4D-2

A Generic FPGA Accelerator for Minimum Storage
Regenerating Codes

Mian Qin*, Joo Hwan Lee!, Rekha Pitchumani, Yang Seok Kif, Narasimha Reddy* and Paul V. Gratz*
*Texas A&M University, USA
{celery1124, reddy } @tamu.edu, pgratz@gratz1.com
TSamsung Semiconductor Inc., USA
{joohwan.lee, r.pitchumani, yangseok.ki} @samsung.com

Abstract— Erasure coding is widely used in storage systems
to achieve fault tolerance while minimizing the storage over-
head. Recently, Minimum Storage Regenerating (MSR) codes
are emerging to minimize repair bandwidth while maintaining
the storage efficiency. Traditionally, erasure coding is imple-
mented in the storage software stacks, which hinders normal
operations and blocks resources that could be serving other
user needs due to poor cache performance and costs high
CPU and memory utilizations. In this paper, we propose a
generic FPGA accelerator for MSR codes encoding/decoding
which maximizes the computation parallelism and minimizes
the data movement between off-chip DRAM and the on-chip
SRAM buffers. To demonstrate the efficiency of our proposed
accelerator, we implemented the encoding/decoding algorithms
for a specific MSR code called Zigzag code on Xilinx VCU1525
acceleration card. Our evaluation shows our proposed accelerator
can achieve ~2.4-3.1x better throughput and ~4.2-5.7x better
power efficiency compared to the state-of-art multi-core CPU
implementation and ~2.8-3.3x better throughput and ~4.2-5.3x
better power efficiency compared to a modern GPU accelerator.

I. INTRODUCTION

With the explosive growth of data in the era of cloud
computing, reliability is a major concern in storage systems
as their underlying components are highly susceptible to write
induced wear [5]. Traditionally, replication schemes are used
to provide fault tolerance. However, as the enormous scale
of data volume demands, more sophisticated erasure coding
techniques are used to minimize storage overhead. Currently,
Maximum Distance Separable (MDS) codes, such as Reed-
Solomon codes, are widely employed in both local storage
systems [12] and large distributed storage systems [20, 17].

Although MDS codes provide significantly better reliability,
while sacrificing the least amount of storage overhead, they
impose a huge burden on repair bandwidth when rebuilding
data in the event of failure [4]. Recently, a new class of erasure
codes called Minimum Storage Regeneration (MSR) codes
have been proposed [4, 18, 19] as an alternative to MDS
codes. MSR codes minimize the data required for rebuilding
while maintaining optimal storage efficiency. Although MSR
codes reduce the amount of data required for rebuilding, the
computation cost for encode and decode remains high, com-
parable to MDS codes, which are highly CPU and memory
intensive [13, 10, 22]. Table I shows the experimental results
for a specific MSR code (Zigzag code) encoding using GF-
Complete library [14] on a modern Intel CPU. As shown in the
table, the encode throughput doesn’t scale well with increased
number of threads. This is caused by poor cache performance

TABLE I: Zigzag encode performance for 64MB object size
using GF-Complete library [14].

of threads 1 4 8 12 16
Throughput

(GB/sec) 2.18 | 7.67 10.64 | 10.96 | 10.98
LLC hitrate | 04 | 0.014 | 0.02 | 0.007 | 0.007
DRAM util

(GB/sec) 9.53 | 40.99 | 59.55 | 63.22 | 64.60

which saturates the system DRAM bandwidth. Thus, it’s worth
considering designing more efficient hardware architecture to
offload erasure coding computation from CPU.

Traditional accelerators such as GPUs and FPGAs suffer
from extra data movement between host and accelerator
memory [2]. However, recent efforts of RDMA NICs [6] and
the emerging PCle peer-to-peer (P2P) communication between
PCle devices [1] (such as NVMe SSDs, NICs and accelerators)
enable inter and intra server data movement to be almost
free with minimum CPU intervention. With these efforts, the
offloaded erasure coding computation can be carried out in
the accelerator on the fly without moving data back and forth
between the host and the accelerator. This makes offloading
erasure coding computation further appealing.

The above observations motivate us to design efficient
accelerators for MSR erasure code, which can free the host
CPU and memory for supporting other applications; a solution
that is both economical (cheap hardware versus expensive
server CPU) and power/energy efficient. Considering erasure
coding is pure fixed-point computation, FPGA is a more
efficient platform compared to floating-point optimized GPU.

