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Abstract—Emerging Non-Volatile Memories have byte-
addressability and low latency, close to the latency of main
memory, together with the non-volatility of storage devices.
Similarly, recently emerging interconnect fabrics, such as Gen-
Z, provide high bandwidth, together with exceptionally low
latency. These concurrently emerging technologies are making
possible new system architectures in the data centers including
systems with Fabric-Attached Memories (FAMs). FAMs can serve
to create scalable, high-bandwidth, distributed, shared, byte-
addressable, and non-volatile memory pools at a rack scale,
opening up new usage models and opportunities.

Based on these attractive properties, in this paper we pro-
pose FAM-aware, checkpoint-based, post-copy live migration
mechanism to improve the performance of migration. We have
implemented our prototype with a Linux open source checkpoint
tool, CRIU (Checkpoint/Restore In Userspace). According to our
evaluation results, compared to the existing solution, our FAM-
aware post-copy can improve at least 15% the total migration
time, at least 33% the busy time, and can let the migrated
application perform at least 12% better during migration.

I. INTRODUCTION

The emerging Non-Volatile Memories (NVM), such as
phase-change memory (PCM) [1], NVDIMM [2], and 3D
XPoint [3], have byte-addressability and low latency, close
to that of main memory, together with the non-volatility
of storage devices. Similarly, recently emerging interconnect
fabrics, such as Gen-Z [4], provide high bandwidth, together
with exceptionally low latency. These concurrently emerging
technologies are making possible new system architectures in
the data centers including systems with Fabric-Attached Mem-
ories (FAMs) [5]. FAMs can serve to create scalable, high-
bandwidth, distributed, shared, and byte-addressable NVM
pools at a rack scale, opening up new usage models and
opportunities. These technologies have great potential to im-
prove the system/application performance as well as to provide
scalability and reliability of applications/service. Many prior
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work focused on new system designs using NVM [6]-[11] and
has already shown promising performance improvements.
Migration is a crucial technique for load balancing. Migra-
tion allows system administrators to remove some applications
from stressed physical nodes in order to redistribute load, and
therefore to increase overall system performance. In addition,
migration can also provide power saving [12], and online
maintenance. Traditional approaches to migration are non-live;
that is, they require the application to be taken off-line while
the migration occurs. Non-live migration can be divided into
three steps: 1) the program is checkpointed at source, 2) the
checkpointed data are copied from source to target, and 3) the
program is restarted at target. The main drawback of non-live
migration is that its application downtime (off-line time) is
too long. To reduce this downtime, live migrations [13] are
proposed to migrate most of (or all) pages before (pre-copy)
or after (post-copy) “real” migration, and therefore to reduce
the number of migrated pages during the downtime. However,
the side effect of live migrations is that they require longer,
compared to non-live migration, busy time of source node.
Here, we define the busy time as the duration from the be-
ginning of the migration to the time that migrated applications
can be killed at source node.! As far as we know, all prior
works of post-copy focused on total migration time. However,
we would like to make another point here that the busy time
might be more important because it has direct impacts on
the system performance; it decides when computing resources,
such as CPU and memory, occupied by migrated applications
to be released and be reallocated to remaining applications
in source node. For example, when applications are suffering
from swapping due to the lack of memory in a “hot” node,
simply migrating an application with large memory footprint
might be able to stop (after busy time) all remaining applica-
tions at source from swapping and therefore to improve the

Note: after migration completes, the migrated applications would continue
to execute at target node.
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overall system performance.

In this work, we consider that migration can greatly benefit
from FAM. Although the non-live migration techniques can be
easily improved with FAM by the removal of the copy phase
(step 2), the optimal post-copy page fault handler, however,
requires significant redesign. This new handler should rely on
the both non-volatility and shareability of FAM to provide the
optimal (shortest) busy time as well as total migration time. In
particular, we introduce FAM-aware, checkpoint-based, post-
copy live migration, which checkpoints the entire application
to FAM in the beginning and transfers all pages through
FAM, rather than through the network connection, which the
traditional migration techniques use.

