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Abstract—As core counts increase, lock acquisition and release
become even more critical because they lie on the critical path of
shared memory applications. In this paper, we show that many
applications exhibit regular and repeating lock sharing patterns.
Based on this observation, we introduce SpecLock, an efficient
hardware mechanism which speculates on the lock acquisition
pattern between cores. Upon the release of a lock, the cache
line containing the lock is speculatively forwarded to the next
consumer of the lock. This forwarding action is performed via
a specialized prefetch request and does not require coherence
protocol modification. Further, the lock is not speculatively
acquired, only the cache line containing the lock variable is
placed in the private cache of the predicted consumer. Speculative
forwarding serves to hide the remote core’s lock acquisition
latency. SpecLock is distributed and all predictions are made
locally at each core. We show that SpecLock captures 87% of
predictable lock patterns correctly and improves performance by
an average of 10% with 64 cores. SpecLock incurs a negligible
overhead, with a 75% area reduction compared to past work.
Compared to two state of the art methods, SpecLock provides a
speedup of 8% and 4% respectively.

I. INTRODUCTION

As core counts increase [60], [7], [14], [5], [28], [24], com-

munication distances and contention lead to higher latencies

between levels of the memory system. This causes thread-

level load imbalance which, by Amdahl’s law, directly limit

application scalability. This is exacerbated by applications that

share large amounts of data between threads [55], [54].

Prior work focuses on hiding latency using multithread-

ing [47], prefetching [6], [16], data value prediction [56], and

a plethora of other techniques [35]. While these techniques

reduce the impact of private data memory accesses, they do

little to address the latency associated with coordinating shared

memory accesses between threads, sometimes even slowing

these accesses down, exactly the form of latency that becomes

more critical as multithreaded applications scale. One such

example is the latency associated with lock acquisition and

release [55], [54]. Lock acquisition and release, by definition,

constitute the serial (critical) path of the application. Paral-

lel performance is fundamentally limited by synchronization

through critical sections [15].

A large body of prior work in accelerating lock acquisition

focuses on reducing the acquisition latency of highly con-

tended locks [49], [20], [33], [18]. We find that often locks

are not in direct contention, but rather much of the latency

in critical sections comes from the movement of the cache

line containing a lock to the current lock requester driven

by the cache coherence protocol. This action can consume
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Fig. 1: Lock sharing and directory based cache coherence.

hundreds of cycles [55], [54], right at a time when latency is

most critical. Unlike this large body of past work, we aim to

hide the coherence latency to fetch a lock-containing cache

line from a remote core. Thus, our proposed mechanism ben-

efits non-contended and contended locks alike. We show that

prior simplistic lock acquisition predictors for non-contended

locks [38], [35], [21], [27], [44] may often harm performance

because they do not accurately model local lock reacquisition

patterns. Further, we find that dynamic lock behavior is highly

data dependent and lock acquisition is typically initiated via

an OS or system software call. Thus, software prefetching

techniques are unsuitable to the problem.

To illustrate the problem, Fig. 1(a) shows two threads being

synchronized via a lock. Core 1 first enters its critical section

by acquiring the lock from its own private cache ( 1©). Some

time later, core 2 enters its critical section and issues an LL

(load linked) for the cache line containing the lock. A request

is made to the directory for an exclusive copy, 4©. At 5©, this

request leads to an invalidation request to core 1. At 6©, core

1’s private cache issues a write-back to the LLC of the line

containing the lock. Finally, at 7©, this line is then forwarded

to core 2 and core 2’s critical section can proceed ( 8©). Note

that in this case, as is often true, core 2’s critical section is not

actually waiting on the completion of core 1’s critical section.

Simply the action of cache coherence pulling the lock from one

private cache to another is impeding critical section execution.

273

2019 IEEE 37th International Conference on Computer Design (ICCD)

978-1-5386-6648-7/19/$31.00 ©2019 IEEE
DOI 10.1109/ICCD46524.2019.00041

Authorized licensed use limited to: Texas A M University. Downloaded on August 30,2020 at 19:31:46 UTC from IEEE Xplore.  Restrictions apply. 



If the lock sharing pattern could be predicted to allow

locks to be preemptively forwarded to the next core that

will use them, significant performance improvements could

be achieved [38]. As shown in Fig. 1(b), immediately after

the release of the lock at the end of core 1’s critical section

( 1©), core 2 receives a message ( 2©) informing core 2 to

preemptively request (prefetch) the lock cache line. Core 2

then initiates the request for the lock cache line ( 3©- 7©) far

ahead of its demand fetch during core 2’s critical section ( 8©).

