively
not forwarding locks matches the behavior of the baseline
system. Later, when core PO acquires the lock from P1 (),
the LPT entry for this lock is found. Since there is already an
entry for this lock, the LPT entry is not changed, but the CAC
is reset to start counting the number of reacquisitions of the
given lock. Because the FIFO is not full (n in this example is
2), no prediction will be made yet. When core P1 invalidates
the lock cache line (@), the CAC has been incremented to
2, thus the number 2 is pushed into the weights FIFO. Now
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the LPT entry is full and ready for prediction (i.e. the entry
enters the Prediction phase). Note that a weights FIFO depth
of n = 2 represents a relatively aggressive predictor which
will begin prediction after only two iterations of training.
Other FIFO depths are possible, e.g. n = 1 would extremely
aggressively forward locks after only seeing a given pattern
once, while n 4 would more conservatively require 4
consistent iterations before prediction would occur.

The prediction phase is shown in Fig. 6.b. In the figure,
prediction first starts with the predicting core acquiring a lock
for which an LPT entry has already been trained (3). An LPT
entry is considered trained when all n weights in the weights
FIFO are full and the premature forward counter (PFC) is
below a given threshold (g). In this event, as in training, the
CAC is reset and each local reacquisition causes an increment.
When the CAC is equal to the greatest of the weights in the
weights FIFO (@), then the cache line containing the lock is
speculatively forwarded to the predicted core (P1 in this case).
In the figure, we also see that P1’s LPT entry for this lock has
also been trained. Thus, once P1’s CAC hits its target, the lock
is speculatively forwarded back to PO (D).

1) Outcomes: SpecLock operates only on cache lines con-
taining locks. Moving a cache line containing a lock to
a remote core does not imply the thread in that core has
acquired the lock. Therefore, program semantics remain intact
and no rollback or other handling is required in the event
of a misprediction. At worst an incorrect prediction would
only lead to excess movement of the cache line. In addition,
since predictor state is maintained separately per lock address,
nested locks are orthogonal and supported. In the event that a
single cache line contains multiple locks, all locks are part of
the same predictions. Furthermore, if a thread if migrates to
another core, the corresponding LPT lines are cleared to avoid
mispredictions for the next thread.

B. SpecLock Messages

Modifications to the coherence protocol are not to be taken
lightly, as the effort required in validation of additional durable
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or transient states can be quite high [32], [9]. Thus, SpecLock
does not modify? the coherence protocol, but instead adds two
non-coherence “hint” messages.

The first and most important message is the “lock forward”
(LOCK_FWD) message. Upon predicting that a lock should
be transferred to another core, the releasing core sends this
control message to the recipient core, (©® in Fig. 6). This
message is a prefetch hint to the receiving core that it should
issue a read exclusive to its local L1 cache for this address. The
receiving core then invokes the unmodified coherence protocol
(e.g., MESI [53]) to invalidate remote copies, ® and claim
ownership of the lock in its local L1 cache, .

Although this method introduces one extra round-trip of
communication, we make this choice because cache coherency
protocols such as MESI do not support receiving cache lines
that they did not request. By making the cache line request
originate from the receiving core, the cache coherency protocol
is invoked the same as if the recipient core requested the cache
line. This way, the LOCK_FWD message only needs to reach
the cache coherence controller in the recipient core’s L1 cache
and not the core itself. Also, no modifications are needed to
the cache coherency protocol.

In the event that a given lock is either forwarded to an
incorrect destination or prematurely forwarded (case 3 or case
4 in Section III-Al), the sending core would never receive
feedback as to the accuracy of the predicted next acquirer
of the lock. Thus, SpecLock uses an additional message, the
negative acknowledgment (NACK), to gain feedback on the
quality of its predictions. This feedback message is sent from
the recipient core back to the predicting core. If the lock was
acquired by the recipient core, the prediction was correct and
no message is sent back. Otherwise, if the lock was acquired
by any other core before the recipient lock acquires it, a NACK
is sent back to indicate that the prediction was incorrect.
In the event that the NACK was caused by a premature
forward, the releasing core will increment the PFC field of
the associated LPT entry. If the total number of premature
forwards surpasses a threshold, the LPT entry for that lock
is erased to prevent future premature forwards*. Note there
is no dependency between the NACKs and LOCK_FW D
messages, thus they need not be placed in different virtual
channels (VCs) [11]. both LOCK_FWD and NACK messages
can be dropped with no impact on correctness, but a possible
performance degradation.