In this paper, we describe a generic FPGA accelerator to
perform the code construction and data rebuild for Minimum
Storage Regenerating Codes. In our design, we leverage the
abundant logic and memory resources in FPGA to provide
massive parallelism for encode/decode computation and re-
duce unnecessary data movement between off-chip DRAM
and FPGA on-chip BRAM buffer through analyzing the
memory access pattern for MSR code construction and data
rebuild. We implement our accelerator on a Xilinx VCU1525
board and compare against the state-of-art software MSR code
implementation with GF-Complete library [14]. Our proposed
design shows superior benefits on both performance and power
efficiency.

To summarize, we make the following contributions:

1) A generic hardware architecture to process code con-
struction and data rebuild for MSR codes. This architec-
ture maximizes parallelism for the finite field operations
used in erasure codes and minimizes data movement

271

9781JR§&1§'%Z&W§(§J&@H%¥%$@%S A M University. Downloaded on September 02,2020 at 16:28:11 UTC from IEEE Xplore. Restrictions apply.

from off-chip memory, to address the problems in tra-
ditional CPU implementation.

2) Demonstration of a flexible and easy to maintain
OpenCL implementation leveraging Xilinx High Level
Synthesis to implement such an accelerator for MSR
code construction and data rebuild.

3) Experimental evaluation of the proposed approaches
on a state-of-art FPGA accelerator card, comparing
performance with CPU and GPU implementation.

II. BACKGROUND

In this section, we briefly describe the theory of erasure
coding and Minimum Storage Regeneration (MSR) codes.
Then we demonstrate the code construction and data rebuild
algorithms for a specific MSR code called Zigzag [18] code.

A. Erasure Code and MDS codes

In storage systems, erasure codes are exploited to tolerate
storage failures with less extra storage. Maximum Distance
Separable (MDS) codes achieve ideal storage overhead. Con-
sider an erasure coded system composed with total number of
n nodes. We split them into k information nodes and r = n—k
parity nodes. We denote the erasure code configuration as
{n, k}, and we refer to a node as an independent failure point
such as a disk or a storage node in the data center. We stripe
the data object (a.k.a. stripe) into k£ even size information
fragments and apply erasure codes to generate r even size
parity fragments and store them in the information nodes and
parity nodes respectively. MDS codes have the property that
they can recover from up to n — k failures of any nodes.

The encode procedure of MDS codes can be generalized
as linear arithmetic operations in Galois Field as shown in
equations 1 where each element in the matrix is a codeword
(minimum data size to operate in Galois Field). The decode
procedure for m-node failure (m < n — k where n — k is
the maximum number of nodes failure that MDS codes can
tolerate) can be achieved by solving the linear equation 1
(the coefficients matrix C' must be invertible to guarantee the
feasibility of decoding).

Py 1,1 C1,2 C1,k Dy
Py C21 C2.2 C2 k D,

= * (D
Pm Cm,1 Cm,2 Cm,k Dk

B. Minimum Storage Regenerating (MSR) codes

Regenerating codes were first introduced by Dimakis et
al. [4] to reduce the high repair bandwidth of MDS codes in
distributed storage systems. Minimum Storage Regenerating
(MSR) codes offer the same storage-availability trade-off as
MDS codes while minimizing the repair bandwidth. Here we
will briefly introduce the specific MSR code used in this paper,
Zigzag [18] code, with an example to intuitively illustrate how
MSR codes generally work. Other MSR codes [19, 21] follow
the same principles.

Zigzag encode. The data object to be stored will be first split
into k£ even fragments. Each fragment is further partitioned
into m data elements as shown in Fig 1 (when m = 1, it
degenerates into to MDS code). In this paper, we will refer

4D-2

{n, k, m} as the configuration parameters for Zigzag code
where n is the total number of storage nodes. (For detailed
zigzag code parameters, please refer to [18].) The Zigzag code
parities are encoded as follows:

1) For each data element in a parity fragment, find a
specific data element in each information fragment (the
specific data element index is determined by the code
design), totally k data elements.

2) Each data element in the parity fragment is generated
by the k corresponded information data elements using
Galois Field operations with the following formula:
pi=3_1Cidjs (1<i<N)

Where N is the number of codewords in each data
element.