The contributions of this paper are as follows:

« Propose a new, checkpoint-based, page fault handler for
post-copy migration using FAM to provide the best busy
time and better total migration time.

Implement our FAM-aware post-copy migration on a
Linux open source checkpointing tool, CRIU (Check-
point/Restore in Userspace).

Evaluate our enhancements of CRIU with synthetic and
realistic (YCSB+REDIS) workloads and show significant
performance improvement.

The remainder of this paper is organized as follows. Sec-
tion II describes the background and related work. Section III
presents the motivation and design overview of our FAM-
aware post-copy live migration. Section IV explains the imple-
mentation of our work by modifying and enhancing existing
CRIU in more detail. Section V presents our results of evalua-
tion of post-copy live migration using some macro benchmarks
and realistic workloads. Finally, section VI concludes.

II. BACKGROUND
A. Migration

Traditionally, in non-live migration of applications, at first
the migration program needs to stop the applications. It then
checkpoints their state (mostly as files) into local storage
devices, copies these checkpointed data to the remote storage
devices (at the target machine), and finally resumes them back
to the checkpointed state at target. The downtime is mostly
proportional to the amount of migrated memory.

Unlike non-live migration, live migration means that ap-
plication is (or appears to be) responsive during the entire
migration process. Post-copy [14], [15] transfers the processor
state, register, etc., to target and resumes immediately at
the target host. When resumed application accesses some
pages which have not yet been transferred, page faults are
triggered, and those pages are retrieved from source node
through network.

Although post-copy has the almost minimum downtime,
it would suffer from the network page fault overhead, and
therefore degrade the migrated application performance dur-
ing migration. Also, post-copy usually requires the longer
migration time (which depends on page access pattern of
application), compared with non-live one.

Fig. 1: Fabric-Attached Memory.

Sahni et al. [16] proposed a hybrid approach combining
pre-copy and post-copy to take advantage of both types of
live migration. The post-copy could suffer less page faults
if the pages of the working set have already been sent by
the pre-copy phase. Ye et al. [17] investigated the migration
efficiency under different resource reservation strategies, such
as CPU and memory reserved at target or source nodes.
CQNCR [18] considered an optimal migration plan to migrate
massive virtual machines in the data center by deciding a
migration order to have less migration time and system impact.

These works, however, largely employ traditional network-
ing as the only transfer media, thus they incur high access
latencies. Besides, they only emphasize the total migration
time, not busy time.

B. Fabric-Attached Memory

Fabric-Attached Memory (FAM) is a system architecture
component in which high performance networking fabrics are
used to interconnect NVM between multiple nodes in a rack
to create a global, shared NVM pool. In our system model,
we consider a cluster consisting of many nodes, each of which
contains both DRAM and NVM. DRAM can only be accessed
locally by local memory controller and serves as fast, local
memory in each node. NVM and the processor (in each node)
are connected to a switch fabric and these switches are inter-
connected to each other. Here we focus on Gen-Z [4] as one
such fabric because it supports hundreds gigabyte per second
bandwidth and memory semantics; however, any other fabric
of similar latency and bandwidth could be used. The CPU can
access NVM at other nodes with memory-semantics through
the fabric interface and libraries. Therefore, all interconnected
NVM can be treated as the slow, global memory pool in a
rack scale [5]. This byte-addressable, shared, high-bandwidth,
global NVM pool is so-called Fabric-Attached Memory (FAM)
in this work. Fig. 1 shows the overall memory, NVM, CPU,
and Gen-Z interconnections.

C. Checkpoint/Restore in Userspace (CRIU)

The Checkpoint/Restore in Userspace (CRIU) [19] is a
Linux open source checkpoint tool which saves the current
state of a running application into the local storage devices
and restarts the application whenever necessary. To checkpoint,
CRIU uses ptrace system call to inject a piece of parasite
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Fig. 2: Existing CRIU post-copy using FAM. (1) CRIU
checkpoints all files except for page image file to FAM, and
transforms itself as a page-server. (2) At target, CRIU creates
a lazy-page daemon. (3) After (1) is completed, CRIU restores
application immediately at target. (4) If restored application at
target accesses a page and causes a page fault, it would notify
the lazy-page daemon, which then requests to and obtains from
page-server at source that faulting page.

