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Abstract— This article presents a fundamental evaluation of
different clustering methods for analyzing driving cycles toward
the efficient design of electric machines. It uses clusters of
operating points to identify representative points (RPs) and the
related optimization weights to design electric machines with
optimal efficiency in the specific operating range. Typically,
the design optimization of machines is carried out for one or a
few speed–torque points. This article shows that for a predictable
driving cycle or a specific set of operating points on the torque–
speed plot, cluster analysis can be used to determine the represen-
tative operating points, which can be utilized in the optimization
process to improve the overall efficiency for the considered
driving cycle or operation profile. Furthermore, if multiphysics
design is considered, the machine performance metrics can be
guaranteed in multiple domains. This article presents a review
of data clustering methods and their application in machine
design optimization, where the pros and cons of the methods
are weighed up. Further, X-Means method is proposed as an
automated approach for cluster analysis and identification of
RPs. In order to assess the effectiveness of the proposed method,
a case study is carried out for the electromagnetic design of
an interior permanent magnet (IPM) machine for the World-
wide harmonized Light vehicles Test Procedure (WLTP) driving
cycle.

Index Terms— Clustering methods, electric machines, opti-
mization methods, permanent magnet machines, traction motors.

I. INTRODUCTION

AS THE usage of electric and hybrid vehicles continues to
grow globally and sales are expected to reach 38% of the

global vehicle sales in 2025 [1], the electric motor is still being
considered to be one of the key elements in the powertrain of
the hybrid and electric vehicles, and several researchers have
focused on the optimization of the electric machine design to
meet the powertrain efficiency requirements and overcome the
challenges related to cost, size, and weight.

Generally, the optimization of the machine design for an
electric vehicle can be based on a single or a few operating
points of the torque–speed profile, which would guarantee
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acceptable performance characteristic at those specific points.
Depending on the driving cycle of the vehicle or the applica-
tion, the electric motor operating range would include several
torque–speed operating points. Optimizing the machine design
for a single operating point might not ensure that the efficiency
and other performance indices are within the design require-
ments for all the operating points within the considered driving
cycle. Accordingly, including more driving cycle points in the
design optimization process can enhance the overall perfor-
mance of the machine and the driving cycle efficiency for all
the torque–speed range of operation. Furthermore, for design
optimizations that involve multiphysics constraints in addition
to the electromagnetic requirements, an increased number of
considered operating points would enhance the flexibility to
adapt the optimization to the significance of each point in the
considered domains.

Typically, the design of the electric traction motor is focused
on satisfying acceleration, passing, and grade launch require-
ments [2]. However, the design requirements can go beyond
the electromagnetic properties and depend heavily on the
application, which is defined by the driving cycle and oper-
ating conditions. Therefore, any design optimization frame-
work should consider several aspects, such as torque–speed
characteristics, thermal behavior, efficiency, electromagnetic
compatibility, noise and vibration behavior, spatial limitations,
and production cost. Since the motor performance can vary
based on the operating point, meeting the design criteria and
requirements cannot be guaranteed. The clustering analysis can
allow a systematic approach of adopting most of the mentioned
automotive design criteria in the machine design optimization
while considering the whole expected range of operation in
the driving cycle.

Optimization of machine design and power electronic con-
trol can involve the simulation of thousands of designs, which
makes the inclusion of more driving cycle operating points
very time-consuming with a significant increase in computa-
tional cost and complexity. By considering fewer operating
points, which are referred to as representative points (RPs),
to represent the driving cycle and the application torque–
speed profile, optimization can be performed on these points to
enhance the overall cycle efficiency at different torque–speed
points. The significance of choosing the number and values of
the RPs lies in balancing the gains from including more points
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Fig. 1. General approach for machine design optimization using the driving
cycle analysis.

in the design simulations and, hence, a better depiction of the
driving cycle and the downside of increasing computational
cost and complexity.

For automotive applications, clustering methods can be
applied to split the torque–speed plane into different groups
considering the position and density of the operating points
on the plane. This is related to how frequently the motor is
going to be operated in that specific region. The determination
of clusters and RPs can be done in several ways and can be
related to different definitions of clusters, qualities that qualify
specific points to belong to a given cluster, and the appropriate
number of clusters. This approach can, therefore, be used to
develop a systematic approach to analyze the specific driving
cycles of interest toward obtaining reproducible results.