We generalize several parameters for the above procedure.
For each data element in the parity fragments, there is a set
of indices {Iy, I, - , I} indicating the location of the data
element in each information fragment and a set of coefficients
{C1,Cy,- -+ ,C}y} for calculating the parity data element. In
total there are (n — k) x m sets of those indices/coefficients
parameters to finish the entire encode procedure.

To better understand the description above, consider an
MSR coded storage system with 4 information nodes and 2
parity nodes as shown in Fig 1. Each data fragment contains
8 data elements. Codewords in the first and third data element
of the first parity fragment are calculated as:

P]-rl:1*D1r1+1*D2r1+1*D3r1+1*D4r1 (2)
P23 =1%Dl,3+2% D24 +1%xD3.1 +1x D47 (3)

The corresponding indices sets are {1,1,1,1}, {3,4,1,7}.
The coefficients sets are {1,1,1,1}, {1,2,1,1}.

Information fragments Parity fragments

[x1 [x1 [x1 [x1 ¥

B | r1

x1 \ r2
r3

r4
r5
ré

—x1 r7

|
|
1
I —Ix2
|
|
|
|

D1 D2 D3 D4 P1 P2
Fig. 1: MSR codes encode example.

Zigzag decode. In this paper, we focus on MSR code rebuild
for only the single erasure case, since single node failure is
the most common case [16].

The data rebuild formula for single erasure is nearly iden-
tical to the code construction formula (linear algebra trans-
formation). Similarly, we define indices set {I1, s, -+, I}
to indicate the location of the data elements in surviving
information/parity fragments needed for rebuild (each rebuild
data element is generated from k information/parity data
elements [18]) and coefficients set {Cy,Cy, - -+, Cy} for cal-
culating rebuild data words in each data element. As shown
in Fig 2, the rebuild data in the first and third data element in
the erased fragment is calculated as:

D]-rl:]-*Plrl+1*D2r1+1*D3r1+1*D4r1 (4)
Dl,3=1xP2,.3+2+«D2,4+1xD3,1 +1%xD4,.7 (5

272

Authorized licensed use limited to: Texas A M University. Downloaded on September 02,2020 at 16:28:11 UTC from IEEE Xplore. Restrictions apply.

As illustrated in Fig 2, the rebuild for single erasure case
for MSR codes require much less the data compared to
conventional MDS codes such as Reed-Solomon codes.

Survival fragments Rebuild fragment

[x1 i

|x1

rl
r2
r3
r4
r5
ré
r7
r8

D2 D3 P1 P2 rebuild D1
Fig. 2: MSR decode example (The solid filled boxes are the
data needed for rebuild.)

D4

III. PROPOSED ARCHITECTURE

In this section, we will describe the accelerator architecture
for encode/decode offloading for Zigzag code. While it is
intended for Zigzag code, this architecture can be easily
extended to other MSR codes.

512 bits Processing Unit coeff

GF multiply table
e Lookup Table
= | :.K::> index = >
table GF multiply
Storage Lookup Table
devices address i —
controller GF multiply 8bits.
ll ll Lookup Table\
,’\ e
SRAM — N\ ,Jz GF multiply /
buffer — "\ C Lookup Table
§ . 64 parallel
Host Memory Unit k SRAM buffers [Hive

Fig. 3: Overall accelerator architecture.

The overall diagram for our proposed architecture is shown
in Fig 3. The architecture is mainly composed of two com-
ponents. First, the memory unit holds the information and
parity fragments that are transferred from host memory or
storage devices. The memory unit uses the off-chip DDR
memory connected to the FPGA. Second, the processing unit
which process the data from the memory unit and perform
the actual encode/decode computation. There can be more
than one processing unit connected to the memory unit to
fully utilize the off-chip DRAM bandwidth and hide memory
latency, assuming FPGA resources are available.

A. Memory Unit

The memory unit temporarily holds the input data for
the encode/decode processing and the output results (parity
fragments and rebuild information fragment for encode and
decode respectively). For encoding, the information fragments
will be transferred to the memory unit from the host. The
encoded parity fragments will be written back to the memory
unit after processing unit fetches the information fragments
and finishes processing. Finally, the information and parity
fragments will be transferred to the storage nodes through P2P
transfer. For decoding, the data fragments needed for rebuild
will be transferred to the memory unit from the surviving
storage nodes through P2P transfer. After the processing unit
finishes the decoding process, the rebuild data will be stored in
the memory unit and transferred back to the host or to a new
storage node depending on the recovery process. All the in-
put/output buffers in the memory unit are allocated/deallocated
through the OpenCL framework dynamically.