Lazy
page
daemon

Page
server
mode

code into the checkpointed application. Through the injected
parasite, CRIU daemonizes the checkpointed application and
lets it begin to accept commands sent by CRIU. Hereafter,
CRIU starts the checkpoint process.

The most time-consuming part of checkpoint process is to
dump pages of application. The page-dumping request asks the
application to execute vmsplice system call, which maps
the pages of VMAs of the process into pipes (kernel buffers).
Finally, after all pages have already been mapped to the pipes,
CRIU can access them directly (without the help of parasite)
through splice system call, which copies dumped pages
from pipes to a page image file in the storage devices.

CRIU also supports migration features, including non-live,
pre-copy, and post-copy live migrations. For post-copy, the
page fault handling is the main challenge. Like on-demand
paging used in virtual memory systems, CRIU’s post-copy
employs the userfault f£d system call to allow paging in the
user space. Fig. 2 shows the sequential steps of the existing
CRIU post-copy implementation. To achieve the post-copy,
like checkpoint, at first CRIU maps the pages of VMAs of
applications, at the source node, into pipes and then places
itself into a page-server mode. Then a lazy-page daemon at the
target node is created to handle the page fault and other events
requested during the following restore operations. Finally, the
migrated application is resumed at the target node. When the
restored application accesses a page which still remains in
the source, the application is halted temporarily, and sends
the page fault request to the lazy-page daemon, which in
turn communicates with page-server at the source node to
obtain that faulting page from pipes through network transfer.
Although all other checkpointed state can be sent through
FAM. The page transfer still needs to rely on socket interface
if page fault handling is not redesigned.

We note that when using pure on-demand paging, migration
process may never complete, since some pages may not be ever
accessed. CRIU thus employs a timer to trigger the active
pushing; that is, sequentially dumping all remaining pages

from source to target. The timer is kept reset whenever a page
fault event happens. Before the timer is expired, the lazy-page
daemon only handles the page fault event, and it would start
to actively push all remaining pages only after expiration.

III. MOTIVATION AND SYSTEM DESIGN OVERVIEW

In this section, we describe the motivation and design
overview of our FAM-aware post-copy live migration.

A. Fabric-Attached Memory-Aware Post-Copy Live Migration

We propose an optimized FAM-aware post-copy migration,
which exploits the properties of FAM to achieve low appli-
cation downtime, low total migration time, low application
degradation, low resume time, and especially low busy time.

To simplify the understanding of readers, we first briefly
restate some key metrics of live migration proposed by Hines
et al. [15] and we further introduce the concept of busy time.

Downtime: The time that the application is stopped
and cannot respond while the state of the processors
and some pages are transferred. Post-copy, depending on
implementation, might transfer a few (or no) pages. Non-
live migration transfers all pages here, so its downtime is
the longest.

Resume Time: The time from the application starts
executing to the end the entire migration process. This
time is mainly required for post-copy to handle the page
faults happening at the target node, and is near negligible
to the non-live migration.

Busy Time: The time from the beginning of the migration
to the time that migrated applications can be killed and
their resources (especially CPU and memory) can be
released at source node. This may be the most important
metric for migration since system administrators can only
alleviate the loading of “hot” nodes after this time.
Migration Time: The total time of downtime and resume
time. Usually the migration time (of live migration)
equals to the busy time; however, this is not the case
if we employ FAM for migration. We will discuss this
later.

Application Degradation: The extent that application is
slowed down during the operations of the migration. The
application degradation of post-copy, because it handles
the page fault at target and needs to get the faulting pages
from source, might be the most severe.