Thus, when core 2 is ready to acquire the lock, the cache

line containing the lock will be in its local private cache.

This is the primary goal of our proposed technique. Note that

forwarding the lock cache line in no way means that the lock is

speculatively acquired by core 2, it simply means that should

core 2 try to acquire the lock it will take less time.

We show that many applications exhibit regular and repeat-

able lock1 sharing patterns. Thus, we introduce SpecLock, an

efficient hardware mechanism to predict which thread will

request each lock upon its release. This prediction is made

locally at each core using a small lookup table in the private

caches that records past lock sharing patterns. When a lock

is released, this table is accessed to determine if the cache

line containing the lock should be preemptively forwarded to

the core predicted to be the next acquirer, without waiting

for an explicit request from that core. Speculative forwarding

serves to hide the latency for the remote core to acquire the

lock. In the event a misprediction occurs and the cache line

containing the lock has been forwarded to the wrong core,

the demand request for the lock from the correct core causes

the coherence mechanism to forward that lock to the correct

core. Mispredictions do not typically increase lock acquisition

latency because, even if the lock is sent to a core that does

not use it, the core that ends up actually requesting the lock

would nevertheless have to fetch the lock from a remote core.

SpecLock has a distributed implementation, with no direct

global communication. It applies to barriers and other syn-

chronization constructs in addition to locks, does not affect

program semantics, and natively supports nested locks. Im-

portantly, SpecLock does not modify the coherence protocol,

as that would require significant validation efforts [32], [9].

While simple, SpecLock captures 87% of the sharing pat-

terns in our benchmarks correctly. By reducing lock acqui-

sition latency, SpecLock provides a 7% average speedup for

16 cores and 10% for 64 cores. Compared to delayed lock

release [49] and most-frequent acquirer [38] schemes which

are popular alternatives, for 16 cores, these numbers become

4% and 8% respectively. SpecLock outperforms traditional

prefetchers because it is initiated by the holder of the lock,

only when that core is done using the lock and thus can better

predict when to transfer the lock. SpecLock incurs a small

power overhead of 0.14% and area of 0.2% compared to on-

chip caches, 75% less than prior work. SpecLock does not pe-

nalize performance even for our less predictable benchmarks.

1we use the term “lock” broadly to imply any synchronization construct
which leverages hardware synchronization constructs such as LLSC.

Fig. 2: Lock acquisition latency breakdown (16 cores).

II. MOTIVATION

Fig. 2 shows average and maximum non-local lock acquisi-

tion latencies per benchmark. Here we define a non-local lock

as one which resides in either a remote private cache or only

in the shared LLC. Across all benchmarks, the average latency

to acquire a non-local lock is ∼35 cycles, a considerable

amount of time, while the average maximum is ∼655 cycles.

Further, both the average and maximum latencies increase with

core count due to increased distances and the possibility of

contention. By contrast, the latency to acquire a lock that

resides in the local L1 cache is the same as any other L1

cache hit, 3 cycles in this particular case.

Unfortunately, acquiring a lock from the local L1 cache

is not the common case. In these experiments 77% of locks

resided in a remote L1 at the time the lock is requested.

These remote L1 locks incur long latencies because the local

core must request the lock-containing cache line via the

coherence mechanism from the remote code, facing possible

contention and long distance of communication. Fetching a

lock-containing cache line from the shared LLC (L2) incurs

a somewhat better latency than that of a remote L1 request.

However, only 2% reside in the shared LLC. Just 21% of locks

are found in a core’s local L1 cache once the core attempts

to acquire the lock. The fraction of locks found in “main

memory” is vanishingly small and barely visible in the figure.

Thus, lock acquisition latency is more often than not that of a

remote acquisition. As shown in Fig. 2, the average latency of

remote lock acquisition is ∼10× that of a local acquisition.

A. Lock Sharing Patterns

Fig. 3 shows the various lock sharing patterns typically

seen in some PARSEC benchmarks. In the figure, each node

represents a core which acquires a given lock. Edges represent

lock acquisition requests that can be local (loopback edges) or

to remote cores. We see that different patterns have varying

degrees of predictability. For example the “Weighted ping-

pong” and “Long sequence” patterns (Fig. 3a and 3b), are

perfectly predictable for each of the involved cores. We label

this class of lock sharing patterns Perfectly predictable. The

“Two way alternating ping-pong” and “One way alternating

ping-pong” patterns (Fig. 3c and 3d) represent cases with

highly-predictable behavior, where most of the cores involved

can be accurately predicted most of the time. We classify
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Fig. 3: Common lock acquisition patterns. (a) Weighted ping-

pong - The lock is handed back and forth between two cores

with multiple local iterations between handoffs. (b) Long

sequence - A repeated, long sequence of lock sharers. (c)

Two way alternating ping-pong - The lock is handed back and

forth between two cores with multiple local iterations between

handoffs, the iteration number alternates for both cores. (d)

One way alternating ping-pong - The lock is handed back and

forth between two cores with multiple local iterations between

handoffs, the iteration number alternates for one of the cores.