Cluster analysis is a primary method in data mining. It can
be used as a tool to get insight into the distribution of a data
set or as a preprocessing step for other algorithms operating
on the detected clusters [3]. The underlying principle in cluster
analysis is to find groups of data objects, where the objects
in a group are related to one another such that they can be
distinguished from the objects in other groups. Data clustering
can be partitional, where the data objects are divided into
nonoverlapping clusters, or hierarchical, where the data objects
are arranged in a set of nested clusters as a hierarchical tree.

The conventional approach for driving cycle analysis in
machine design optimization is shown in Fig. 1. Typically, the
torque–speed profile of the electric motor is obtained from
the (speed versus time) driving cycle data using the vehicle
or application model, and then, the clusters and the number
of operating points are determined using clustering analysis to
be used for design optimization.

This article evaluates the effectiveness of different cluster-
ing approaches to analyze the driving cycle and determine
clusters, RPs, and optimization weights. It also identifies
the pros and cons of the data clustering methods toward
application in machine design optimization. Based on the
analysis, this article also proposes the use of X-Means method
as an automated approach to determine the clusters and
RPs of the torque–speed profile. A case study is performed
on the Worldwide harmonized Light vehicles Test Proce-
dure (WLTP) driving cycle to evaluate the effectiveness of
the proposed method for driving cycle analysis for machine
design optimization.

In this article, a review of the clustering methods for
driving cycle analysis and the proposed X-Means method
are presented in Section II. In Section III, the advantages
and shortcomings of the clustering methods are discussed.

Fig. 2. Overview of the methods used in the cluster analysis of driving
cycles.

Fig. 3. Torque–speed profile clustering using (a) arbitrary range split and
(b) K-Means algorithm.

The effectiveness of the proposed algorithm is evaluated with
a case study presented in Section IV.

II. CLUSTER ANALYSIS OF DRIVING CYCLES

Several fundamental concepts and definitions need to be
described in order to choose the appropriate clustering tech-
nique for the drive cycle analysis, as shown in Fig. 2.

A. Overview of Approaches for Cluster Definition

Several techniques can be used to group the torque–speed
data points of a driving cycle in clusters, some of these
techniques are based on data-mining science and others are
based on prior knowledge and experience of the application.
RPs for the driving cycle are determined based on the defined
clusters. The number of clusters resulting from the analysis
will define the number of RPs to be used in the motor
design optimization, which is significant since it presents the
tradeoff between the computational cost and the resulting
driving cycle efficiency. Methods for cluster identification can
be categorized as the following.

1) Arbitrary Range Split: The method is based on splitting
the speed range and torque range, which results in rectangular
clusters having a combination of different torque and speed
levels [4]–[8], as shown in Fig. 3(a). Dividing the torque–speed
plane automatically defines the number of clusters.

2) Energy Density Distribution: According to torque and
speed fluctuations in the driving cycle, motor energy distri-
bution for each operating point can be calculated [9]–[12].
Based on the variation of the motor energy on the torque–
speed plane, the operating points with significantly higher
energy consumptions are considered as RPs. For the rest of
operating points, the torque–speed plane is segmented into
different clusters, where the number of clusters is determined
by comparing the energy loss of all operating points against the
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loss calculated from the RPs, using a predetermined efficiency
map.

3) K-Means Algorithm: K-Means is an unsupervised
machine learning algorithm and one of the popular methods
for cluster analysis in data mining [13]. The approach is related
to partitional clustering, where each cluster is associated with
a centroid.

The operating points are clustered into k clusters in which
each point belongs to the cluster with the nearest centroid,
as shown in Fig. 3(b). The algorithm aims to minimize the
objective function set for n data points and k clusters, as shown
in the following equation:

J =
k∑

j=1

n∑

i=1

∥∥x ( j )
i − c j

∥∥2 (1)

where ‖x ( j )
i − c j‖2 corresponds to the distance between the

data point x ( j )
i and the centroid of cluster j and c j .