B. Motivation and Design

Intuitively, the performance of non-live migration, espe-
cially migration time, could benefit from adopting the FAM
simply because the copy phase can be eliminated through
direct FAM accesses. Therefore, the entire migration process is
now simplified as (1) checkpoint application to FAM at source
and (2) restart application at target.

Post-copy migration is much more complicated than non-
live one because the most critical part of post-copy is page
fault handling (or network fault as termed by Hines et al. [15])
in the target. The behavior and implementation of the page
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fault handler will greatly impact the resume time (application
performance degradation) and busy time. Simply removing
the copy phase, if applicable, is obviously not good enough.
Therefore, our work focuses on optimizing FAM-aware post-
copy migration based on the following three guidelines.

Checkpoint-Based Migration: The most apparent draw-
back of non-live migration is its very long downtime (which
equals to the total migration time). However, the busy time of
non-live migration is the best (compared to the live migrations)
and is also much shorter than its total migration time because
non-live migration first checkpoints everything to storage
devices, and therefore, since a complete snapshot is saved in
persistent media, the checkpointed application can be killed at
the source.

Traditional live migrations have a long busy time (which
equals to the total migration time) because they utilize memory
to temporarily store pages and transfer pages by network.
So, killing the application must wait until the completion of
entire migration. Otherwise, if target crashes before migration
completes, then the application will crash, too.

Due to the low-latency and non-volatility of FAM, storing
migrated pages to FAM directly only slightly impacts per-
formance (compared to DRAM), but it also saves the entire
migrated state to persistent media. Therefore, application can
be killed after being checkpointed and its busy time could be
very close to that of non-live migration.

Accessing FAM as Shared Memory: Most existing live
migration techniques [16]-[18], [20] still migrate their data
content through communication network because they do not
have a shared memory across multiple nodes. Therefore, their
approaches will suffer the network overhead and network
bandwidth. On the other hand, with the help of FAM, serving
as a shared memory pool within the same rack, data could be
simply migrated through memory semantics (load/store
instructions), which bypass the significant networking protocol
overhead. This could improve the critical page fault latency
and therefore resume time and application degradation.

Retrieving Faulting Pages Synchronously: The page fault
handler of the existing shared memory within a machine
is controlled by the central operating system. The OS only
needs to setup the page table of each process, then faulting
pages can be mapped to virtual space of processes correctly.
Our migration scheme, however, differs because a central
controlling OS across multiple hosts does not exist. The FAM
across machines can only be employed as a connecting media
between nodes.

Besides, our page fault handler must contain two steps: first
pages are written from source to FAM and then pages are read
from FAM to target. So, page fault handling must be executed
asynchronously through communication between the source
(writing to FAM) and target nodes (reading from FAM); that
is, the faulting address of pages must be sent to source first and
then target must wait for the response to read that page. This
communication impacts the page fault latency (even though all
pages are already transferred by FAM) as well as migration
performance, and must be avoided as much as possible by

Source

Target

B

1. Checkpoint
2. Restore

e File

FAM

Fig. 3: Ideal migration method using FAM.

leveraging the information of the dumped pages. The source
could notify target of the information of all dumped pages,
and therefore the following faulting pages (if they have been
dumped to FAM) can be accessed synchronously at target from
FAM without the need of communication.

Thus, our post-copy optimization is mainly based on non-
volatility and shared-ability of FAM, and can be divided into
three parts.

e to achieve the shortest downtime, we checkpoint the
processor state, registers, etc., (excluding pages of VMA)
of the victim application to FAM and resume victim
application at the target.

to achieve low busy time, at source, after checkpointing
the necessary information, all the remaining pages con-
tinue to be dumped to FAM on the background. The
victim application can be killed right after the page
dumping is finished. This provides near optimal busy
time, which is the checkpoint time of non-live migration.
to achieve low resume time and low application degra-
dation, all faulting pages at target will be served/received
from FAM directly and the need of asynchronous com-
munication is also tried to minimize. Therefore, with of
help of FAM, the networking overhead as well as the
page fault latency can be reduced significantly.

