
Vol:.(1234567890)

CCF Transactions on High Performance Computing (2020) 2:16–35

https://doi.org/10.1007/s42514-020-00019-8

1 3

REGULAR PAPER

Virtualize and share non‑volatile memories in user space

Chih Chieh Chou1 · Jaemin Jung2 · A. L. Narasimha Reddy1 · Paul V. Gratz1 · Doug Voigt3

Received: 15 June 2019 / Accepted: 22 January 2020 / Published online: 24 February 2020

© China Computer Federation (CCF) 2020

Abstract

Emerging non-volatile memory (NVM) has attractive characteristics such as DRAM-like low-latency together with the

non-volatility of storage devices. Recently, byte-addressable, memory bus-attached NVM has become available. This paper

addresses the problem of combining a smaller, faster byte-addressable NVM with a larger, slower storage device, such as

SSD, to create the impression of a larger and faster byte-addressable NVM which can be shared across multiple applications

concurrently. In this paper, we propose vNVML, a user space library for virtualizing and sharing NVM. vNVML provides

for applications transaction-like memory semantics that ensures write ordering, durability, and persistency guarantees across

system failures. vNVML exploits DRAM for read caching to improve performance and potentially to reduce the number

of writes to NVM, extending the NVM lifetime. vNVML is implemented in C and evaluated with realistic workloads to

show that vNVML allows applications to share NVM efficiently, both in a single OS and when docker-like containers are

employed. The results from the evaluation show that vNVML incurs less than 10% overhead while providing the benefits of

an expanded virtualized NVM space to the applications, and allowing applications to safely share the virtual NVM.

Keywords Non-volatile memory · User space library · Virtualization · Transactional semantics · Concurrent accesses

1 Introduction

Emerging non-volatile memory (NVM) technologies, such

as phase-change memory (PCM) (Lee et al. 2010), NV-

DIMM (Narayanan and Hodson 2012), and 3D-XPoint (Intel

2019), will dramatically shake up future system designs

(Dulloor et al. 2014; Kwon et al. 2017; Liang et al. 2016;

Yang et al. 2015; Zhang et al. 2015). In particular, not only

do these NVM technologies promise much faster access

times than existing NAND-based SSDs, within an order of

magnitude of DRAM, but they also are “byte” addressable

and will be placed directly on the memory buses. Further-

more, these NVM technologies could be used to replace

existing permanent storage devices or even volatile memory

(i.e. single level system).

To date there have been some significant works in this

domain. Some prior works, such as (Condit et al. 2009;

Dulloor et al. 2014; Kwon et al. 2017; Qiu and Reddy

2013; Wu and Reddy 2011; Xu and Swanson 2016), engi-

neer novel file systems tailored for exploiting NVM. Other

prior works, such as (Venkataraman et al. 2011; Yang et al.

2015), employ NVM as the only media in their (single level)

system and carefully design their data store manipulation

mechanism to directly access some data structures stored in

NVM. Their aim is to maximize performance by eliminating

unnecessary data movement between volatile memory and

persistent storage devices. These prior schemes, however,

currently present no way to virtualize and share persistent

NVM among multiple applications and users.

Traditionally, there are two common ways for applications

to access data content in storage devices. One is through

the file system read/write interface, the other is via the

memory mapped file (mmap) interface. The cost of system

 * Chih Chieh Chou

 ccchou2003@tamu.edu

 Jaemin Jung

 j.jaemin@samsung.com

 A. L. Narasimha Reddy

 reddy@tamu.edu

 Paul V. Gratz

 pgratz@tamu.edu

 Doug Voigt

 doug.voigt@live.com

1 Department of Electrical and Computer Engineering, Texas

A&M University, College Station, TX, USA

2 Samsung Semiconductor, San Jose, CA, USA

3 Boise, ID, USA

http://orcid.org/0000-0002-3094-6951
http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-020-00019-8&domain=pdf

17Virtualize and share non-volatile memories in user space

1 3

calls incurred by accessing through the file system, how-

ever, would squander the low-latency as well as performance

provided by NVM. Thus, to attain the maximum gain from

NVM, in this paper, we focus on memory mapped file access

form, which is also the recommended form by SNIA (2017).

Currently, when files on storage devices are mmapped

to volatile memory (DRAM), the POSIX interface can sup-

port shared mmap; that is, the same region of files can be

shared/accessed between multiple processes. Also, thanks

to the swapping mechanism provided by virtual memory,

which writes dirty pages to the backend storage devices

(swap space) and therefore produces clean pages for the

future use, the impression of physical available DRAM is

extended. These two attractive properties of existing vola-

tile virtual memory, however, are not supported in the prior

work for NVM.

This paper considers this problem of virtualizing and

sharing byte-addressable NVM across multiple applications.

Here we introduce “vNVML”, an efficient library for virtu-

alizing and sharing NVM in user land. What we mean by

“sharing NVM” here is that not only can the same physical

NVM pages be reallocated and reused across users, but the

data content on NVM pages can also be seen/accessed by

applications concurrently, exactly like shared mmap access

form of virtual memory.

One of the main aims of vNVML is to provide the impres-

sion of larger NVM availability to applications, much like

virtual memory allowing the use of more main memory than

the actual physical memory in the machine. In order to vir-

tualize NVM in this manner, this paper examines extend-

ing a smaller amount of byte-addressable NVM with larger,

traditional storage devices.1

Further, we examine mechanisms to safely leverage

DRAM as cache to improve the performance of persistent

memory access. There are certain advantages in employing

DRAM even when the applications access virtual NVM.