(e) Star sequence - The lock is passed from one primary core

followed by one of a set of other cores.

these patterns as Highly predictable. The “Star sequence” and

the “Alternating sequence” patterns (Fig. 3e represents cases

were at least some of the cores show predictable behavior

(e.g. Cores B - F in Fig. 3e), although some are not easily

predictable (e.g. Core A). We classify this set of patterns as

Predictable. We classify lock acquisition patterns that appear

random as Unpredictable.

Fig. 4, shows a breakdown of lock acquisition patterns

based upon the aforementioned classifications. On average,

26% of the acquisitions are predictable. Because many of

these patterns show multiple local re-acquisitions prior to a

remote acquisition, a predictor must not only predict the next

requester but also accurately predict how many times the lock

will be locally re-acquired prior to a remote request. Further,

the predictor should be conservative to not forward the lock

to a predicted acquirer unless it is certain the lock will not be

re-acquired locally, as this condition could hurt performance.

III. SPECLOCK: SPECULATIVE LOCK FORWARDING

SpecLock speculates on the next core to request a given

lock once it is released, and forwards that lock to the predicted

core, hiding the latency of remote lock cache line acquisition.

SpecLock uses a counting algorithm which relies on previ-

ously recorded local lock reacquisition counts to predict when

the lock should be forwarded to the next core. SpecLock’s

Fig. 4: Lock pattern breakdown. Only a forwarding action (not

hold) is considered.

predictor is distributed with each core’s private caches spec-

ulating on the next acquirer of local locks once those locks

are released. Thus, SpecLock can accurately predict any lock

whose count of local re-acquisitions and next acquiring core

is static (i.e. all cores in Fig. 3a, and 3b, as well as some

of the cores in Fig. 3c, 3d, and 3e. Speclock identifies locks

by the memory addresses synchronization instructions, such

as LLSC, operate on.

SpecLock’s operation can be divided into two phases:

training and prediction. Each lock goes through the train-

ing and prediction phases independently of other locks. The

training phase learns both the number of consecutive local

re-acquisitions by the same core (the loopback edge weights

in Fig. 3, labeled weight from here on), as well as the

most likely next acquiring core. Once SpecLock’s predictor

becomes confident in its predictions for a given lock, the

predictor entry for that lock enters the prediction phase. In

the prediction phase, each time a given lock is re-acquired

from another core, SpecLock will begin counting local re-

acquisitions until the number of local re-acquisitions matches

the expected number. Thereafter, the cache line containing the

lock will be forwarded to the predicted next requesting core.

A. Operation

Fig. 5 and 6 detail SpecLock’s operation. To facilitate

SpecLock’s lock prediction each core’s private caches are

augmented with a small Lock Prediction Table (LPT), shown

in Fig. 5. The purpose of this table is to track the state of

locks recently acquired by the local core. Each LPT entry

contains the following components: a valid bit (V); the lock’s

effective address (Tag); a weighted FIFO, containing the local

reacquisition counts from the last n times this lock has been

acquired by the given core2; the core ID of the last remote

acquisition (LA) (i.e., the last core to force an invalidation

of the lock containing line away from this core); a Premature

Forward Counter (PFC) to record the total number of times the

lock was forwarded only to be subsequently reacquired before

it was used at the remote core (we call this false-forward

condition a “premature forward”); and a current acquisition

2Note, in the following example we will define the FIFO depth of n=2,
thus W0 and W1 in Fig. 6
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Fig. 6: Lock prediction using SpecLock. The lock pattern is “Weighted Ping-Pong” (Fig. 3a)

where P0 acquires the lock twice before P1 acquires the lock once, then the pattern repeats.

counter (CAC), which counts the number of times the most

recently accessed lock has been reacquired by this core.