4D-2

B. Processing Unit

The processing unit consists of mainly three parts. The
SRAM buffers which hold all or part of the input data for
the encode/decode process. The address calculation controller
which manages how the data is fed in the SRAM buffers from
the memory unit and how the data is read from the SRAM
buffers for encode/decode computation and how the results
are written back to the memory unit. The ALU unit which
computes the Galois Field multiply-add arithmetic.

SRAM buffers. In each processing unit, we use k separate
SRAM buffers where % is the number of information nodes in
our Zigzag code configuration to hold partial or all of input
data for computation. The SRAM buffers are implemented
using the BRAMs in the FPGA. The SRAM buffers are
a key design to minimize the traffic to the memory unit.
Taking encode process as an example (which is similar to
the decode process), remember that each codeword in the
parity fragments is generated by operating on k£ codewords
from k different information fragments with different relative
offsets. To improve the data reuse rate, we need to buffer
all the data elements for every information fragment in the
SRAM for future use. Thus, £ SRAM buffers will buffer all the
codewords required to calculate the codewords for all parity
fragments. With the design of k& separate SRAM buffers, each
byte of the input data only needs to be read once from the
memory unit to the SRAM buffers once which significantly
minimize the data movement between off-chip DDR memory
and FPGA logic.

To maximize the memory unit bandwidth utilization and
the process throughput, the data are packed to 512 bits when
being transferred from or to the memory unit. Each memory
buffer is organized as 512 bits width dual-ports RAM. Thus,
the data is read, written and processed in 512 bits granularity
per cycle in the processing unit.

The detailed illustration for the memory layout of the input
and output data in the memory unit and how data is moved
into the SRAM buffers will be demonstrated in section III-C.

Address calculation controller. The address calculation con-

troller is the most complex control unit. It has three tasks.
o Read the data from memory unit input buffer to £ SRAM

buffers. This includes slicing the data elements and read
per sliced data in each data element to the SRAM buffers
when stripe size is too large.

o Read the data from SRAM buffers in parallel and feed to
the ALU units for the encode/decode computation (Galois
Field arithmetic).

o Write the results (parity codewords or rebuilt data words)

to the ou%put buffer in the memory unit. .
Once the Zigzag code configuration «?n,k;,m} is fixed,

the indices sets for accessing the information fragments to
generate each parity data element are also fixed. We pre-
calculate these indices sets offline and use a table to store these
indices sets in the FPGA. These indices sets will be used for
the address calculation controller to fetch the data from SRAM
buffers to the ALU units to perform the computations.

ALU unit. The ALU unit are the core computation logic
to perform the Galois field arithmetic to generate the parity
and do data rebuild for Zigzag code. As we discussed in
section II, both encode and decode process for the Zigzag

273

Authorized licensed use limited to: Texas A M University. Downloaded on September 02,2020 at 16:28:11 UTC from IEEE Xplore. Restrictions apply.

code or any other erasure codes are composed of only Galois
Field multiply-add operation. Thus, our ALU unit is designed
to perform only Galois Field multiply-add operation. In our
implementation, we use lookup tables to implement Galois
Field multiply and bitwise XOR to implement Galois Field
add which can make the most of the massive LUT resources
in FPGA. All Galois Field operations are in 8-bit granularity
which is a good parameter for lookup table size. Unlike
the “’single-instruction-multiple-data” (SIMD) unit in the CPU
which only operates on two input operands, we leverage
the abundant logic resources in the FPGA and designed a
pipelined tree structure to perform multiple inputs gf multiply-
add operations in pipeline as shown in Fig 3 on the right side.
Similar as the indices sets, we store the fixed coefficients sets
as tables in the FPGA to compute parities.

The pipelined tree structure for Galois Field multiply-add
operation in our design has two advantages compared to the
SIMD unit in the CPU. First, data is processed with better
parallelism. Second, to generate each output codeword, each
input codeword (operand) only needs to be read once from the
SRAM buffers. While in the CPU implementations, this needs
to be done in a loop to read the input codewords (operands)
from cache iteratively. Since the useful cache lines may be
evicted to lower level cache or even DRAM, this will cause
stalls in the SIMD pipeline and extra power to move the data.