IV. IMPLEMENTATION

In this section, we explain our implementation of FAM-
aware, checkpoint-based, post-copy live migration in detail.

The existing CRIU [19] migration tool is used as a baseline
implementation, and augmented with our FAM-aware post-
copy technique in this work. In particular, our case study im-
plementation is based on modifying CRIU-dev branch version
3.2. Although our implementation is based upon CRIU, the
technique developed is universal and may be easily imple-
mented in other migration schemes.

Fig. 3 shows an ideal migration between nodes with FAM.
First, an empty file is created in FAM, and the migration
program at target can mmap this whole file and directly read
dumped pages without having to wait until the whole file
is dumped from the source. Ideally, (if the future can be
predicted,) the source node would write a certain page to
FAM each time before the page is needed at target. From
the perspective of migration, which means that not only the
restored application does not have to wait for the completion
of page-dumping (that is, live migration), but it also avoids
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(a) 1. Background thread dumps all lazy pages to FAM. 2.1.
A page fault happens. A page fault event is sent to lazy-
page daemon by kernel. 2.2. Lazy-page daemon requests page-
server for that faulting page. 2.3. Page-server writes the entire
vector, rather than a single faulting page, to FAM. 2.4. Page-
server notifies the lazy-page daemon of the completion of
dumping. 2.5. Lazy-page daemon directly reads faulting page
from FAM.

daemon

\

Lazy page file -
FAM

(b) The page-server and application at source are killed after
all lazy pages have been dumped. All remaining pages can be
directly/synchronously accessed from target.

Fig. 4: FAM-aware post-copy live migration.

much of the network transmission (required by the existing
CRIU and other previous implementations) through memory-
semantics.

We have implemented the concept shown in Fig. 3 in our
optimized post-copy migration in CRIU. Fig. 4 illustrates
the main difference between our post-copy design versus the
existing CRIU implementation (in Fig. 2).

Like the existing CRIU post-copy, we also employ a lazy-
page daemon and page-server mode in our implementation.
To migrate, first all required data are checkpointed as files to
FAM except for the page image file, as the existing CRIU
does. After that, CRIU at source enters a page-server mode,
and launches a background thread to dump (checkpoint) all
remaining “lazy” pages to FAM as a single lazy-page file (per
process) (arrow with number 1 in Fig. 4(a)). Without having
to wait for this background thread to finish its dumping job,
system administrator can launch a lazy-page daemon and then
can begin to restore the migrated application at the target node.
To improve the checkpoint performance by batching and to
avoid too long critical latency of page fault, we partition the
VMAs of application as several I/O vectors with the maximum
size of 2MB. Each I/O vector contains pages with contiguous
virtual addresses. Therefore, the background thread writes the
pages to FAM with at most 2MB of data at a time. When
the restored application encounters a page fault, it sends the

20

page fault event to the lazy-page daemon, which in turn sends
page fault request to page-server. If the faulting page has not
been dumped to FAM, the page-server waits for background
thread to finish the dumping of current I/O vector, stops the
background thread (by a spin lock), and dumps a specific I/O
vector containing the requested faulting page. After dumping
that (2MB) I/O vector, the page-server acknowledges page
fault request and resumes the background thread. Arrows
with number 2.1 to 2.4 in Fig. 4(a) illustrate this process.
Alternately, if the faulting page has been dumped, the page-
server acknowledges immediately.

The responses (arrow with number 2.4 in Fig. 4(a)) sent by
the page-server not only indicate the “completion of dumping”
of faulting pages, but they also contain some extra informa-
tion for lazy-page daemon: the background thread’s dumping
progress (the largest virtual address of dumped pages) and the
virtual address space of this entire (2MB) dumped I/O vector.
The lazy-page daemon employs such information to construct
a lookup table. (Actually, we build an LRU linked list). If the
following faulting pages whose addresses can be found at the
lookup table or are smaller than the dumping progress, they
can be read from FAM synchronously without requesting to
page-server. This can eliminate a lot of communications and
overheads between source and target.