Fig. 6 follows the life cycle of a single, per-lock, LPT entry,

first through the training phase and then through the prediction

phase. In the training phase (Fig. 6.a), when a previously

unseen lock is first acquired ( 1© in the figure), a new entry

in the LPT is allocated and cleared (the LPT organization

and replacement is discussed in Section III-C). SpecLock only

takes into account successful lock acquisitions. The V bit and

the lock’s Tag are recorded. The CAC is then incremented for

each time the lock is released and reacquired (blue critical

sections on the Core/$ P0 line) prior to the lock cache line

being invalidated by being requested by another core. When

another core later invalidates the cache line containing the

lock ( 2©), the core causing the invalidation is noted in the LA

field (P1 in this example), and the number of reacquisitions

is pushed into the weights FIFO (number 2 is placed in W0

here). We note, the training phase works similarly regardless

of whether the lock is currently held at the time an invalidation

arrives, to make SpecLock functional for both contended and

non-contended locks.

To reduce the probability of a premature forward, we bias

the predictor towards predicting to hold the lock by choosing

the maximum of the reacquisition counts in the weights FIFO

(W0 and W1 in Fig. 6). We make this choice because prema-

ture forwards actually introduce a latency penalty compared to

a baseline system where the lock would remain and simply be

reacquired by the releasing core; by contrast, conservatively

not forwarding locks matches the behavior of the baseline

system. Later, when core P0 acquires the lock from P1 ( 3©),

the LPT entry for this lock is found. Since there is already an

entry for this lock, the LPT entry is not changed, but the CAC

is reset to start counting the number of reacquisitions of the

given lock. Because the FIFO is not full (n in this example is

2), no prediction will be made yet. When core P1 invalidates

the lock cache line ( 4©), the CAC has been incremented to

2, thus the number 2 is pushed into the weights FIFO. Now

the LPT entry is full and ready for prediction (i.e. the entry

enters the Prediction phase). Note that a weights FIFO depth

of n = 2 represents a relatively aggressive predictor which

will begin prediction after only two iterations of training.

Other FIFO depths are possible, e.g. n = 1 would extremely

aggressively forward locks after only seeing a given pattern

once, while n = 4 would more conservatively require 4

consistent iterations before prediction would occur.
The prediction phase is shown in Fig. 6.b. In the figure,

prediction first starts with the predicting core acquiring a lock

for which an LPT entry has already been trained ( 5©). An LPT

entry is considered trained when all n weights in the weights

FIFO are full and the premature forward counter (PFC) is

below a given threshold (g). In this event, as in training, the

CAC is reset and each local reacquisition causes an increment.

When the CAC is equal to the greatest of the weights in the

weights FIFO ( 6©), then the cache line containing the lock is

speculatively forwarded to the predicted core (P1 in this case).

In the figure, we also see that P1’s LPT entry for this lock has

also been trained. Thus, once P1’s CAC hits its target, the lock

is speculatively forwarded back to P0 ( 7©).
1) Outcomes: SpecLock operates only on cache lines con-

taining locks. Moving a cache line containing a lock to

a remote core does not imply the thread in that core has

acquired the lock. Therefore, program semantics remain intact

and no rollback or other handling is required in the event

of a misprediction. At worst an incorrect prediction would

only lead to excess movement of the cache line. In addition,

since predictor state is maintained separately per lock address,

nested locks are orthogonal and supported. In the event that a

single cache line contains multiple locks, all locks are part of

the same predictions. Furthermore, if a thread if migrates to

another core, the corresponding LPT lines are cleared to avoid

mispredictions for the next thread.

B. SpecLock Messages

Modifications to the coherence protocol are not to be taken

lightly, as the effort required in validation of additional durable
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or transient states can be quite high [32], [9]. Thus, SpecLock

does not modify3 the coherence protocol, but instead adds two

non-coherence “hint” messages.

The first and most important message is the “lock forward”

(LOCK FWD) message. Upon predicting that a lock should

be transferred to another core, the releasing core sends this

control message to the recipient core, ( 6© in Fig. 6). This

message is a prefetch hint to the receiving core that it should

issue a read exclusive to its local L1 cache for this address. The

receiving core then invokes the unmodified coherence protocol

(e.g., MESI [53]) to invalidate remote copies, 6© and claim

ownership of the lock in its local L1 cache, 7©.

Although this method introduces one extra round-trip of

communication, we make this choice because cache coherency

protocols such as MESI do not support receiving cache lines

that they did not request. By making the cache line request

originate from the receiving core, the cache coherency protocol

is invoked the same as if the recipient core requested the cache

line. This way, the LOCK FWD message only needs to reach

the cache coherence controller in the recipient core’s L1 cache

and not the core itself. Also, no modifications are needed to

the cache coherency protocol.