First, DRAM may have better performance (lower latency)

than most types of NVM, except for NV-DIMM. Second,

DRAM may alleviate lifetime issues of NVM in read-

intensive workloads, since many NVM technologies have

write endurance limits. In our design, some reads can be

served by reading pages from storage devices to DRAM,

bypassing the NVM entirely. This might be a better design

choice compared to simply employing NVM as both read

and write cache in terms of reducing the number of NVM

write accesses.

We design and implement vNVML with the hope that

programmers could access (virtual) NVM with a simi-

lar interface as for existing memory mapped files. That

is, after a file on the storage device is mmapped as a vir-

tual NVM region, a pointer to this region is returned. This

pointer can be directly used in the programs as a typical

mmapped pointer to virtual memory. However, when NVM

is exploited as permanent storage by applications, the dura-

bility and ordering of writes must be assured. Write ordering

as required by byte-addressable NVM has been discussed

almost in every prior work (Coburn et al. 2011; Condit et al.

2009; Giles et al. 2015; Venkataraman et al. 2011; Volos

et al. 2011; Yang et al. 2015). Many approaches have been

proposed to address the write ordering problem within per-

sistent memories, including hardware capacitors to ensure

eviction order of all data from volatile memory to NVM

(Condit et al. 2009), epoch-based writes (Coburn et al. 2011;

Condit et al. 2009), transaction-like semantics (Coburn et al.

2011; Giles et al. 2015; Memaripour et al. 2017; Volos et al.

2011), versioning (Venkataraman et al. 2011), and special

data stores and algorithms designed for single level NVM

(Venkataraman et al. 2011; Yang et al. 2015). Here vNVML

proposes to use transaction-like semantics to guarantee the

write ordering, atomicity, and durability of NVM accessing.

To sum up, vNVML employs DRAM as cache, NVM as

log buffer and write cache, and the backing storage device

as the final destination of writes. From our evaluations,

vNVML incurs less than 10% throughput overhead, if the

cache system of vNVML can absorb the write traffic, com-

pared to directly accessing NVM without the atomicity and

write ordering guarantees.

The contributions of this paper are as follows:

• Propose a transactional interface for virtualizing and

sharing persistent non-volatile memory.

• An implementation of this interface in our virtualized

NVM Library, vNVML.

• This implementation leverages caching in DRAM, cou-

pled with write logging and caching in NVM and lazy

writeback to the backing storage to provide a high perfor-

mance, virtualized, and shareable NVM to applications.

• We evaluate this proposed vNVML under not only syn-

thetic but also realistic (YCSB+MongoDB) workloads

and show that vNVML is competitive with prior tech-

niques which do not support virtualization and sharing

of NVM.

The remainder of this paper is organized as follows. Sec-

tion 2 describes background and prior work in this area. Sec-

tion 3 presents a design overview and discusses the design

decisions of vNVML. Section 4 explains the implementation

of vNVML in detail. Section 5 presents our results of evalu-

ation of vNVML and Sect. 6 concludes.

1 Note: while our approach can be applied with magnetic disks as the

backing stores, here we limit ourselves to SSDs.

18 C. C. Chou et al.

1 3

2 Background

Much of the early work to-date incorporating NVM in

systems assumes basic hardware changes. New memory

controllers are proposed (Doshi et al. 2016; Qureshi et al.

2009; Zhou et al. 2009). Kiln (Zhao et al. 2013) proposes

a victim cache for buffering and Atom (Joshi et al. 2017)

deploys a hardware logging approach to eliminate software

logging overhead. BPFS (Condit et al. 2009) develops a

new “epoch” for write ordering. While these approaches

show promise, they require significant hardware redesign,

which may take several years to be reflected in commercial

hardware.

In the more near term, we might prefer to the solutions

requiring little or no change to the basic processor cach-

ing and memory management hardware because memory

bus-attached NVM DIMMs have become available. For

example, recently Intel has released its Optane DC Per-

sistent Memory DIMM (Intel 2019). Near-term systems

will incorporate this type of NVM attached directly on the

memory bus, where it will be accessible via the system’s

physical address space. These system architectures argue

for a pure-system software approach to management.

Existing work to-date looking at system software

approaches to managing this (memory bus-attached) form

of NVM primarily focuses on constructing new file sys-

tems to handle the underlying NVM, such as SCMFS (Wu

and Reddy 2011), NVMFS (Qiu and Reddy 2013), BPFS

(Condit et al. 2009), PMFS (Dulloor et al. 2014), NOVA

(Xu and Swanson 2016), STRATA (Kwon et al. 2017),

FRASH (Jung et al. 2010), and Aerie (Volos et al. 2014).

Some of those works have considered building file sys-

tems across multiple types of NVM and storage technolo-

gies. These include NVMFS (Qiu and Reddy 2013) (NVM

and SSD) and Strata (Kwon et al. 2017) (DRAM, NVM,

SSD, and HDD). The design concept of Strata is close to

our vNVML; both of them contain DRAM and NVM as

caches. However, the DRAM of Strata only caches the

pages read from SSDs and HDDs and all updates would

go directly to NVM only. Therefore, Strata needs to search

for the up-to-date data locations. In addition, Strata does

not support memory mapped files access form, which is

the primary form used by our target applications.