The centroids’ position on the torque–speed plane is deter-
mined iteratively, in two steps: assignment and update. First,
the centroids are initialized randomly, in the assignment step,
and each data point, xi , is assigned to the nearest centroid, c j ,
of the cluster Sj , as shown in (2). In the update step,
the centroids’ positions are adjusted to match the means of
the data points within their cluster, as shown in (3) [14]

S(t)
j = {

xi : ∥∥xi − c(t)
j

∥∥2 ≤ ∥∥xi − c(t)
j

∥∥2∀ j, 1 ≤ j ≤k
}

(2)

c(t+1)
j = 1∣∣S(t)

j

∣∣
∑

xi∈S(t)
j

xi (3)

where t is the iteration number.
The two steps are repeated iteratively until the algorithm

converges, which when the assignments no longer change.
The K-Means method has been extensively used in electric

machine design optimization [15]–[20]. As mentioned earlier,
the number of clusters k has must be specified beforehand.
Typically, more clusters capture more of the dynamics within
the driving cycle at the expense of an increased computational
cost of design optimization.

4) X-Means Algorithm: X-Means clustering has not yet
been used in electric machine design effectively but can
be very effective toward developing an automated, system-
atic clustering technique for driving cycle analysis. This
approach is a variation of K-Means clustering, where cluster
assignments are refined by repeatedly subdividing the data
points, and keeping the best resulting splits, until a criterion,
the Bayesian information criterion (BIC), is reached, as shown
in (4) [21]. The approach uses a local BIC score to decide on
keeping a split and a global BIC score to decide the final
number of clusters

BIC(M j ) = l̂ j (D) − k

2
log (n) (4)

where M j corresponds to models of different number of
clusters, l̂ j (D) is the maximum log-likelihood of the data D,
and k is the number of clusters. The algorithm is initialized
with a minimum number of clusters and centroids as needed

until it reaches the upper bound. The centroids with the highest
scores are chosen as the final output of the algorithm.

As mentioned earlier, the importance of the number of
clusters or RPs was shown to be an important parameter since
it affects the optimization results and the computational cost.
The method provides a systematic approach, compared to the
arbitrary range split, energy density distribution, and visual
inspection methods. Furthermore, the optimum number of RPs
is determined within the X-Means algorithm and would not
require the user to select it as in the case of the K-Means
algorithm. The X-Means method can be used to perform
clustering, calculate RPs, and also determine an appropriate
number of clusters. All three steps can be completed in a single
systematic algorithm without user interference and judgment.

B. Determination of RPs

Determining RPs for clusters is an important aspect in
the analysis of a given driving cycle since the motor design
is optimized based on these torque–speed values. Several
methods can be employed toward this task.

1) Geometric Center of Gravity (GCG): The RPs in the
cluster i , TRP,i , and ωRP,i are based on the average torque and
speed of the points, as shown in the following equation:

TRP,i =
∑Ni

j=1 Tj,i

Ni
(5)

ωRP,i =
∑Ni

j=1 ω j,i

Ni
(6)

where Ni is the number of operating points in cluster i .
2) Energy Center of Gravity (ECG): This method is based

on the energy distribution of the points within a cluster,
the energy, Ei , of the i th cluster is calculated using the
following equation:

Ei =
Ni∑

j=1

E j,i . (7)

The calculated RPs, TRP,i , and ωRP,i are given by the
following equation [9]:

TRP,i = 1

Ei

Ni∑

j=1

E j,i Tj,i (8)

ωRP,i = 1

Ei

Ni∑

j=1

E j,iω j,i . (9)

3) Method-Based Approaches: For some clustering meth-
ods, cluster definition and the RPs calculation are performed
implicitly within the algorithm. This approach includes meth-
ods, such as K-Means and X-Means, which have been
described in Section II-A.

C. Design Optimization and Weight Assignment

In order to account for the significance of each of the RPs,
weights need to be assigned for each of the points to be used
within the design optimization process. The weights associated
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with each of the operating points reflect the energy throughput
and the frequency of occurrence. Weights for the RPs can be
calculated as a ratio of the energy consumed by all points
in each cluster to the total energy consumed in all cluster,
as shown in (10). In this method, weights account for the
frequency of occurrence and the energy level. In addition,
weights can also be calculated based on the ratio of the number
of points within a cluster to the total number of operating
points of the driving cycle, as shown in (11)

WE,i = Ei∑k
j=1 E j

(10)

WF,i = Ni∑k
j=1 N j

. (11)

The weight factors are included in the objective function
of the optimization. The objective function is presented as the
weighted sum of the objective evaluated at every single RP,
as shown in the following equation:

F =
m∑

i=1

k∑

j=1

w j · fi, j (12)

where fi, j is the i th optimization objective evaluated at the
j th RP, w j is the optimization weight, m is the number of
optimization objectives, and k is the number of RPs.