Once the background thread dumps all the lazy pages,
the page-server actively notifies the lazy-page daemon of
the completion of the checkpoint. Hereafter, the lazy-page
daemon can synchronously read all faulting pages from FAM
without any communication with page-server. Both migrated
application and page-server can be killed at the source now as
Fig. 4(b) shows.

Our implementation has some advantages: (1) The page-
server only needs to handle faulting pages until the checkpoint
of all “lazy” pages is finished. After that, all pages can be
synchronously read from FAM. A lot of network transmissions
of pages and protocol overhead can be eliminated. (2) The
information of dumped pages is utilized to further reduce the
communication between target and source nodes. It signifi-
cantly minimizes the page fault latency and therefore improves
performance. (3) After the background thread finishes dump-
ing the lazy files, the application and page-server can be killed
and their resources can be released; that is, the busy time
would be much shorter than total migration time.

V. EVALUATION

In this section, we experimentally evaluate the performance
improvement of our optimized FAM-aware, checkpoint-based,
post-copy live migration. Our platform contains 20GB DDR3-
1600, 12GB NVM (emulated with DRAM [21]), and Intel
i7-4770 four-core 3.4 GHz processor with hyperthreading
enabled. Linux 4.15.0 is used in our platform.

A. Workloads and Experimental Setup

To examine the performance of our FAM-aware post-copy
migration scheme, we leverage the NAS Parallel benchmarks
(NPB) 3.3.1 [22] Class C, PARSEC 3.0 [23] native input, and
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Fig. 5: The delay model of our evaluation.

TABLE I: Parameters for extra delay.

| Media | Read lat. (us) | Write lat. (us) | BW. (GB/s) |
PCM 1 1 2
10Gb Ethernet 0 1.25

SPLASH-2X [24] native input benchmark suites. All work-
loads are migrated after executing twenty seconds, with the
exception of “NPB IS” which migrated after five seconds for
one thread and two seconds for four threads, and “SPLASH-
2X radix” is migrated after five seconds for four threads.

We further examine the migration of REDIS [25] to inves-
tigate application performance degradation during live migra-
tion. REDIS is an in-memory data structure store and can be
employed as database or in-memory cache. Through loading
YCSB (Yahoo! Cloud Serving Benchmark) [26] records into
REDIS, migrating REDIS to the target, and immediately
accessing REDIS with YCSB at the target before the migration
is finished, we can observe the impact of page fault overhead
on REDIS performance with different YCSB workloads.

To evaluate FAM-aware migration, two limitations must be
overcome. First, CRIU requires migrated applications to use
the original pid they were checkpointed with. This means ap-
plication cannot be “lively” migrated within the same physical
host. Next, we do not have real FAM hardware, so we do not
have a global, shared NVM across physical nodes. These two
limitations seem to contradict with each other. Fortunately,
with the help of a container virtualization technique, FAM
can be emulated within a host machine by means of container
and NVM: Two docker containers [27] are treated as target
and source nodes; the emulated NVM, which is bind-mounted
into containers so applications in containers can access NVM
concurrently, can be emulated as FAM in our platform.

To compare the performance of our FAM-aware with ex-
isting CRIU post-copy, we assume all process states, except
for memory pages, are migrated through FAM, so post-
copy migration contains only 2 steps: checkpoint from source
container and restart at target container. However, the methods
of page transfer are different: one is by FAM, the other is
through socket interface.

Furthermore, since NVM (FAM) is emulated from DRAM,
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Fig. 6: The busy time and total migration time performance
of FAM-aware and existing CRIU post-copy migration using
FAM. Expiration time is 100ms.

to correctly emulate the “slow” NVM, we use the same method
proposed by Volos et al. [6] to add extra delay (via busy
waiting) when accessing slow FAM (or Ethernet). Fig. 5
illustrates our delay model. The delay is added both when
writing to and reading from FAM. The latency resulted from
Gen-Z fabric is negligible compared to that of PCM [28].
Therefore, we only consider the access latency and bandwidth
of NVM (PCM or NVDIMM). The delay calculation formula
is as follows:

Delayr/w = Latencyrw + (data/bandwidth)

The parameters of NVM (and 10 Gigabit Ethernet used
later) are shown at Table 1. The bandwidth of NVM (PCM) is
assumed to be 2GB/s [29]. Therefore, to access a single 4KB
page from FAM, we have to wait around 3us and then can
access FAM.