C. Lock Prediction Table (LPT) Organization

To keep SpecLock scalable, each core maintains its own
LPT to record history, as shown in Fig. 5. Entries in the
LPT are allocated upon new lock acquisition as described in
the previous sections. The LPT is organized as a 4-way set
associative cache. If the LPT entries are all full, a replacement
candidate must be chosen. Through experiments, we observed

31t is assume the requester core-id exists in the request message.

4We also examined forwarding the lock to the LLC in the case of too many
inaccurate predictions. However, we found this to have no significant impact
on performance and dropped it from the final technique.
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that many locks do not have any sharers. Thus, we first try to
replace any entry which has a Last acquirer field empty. If no
such entry exists, the entry with the highest total number of
premature forwards will be replaced.

D. Implementation

The size of the LPTs and the depth of each FIFO poses
minimal overhead, shown in Fig. 5. Each LPT entry is 12
bytes assuming the following: 64-bit addresses, a FIFO of
depth two (each 8 bits), 6 bits for core identifiers (64 cores),
4 bits for premature forward count, and 8 bits for CAC. We
empirically determined that the number of live, shared locks
rarely exceeded 100 across the benchmarks we examined.
Thus, we implemented 128 entries in the LPT per core. There-
fore, the LPT is ~2KB per core. Assuming 64MB total on-
chip caching, the additional storage for the LPTs is negligible
(0.2%). We quantify the power overhead of accessing the
LPTs in Section V-F. In order to be able to send ACK/NACK
response, a small 16 entry 9-byte table is implemented in each
core to buffer 64-bit addresses and 6 bits for core identifiers.

Given the small size, 128 entries and 4-way set associativity
of the LPT, we estimate two cycles is all that is required to
read or write the appropriate row. A further cycle is required
for any modifications prior to writing the row back. This delay
has little impact because lock forwarding speculation need
only be as fast as the time between lock release and the next
acquisition for that lock. That time is rarely small enough that
an additional few cycles to make the prediction would have an
impact. This observation lets us pipeline the lock prediction
structures as needed to increase clock frequency. Therefore,
the additional lock speculation logic has no impact to the chip
multiprocessor (CMP)’s clock frequency. Further, the LPT is
only accessed upon a write to a lock cache line, thus it has
no impact on L1 cache access time.

IV. METHODOLOGY

We perform full system simulations using the GEMS simu-
lator with the Ruby memory system and the Garnet network on
chip model [4]. We use a CMP with 16/64 Alpha cores [40],
32KB 2-way L1 cache with 3 cycle-access, a shared distributed
(2MB per core) 8-way set L2 cache with 15 cycle-access, a
128 entries 4-way LPT with 2 cycle-access, and 4-hop MESI
coherence protocol. Also, four Micron MT41J512M8 memory
controller (one at each corner), a DDR3-1600 x64 channel, and
4x4, 8x8 mesh NoC is considered. We show results below for
both in-order cores and out-of-order cores. Unless otherwise
specified, there is no prefetching. We discuss the impact of
prefetching in Section V-E. PFC threshold (g) is set to 2 in
order to minimize premature forwards and the weighted FIFO
size is set to 2. Also, there is one thread per core with no
migration.

We use applications from the PARSEC [3] and Rodinia [8]
benchmark suites that represent a variety of lock sharing
patterns with their pre-defined medium-size inputs by default.
We use Cacti 6.5 with a 32nm process [37] to estimate the
power and area of caches and LPTs. For power, we also use the
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Fig. 7: Speedup (execution time decrease) for different bench-
marks normalized to the baseline with 16-cores.

activity factors of each structure of SpecLock. We configure
SpecLock as described in Section III-D.

We evaluate SpecLock against the following schemes:

¢ Baseline no lock speculation.

o Push2LLC where locks are always always pushed to the
LLC when released.

All four schemes proposed by Lucia et al [38]
(though not evaluated in their paper) including: First-
to-acquire (FA), Last-to-acquire (LA), Most-frequent-
transition (MT), and Most-frequent-acquire (MA). We
find that MA is their most accurate scheme and so it
is used exclusively in several graphs to be more succinct.

e Delayed Lock a delay scheme, Rajwar et al. [49].

