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Abstract—Emerging Non-Volatile Memories have byte-
addressability and low latency, close to the latency of main
memory, together with the non-volatility of storage devices.
Similarly, recently emerging interconnect fabrics, such as Gen-
Z, provide high bandwidth, together with exceptionally low
latency. These concurrently emerging technologies are making
possible new system architectures in the data centers including
systems with Fabric-Attached Memories (FAMs). FAMs can serve
to create scalable, high-bandwidth, distributed, shared, byte-
addressable, and non-volatile memory pools at a rack scale,
opening up new usage models and opportunities.

Based on these attractive properties, in this paper we pro-
pose FAM-aware, checkpoint-based, post-copy live migration
mechanism to improve the performance of migration. We have
implemented our prototype with a Linux open source checkpoint
tool, CRIU (Checkpoint/Restore In Userspace). According to our
evaluation results, compared to the existing solution, our FAM-
aware post-copy can improve at least 15% the total migration
time, at least 33% the busy time, and can let the migrated
application perform at least 12% better during migration.

I. INTRODUCTION

The emerging Non-Volatile Memories (NVM), such as

phase-change memory (PCM) [1], NVDIMM [2], and 3D

XPoint [3], have byte-addressability and low latency, close

to that of main memory, together with the non-volatility

of storage devices. Similarly, recently emerging interconnect

fabrics, such as Gen-Z [4], provide high bandwidth, together

with exceptionally low latency. These concurrently emerging

technologies are making possible new system architectures in

the data centers including systems with Fabric-Attached Mem-

ories (FAMs) [5]. FAMs can serve to create scalable, high-

bandwidth, distributed, shared, and byte-addressable NVM

pools at a rack scale, opening up new usage models and

opportunities. These technologies have great potential to im-

prove the system/application performance as well as to provide

scalability and reliability of applications/service. Many prior

[1] The author started this work as an intern at Hewlett Packard Labs.
[2] The author contributed while he was at Hewlett Packard Labs.

work focused on new system designs using NVM [6]–[11] and

has already shown promising performance improvements.

Migration is a crucial technique for load balancing. Migra-

tion allows system administrators to remove some applications

from stressed physical nodes in order to redistribute load, and

therefore to increase overall system performance. In addition,

migration can also provide power saving [12], and online

maintenance. Traditional approaches to migration are non-live;

that is, they require the application to be taken off-line while

the migration occurs. Non-live migration can be divided into

three steps: 1) the program is checkpointed at source, 2) the

checkpointed data are copied from source to target, and 3) the

program is restarted at target. The main drawback of non-live

migration is that its application downtime (off-line time) is

too long. To reduce this downtime, live migrations [13] are

proposed to migrate most of (or all) pages before (pre-copy)

or after (post-copy) “real” migration, and therefore to reduce

the number of migrated pages during the downtime. However,

the side effect of live migrations is that they require longer,

compared to non-live migration, busy time of source node.

Here, we define the busy time as the duration from the be-

ginning of the migration to the time that migrated applications

can be killed at source node.1 As far as we know, all prior

works of post-copy focused on total migration time. However,

we would like to make another point here that the busy time

might be more important because it has direct impacts on

the system performance; it decides when computing resources,

such as CPU and memory, occupied by migrated applications

to be released and be reallocated to remaining applications

in source node. For example, when applications are suffering

from swapping due to the lack of memory in a “hot” node,

simply migrating an application with large memory footprint

might be able to stop (after busy time) all remaining applica-

tions at source from swapping and therefore to improve the

1Note: after migration completes, the migrated applications would continue
to execute at target node.
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