Accessing NVM through file system APIs has funda-

mental drawbacks. First, accessing NVM via the file sys-

tem interface is not suitable for random, small accesses to

NVM due to the high (context switch) overheads incurred

by system calls compared with the relative low-latency

that NVM offers. Next, the file system naturally cannot

support concurrent accesses of the same file by different

threads or processes, even though those threads or pro-

cesses access different objects/pages in the same file. For

example, to access a certain location of a file, users must

acquire a file lock first, and then seek to the location

and read/write from and to that location of file. After

read/write command is completed, the file lock can be

released. Another drawback is that such (file system) soft-

ware approaches require users and applications to deploy

dedicated file systems.

Some works, such as NV-Tree (Yang et al. 2015) and

CDDS-Tree (Venkataraman et al. 2011), consider replacing

DRAM and storage devices entirely with NVM to construct

a single level, NVM-only system; their idea is to manipulate

all data structure operations directly on NVM and therefore

eliminate all data movements between DRAM and storage

devices. Such approaches can improve performance signifi-

cantly; however, they restrict themselves to only some spe-

cific data structures and cannot be easily applied to general

memory access. Also, they totally ignore the lower latency

offered by DRAM and do to further explore the potential

performance improvements. For example, their approaches

might be not suitable for the read-intensive, cache friendly

workloads.

SPAN (Fedorov et al. 2017) proposes some new swapping

enhancements in the operating system (OS) kernel to exploit

NVM as extended system memory. Its concept is similar to

the memory mode supported by Intel’s Optane DC Persis-

tent Memory (Watts 2019). NV-Heaps (Coburn et al. 2011)

provides some useful features, such as type-safe pointers and

garbage collection, but it requires programmers to use its

specific object framework and hardware must support epoch

as BPFS (Condit et al. 2009) does.

Other approaches try to create user space libraries (Giles

et al. 2015; Intel 2015; Memaripour et al. 2017; Volos et al.

2011). PMDK (Intel 2015) and KAMINO (Memaripour

et al. 2017) employ only NVM and utilize undo logging to

support in-place data updates. SoftWrAP (Giles et al. 2015)

combines NVM and DRAM and employs DRAM for write/

read accesses and NVM for redo logging. However, during

the normal operations, the data content is “retired” from

DRAM to the final locations in NVM, and the logs in NVM

are referenced only after system failures. The most closely

related work to our vNVML presented here is Mnemosyne

(Volos et al. 2011), which also uses redo logging. While

Mnemosyne provides both persistent region and persistent

heap allocation methods, vNVML does not support heap

style allocation. However, there are some fundamental

differences between these two approaches. Mnemosyne

achieves NVM virtualization by swapping, which is con-

trolled entirely by the kernel and therefore suffers from

context switching overhead in the page fault critical path;

vNVML, on the other hand, always writes the dirty pages

back to storage devices by a background thread. Further,

Mnemosyne does not employ DRAM as read cache, so it

requires an extensive search to find up-to-date data. Also,

Mnemosyne cannot support true sharing of NVM between

19Virtualize and share non-volatile memories in user space

1 3

processes. Table 1 summaries above-mentioned software

approaches.

In this work, we propose a system software-based, user

space management approach, which makes NVM available

directly to user applications, without the block-level seman-

tics of traditional file systems. Furthermore, our work also

provides write ordering, atomicity, and endurance guaran-

tees while offering a larger than physical available NVM

space to the applications, and allows them to safely share the

virtual NVM regions while maintaining performance goals

by leveraging caching in DRAM.

3 Design overview

In this section we describe our design and provide an over-

view of the decisions made in the design of the virtual NVM

Library (vNVML), a user space library for virtualizing and

sharing NVM. Our design decisions are guided by the fol-

lowing four observations.

First, persistent memory is typically allocated and dedicated

to an application. For example, when file system writes data to

a location in persistent memory, that location cannot be reused

or reallocated by another application; otherwise, the data con-

tent of that location is corrupted. If NVM is similarly allocated

and used, then NVM cannot be easily shared2 across multiple

applications if NVM is the only persistent storage device in the

systems. In data centers, with dynamic workloads, there is a

strong desire to share available resources across many applica-

tions. It is essential that we provide mechanisms to share pre-

cious resources like NVM across many applications.

Second, simply replacing traditional storage devices,

such as solid-state drives (SSDs) or hard drives (HDDs),

with NVM is not good enough. Although by doing so, all

existing applications can benefit immediately from perfor-

mance improvements provided by NVM without any modifi-

cations required; however, this ignores the byte-addressabil-

ity of NVM, and requires accessing NVM in units of blocks,

resulting in a suboptimal approach.

Third, the access latency of NVM is very close to that of

DRAM and is much faster than that of storage devices. When

storage devices are slow (for example magnetic disks), the

overheads paid by accessing through system calls (or context

switching) from file system APIs may not be a significant

part of the entire access latencies. However, as devices get

faster, like NVM whose latency is within an order of mag-

nitude of DRAM, these system call overheads become much

more significant and hence must be avoided. For example,

Intel Storage Performance Development Kit (SPDK) (Intel

2017) implements the whole NVMe device driver in the user

space and thus improves the accessing Ultra-Low-Latency

(ULL) SSDs, such as Intel NVM-based 3D-Xpoint or Sam-

sung Z-NAND (Samsung 2017), performance significantly.