C. Process Stages

To better demonstrate how our accelerator works, we will
describe the process stages for single encode or decode task.
Since the computation and data flow for encode and decode
are similar, we do not differentiate encode and decode.

The processing unit is able to handle an arbitrary length
stripe size. This is important for erasure codes since different
storage systems may require different stripe sizes. Thus, the
process stages for each encode/decode task may include one
or more passes, each process pass contains three phases as
follows.

Read phase. In the read phase, the address calculation con-
troller will control the memory read from the off-chip memory
unit and write to the SRAM buffers. Each SRAM buffer holds
part or all of the input data fragment. If the size of the input
data is small enough that can be filled entirely in the SRAM
buffers, the whole process will be done in one pass. However,
if the size of the input data is larger than the SRAM buffers,
the input data will be partitioned properly and read into to the
SRAM buffers for further processing. In this way, the whole
process will be done in several passes.

To maximize the off-chip memory unit bandwidth perfor-
mance and reduce energy, the partitioned areas are 4KB to
match the internal DRAM page size to improve row locality.
If the stripe size is small enough that can be filled entirely
in the SRAM buffers, all the data will be fed into the SRAM
buffers in one pass (sequentially read for each fragment). If
the stripe size is too large the data will be read from memory
unit data slice by data slice to the SRAM buffers.

Computation phase. In the computation phase, the process-
ing unit will apply the code construction and data rebuild
algorithm described in section II-B. The indices sets and
coefficients sets for the data element will be applied here for

4D-2

each data slice. The address calculation controller unit will
control the memory read according to the pre-stored indices
table and read the correct data slices from the £ SRAM buffers
simultaneously. The read data will be fed to the ALU units for
parity calculation or data rebuild as described in section II-B.

Write phase. Since computation phase is fully pipelined, the
output results from the ALU units can be written to the off-
chip memory unit immediately. It can be considered as adding
one more pipeline stage after the XOR tree. Since the data
is partitioned when read into the SRAM buffers, the output
results’ written back to the memory unit is also partitioned. In
the first process pass, the parities generated will be written to
the output fragments. In the second process pass, the parities
generated will be written to the output fragments.

time

RD_O | RD_1 || RD_k-1 | PROC_O | PROC_1 ||

s,

! Process m output slices ! ! Process m output slices !
T
1
1

'
ro_o | ro_t |..| Rok1 [proc_o | proc_t .| PROS- pROC. |
- - - - — m-1 m-1
I
1
1

Read k input slices WRO | WR1 |..|WRmi

Read k input slices WRO | WR1 | |WRm1

. Pipeline write 1 | Pipeline write
1 m output slices 1 1 m output slices

process pass 1 process pass p

Fig. 4: Timing diagram of the process stages workflow.

Fig 4 illustrates the timing diagram of the three process
stages for the accelerator. Consider Zigzag code n, k, m, there
are k input data fragments and r = n — k output data
fragments. Let’s take encode procedure as an example here
(for decode is similar). The input data is larger than the
internal SRAM buffers size and it needs p passes to process
the whole input data and p is equal to the number of data
slices partitioned for each input data element.

D. Other Considerations

Multiplexing resources for encode and decode. Since both
the data flow and computation for encode and decode are
similar, as shown in section II-B. We can multiplex most of
the hardware resources (SRAM buffers, ALU units) to conduct
both encode and decode procedure. In our design, we have
separate tables to store the indices/coefficients sets for encode
and decode. The host can setup different kernel parameters
to control the kernel launch of different functions (decode or
encode).

Batch processing. For processing small size data, the kernel
launch overhead and data migration overhead from host to
accelerator and vice versa is non-negligible. In our design,
we also implement a batch process to process multiple same
size input data in single kernel launch. The batch size is also a
separate parameter for setting up the kernel. The batch process
support is implemented by slightly modifying the address
calculation controller to continuously read, compute and write
after finishing each encode or decode task.

IV. IMPLEMENTATION AND EVALUATION
A. System Setup
We implemented our accelerator for a {6, 4, 8} Zigzag cod-
ing system on a Xilinx Virtex UltraScale+ FPGA VCU1525
acceleration card with 4 DDR4-2400 SDRAMs. The GPU

implementation is on a Tesla K80 GPU acceleration card with
240 GB/sec GDDRS memory. The host machine has a 2.1GHz

274

Authorized licensed use limited to: Texas A M University. Downloaded on September 02,2020 at 16:28:11 UTC from IEEE Xplore. Restrictions apply.