B. Evaluation Results

Fig. 6 (a) and (b) show the normalized total migration time
and busy time performance of our FAM-aware vs. existing’
CRIU post-copy with one and four threads. All the mea-
surements are normalized to the total migration time of the
existing post-copy (socket) of the same benchmark. FAM and
socket (in Fig. 6) stand for the mechanism of page transfer by

2Note: for existing CRIU post-copy, the busy time equals to the migration
time, so only total migration times are shown.
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TABLE II: Average improvements of FAM-aware post-copy
vs. existing CRIU post-copy.

| # of threads | Mig. time imprvmt | Busy time imprvmt |

‘ 1 ‘ 2.00X 26.74X
4

1.63X 12.72X

FAM and by socket (network). We will keep using these terms
hereafter. FAM (2GB/s) means the extra delay is added based
on the 2GB/s bandwidth of PCM. The expiration time of active
pushing timer is set as 100ms. Remember this timer would be
reset whenever a page fault happens. We think 100ms should
be a reasonable duration for workloads to access all working
set pages before timer expires. So, the total migration time
here should be a good indicator toward the different page fault
overhead of these two mechanisms.

Tab. II summarizes the performance improvements of our
FAM-aware post-copy. The number is the geometric mean of
all benchmarks. From those results, we could conclude some
useful observations.

First, instead of workload behavior, the busy time (also
checkpoint time) of post-copy is impacted mostly by the
dumped memory size. Thus, they are relatively small com-
pared to total migration time.

Second, the improvements of total migration time (2X and
1.63X) come from faster demand paging handling, proving that
our FAM-aware migration incurs less page fault overhead.

Third, the improvements of both total migration time and
busy time reduce as the number of threads increases. For mi-
gration time, that is mainly because of the available bandwidth.
We limit the FAM bandwidth as 2MB/s (PCM). On the other
hand, although the existing CRIU acquires pages from source
through socket, we do not apply any bandwidth limitation on
it. Docker containers, in a single host, utilize Linux bridge
component and bypass the NIC (network interface card) to
communicate with each other. To estimate the bandwidth
between docker containers, we use iperf3 [30] tool to measure
and get the average 7.0 GB/s throughput (compared to 2GB/s
at FAM-aware case). So, we could conclude that the reduction
of improvements of total migration time when more threads
are executed comes from the bandwidth limitations of FAM.

For busy time, the busy time of FAM-aware post-copy
is the checkpoint time, which is almost the same if the
memory footprint does not change, regardless of the number of
executing threads. As to the existing post-copy, since the busy
time is the total migration time, which would be improved
as the number of threads increases because more threads
will access pages more quickly. Therefore, the decreasing
the busy time improvement results from the total migration
time improvement of existing post-copy as more threads are
executed.

Fig. 7 shows a similar comparison of FAM-aware and
existing CRIU post-copy except that the expiration time is set
as Oms. Only the workloads whose migrated memory sizes
are larger than 1GB are selected. All workloads are executed
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TABLE III: Average improvements of FAM-aware post-copy
for realistic case (FAM (2GB/s) v.s. socket (10Gb/s)) and ideal
case (FAM v.s. socket).

| | Mig. time | Busy time |

FAM (2GB/s) v.s. socket (10Gb/s) 15.44% 33.68%
FAM v.s. socket 15.16% 47.08%

with one thread and are migrated after executing twenty
seconds. All the measurements are normalized to the total
migration time of socket (10Gb/s) of the same benchmarks.
Socket (10Gb/s) is assumed that the employed underlying
network is 10 Gigabit Ethernet. FAM (without bandwidth
limitation) means no delay is added when accessing NVM,
which can be treated as the case of NVDIMM and whose
performance is also the best among all cases. In our platform,
the average throughput of accessing DRAM via file system
write is around 6.6 GB/s (a little lower than 7 GB/s of
socket throughput between containers).