Finally, while it is possible (and even desirable) to con-

tinue running existing or older software on new hardware,

software may have to be redesigned/rewritten to attain the

most of the hardware. This can take the forms of new file

systems, new data stores (Venkataraman et al. 2011; Yang

et al. 2015) or new libraries (Eisner et al. 2013; Giles et al.

2015; Intel 2015; Memaripour et al. 2017; Volos et al. 2011).

In this paper, we take the approach of developing a user

space library interface to NVM to achieve our goals.

Based on above four observations, we designed the

vNVML user space library, integrating DRAM, NVM, and

backend storage devices to construct the abstraction of vir-

tualized NVM. Like virtual memory, adopted almost univer-

sally in the modern computer systems, the main idea of our

virtual NVM is to provide the impression that applications

and users can treat (virtual) NVM contained in their system

as large as the capacity of the storage devices in the system

and as fast as the speed of NVM (or even DRAM).

Usually, applications have two means to access the data con-

tent stored on storage devices; one is through file system read/

write commands, the other is through memory mapped files

(i.e. mmap). Because traditional disks are very slow, accessing

data content in disks through file system commands, which in

turn trigger some system calls, may not incur too much perfor-

mance penalty compared to the long access latency of the disks

themselves. However, this is not the case when we deal with

NVM because of its DRAM-like low latency.

By contrast, when accessing NVM, we must avoid expen-

sive system calls triggered by the file system commands as

much as possible. This is especially true for applications

requiring abundant random memory accesses, such as tree

manipulation operations, which may issue several system

calls solely for modifying a few pointers and therefore

results in significant system overheads.

Table 1 Summary of prior software approaches

Categories Approaches

File system SCMFS, NVMFS, BPFS, PMFS, NOVA, STRATA, FRASH, Aerie

Single level system CDDS-Tree, NV-Tree

Persistent object system NV-heaps

User space library mnemosyne, PMDK, SoftWrAP, KAMINO

2 Note: the “share” here means the same physical NVM pages can be

reallocated/reused by multiple applications.

20 C. C. Chou et al.

1 3

In order to avoid context switch overheads and to expose

the byte-addressability of NVM, in this project we primarily

focus on memory mapped file accesses. Here, applications

access NVM much like memory, through byte-level load/

store interfaces without system calls. However, to utilize

the byte-addressability of persistent memory, write order-

ing issue must be paid special attention (Condit et al. 2009;

Swift 2015). Therefore, we design vNVML such that pro-

grammers use it in much the same way as they employ exist-

ing POSIX mmap access for volatile memory, except that

they must follow the transaction-like semantics for write

ordering. Meanwhile, the benefits of performance improve-

ment, atomicity, and durability are all provided by this trans-

actional interface. Furthermore, we adopt the method of user

space library hoping for executing NVM accesses in the user

space as much as possible and using system calls only when

necessary.

Since vNVML only provides the mmap-like transactional

interface and only focuses on the file read/write accesses,

meaning that vNVML still relies on file system to provide

the file system related handlings, such as metadata man-

agement, directory management, file permission control,

etc. vNVML places no limits on which file system may be

used in the system and only requires that file system must

support standard POSIX mmap. Here we want to highlight

that vNVML does not try to place the file systems; instead,

vNVML hopes to supplement and augment the current

design limitations of file systems, especially when applica-

tions require the high performance computing.

From here, we focus on vNVML’s private mmap access

mode,3 meaning that virtual NVM regions can only be

accessed by a single process. The mechanism of our shared4

mmap mode is slightly different and, to avoid confusion, is

explained in Sect. 4.4.

Briefly speaking, vNVML utilizes NVM both as a log

buffer and as a write cache and DRAM as a read cache. The

reads can only be served by read caches. Modified data are

first written to the NVM log buffer only and then copied

to DRAM (read cache) when the logged data are commit-

ted. NVM (write cache) are updated by committed logs on

the background. If pages containing accessed data are not

already in NVM or DRAM, they (entire pages) are copied

from the storage devices to NVM write cache or DRAM

read cache. Data are evicted from the NVM write cache

back to storage devices only when the usage of NVM write

cache exceeds some threshold (30%) of the physical avail-

able NVM. Before programs are terminated safely, all data

are completely flushed from NVM (both log buffer and write

cache) to files. The interactions between DRAM, NVM, and

storage devices are shown in Fig. 1 for both read and write

operations.

The key ideas behind our design choices are as follows:

Use NVM as log buffer Like other NVM user space librar-

ies, we also adopt transaction semantics as interface for

vNVML to provide write ordering, atomicity and durability.

All written data must be immediately stored at some tempo-

rary non-volatile storage locations before transactions com-

mit. Since this logging process must be in the write critical

path, employing NVM as temporary non-volatile log buffer

provides significant performance advantage.

Redo logging and DRAM cache Typically, there are two

approaches to logging: undo and redo logging. Both have

pros and cons toward different workloads (Wan et al. 2016).

Undo logging requires that old data are persisted as logs

before new data are updated in place. These two actions

(both logging and in place update) must be in the write criti-

cal path. Alternately, with redo logging, all new data are

persisted as logs to non-volatile media first, then new data

can be updated in place. In-place updates, because they can

be executed on the background, do not have to be in the

write critical path, but they would affect the read critical

path because reads have to be redirected to logs and have to

search for the newest data from logs.

In vNVML, we augment redo logging by using DRAM

as a read cache. Modified data are written to the NVM log

buffer, and are also written to DRAM, during the commit

command, for reads following this write. With the help of

a read cache (DRAM), only persisting writes on the (redo)

log and updating to DRAM are in the write critical path

(from the perspective of the whole transaction), and reads

do not need to be redirected to logs as usual (redo) log does.