In baseline, to maintain inclusivity, the current holder of a
lock first forwards it to the directory, which then forwards
it to the requester. In MA, each core forwards locks to a
remote core that most often requests it. In delayed lock, once
a request arrives from a remote core for a lock, in the event
that the lock is currently held, the response is delayed by a
configurable number of cycles to provide time for that lock
to be released and avoid unnecessary coherence events. We
configure the delay response to be 128 cycles, derived from
observing average lock re-use times and round-trip latencies.

V. EVALUATION
A. Execution Time

Fig. 7 shows execution time results for SpecL.ock compared
to Push2LL.C, MA, and Delayed Lock on the 16-core system.
As shown in Figure 7, SpecLock provides an average 7%
speedup for 16 cores (results improve to 10% for 64 cores
as discussed in Section V-B), compared to the baseline.

Looking at individual benchmarks, the largest speedups are
for fluidanimate, followed by streamcluster and blackscholes.
These benchmarks tend to be more well balanced [17], which
means that the lock acquisition latency is more likely to
dominate the critical path. Fluidanimate in particular exhibits
many ping-pong style lock sharing patterns, which are more
easily predictable. In contrast, benchmarks less well balanced
(e.g. those which are pipeline parallel such as x264) see less
impact as any latency reduction is overshadowed by other
overheads.
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Compared to MA [38] and Delay Lock [49], SpecLock
sees an 8% and 4% speedup improvement, respectively. Strik-
ingly, MA actually decreases performance versus baseline on
average. This is because MA does not take into account
repeated re-acquisitions locks by the local core, thus for many
benchmarks MA leads to many “Premature Forwards” (see
Section III-A1l) which incur extra latency as the lock cache
line is shuttled back and forth for benchmarks with many re-
acquisitions (bodytrack, swaptions and vips). In fact none of
the four predictors defined by Lucia et al. [38] can appropri-
ately predict the repeated reuse of locks by the same core that
we see in real workloads, leading to high levels of premature-
forwarding. Predicting the repeated acquisition pattern seen in
real workloads is a principal advantage of SpecLock. Similarly,
we see that Push2LLC serves to hide acquisition latency for
some benchmarks without the possibility of forwarding to the
wrong core. However, as with MA, Push2LLLC fails to consider
re-acquisition by the same core, as we later elaborate.

We also note, Delayed Lock and SpecLock are orthogonal
in that they address different components of critical section
latency (contended lock delay versus coherence delay in non-
contended locks). Implementing both techniques together pro-
vides further, small (~1%) speedup average above SpecLock
by itself, across these largely non-contended benchmarks.

B. Scalability

Fig. 8 shows the performance scalability for SpecLock
going from 16 cores to 64 cores. For this number of cores,
SpecLock scales well, with an average performance increase
from 7% to 10%. Generally, going to 64 cores leads to more
coherence delays as more locks are transferred between cores,
thus most benchmarks experience some gain. In vips and x264,
performance degrades slightly going to 64 cores. In vips, lock
contention becomes more common as the benchmark scales.
x264 is a pipeline parallel benchmark, thus it exhibits poor
load balance, which worsens as it scales to 64 cores.

C. Accuracy

Fig. 9 shows the accuracy breakdown for lock forward spec-
ulation per benchmark for 16 cores, baseline versus four lock
prediction schemes proposed in [38] and SpecLock (Spec).
Speculation is considered accurate if it correctly predicts that

Authorized licensed use limited to: Texas A M University. Downloaded on August 30,2020 at 19:31:46 UTC from IEEE Xplore. Restrictions apply.



[EHold IACk [ INack [l Invalidation|
-

B MA Spec B

°
©

o o o o o
2 o e N &
——

o
©

Accuracy/Inaccuracy factors

o
0

°

o MA Spec

B MASpec B
flui

x264
Fig. 9: Accuracy comparison for Baseline (B), Most-frequent-
acquire (MA), and SpecLock (Spec), from left to right. The
green colors (Hold and Ack) reflects the accuracy obtained
through lock prediction. The inaccuracy is represented by gray
colors (Nack and Invalidation).