III. DISCUSSION AND COMPARATIVE EVALUATION

This section discusses the advantages and shortcomings of
clustering methods based on a detailed review of the current
literature.

Aside from the methods based on visual inspection of
the torque–speed plane [22], [23], the arbitrary range split
technique used in [4]–[8] provides a simple way to carry
out the clustering. Splitting the torque and speed ranges into
equal intervals does not provide the flexibility in clustering
the operating points based on their distribution density on the
plane. Moreover, the number of clusters determined by the
number of intervals in each range might not be optimal.
Lazari et al. [9], Sarigiannidis et al. [10], Chen et al. [11],
and Jung et al. [12] used the variation of the motor energy
on the torque–speed plane to define the clusters, and this
method would allow adapting the cluster sizes and position
on the plane to the distribution of operating points, However,
this approach is still not systematic and often relies on user-
judgment and visual inspection for the choice of the clusters
and RPs. As explained earlier, the number of clusters and
RPs are decided using an iterative energy loss calculation. The
number of RPs is chosen by the user to minimize the difference
between energy loss calculations using RPs and all operating
points of the driving cycle. In this method, the goodness of
cycle representation is related to energy calculation based on a
predetermined efficiency map, which can be different than the
actual map. In many cases, the method results in a relatively
large number of RPs, which increases the computational cost.

The systematic approach and the simplicity of the K-Means
used in [15]–[20] and the methods based on minimizing the
Euclidean distance [24] can be appealing for the clustering

Fig. 4. Elbow method to determine the number of clusters and RPs.

Fig. 5. (a) Silhouette analysis. (b) Calinski and Harabasz index.

of the driving cycle points. However, the K-Means has some
shortcomings, especially when the clusters are of different
size and densities. Furthermore, the number of clusters k has
to be chosen by the user; however, the basis for the choice
of the value of k was not provided in [15]–[19] and [24].
In [20], the number of clusters was determined using the elbow
method.

The elbow method can be used to estimate an appropriate
value of k. In the elbow method, K-Means clustering is
implemented on the data set for a range of values of k,
where J is calculated for each value of k, as shown in (1).
The appropriate value of k is chosen based on a plot of J ,
as shown in Fig. 4. Since the K-Means tends to minimize the
variation within the cluster, the objective function J is going to
decrease as k increases. The monotonic decrease can make it
challenging to determine the number of clusters. Furthermore,
the curve may not show any elbow or an obvious point where
the curve starts to level.

Based on this analysis, the elbow method can be defined
as a measure of the intracluster variation. On the other hand,
other data mining methods can evaluate both the intercluster
and intracluster variations, which compares the tightness of
the points within a cluster with the separation of the clusters
from each other. Examples of these methods are the silhouette
analysis [25] and the Calinski and Harabasz index [26].
Fig. 5 shows the average silhouette value and the CH index
calculated for a torque–speed profile of a driving cycle, using
the silhouette analysis and the Calinski and Harabasz index,
respectively. Ideally, the maximum value of both indices
corresponds to the appropriate number of clusters.

As mentioned earlier, the number of clusters or RPs is an
important parameter since it affects the optimization results
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and the computational cost. The X-Means approach can be
seen as a strong candidate toward developing automated
data clustering algorithm. The method provides a systematic
approach, compared to the arbitrary range split, energy den-
sity distribution, and visual inspection methods. Furthermore,
the optimum number of RPs is determined within the X-Means
algorithm and would not require the user to select it, as in
the case of the K-Means algorithm. In addition, it does not
need any supporting methods (the elbow method, silhouette
analysis, and CH index) to determine the number of RPs,
which might not be definite on the appropriate number of RPs
and would require user judgment.

Among the methods of RPs calculation for the defined
clusters, the ECG method used in [6], [7], [9], [11], and [17]
is more efficient compared to the GCG [4]–[5], [8]. This is
because it considers the energy weight of the data by position-
ing the RP closer to regions with higher energy consumption.
This is critical for the machine loss minimization across the
entire driving cycle.