Intel Xeon Gold 6152 CPU with 22 cores and a 30.25MB L3
cache. There are 4 DDR4-2666 SDRAMs on the host machine.
Although we only implement and evaluate on a local storage
system, the results can be also extended to distributed storage
systems. Our FPGA accelerator is developed in Xilinx SDac-
cel toolchain. Software CPU implementation is developed in
C++ with GF-Complete library [14]. GPU implementation is
developed using CUDA toolkit.

We evaluate Zigzag code encoding/decoding a wide spec-
trum of object size (stripe size) from few kilobytes to tens
of megabytes for potential use cases. Usually RAID systems
use smaller (64KB to 256KB) stripe sizes [12, 18], while the
cloud storage [8, 15, 19] industry tends to use much larger
stripe sizes, on the order of tens of MB.

B. Resource utilization

The FPGA resource utilization and kernel frequency are
shown in Table II. This implementation uses all 4 DDR4
channels on board and each channel (memory unit) imple-
ments three processing units (PUs). We use 32KB SRAM
buffers for each PU (4KB buffer per storage node to maximize
the DDR bandwidth utilization). The resource utilization and
timing result include platform cost for implementing OpenCL
framework and are post route results.

TABLE II: System resource utilization on VCU1525 accel.
board.

Resource Type Used Available | Util%
CLB Registers 552005 | 2364480 | 23.35
CLB LUTs 376287 | 1182240 | 31.83
Block RAMs (36Kb) 1050 2160 48.61
Kernel clock frequency 300MHz
Platform clock frequency” 300MHz

* Platform clock include the clock domain for OpenCL
implementation (memory controllers, PCle endpoints, in-
terconnect, etc.)

C. Performance of Zigzag encode/decode

Here we compare our FPGA implementation against the
state-of-art CPU implementation leveraging SIMD instruc-
tions [14] and GPU implementation. For the software CPU
implementation we use different numbers of threads to process
in parallel (each thread processes a complete encode/decode
task). For GPU implementation, each thread processes only
a few 32 bits GF multiply-adds for a encode/decode task to
fully exploit the ’single-instruction-multiple-threads” (SIMT)
parallelism. We conduct experiments on a wide range of data
object sizes from (tens of kilobytes to tens of megabytes). For
software implementation, the CPU runs at 2.1GHz with 85.3
GB/sec memory bandwidth. The FPGA accelerator runs at
300MHz with 76.8 GB/sec memory bandwidth. GPU acceler-
ator runs at §75MHz with 240 GB/sec memory bandwidth. As
shown in Fig 5a, compared to peak CPU implementation, our
FPGA accelerator achieves similar performance for smaller
stripe size and 3.1x better on encode and 2.4x better on decode
for larger stripe sizes. Our FPGA accelerator also surpasses
the GPU implementation by ~2-3x.

There are two reasons that our accelerator achieves better
performance. First, our accelerator design optimizes the data
fetch and store from the memory unit to the on-chip SRAM
buffers and has much better DRAM bandwidth utilization. We
collected the memory traffic for the software implementation

4D-2

via performance counters and compared against our acceler-
ator. Our accelerator can reduce up to 20% of the DRAM
traffic compared to CPU and 43% compared to GPU. The extra
DRAM traffic in the CPU implementation is caused by poor
cache performance and cache thrashing in multicore work-
loads for large stripe size. Second, our accelerator achieves
better computation parallelism by using multi-operand GF
multiply-add ALUs compared to two operands SIMD ALUs
in CPU architecture. Compared to GPU, the hardware level
parallelism in FPGA is much more efficient than SIMT. Thus,
even though our accelerator runs at much lower frequency and
memory bandwidth (~3x less than GPU) the performance still
surpasses the CPU SIMD and GPU implementation.

D. Power efficiency

We also did the performance-to-power ratio analysis to
estimate power efficiency. We calculate the total power of
core (CPU or FPGA) and off-chip DRAMs. For the CPU
implementation we obtained the dynamic power consumption
through the Intel Performance Counter Monitor. For GPU
implementation we obtained the overall power consumption
through the GPU driver. We use the Xilinx SDaccel toolchain
to estimate the FPGA power (worst case scenario) and a
power calculator by Micron to estimate the accelerator DRAM
power consumption to get the overall power of our accelerator.
Fig 5b shows performance-to-power ratio comparison. Our
accelerator achieves up to 19.1x and 11.4x better compared to
single thread CPU implementation on encode and decode re-
spectively. Compared to the best CPU implementation results,
our accelerator is 5.7x and 4.2x better on encode and decode
respectively. Compared to GPU implementation results, our
accelerator is 5.3x and 4.1x better on encode and decode
respectively. We also analyze the raw power consumption data
for the CPU implementation and our accelerator. We found our
accelerator consumes less power on both core (worst case) and
DRAM since the FPGA runs on a much lower clock frequency
and we significantly reduce the DRAM traffic.