B MA Spec
vips

B MASpec c B MASpec

Avg

the lock will be reused and does not forward it (Hold) or if
it accurately predicts the recipient core, forwards the lock to
that core, and that core uses the lock before eviction (Ack).
A prediction is considered inaccurate if the lock is invalidated
while being held (Invalidation) or if it is sent to another core
which does not use it prior to eviction (Nack). On average,
SpecLock’s total prediction accuracy (Hold plus Acks) is 87 %
across benchmarks, with streamcluster being the highest at
96% and bodytrack the lowest at 46%.

To illustrate the native number of holds and invalidates for
these benchmarks, Baseline (no prediction) is included in the
figure. We notice that the number of holds is comparable
between SpecLock and baseline. This indicates that SpecLock
avoids premature forwards, which leads to less invalidations
and improve performance. This is in sharp contrast to the
other four predictors where premature forwards occur often
and show low accuracy as evident by the number of Nacks.
When SpecLock does forward a lock, it shows good accuracy
as evident by the number of Acks.

Interestingly, we see that although the best performing
benchmark, fluidanimate, has a high prediction accuracy, it
only shows a small fraction of actual forwards (Acks plus
Nacks) relative to Holds. In fluidanimate, although remote
acquisitions are greatly outnumbered by local acquisitions,
there remain enough remote acquisitions to impact perfor-
mance when accurately predicted. We see that MA significantly
outperforms the other techniques proposed in [38]. Neverthe-
less, all are much less accurate than SpecLock with the same
number of prediction table entries, with an average of only
~50% across our benchmarks. This is largely because of these
techniques’ inability to predict local re-acquisitions.

D. Out-of-Order vs. In-Order

We also examine the impact of SpecLock on out-of-order
(O0O0) cores. Fig. 10 presents speedup results of SpecLock on
an OOO machine normalized to an OOO baseline for a 16-
core CMP. The figure also reproduces the results for SpecLock
on an in-order machine from Fig. 7 normalized against an in-
order baseline. The figure shows slightly lower speedup with
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Fig. 10: Speed-up of SpecLock running on out-of-order cores
versus in-order.

out-of-order cores versus in-order cores. This is because OOO
execution can cover only a small amount of the latency of
synchronization instructions (e.g., LLSC) due to coherence.
Generally, OOO cores must serialize to ensure correctness
when entering a critical section. An OOO core cannot execute
around locks to improve performance as with typical memory
instructions and thus, an OOO core behaves like an in-order
core when executing those instructions.

E. Prefetching

To study the effects of prefetching, we enable a stream
prefetcher with a typical configuration in each core’s private
L1 cache [25]. Each core’s prefetcher uses 4 streams, 4 cache
misses before creating a stride (training misses), 8 non-unit
stride filters, and 8 unit stride filters. we see that on average,
enabling the prefetcher actually hurts performance slightly
(without SpecLock), as the same is reported in [26], [2]. This
is because in some benchmarks, naive prefetching can cause
a premature forwarding of shared data and/or locks between
threads, leading to greater memory latency and lost perfor-
mance as this data is ping-ponged around. Unlike SpecLock,
prefetchers are poor at predicting the time locks need to be
prefetched, because prefetchers are typically receiver-initiated
but the optimal time depends on when the sender releases lock.

F. Area and Power Overhead

Considering an 128-entry LPT with 12-byte entries and
four-way set associativity, the power consumption and area is
just less than 2 mW and 2291 um? . In contrast, the CMP’s
collection of 32KB L1 and 2MB L2 cache space per core
(128MB in total for 64 cores) consumes 69 mW and 1454
mW, respectively [37]. The area occupied by these caches
is 68841 um? and 1160000 um? respectively. The per-core
LPTs represent a negligible power and area increase relative
to the on-chip caches of our CMP. In fact, for single-threaded
applications, the LPT structure can be power gated to eliminate
static power as well. In addition, SpecLock’s LPT structure is
75% smaller than the equivalent structures for MA with the
same number of entries.

In addition, SpecLock actually decreases bytes transferred
over the network by approximately 2% on average. Here,
the reduced sharing latency actually leads to shorter critical
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section times, which in turn reduces the chance that another
core will cause a lock invalidation during the critical section.
This reduces the number of invalidation messages.

VI. DISCUSSION

Lock speculation is best left to hardware as most locking
primitives are implemented in the OS through posix system
calls. As a result, it would be very difficult for the application
programmer or compiler to insert appropriate prefetch instruc-
tions ahead of a given system call. System calls themselves
are quite short so inserting the prefetch instructions in the OS
at compile time would do little to hide the lock access latency.
Further, lock acquisition patterns would be difficult to predict
at compile time since they are often data dependent.