Similar weights can be assigned to the RPs of each cluster
based on both the energy levels and the density of oper-
ating points within a cluster. The approach used in [5],
[9]–[11], [15], [17]–[18], and [20] biases the machine design
optimization toward an enhanced overall driving cycle effi-
ciency. On the other hand, considering the density of points
within the cluster [4], [7] can be used to optimize the design
objectives to enhance specific metrics of performance in differ-
ent multiphysics domains, including the thermal and structural
domains.

Other well-known clustering methods can be applied in elec-
tric machine design. These methods are like the density-based
algorithm DBSCAN that allows the identification of arbitrarily
shaped clusters and fuzzy C-Means method, where the oper-
ating points can belong to more than one clusters. However,
the capabilities of these methods may exceed the requirements
for the application of driving cycle analysis and can add
complexity to the design optimization process.

IV. DESIGN OPTIMIZATION OF IPM TRACTION

MOTOR: A CASE STUDY

This section evaluates the significance of the number of
RPs in the main outcomes of the optimization process’ per-
formance of the optimized design across the driving cycle
and corresponding computational time and cost. The goal of
this case study is to evaluate the effectiveness of X-Means
and K-Means as a systematic solution methodology and to
compare them to single RP optimization. In the case of the
X-Means, the number of RPs is determined implicitly within
the algorithm, while for K-Means, the user is expected to
provide the number of clusters.

A. Target Motor and Optimization Settings

The target machine for this case study is a 48-slot 8-pole
interior permanent magnet (IPM) machine with rectangu-
lar NdFeB magnets (N30EH). The motor utilizes an inte-
gral slot distributed stator winding, with a slot fill factor
of 42%. The maximum peak current density of the stator

Fig. 6. FEMM electromagnetic simulation of IPM.

Fig. 7. Parameterized model of the considered IPM.

TABLE I

MOTOR PARAMETERS AND CONSTRAINTS

is set to 20 Apk/mm2. The machine volume is similar to
a WFSM prototype designed and tested in [27], as shown
in Table I. The stator outer diameter and stack length are
fixed at 254 and 106 mm, respectively. A stochastic differ-
ential evolution algorithm is used for the optimization [28]
to minimize the machine losses in the optimization tool used
in [29]. Commercially available software FEMM was used
for electromagnetic simulations, as shown in Fig. 6. The
optimization includes 12 stator and rotor geometric factors
to govern the dimensions shown in Fig. 7 and Table II,
with constraints on torque ripple [30]. The core losses in
the stator and rotor pole face are estimated using modified
Steinmetz and CAL2 loss models [31]. Toward the calculation
of copper loss, high-frequency effects have been ignored in
this study, and only dc resistance of the conductors has been
considered. Based on this assumption, for the same current
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TABLE II

MOTOR DIMENSIONS CONSIDERED IN THE OPTIMIZATION

Fig. 8. WLTP driving cycle speed profile.

TABLE III

WLTP CHARACTERISTICS

density and effective copper winding area, the wire gauge
does not change the estimated copper loss. The wire gauge
and number of strands per turn can be chosen to achieve the
assumed stator slot fill factor and the effective copper area. The
same method of loss calculation is used for all three cases in
the study. The rated power of the machine determined from
the profile envelope is 58 kW, and the constant power speed
range (CPSR) is 2.5, with a maximum speed of 10 krpm.

B. Cluster Analysis

The WLTP is considered for this study, as shown in
Fig. 8. The driving cycle is used to determine the energy
consumption, electric range, and CO2 emissions for light-duty
vehicles [32]. The characteristics of this driving cycle are
summarized in Table III.

Using the method presented in [33], the torque–speed profile
was identified, as shown in Fig. 9. Assuming a flat road, the
traction force in the motor operation can be determined by
estimating the rolling resistance and the aerodynamic drag
using the vehicle specifications, as shown in Table IV.

The clusters and RPs determined by the X-Means are
shown in Fig. 10. The optimization was repeated for a single

Fig. 9. WLTP torque–speed profile.

TABLE IV

VEHICLE SPECIFICATIONS

Fig. 10. Clusters and RPs using X-Means.

Fig. 11. Clusters and RPs using K-Means.

operating point (rated torque and base speed) and seven RPs
determined by the K-Means algorithm, as shown in Fig. 11.