The Oms expiration time means that the lazy-page daemon
would actively push the pages from source from the beginning.
Meanwhile, if a page fault happens, the daemon will also
try to handle page fault event at best effort. From Fig. 7,
we could conclude that (A) the bandwidth provided by the
transmission media dominates the migration performance; (B)
if the bandwidth is close to each other, FAM-aware is better
than existing post-copy due to the lighter overhead. Tab. III
summarizes the improvements.

Finally, REDIS and YCSB are utilized to investigate the mi-
gration performance, especially for performance degradation.
500K records are loaded by YCSB into REDIS at the source
node, and each record is of 100 fields and the size of each field
is fixed to 10B. This configuration will result in 939MB of
pages to be migrated. After downtime, YCSB accesses REDIS
at target immediately by different operation records (from 10K
to 50K). The YCSB workloads are all configured as uniform
distribution, readallfields and writeallfields are false, and R/W
ratio are 70/30. The YCSB employs one and four threads to
access REDIS. Fig. 8 shows the results. (a) to (c) employ
150ms expiration time and (d) to (f) employ 3ms.

Fig. 8 (a) shows the measured total migration times normal-
ized to the busy time of FAM (2GB/s). The busy times of one
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Fig. 8: Migration performance of REDIS accessed by YCSB. (a) to (c): The expiration time is 150ms; (d) to (f): The expiration

time is 3ms.

TABLE IV: Average REDIS throughput improvements of
FAM-aware post-copy of real case (FAM (2GB/s) v.s. socket
(10Gb/s)) and ideal case (FAM v.s. socket).

| | 1 thread | 4 threads |

FAM (2GB/s) v.s. socket (10Gb/s) 19.8% 25.69%
FAM v.s. socket 12.7% 21.79%

and four threads are almost the same since the same amount
of data (939MB) are checkpointed. FAM-aware post-copy
improves average total migration time 23.92% and 22.48%
with one and four threads respectively. Fig. 8 (a) also indicates
that the total migration time is not related to the number of
threads of YCSB. The reason is that the REDIS is single-
threaded, so more requests (threads) from YCSB cannot make
the pages of REDIS be accessed faster. Fig. 8 (b) and (c)
show the REDIS performance during migration. FAM-aware
post-copy lets the REDIS perform 22.3% and 23.4% higher
with one and four threads. respectively. Fig. 8 (a), (b), and
(c) could prove that the total migration time and application
degradation have some correlations because they are impacted
mostly by the latency of page fault handling if the expiration
time is larger enough.

Fig. 8 (d) shows the normalized total migration time and
busy time performance with 3ms expiration time. Because
those times at different operation counts of YCSB are almost
the same, we only take the average. This result also looks like
Fig. 7. Tab. IV summarizes the results of Fig. 8 (e) and (f).
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Again, Fig. 8 (d), (e), and (f) also show that the total mi-
gration time and performance degradation are both influenced
by the bandwidth of transmission media if the expiration time
is too small and active pushing is triggered soon enough. The
throughput of REDIS increases as the number of operations
increases; this is because the chances of page fault reduce as
more pages are migrated.

VI. CONCLUSION

We presented FAM-aware, checkpoint-based, post-copy mi-
gration. Through FAM, a global, shared NVM pool in a rack
scale, we can map the entire migrated memory space onto
FAM. So, the data migration can be simplified as memory-
semantics to achieve a much lower page fault latency path.
We have implemented our prototype at CRIU, and shown that
our approach has lower busy time (at least 33%), lower total
migration time (at least 15%), and migrated application can
perform at least 12% better (i.e. lower application degradation)
during migration process.
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