In the event that a given lock is either forwarded to an

incorrect destination or prematurely forwarded (case 3 or case

4 in Section III-A1), the sending core would never receive

feedback as to the accuracy of the predicted next acquirer

of the lock. Thus, SpecLock uses an additional message, the

negative acknowledgment (NACK), to gain feedback on the

quality of its predictions. This feedback message is sent from

the recipient core back to the predicting core. If the lock was

acquired by the recipient core, the prediction was correct and

no message is sent back. Otherwise, if the lock was acquired

by any other core before the recipient lock acquires it, a NACK

is sent back to indicate that the prediction was incorrect.

In the event that the NACK was caused by a premature

forward, the releasing core will increment the PFC field of

the associated LPT entry. If the total number of premature

forwards surpasses a threshold, the LPT entry for that lock

is erased to prevent future premature forwards4. Note there

is no dependency between the NACKs and LOCK FWD

messages, thus they need not be placed in different virtual

channels (VCs) [11]. both LOCK FWD and NACK messages

can be dropped with no impact on correctness, but a possible

performance degradation.

C. Lock Prediction Table (LPT) Organization

To keep SpecLock scalable, each core maintains its own

LPT to record history, as shown in Fig. 5. Entries in the

LPT are allocated upon new lock acquisition as described in

the previous sections. The LPT is organized as a 4-way set

associative cache. If the LPT entries are all full, a replacement

candidate must be chosen. Through experiments, we observed

3It is assume the requester core-id exists in the request message.
4We also examined forwarding the lock to the LLC in the case of too many

inaccurate predictions. However, we found this to have no significant impact
on performance and dropped it from the final technique.

that many locks do not have any sharers. Thus, we first try to

replace any entry which has a Last acquirer field empty. If no

such entry exists, the entry with the highest total number of

premature forwards will be replaced.

D. Implementation

The size of the LPTs and the depth of each FIFO poses

minimal overhead, shown in Fig. 5. Each LPT entry is 12

bytes assuming the following: 64-bit addresses, a FIFO of

depth two (each 8 bits), 6 bits for core identifiers (64 cores),

4 bits for premature forward count, and 8 bits for CAC. We

empirically determined that the number of live, shared locks

rarely exceeded 100 across the benchmarks we examined.

Thus, we implemented 128 entries in the LPT per core. There-

fore, the LPT is ∼2KB per core. Assuming 64MB total on-

chip caching, the additional storage for the LPTs is negligible

(0.2%). We quantify the power overhead of accessing the

LPTs in Section V-F. In order to be able to send ACK/NACK

response, a small 16 entry 9-byte table is implemented in each

core to buffer 64-bit addresses and 6 bits for core identifiers.

Given the small size, 128 entries and 4-way set associativity

of the LPT, we estimate two cycles is all that is required to

read or write the appropriate row. A further cycle is required

for any modifications prior to writing the row back. This delay

has little impact because lock forwarding speculation need

only be as fast as the time between lock release and the next

acquisition for that lock. That time is rarely small enough that

an additional few cycles to make the prediction would have an

impact. This observation lets us pipeline the lock prediction

structures as needed to increase clock frequency. Therefore,

the additional lock speculation logic has no impact to the chip

multiprocessor (CMP)’s clock frequency. Further, the LPT is

only accessed upon a write to a lock cache line, thus it has

no impact on L1 cache access time.

IV. METHODOLOGY

We perform full system simulations using the GEM5 simu-

lator with the Ruby memory system and the Garnet network on

chip model [4]. We use a CMP with 16/64 Alpha cores [40],

32KB 2-way L1 cache with 3 cycle-access, a shared distributed

(2MB per core) 8-way set L2 cache with 15 cycle-access, a

128 entries 4-way LPT with 2 cycle-access, and 4-hop MESI

coherence protocol. Also, four Micron MT41J512M8 memory

controller (one at each corner), a DDR3-1600 x64 channel, and

4×4, 8×8 mesh NoC is considered. We show results below for

both in-order cores and out-of-order cores. Unless otherwise

specified, there is no prefetching. We discuss the impact of

prefetching in Section V-E. PFC threshold (g) is set to 2 in

order to minimize premature forwards and the weighted FIFO

size is set to 2. Also, there is one thread per core with no

migration.

We use applications from the PARSEC [3] and Rodinia [8]

benchmark suites that represent a variety of lock sharing

patterns with their pre-defined medium-size inputs by default.