Updating data on the storage devices can be executed in the

background, without it being in the write critical path.

Although undo and our redo logging both double the

written data in the write critical path (undo: 2 NVM versus

Fig. 1 The read/write data flow of vNVML private mmap mode

between DRAM, NVM, and storage device

3 Note: our (vNVML) private mmap mode is different from the

standard POSIX private mmap mode. In our private mmap, writ-

ten data can be reflected back to storage devices, but POSIX private

mmap cannot.
4 Note: the “share” here means that shared regions can be seen and

accessed by multiple processes, exactly like the existing POSIX

shared mmap method for volatile memory.

21Virtualize and share non-volatile memories in user space

1 3

our redo: 1 NVM and 1 DRAM), using our redo logging still

has three advantages. First, even though the access latency

of NVM is close to that of DRAM, the write latency of

DRAM is still shorter than that of NVM (Chen 2016; Yu and

Chen 2016). So, writing to DRAM is still faster than writing

to NVM. Second, writing to DRAM does not need order-

ing constraints, which use clflush, clflushopt, clwb,

and sfence instructions and therefore are time-consuming

(Zhang and Swanson 2015). Third, for read-intensive work-

loads, read cache can serve some reads without accessing

NVM, which might potentially reduce the writes to NVM

and alleviate the lifetime issues of NVM.

Only committed data are updated to read cache Before

logs of uncommitted transactions can be placed into true

destinations, reading the data still in the logs requires pars-

ing the logs to find the newest data, which can be time-

consuming. This process is in the read critical path. In most

workloads, the frequency of reads is much higher than that

of writes. For example, Yahoo! Cloud Serving Benchmark

(YCSB) (Cooper et al. 2010) framework refers to workload

A (50/50 read/write ratio) as update-heavy workload. In

terms of the overall performance, shortening the read criti-

cal path is more important than write critical path. So, we

simply use DRAM as a read cache to serve all read opera-

tions, and update the data into the DRAM in the commit

command (through parsing the logs belonging to this trans-

action sequentially). By doing so, the following reads, after

transaction commits, could read directly from DRAM. Our

design doubles the written data on the write critical path,

but it makes the reads faster as data can be directly read

from DRAM, without having to search the entire log buffers.

The section 4.1 will explain the detailed mappings of read

cache, log buffer, and write cache into virtual address space

of each process.

Two restrictions are related to this read cache: (1) reads

can only be served by the read cache and (2) written data are

copied to read cache only when the transaction commits to

accomplish the isolation property; that is, only committed

data are visible. This is sometimes referred as “read commit-

ted” transaction isolation level (Microsoft 2017). However,

our transactions are defined differently from transactions of

the traditional database systems. In database systems, the

focus is on the consistency of transactions to ensure cor-

rect data are accessed between multiple concurrent trans-

actions. In vNVML, we emphasize the persistency (Pelley

et al. 2014) of transactions. Here we define the committed

(uncommitted, respectively) data are that the written data

must be valid (invalid, respectively) after system crashes;

meanwhile, the atomicity and durability of data are also

guaranteed. We leave the consistency of transactions to the

discretion of programmers/applications.

Employ NVM as write cache All written data are at

the log buffer when transactions commit. Data need to be

gradually moved from the log buffer to their true destina-

tions on storage devices to avoid overflowing the log buffer.

We utilize part of NVM as a write cache and committed data

are moved to NVM write cache before they are moved to

much slower storage devices. This allows us to migrate the

logs quickly to more permanent locations and to prevent the

log buffer from taking too much space.

A background worker (thread) is responsible for copy-

ing data from (NVM) log buffer to (NVM) write cache to

avoid extra overhead in the write critical path. This design is

also suitable for the cache-friendly workloads (or the write

working set of workloads is smaller than write cache size)

because logs could always be directly copied to NVM cache

(where data are moved from NVM to NVM). Writing data

to NVM allows us to maintain data safety, providing a better

performance if future writes hit in the write cache.

Update to storage devices from NVM write cache (private

mmap mode) or DRAM cache (shared mmap mode) Data

are written to the log buffer using the write commands, and

then moved to NVM write cache in the background. These

data are also written to the DRAM read cache upon the com-

mit command being issued. Therefore, the data can have

two paths, from DRAM or from NVM, to reach the storage

devices. Depending on whether the regions (or modes) of

virtual NVM are to be shared across applications or not, we

adopt different strategies.

For private virtual NVM regions (private mmap mode),

We construct DRAM (read-only) cache by leveraging the

existing POSIX private mmap, which adopts Copy-on-Write

mechanism and all written data can only remain at DRAM.

Therefore, the data can only be written back to storage

devices from NVM cache. We choose this design choice

with the hope that NVM write cache can absorb all write

traffic (if cache size is larger than the write working set)

and avoid all storage device accesses to gain the maximum

performance.

On the other hand, when shared NVM regions (shared

mmap mode) are required, the existing POSIX shared mmap

is adopted to construct the DRAM (read/write) cache, and

data are written from DRAM to storage devices. Here NVM

cache is not used and logs in NVM log buffer are referenced

only when recovering from system failures is needed. This

design concept is similar to SoftWrAP (Giles et al. 2015).

Further details are provided in Sect. 4.4.