Each optimization consisted of 50 generations, where each
generation included 96 members.

Table V shows the RPs values and their associated opti-
mization weights, WE,i , that were calculated using (10).
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TABLE V

RPS DETERMINED USING X-MEANS AND K-MEANS

Fig. 12. Excitation control procedure.

C. Electromagnetic Simulation Procedure

In order to develop an optimization framework across mul-
tiple operating points with variable dimensional factors and
current densities, the simulation steps used is shown in Fig. 12.
For each design candidate with a specific PM thickness and
stator winding area, the operating points can be attained with
different values of current densities and phase advance angles;
at the same time, the maximum terminal voltage, which is
determined by the dc bus voltage, should not be exceeded.

The FE simulations are used to determine the torque and
the magnetic flux linkage values, λd and λq at the mentioned
current densities and angles. The terminal voltage calculation
considers the induced voltage and the voltage drop in the arma-
ture resistance Ra . Accordingly, two lookup tables (LUTs)
were developed, using the FE simulations results and the
following equations:

T = 3

2
p(λd Iq − λq Id ) (13)

vq = Ra Iq + ωλd (14)

vd = Ra Id − ωλq (15)

v =
√

v2
q + v2

d (16)

where p is the number of the motor pole pairs, Id and Iq are
the d and q components of the stator current, and ω is the
electrical excitation frequency.

The torque levels (T ) and the stator voltages (v) are
calculated for different values (four values) of stator current

Fig. 13. Identified σs,MTPA using a different number of σs and γ .

Fig. 14. Normalized electromagnetic torque for a range of current densities
and angles.

Fig. 15. Normalized magnetic flux linkage for a range of current densities
and angles.

densities σs and stator current advance angles γ (five values).
A few simulations were performed to determine the number of
points (σs and γ ) at which the LUTs are identified. A number
of σs and γ combinations were simulated at one operating
point, and the resulting MTPA current density σs,MTPA was
determined. Increasing the number of the angles and current
densities will enhance the accuracy and allow the LUT to
find the minimal current density satisfying the MTPA control
and the operating point conditions. Although this process is
performed once for each design, it has to be repeated for all
designs, which could increase the computational cost. Table VI
and Fig. 13 show how σs,MTPA identified by the LUTs can
change with different number of σs and γ combinations.
Accordingly, identifying the LUTs using four and five val-
ues for σs and γ , respectively, presents a tradeoff between
accuracy and computational cost.

Figs. 14 and 15 show normalized values of the electro-
magnetic torque and magnetic flux linkage of one design for
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Fig. 16. Optimization members and selected design (shown in red) for optimization. (a) Single point. (b) X-Means. (c) K-Means. Only the members with
torque ripple less than 35% are shown.

TABLE VI

IDENTIFIED σs,MTPA USING A DIFFERENT NUMBER OF σs & γ

different electrical excitation, which will be used in the LUTs.
The first LUT (LUT-T) will be used to determine the current
magnitudes and angles, which satisfies the torque requirement.
The second LUT (LUT-V) will be used to determine the
terminal voltage for the corresponding current magnitude and
angle.

It must be noted that LUTs do not need to be identified
for each operating point for a given design. Instead, the same
LUTs are used for all operating points. An initial check is
performed to verify that the considered design can attain the
profile envelope within the current and voltage requirements.
For operating points below or equal to base speed, the current
magnitude and angle can be determined using a simple MTPA
search algorithm. In the constant power region, where the
speeds are higher than the rated speed, the flux-weakening
operation should be implemented. A minimum value of the
electrical excitation is chosen to satisfy the torque and voltage
requirements of the operating points.

D. Optimization Results

A single design was selected from each of the three opti-
mizations, as shown in Fig. 16, and the selected designs were
then simulated at the operating points of the driving cycle. The
optimal design from each optimization was chosen from the
Pareto front of the optimization results, which corresponds
to the optimization objective and constraint, efficiency, and
torque ripple, respectively. The stator and rotor laminations of
the selected design from the optimization using the X-Means
are shown in Fig. 17(a). The magnetic flux density map at the
rated operating point is shown in Fig. 17(b).

Fig. 17. Selected design from the X-Means optimization. (a) Cross section.
(b) Magnetic flux density map.