We use Cacti 6.5 with a 32nm process [37] to estimate the

power and area of caches and LPTs. For power, we also use the
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Fig. 7: Speedup (execution time decrease) for different bench-

marks normalized to the baseline with 16-cores.

activity factors of each structure of SpecLock. We configure

SpecLock as described in Section III-D.

We evaluate SpecLock against the following schemes:

• Baseline no lock speculation.

• Push2LLC where locks are always always pushed to the

LLC when released.

• All four schemes proposed by Lucia et al. [38]

(though not evaluated in their paper) including: First-

to-acquire (FA), Last-to-acquire (LA), Most-frequent-

transition (MT), and Most-frequent-acquire (MA). We

find that MA is their most accurate scheme and so it

is used exclusively in several graphs to be more succinct.

• Delayed Lock a delay scheme, Rajwar et al. [49].

In baseline, to maintain inclusivity, the current holder of a

lock first forwards it to the directory, which then forwards

it to the requester. In MA, each core forwards locks to a

remote core that most often requests it. In delayed lock, once

a request arrives from a remote core for a lock, in the event

that the lock is currently held, the response is delayed by a

configurable number of cycles to provide time for that lock

to be released and avoid unnecessary coherence events. We

configure the delay response to be 128 cycles, derived from

observing average lock re-use times and round-trip latencies.

V. EVALUATION

A. Execution Time

Fig. 7 shows execution time results for SpecLock compared

to Push2LLC, MA, and Delayed Lock on the 16-core system.

As shown in Figure 7, SpecLock provides an average 7%

speedup for 16 cores (results improve to 10% for 64 cores

as discussed in Section V-B), compared to the baseline.

Looking at individual benchmarks, the largest speedups are

for fluidanimate, followed by streamcluster and blackscholes.

These benchmarks tend to be more well balanced [17], which

means that the lock acquisition latency is more likely to

dominate the critical path. Fluidanimate in particular exhibits

many ping-pong style lock sharing patterns, which are more

easily predictable. In contrast, benchmarks less well balanced

(e.g. those which are pipeline parallel such as x264) see less

impact as any latency reduction is overshadowed by other

overheads.

Fig. 8: SpecLock speed-up (execution time decrease) compar-

ison for 16- and 64-core CMPs normalized to the baseline.

Compared to MA [38] and Delay Lock [49], SpecLock

sees an 8% and 4% speedup improvement, respectively. Strik-

ingly, MA actually decreases performance versus baseline on

average. This is because MA does not take into account

repeated re-acquisitions locks by the local core, thus for many

benchmarks MA leads to many “Premature Forwards” (see

Section III-A1) which incur extra latency as the lock cache

line is shuttled back and forth for benchmarks with many re-

acquisitions (bodytrack, swaptions and vips). In fact none of

the four predictors defined by Lucia et al. [38] can appropri-

ately predict the repeated reuse of locks by the same core that

we see in real workloads, leading to high levels of premature-

forwarding. Predicting the repeated acquisition pattern seen in

real workloads is a principal advantage of SpecLock. Similarly,

we see that Push2LLC serves to hide acquisition latency for

some benchmarks without the possibility of forwarding to the

wrong core. However, as with MA, Push2LLC fails to consider

re-acquisition by the same core, as we later elaborate.

We also note, Delayed Lock and SpecLock are orthogonal

in that they address different components of critical section

latency (contended lock delay versus coherence delay in non-

contended locks). Implementing both techniques together pro-

vides further, small (∼1%) speedup average above SpecLock

by itself, across these largely non-contended benchmarks.

B. Scalability

Fig. 8 shows the performance scalability for SpecLock

going from 16 cores to 64 cores. For this number of cores,

SpecLock scales well, with an average performance increase

from 7% to 10%. Generally, going to 64 cores leads to more

coherence delays as more locks are transferred between cores,

thus most benchmarks experience some gain. In vips and x264,

performance degrades slightly going to 64 cores. In vips, lock

contention becomes more common as the benchmark scales.

x264 is a pipeline parallel benchmark, thus it exhibits poor

load balance, which worsens as it scales to 64 cores.

C. Accuracy

Fig. 9 shows the accuracy breakdown for lock forward spec-

ulation per benchmark for 16 cores, baseline versus four lock

prediction schemes proposed in [38] and SpecLock (Spec).