Figure 2 illustrates the read/write flow of accessing pri-

vate virtual NVM region and the page movement between

DRAM, NVM, and storage device in detail. (a) A file on

the storage with page A and B initially. (b) A read from

page A lets page A is copied from the storage device to

the memory and then the application reads page A directly

from the memory. (c) A write to page A results in a log Δ A

is appended to the log buffer. (d) Another write to page B

also results in a log Δ B is appended to the log buffer. (e)

22 C. C. Chou et al.

1 3

The transaction commits. The page A in memory is updated

with Δ A to page A’, and page B is copied from storage to the

memory by Copy-on-Write mechanism and is also updated

with Δ B to page B’. Page A and B are read from storage

device to NVM cache and are applied the logs Δ A and Δ B to

be page A’ and B’ by a redo background thread. (f) Another

writeback background thread writes the page A’ and B’ from

NVM cache back to the storage device.

4 vNVML API and implementation

In this section, we explain the implementation of vNVML

in detail. We start from the introduction of the APIs that

vNVML provides and describe their functions. Next, we

describe the data structures that vNVML manages in the

user space of applications, and then introduce two back-

ground workers (per process) for parallel processing in

vNVML. Then, we explain the implementation of shared

regions of vNVML. Finally, we discuss some general issues

in vNVML implementation.

4.1 vNVML API

Algorithm 1 shows all APIs that vNVML offers and their

brief implementation.

Every application (process) first needs to call nv_init

once before it starts to utilize vNVML. The first caller

creates (a log buffer, a cache, along with associated meta-

data) files in NVM and a shared memory object by call-

ing shm_open. The first caller is also responsible for

constructing one linked list for pages of NVM cache as

a free list and one linked list for pages of the log buffer.

Section 4.2 describes the linked list data structure in more

detail. The shared memory object contains and provides

global information accessible by all vNVML users such as

number of total current vNVML users, unique application

ids assigned to each application, and unique transaction ids

for each transaction. Because NVM pages in the free list

Fig. 2 The read/write data flow and page movement of vNVML pri-

vate mmap mode

23Virtualize and share non-volatile memories in user space

1 3

and in the log buffer do not contain useful information and

therefore do not relate to recovery process as well as they

also need to be accessible by all applications, their linked

list heads are stored in this shared memory object, too.

All callers must shared mmap all files created in NVM

using the nv_init command in their virtual address

space. These files are mapped by vNVML and are invis-

ible to applications. Therefore, applications have no

information of mapped address regions of these files, and

all accesses to NVM files from applications can only be

through vNVML.

To allocate virtual NVM regions, applications call nv_

allocate by passing a path filepath in the storage, a file

size n, and the mapping mode (private or shared). If a file

exists in the filepath, then that file is opened; if it does not, a

new file is created at filepath and is posix_fallocated

with size n. The file descriptor fd returned from open com-

mand, along with application id and filepath are stored as a

file record entry (application id, fd, filepath) of the metadata

file for recovery process if needed. Figure 3 illustrates an

entry of file record. Finally, A file pointer fileptr obtained

by (private or shared) mmapping this file is returned to

the caller.

Figure 4 illustrates the virtual address space of a process

after calling nv_init and nv_allocate for a file. Only

the mapping regions of files in the storage devices are known

by applications.

After virtual NVM regions are allocated, applications

can access virtual NVM like accessing real NVM through

fileptr (virtual address returned from nv_allocate) for

reading or the nv_txbegin, nv_write, nv_write, ...,

nv_commit command series for writing. The nv_txbe-
gin generates and returns a unique transaction tid for the

following nv_write(s) and nv_commit commands to

construct a single transaction.

The nv_write commands are used to write data into

virtual NVM. Through nv_write commands, all data are

written as redo logs in the log buffer. The first nv_write

command must allocate a log page from log buffer. If a log

page is needed but no log page is available, then nv_write

returns the size of written data so far.

To write logs, a log object to store the log pages of this

transaction is allocated from NVM and is put into one of 32

open lists of this process according to its transaction tid%32

(modulus operator). Log pages, allocated from the linked

list of log buffer by the same transaction, are appended to

the tail of the corresponding linked list of the log object in

the open lists.

A single nv_write command may create several log

entries. It first depends on the destination position and then

depends on the left space of the current log page. This is

because we want the data from a single log entry to be

placed entirely within a single NVM cache page to simplify

the design and implementation of redo background worker

described at Sect. 4.3.

Inspired by some prior works (Condit et al. 2009; Wang

et al. 2015; Zhang and Swanson 2015), we know when deal-

ing with byte-addressable, memory-bus attached NVM,

write ordering is required. To do so, modern CPUs provide

cacheline flushing (clflush, clflushopt, and clwb)

instructions and memory fence (sfence and mfence

instructions to help to enforce write ordering. For exam-

ple, store-clflush pair combined with mfence (or

sfence) is adopted by several prior works (Dulloor et al.

2014; Qiu and Reddy 2013; Wu and Reddy 2011; Xu and

Swanson 2016). Some other prior works (Giles et al. 2015;

Kwon et al. 2017; Xu and Swanson 2016; Zhang and Swan-

son 2015) further replace the store-clflush pair with

non-temporal store (ntstore) instructions. The ntstore

instructions can bypass the CPU caches and directly write

data to DRAM or NVM. By doing so, ntstore eliminates

the expensive cacheline flushing operations (Zhang and

Swanson 2015) and significantly improves the NVM per-

sisting performance. Therefore, we also employ ntstore

to write data to log buffer at nv_write commands.