V. RELATED WORK

Plank, et al. [11] proposes efficient “bitmatrix” represen-
tation for Reed-Solomon code to reduce the number of GF
multiplications. Plank, et al. [14] proposes to leverage SIMD
instructions to accelerate erasure coding on CPU platforms.
In Section I we show that SIMD optimizations may now
scale well for multiple threads due to poor cache performance.
Kalcher, et al. [9] and Curry, et al. [3] introduce to leverage
the massive computation and memory bandwidth on GPU to
accelerate coding performance of Reed-Solomon code. Chen,
et al. [7] proposes an OpenCL based FPGA implementation
for erasure coding. Prior works focus on accelerating MDS
codes. To the best of our knowledge, our work is the first to
optimize hardware architecture for accelerating MSR codes.

VI. CONCLUDSION

In this paper, we present a generic FPGA accelerator
architecture for Minimum Storage Regenerating (MSR) codes
in reliable storage systems. In our design, we leverage the
abundant FPGA logic and memory resources to provide mas-
sive parallelism for encode/decode computation and optimize
the data movement between off-chip DRAM and FPGA.
Under evaluation on real systems, we show our proposed

275

Authorized licensed use limited to: Texas A M University. Downloaded on September 02,2020 at 16:28:11 UTC from IEEE Xplore. Restrictions apply.

40000
i 35000
wv

@ 30000
Z 25000
5 20000
o

T
I} 15000

fo R, HHH M. HHH

16KB 128KB 4MB 64MB 16KB 128KB 4MB 64MB

encode decode

E cpu-1T cpu-4T cpu-8T cpu-16T [cpu-44T MEgpu-K80 [fpga

(a) Throughput performance (higher is better).

PERFORMANCE-TO-POWER RATIO

[N}
o

= P
1S} @

(NORMALIZED TO CPU-1T)
«

@ cpu-1T

4D-2

N
a

o o Hﬂm Hﬂm ol il ol Hﬂm HDH HUM I

16KB 128KB 4mMB 64MB 16KB 128KB 4mMB 64MB

encode decode

cpu-4T cpu-8T cpu-16T [cpu-44T HEgpu-K80 [fpga

(b) Performance-to-power ratio (higher is better).

Fig. 5: Encode/decode evaluation results (We enable 4MB batch mode for 16KB and 128KB stripe size for both FPGA and
GPU).

accelerator’s performance surpasses the state-of-art multi-core
CPU implementation on both throughput and power efficiency.
The design can be beneficial for storage system acceleration
especially with PCIE P2P communication enabled.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable
comments and feedback. The project is funded by Memory
Solution Lab (MSL) in Samsung Semiconductor Inc. and the
National Science Foundation I/UCRC-1439722 and FoMR-
1823403.

(1]
(2]

(3]

(4]

(3]

(6]

(71

(8]

(9]

(10]

REFERENCES

Stephen Bates. Donard: NVM Express for Peer-2-Peer be-
tween SSDs and other PCle Devices. 2015.

S. Che et al. “Accelerating Compute-Intensive Applications
with GPUs and FPGAs”. In: 2008 Symposium on Application
Specific Processors. 2008, pp. 101-107.

M. L. Curry et al. “Accelerating Reed-Solomon coding in
RAID systems with GPUs”. In: 2008 IEEE International
Symposium on Parallel and Distributed Processing. 2008,
pp. 1-6.

A. G. Dimakis et al. “Network Coding for Distributed Storage
Systems”. In: IEEE Transactions on Information Theory 56.9
(2010), pp. 4539-4551.

Sanjay Ghemawat et al. “The Google File System”. In: Pro-
ceedings of the Nineteenth ACM Symposium on Operating
Systems Principles. SOSP ’03. Bolton Landing, NY, USA:
ACM, 2003, pp. 29-43.