Speculation is considered accurate if it correctly predicts that
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Fig. 9: Accuracy comparison for Baseline (B), Most-frequent-

acquire (MA), and SpecLock (Spec), from left to right. The

green colors (Hold and Ack) reflects the accuracy obtained

through lock prediction. The inaccuracy is represented by gray

colors (Nack and Invalidation).

the lock will be reused and does not forward it (Hold) or if

it accurately predicts the recipient core, forwards the lock to

that core, and that core uses the lock before eviction (Ack).

A prediction is considered inaccurate if the lock is invalidated

while being held (Invalidation) or if it is sent to another core

which does not use it prior to eviction (Nack). On average,

SpecLock’s total prediction accuracy (Hold plus Acks) is 87%

across benchmarks, with streamcluster being the highest at

96% and bodytrack the lowest at 46%.

To illustrate the native number of holds and invalidates for

these benchmarks, Baseline (no prediction) is included in the

figure. We notice that the number of holds is comparable

between SpecLock and baseline. This indicates that SpecLock

avoids premature forwards, which leads to less invalidations

and improve performance. This is in sharp contrast to the

other four predictors where premature forwards occur often

and show low accuracy as evident by the number of Nacks.

When SpecLock does forward a lock, it shows good accuracy

as evident by the number of Acks.

Interestingly, we see that although the best performing

benchmark, fluidanimate, has a high prediction accuracy, it

only shows a small fraction of actual forwards (Acks plus

Nacks) relative to Holds. In fluidanimate, although remote

acquisitions are greatly outnumbered by local acquisitions,

there remain enough remote acquisitions to impact perfor-

mance when accurately predicted. We see that MA significantly

outperforms the other techniques proposed in [38]. Neverthe-

less, all are much less accurate than SpecLock with the same

number of prediction table entries, with an average of only

∼50% across our benchmarks. This is largely because of these

techniques’ inability to predict local re-acquisitions.

D. Out-of-Order vs. In-Order

We also examine the impact of SpecLock on out-of-order

(OOO) cores. Fig. 10 presents speedup results of SpecLock on

an OOO machine normalized to an OOO baseline for a 16-

core CMP. The figure also reproduces the results for SpecLock

on an in-order machine from Fig. 7 normalized against an in-

order baseline. The figure shows slightly lower speedup with
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Fig. 10: Speed-up of SpecLock running on out-of-order cores

versus in-order.

out-of-order cores versus in-order cores. This is because OOO

execution can cover only a small amount of the latency of

synchronization instructions (e.g., LLSC) due to coherence.

Generally, OOO cores must serialize to ensure correctness

when entering a critical section. An OOO core cannot execute

around locks to improve performance as with typical memory

instructions and thus, an OOO core behaves like an in-order

core when executing those instructions.

E. Prefetching

To study the effects of prefetching, we enable a stream

prefetcher with a typical configuration in each core’s private

L1 cache [25]. Each core’s prefetcher uses 4 streams, 4 cache

misses before creating a stride (training misses), 8 non-unit

stride filters, and 8 unit stride filters. we see that on average,

enabling the prefetcher actually hurts performance slightly

(without SpecLock), as the same is reported in [26], [2]. This

is because in some benchmarks, naive prefetching can cause

a premature forwarding of shared data and/or locks between

threads, leading to greater memory latency and lost perfor-

mance as this data is ping-ponged around. Unlike SpecLock,

prefetchers are poor at predicting the time locks need to be

prefetched, because prefetchers are typically receiver-initiated

but the optimal time depends on when the sender releases lock.

F. Area and Power Overhead

Considering an 128-entry LPT with 12-byte entries and

four-way set associativity, the power consumption and area is

just less than 2 mW and 2291 um2 . In contrast, the CMP’s

collection of 32KB L1 and 2MB L2 cache space per core

(128MB in total for 64 cores) consumes 69 mW and 1454

mW , respectively [37]. The area occupied by these caches

is 68841 um2 and 1160000 um2 respectively. The per-core

LPTs represent a negligible power and area increase relative

to the on-chip caches of our CMP. In fact, for single-threaded

applications, the LPT structure can be power gated to eliminate

static power as well. In addition, SpecLock’s LPT structure is

75% smaller than the equivalent structures for MA with the

same number of entries.

In addition, SpecLock actually decreases bytes transferred

over the network by approximately 2% on average. Here,

the reduced sharing latency actually leads to shorter critical
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section times, which in turn reduces the chance that another

core will cause a lock invalidation during the critical section.

This reduces the number of invalidation messages.