When the nv_commit command is called, vNVML

sequentially traces all log entries of log pages from the

linked list of log objects for the committed transaction tid,

and copies all committed data from log entries to the DRAM

read-only cache. Because writing to DRAM does not require

ordering, the standard memcpy function is sufficient for

copying and therefore may be used to attain better perfor-

mance. After copying to the DRAM cache, vNVML moves

this log object (along with all log pages linked to this log

object) from the corresponding open list to the tail of the

only committed list of this process and persists all log entries

and a log object in NVM. This committed list head is stored

at the metadata of the applications in NVM. All log entries

Fig. 3 Structure of a file record for recovery process

Fig. 4 The mapping of virtual address space of a process after calling

nv_init and nv_allocate

24 C. C. Chou et al.

1 3

in the committed list are guaranteed to be preserved across

power failures.

Finally, applications call nv_free (nv_release,

respectively) if they do not want to access a certain file (do

not want to access entire virtual NVM, respectively). nv_

free is used to munmap a file mapped by the nv_allo-
cate. After nv_release is called, the applications must

wait for all committed logs, if they exist, to be applied to

NVM cache by the redo background worker, actively flush

all dirty cache pages back to the storage devices, and mun-
map all NVM files mapped at nv_init.

Algorithm 2 shows a typical example of using vNVML.

4.2 vNVML data structures

The NVM log buffer and NVM cache are partitioned into

units of 4KB pages and organized as linked lists. The imple-

mentation of linked lists for pages is via metadata; that

is, for each page, a corresponding page object is created

from NVM metadata file and connected with each other as

a linked list. Therefore, allocating a page object from the

linked list also equals to allocating the corresponding page.

As mentioned in (Swanson 2017), however, construct-

ing the linked list in NVM is not the same as constructing

a typical linked list in memory. The virtual address cannot

be directly used as a pointer to be stored in NVM because

there is no guarantee that the NVM files can be mounted into

the same virtual space regions (1) by multiple concurrent

processes or (2) by a single process before and after system

crashes. Thus, we replace the address with the index of the

page starting from 0 to construct the linked lists in NVM.

Similarly, we substitute the offset from the starting address

to the current position, when an access needs to be made,

for the address to be stored into NVM.

Page objects for the log buffer and cache are created by

different metadata files at nv_init. After a page object of

log buffer is allocated, the application id is stored into page

object, and the log entries (from nv_write) can be written

directly into the corresponding log pages. The first field of

the log page is the total written bytes to this page, and log

entries are appended sequentially. Figure 5 illustrates the

fields of a log page and log entries in the log page. The log

entry contains log header, including length of this entry, file

descriptor, and offset (from the first byte of this file to the

destination location), followed by the redo raw data. The

page object (application id), the log entry header (len, fd,

and offset), and file record (application id, fd, and filepath)

already contain all necessary information for the recovery

worker to write the committed log entries directly back to

corresponding files of storage devices.

To handle cache pages, one free list is created through the

shared memory object, and the others, dirty and clean lists,

are created within each application. The dirty and clean lists

implement the LRU replacement policy.

Figure 6 illustrates the page movements between the free

list, dirty list, and clean list. Cache pages are always allo-

cated from the free list, until the page share of an application

is reached, and become dirty pages inserted to the head of

dirty list after the redo background worker copies the corre-

sponding pages from files in the storage devices and applies

corresponding log entries on them. Dirty pages (of the tail of

dirty list) become clean ones and are inserted to the head of

the clean list after the writeback background worker writes

the dirty pages back to files in the storage device. When a

cache is hit, regardless of whether the page is in the dirty or

clean list, the page is applied the redo log and inserted into

Fig. 5 Structure of a log page and its log entries

Fig. 6 Page movements of LRU policy between free list, dirty list,

and clean list

25Virtualize and share non-volatile memories in user space

1 3

the head of the dirty list. When a cache miss happens, the

tail page of clean list is always picked and is filled with the

corresponding page from file in the storage devices. This

page is inserted into the head of the dirty list after writing

the redo log on it.

For the individual cache page, besides the application id

of the page owner, some extra information is also stored into

the corresponding page object, such as the fd (file descrip-

tor), file offset, and dirty flag. The file offset is the offset

which is used to seek the file and to access the page of

files in the storage devices. The fd and file offset can be

known from the header of log entries by redo worker when

it redoes. The dirty flag is set only if this page is dirty (in the

dirty list). This flag is cleaned after writeback worker writes

this dirty page back to files and puts it into the clean list.

Thus, the recovery worker only needs to handle the pages

whose dirty flag are set. Also, the information contained

in the page object (application id, fd, file offset, and dirty

flag) and the file record (application id, fd, and filepath) are

enough for recover worker to write the dirty pages back if

system crashes. Figure 7 illustrates an entry of page object.

Partitioning the log buffer and cache page at a 4 KB page-

size granularity and organizing them as linked lists has some

advantages. First, the allocation and deallocation of pages

from log buffer and free list are both O(1). Second, the

management of log buffer and cache space becomes easier

since the space is managed in terms of pages, rather than

bytes or variable size segments. Third, it makes it easier to

share pages of the log buffer and free list across applications

through linked lists maintained at the shared memory object.