Chuanxiong Guo et al. “RDMA over Commodity Ethernet at
Scale”. In: Proceedings of the 2016 ACM SIGCOMM Con-
ference. SIGCOMM ’16. Florianopolis, Brazil: ACM, 2016,
pp. 202-215.

Guoyang Chen et al. “OpenCL-based erasure coding on het-
erogeneous architectures”. In: 2016 IEEE 27th International
Conference on Application-specific Systems, Architectures and
Processors (ASAP). 2016, pp. 33—40.

Cheng Huang et al. “Erasure Coding in Windows Azure
Storage”. In: Presented as part of the 2012 USENIX An-
nual Technical Conference (USENIX ATC 12). Boston, MA:
USENIX, 2012, pp. 15-26.

S. Kalcher and V. Lindenstruth. “Accelerating Galois Field
Arithmetic for Reed-Solomon Erasure Codes in Storage Appli-
cations”. In: 2011 IEEE International Conference on Cluster
Computing. 2011, pp. 290-298.

Osama Khan et al. “Rethinking Erasure Codes for Cloud File
Systems: Minimizing I/O for Recovery and Degraded Reads”.
In: 10th USENIX Conference on File and Storage Technologies
(FAST 12). San Jose, CA: USENIX Association, 2012.

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

276

Authorized licensed use limited to: Texas A M University. Downloaded on September 02,2020 at 16:28:11 UTC from IEEE Xplore. Restrictions apply.

J. S. Plank and Lihao Xu. “Optimizing Cauchy Reed-Solomon
Codes for Fault-Tolerant Network Storage Applications”. In:
Fifth IEEE International Symposium on Network Computing
and Applications (NCA’06). 2006, pp. 173-180.

James S. Plank. “The RAID-6 Liberation Codes”. In: Pro-
ceedings of the 6th USENIX Conference on File and Storage
Technologies. FAST’08. San Jose, California: USENIX Asso-
ciation, 2008, 7:1-7:14.

James S. Plank et al. “A Performance Evaluation and Exami-
nation of Open-Source Erasure Coding Libraries for Storage”.
In: 7th USENIX Conference on File and Storage Technologies
(FAST 09). San Francisco, CA: USENIX Association, 2009.

James S. Plank et al. “Screaming Fast Galois Field Arithmetic
Using Intel SIMD Instructions”. In: //th USENIX Conference
on File and Storage Technologies (FAST 13). San Jose, CA:
USENIX Association, 2013, pp. 298-306.

Maheswaran Sathiamoorthy et al. “XORing Elephants: Novel
Erasure Codes for Big Data”. In: Proc. VLDB Endow. 6.5
(Mar. 2013), pp. 325-336.

Bianca Schroeder and Garth A. Gibson. “Disk Failures in the
Real World: What Does an MTTF of 1,000,000 Hours Mean
to You?” In: 5th USENIX Conference on File and Storage
Technologies (FAST 07). San Jose, CA: USENIX Association,
2007.

K. Shvachko et al. “The Hadoop Distributed File System”.
In: 2010 IEEE 26th Symposium on Mass Storage Systems and
Technologies (MSST). 2010, pp. 1-10.

I. Tamo et al. “Zigzag Codes: MDS Array Codes With Optimal
Rebuilding”. In: IEEE Transactions on Information Theory
59.3 (2013), pp. 1597-1616.

Myna Vajha et al. “Clay Codes: Moulding MDS Codes to
Yield an MSR Code”. In: 16th USENIX Conference on File
and Storage Technologies (FAST 18). Oakland, CA: USENIX
Association, 2018, pp. 139-154.

Sage A. Weil et al. “Ceph: A Scalable, High-performance
Distributed File System”. In: Proceedings of the 7th Sym-
posium on Operating Systems Design and Implementation.
OSDI ’06. Seattle, Washington: USENIX Association, 2006,
pp- 307-320.

M. Ye and A. Barg. “Explicit Constructions of Optimal-
Access MDS Codes With Nearly Optimal Sub-Packetization”.
In: IEEE Transactions on Information Theory 63.10 (2017),
pp. 6307-6317.

Tianli Zhou and Chao Tian. “Fast Erasure Coding for Data
Storage: A Comprehensive Study of the Acceleration Tech-
niques”. In: 17th USENIX Conference on File and Storage
Technologies (FAST 19). Boston, MA: USENIX Association,
2019, pp. 317-329.