Fig. 18. Optimizations results and computational cost.

The average efficiency ηavg and the driving cycle efficiency
ηcyc are calculated as shown in the following equation:

ηavg =
∑N

i=1 ηi

N
(17)

ηcyc =
∑N

i=1 ηi · Pi∑N
i=1 Pi

(18)

where N is the number of operating points and ηi and Pi are
the efficiency and power of the selected design at the operating
point i , respectively.

As shown in Table VII and Fig. 18, increasing the number
of RPs considered in the optimization improves the efficiency
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Fig. 19. Efficiency maps of the designs selected from the optimizations using (a) single point, (b) X-Means, and (c) K-Means.

TABLE VII

COMPARISON OF OPTIMIZATION RESULTS

Fig. 20. Efficiency difference and location of RPs. (a) X-Means–single point.
(b) X-Means–K-Means.

across the driving cycle. However, the computational cost,
which corresponds to the time needed for the optimization,
increases considerably as well. Considering the operating
points of the driving cycle (X-Means and K-Means) resulted
in an improved cycle efficiency compared to the case where

Fig. 21. Efficiency difference and driving cycle points. (a) X-Means–single
point. (b) X-Means–K-Means.

the machine geometry is optimized for the rated operating
point (single point), without taking into account the driving
cycle operating points. The efficiency maps for the three
optimizations are shown in Fig. 19 to demonstrate the effect
of increasing the number of RPs on motor efficiency. Fig. 19
clearly shows that the improvement in efficiency starts to
decline with the increasing number of RPs. Therefore, the
X-Means can provide an appropriate number of clusters and
RPs to improve the driving cycle efficiency with reduced
computational cost compared to the K-Means.

Fig. 20 shows the efficiency of the X-Means, relative to the
cases of the single point and K-Means. Fig. 20 (a) and (b)
demonstrate the effect of the location of the RP on the
efficiency map. For example, the single point case showed
better efficiency only near the knee point (high torque and
below base speed region) due to the location of the RP used
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in optimization. The difference in the calculated values of the
average and weighted for the three cases can be clarified in
Fig. 21, where the distribution of the driving cycle points on
the torque–speed plane is shown. In Fig. 21(a), more points
are located in the regions of higher efficiency, which results
in an enhanced average efficiency value. This demonstrates
the expected effect of clustering in biasing the optimization to
improve the efficiency at regions with high densities of oper-
ating points. Furthermore, the efficiency difference between
the X-Means and K-Means cases does not exceed 0.2% for
more than half of the plane, which demonstrates the ability
of the X-Means to find a fair tradeoff between accuracy and
computational cost.

V. CONCLUSION

This article discusses the fundamentals of data clustering
methods toward driving cycle analysis to identify clusters,
RPs, and optimization weights. It presents a comparative eval-
uation of the pros and cons of multiple data-clustering methods
in the context of machine design optimization. An X-Means
approach has been introduced to identify clusters and RPs
in the torque–speed profile. This method offers a systematic
approach as compared to visual inspection, arbitrary range
split, and energy distribution methods and is able to determine
an optimum number of RPs compared to the K-Means algo-
rithm. In order to evaluate the significance of the number of
RPs in the machine design optimization and the effectiveness
of the proposed method, a case study has been carried out
using the WLTP driving cycle.

This study shows that considering the operating points of the
driving cycle (X-Means and K-Means) results in an improved
cycle efficiency compared to the case where the machine
geometry is optimized for the rated operating point (single
point), without taking into account the driving cycle operating
points. Furthermore, one can conclude that increasing the
number of RPs used in the optimization would not guarantee
a proportional improvement in the efficiency of the design
for a given driving cycle. This can be related to the fact
that it is difficult for the optimization to find a single-motor
geometry that guarantees a significant improvement for the
entire operating range of the motor.

Based on the results from X-Means and K-Means optimiza-
tions, the number of RPs should be identified to maintain a
tradeoff between driving cycle efficiency and computational
cost. Finally, this article concludes that the X-Means algorithm
can effectively be used to develop an automated algorithm
for identifying the optimal number of RPs, which can lead to
significant improvement in the average efficiency of the design
with a minimal increase in computational cost. This approach
also enhances reproducibility of the results independent of the
designer’s intervention, by defining a mathematical basis for
identifying the RPs.
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