VI. DISCUSSION

Lock speculation is best left to hardware as most locking

primitives are implemented in the OS through posix system

calls. As a result, it would be very difficult for the application

programmer or compiler to insert appropriate prefetch instruc-

tions ahead of a given system call. System calls themselves

are quite short so inserting the prefetch instructions in the OS

at compile time would do little to hide the lock access latency.

Further, lock acquisition patterns would be difficult to predict

at compile time since they are often data dependent.

Here, SpecLock is implemented in a system using the Alpha

ISA with LLSC as the underlying synchronization instruction.

Nevertheless, SpecLock is easily implementable with minor

modifications in systems employing single, atomic, read-

modify-write instructions such as the x86 XCHG instruction.

VII. RELATED WORK

Push protocols [44] add prediction information to directories

in order to predict future readers of cache lines. However,

such protocols attempt exclusive push predictions only when

the sharing pattern is observed to be between just two nodes.

Alternative sharer prediction protocols [29] are tailored to

cache lines with multiple readers, and thus do not directly

apply to exclusive acquisitions, such as for locks.

Further past work motivates lock prediction by describing

use cases and designing simple predictors [38]. We show that

those methods compare poorly to SpecLock. The predictors

described in [38] cannot appropriately predict the repeated

reuse of locks by the same core that we see in real workloads,

leading to high levels of premature-forwarding. The principle

novelty of our approach lies in counting local reacquisitions to

avoid premature forwards and reduce the latency of acquisition

of non-contended locks. In addition, [38] does not implement

those predictors in a system.

Biased locks [58], [10], [51] identify a dominant thread for

each lock that is most likely to request it at any one time,

and always forward locks to the dominant thread. This differs

from SpecLock in that all cores make the same prediction for

each lock. Taking into account the releasing thread has been

shown to outperform approaches that do not [38].

SpecLock is orthogonal to dead block prediction [31] be-

cause this prediction simply concerns itself with identifying

blocks (cache lines) that are likely to be dead, not where they

will be requested from next. This is much like dynamic self-

invalidation [34]. In addition, this research shows that counting

algorithms do not do well in dead block prediction, whereas

we show they work well for lock prediction.

Hardware and software support for efficient locks has been

well researched in multiprocessor systems [21], [27]. Hard-

ware support for fairness sequences threads in FIFO order

according to the time they attempted to acquire the lock [33],

[57], [52], [20], [36], [18]. Alternative approaches record

and maintain the state of frequently synchronized data with

hardware support [62]. Fairness can also be achieved entirely

in software [43].
Tournament locks and barriers also increase the scalabil-

ity of locks by using a communication pattern of a binary

tree [19]. Real-time nested protocol (RNLP) locks are an

alternative fine-grain locking mechanism [59]. Other work

implements FIFO ordering in software instead [45].
Further work proposed techniques that speculatively execute

critical sections [50], [39], [50], [46]. Such techniques usually

focus on performance at the expense of complex mechanisms

to abort execution and revert to a previous state and to detect

conflicts. Speculative lock elision (SPE) [50] prefetches data

in a critical section, not the lock itself. Thus, SPE is orthogonal

and complementary to SpecLock.
To address messaging caused by spinning threads, prior

work uses different but related cache lines for threads spinning

on the same lock [41], [13]. Another approach associates a

private mutually exclusive variable (mutex) for each cache

line at each core [23]. Alternatively, spinning can be per-

formed in the memory controller with dedicated hardware

support [42]. The memory controller can also be extended to

perform atomic operations in order to reduce the amount of

communication [61]. Dedicated hardware can also accelerate

message passing and task scheduling to avoid modifying

the memory controller [48]. Alternative approaches propose

synchronization without the use of locks such as tagged

memory [1], [22], [30], [12].
SpecLock is synergistic to techniques that make the lock

acquisition pattern more predictable and speculative critical

section execution [50], [39] because it helps with cases where

locks are not forwarded to the correct core. In addition,

SpecLock reduces the cases where speculative critical section

execution is necessary.

VIII. CONCLUSION

In this paper, we introduce SpecLock. SpecLock predicts

lock sharing patterns and speculatively forwards locks as they

are being released to the core that is most likely to request

them next. This hides the latency of the next core to acquire

the lock. Cores make this prediction independently and thus in

a scalable manner and without modifying the cache coherence

protocol. SpecLock captures 87% of the sharing patterns

correctly. By reducing lock acquisition latency, SpecLock

provides a 7% average speedup for 16 cores and 10% for 64

cores, shows good scalability, and outperforms competition

with a smaller area (75% reduction) and power overhead.

SpecLock advances the state of the art by predicting both the

acquisition pattern and time of locks.
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