Here, SpecLock is implemented in a system using the Alpha
ISA with LLSC as the underlying synchronization instruction.
Nevertheless, SpecLock is easily implementable with minor
modifications in systems employing single, atomic, read-
modify-write instructions such as the x86 XCHG instruction.

VII. RELATED WORK

Push protocols [44] add prediction information to directories
in order to predict future readers of cache lines. However,
such protocols attempt exclusive push predictions only when
the sharing pattern is observed to be between just two nodes.
Alternative sharer prediction protocols [29] are tailored to
cache lines with multiple readers, and thus do not directly
apply to exclusive acquisitions, such as for locks.

Further past work motivates lock prediction by describing
use cases and designing simple predictors [38]. We show that
those methods compare poorly to SpecLock. The predictors
described in [38] cannot appropriately predict the repeated
reuse of locks by the same core that we see in real workloads,
leading to high levels of premature-forwarding. The principle
novelty of our approach lies in counting local reacquisitions to
avoid premature forwards and reduce the latency of acquisition
of non-contended locks. In addition, [38] does not implement
those predictors in a system.

Biased locks [58], [10], [51] identify a dominant thread for
each lock that is most likely to request it at any one time,
and always forward locks to the dominant thread. This differs
from SpecLock in that all cores make the same prediction for
each lock. Taking into account the releasing thread has been
shown to outperform approaches that do not [38].

SpecLock is orthogonal to dead block prediction [31] be-
cause this prediction simply concerns itself with identifying
blocks (cache lines) that are likely to be dead, not where they
will be requested from next. This is much like dynamic self-
invalidation [34]. In addition, this research shows that counting
algorithms do not do well in dead block prediction, whereas
we show they work well for lock prediction.

Hardware and software support for efficient locks has been
well researched in multiprocessor systems [21], [27]. Hard-
ware support for fairness sequences threads in FIFO order
according to the time they attempted to acquire the lock [33],
[57], [52], [20], [36], [18]. Alternative approaches record

280

and maintain the state of frequently synchronized data with
hardware support [62]. Fairness can also be achieved entirely
in software [43].

Tournament locks and barriers also increase the scalabil-
ity of locks by using a communication pattern of a binary
tree [19]. Real-time nested protocol (RNLP) locks are an
alternative fine-grain locking mechanism [59]. Other work
implements FIFO ordering in software instead [45].

Further work proposed techniques that speculatively execute
critical sections [50], [39], [50], [46]. Such techniques usually
focus on performance at the expense of complex mechanisms
to abort execution and revert to a previous state and to detect
conflicts. Speculative lock elision (SPE) [50] prefetches data
in a critical section, not the lock itself. Thus, SPE is orthogonal
and complementary to SpecLock.

To address messaging caused by spinning threads, prior
work uses different but related cache lines for threads spinning
on the same lock [41], [13]. Another approach associates a
private mutually exclusive variable (mutex) for each cache
line at each core [23]. Alternatively, spinning can be per-
formed in the memory controller with dedicated hardware
support [42]. The memory controller can also be extended to
perform atomic operations in order to reduce the amount of
communication [61]. Dedicated hardware can also accelerate
message passing and task scheduling to avoid modifying
the memory controller [48]. Alternative approaches propose
synchronization without the use of locks such as tagged
memory [1], [22], [30], [12].

SpecLock is synergistic to techniques that make the lock
acquisition pattern more predictable and speculative critical
section execution [50], [39] because it helps with cases where
locks are not forwarded to the correct core. In addition,
SpecLock reduces the cases where speculative critical section
execution is necessary.

VIII. CONCLUSION

In this paper, we introduce SpecLock. SpecLock predicts
lock sharing patterns and speculatively forwards locks as they
are being released to the core that is most likely to request
them next. This hides the latency of the next core to acquire
the lock. Cores make this prediction independently and thus in
a scalable manner and without modifying the cache coherence
protocol. SpecLock captures 87% of the sharing patterns
correctly. By reducing lock acquisition latency, SpecLock
provides a 7% average speedup for 16 cores and 10% for 64
cores, shows good scalability, and outperforms competition
with a smaller area (75% reduction) and power overhead.
SpecLock advances the state of the art by predicting both the
acquisition pattern and time of locks.
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