To prevent a single application from allocating all log

pages and all cache pages, vNVML adopts the equal share

policy through the shared memory object, containing the

total number of current applications. Applications can allo-

cate log pages from the log buffer or cache pages from the

free list if and only if the number of allocated pages does not

reach their shares. A new joining user of vNVML may result

in all current users exceeding their shares. Two background

workers, described in the following section, help to return

extra pages back to log buffer and free list.

Figure 8 illustrates the relation between open list, com-

mitted list, log object, and page object.

4.3 Background workers

Two background workers (threads) are created for each

process at nv_init. The redo background worker keeps

checking the committed list. If the committed list is empty,

the worker goes to sleep for a while (10us in the current con-

figuration) and then checks the committed list again after it

wakes up. If the committed list is not empty, the redo worker

obtains the first log object (of some transaction) from the

head of the committed list, and replays all the log entries

sequentially from log pages of this log object to NVM cache

pages. Since in this redo operation, data are moved from

NVM to NVM, write ordering is also required; therefore, we

also employ ntstore instructions here for writing to NVM

cache pages. If a cache miss happens, redo worker is also

responsible for reading this page from files in the storage

device to NVM cache page. All log pages can be discarded

and returned to the log buffer pool only after the entire logs

of a transaction are completely replayed by the redo worker.

Here we want to highlight the limitation that, since the

committed logs are always appended to the tail of the only

one committed list (per process) at nv_commit (mentioned

at Sect. 4.1), and redo background worker always redoes logs

from the head of this committed list; therefore, programmers

should keep in mind that the transaction which writes to an

object first should also be committed first for the consistency

of DRAM cache and the file on the storage device when

multiple threads write to the same objects, but there is no

constraint when threads write to different objects. This is a

much weaker constraint compared to accessing a file by file

system, which requires locking the whole file, even if differ-

ent objects of the same file are being accessed.

The other writeback background worker is responsible

for writing the dirty NVM cache pages back to the storage

devices. To avoid accessing storage devices too frequently,

we employ a threshold on dirty NVM pages accumulated

Fig. 7 Structure of a page object for writeback and recovery process

Fig. 8 Open list contains log objects of transactions. Each log object

may link several page objects (of log pages). After transaction com-

mits, the log object (along with its log pages) of the transaction is

appended to the tail of the committed list. Redo worker always redoes

from the head of the committed list; therefore, the transactions which

is committed early would also be replayed early

26 C. C. Chou et al.

1 3

in the dirty list (we use 30% of cache page share). Dirty

pages are written back to the storage device by the write-

back worker after the number of dirty pages is more than

threshold. The dirty pages are inserted to the head of the

clean list after writing back to storage devices. Furthermore,

if the number of allocated cache pages exceeds the share

due to new joining applications, the writeback worker may

further release some clean pages back to the free list. After

the number of the dirty pages drops below some threshold

(we set 10% of cache page share), the writeback background

worker is stopped and dirty pages may accumulate again.

Both background workers are killed upon the nv_

release command.

4.4 Sharing NVM between processes

The implementation of shared NVM regions between pro-

cesses is slightly different from what we have implemented

for private regions. What we mean by “shared region” here

is that a memory region can be accessed concurrently by

multiple processes and all processes could see the same view

of this region. This is exactly the same as existing POSIX

shared mmap for volatile memory.

Shared regions are constructed by nv_allocate

command. When nv_allocate is called, a file is shared

mmapped to construct the DRAM read/write cache and a

committed list head is created and maintained as metadata in

NVM for each shared mmapped region. By DRAM cache

constructed from shared mmap of the file, processes which

require to access this region can share the same view.

Because a committed list is required for each shared

region, the same limitation, the transaction writing to an

object first should also be committed first, must also be

obeyed. In addition, one more limitation is required when

writing to shared regions; that is, all true destinations of

writes from a single transaction must lie within the same

single shared region. Without this limitation, if a transac-

tion can write to multiple shared regions, then multiple log

objects, each log object is for a shared region, should be

created to be appended to multiple committed lists when

transaction commits. This would cause a serious problem

if system crashes while a transaction commits, resulting in

some log objects have been appended to some committed

lists but some not.

When we write to a shared region, data are still written

to log buffer first. At transaction commits, the data from log

buffer are replayed to the DRAM of a single shared mmap

region, and all logs of this transaction are moved from one of

32 open lists of a process to the committed list of this shared

region. We do not utilize NVM cache here to simplify our

design and implementation. Figure 9 illustrates the read/

write data flow of accessing a shared virtual NVM region.

Since shared mmap is employed to create our shared

regions, the msync system call is required to write the modi-

fied data back to storage devices. Different from fsync, how-

ever, calling msync requires to know all the modified virtual

address regions (i.e. start addresses and their lengths). To avoid

parsing all logs when flushing (msync) data back to storage

devices later, a global bitmap of dirty pages dedicated to this

shared region is maintained in DRAM and is updated at the

end of each nv_commit command by the local bitmap of

each transaction; the local bitmap is constructed when logs are

parsed and replayed to DRAM at nv_commit.

After logs have been accumulated to a certain thresh-

old, upon a call to nv_commit, a background thread is

triggered and atomically copies the global bitmap of this

shared region to a “copied global bitmap” variable, zeroes

this global bitmap, and marks the tail transaction of the com-

mitted list. Then several msyncs might be issued to flush

dirty pages back to storage devices according to the copied

global bitmap. Only after flushing is completed, can logs of

transactions (from the head to the marked tail) be removed

from the committed list.

During the flushing procedure, new transactions can still

proceed, be committed, and update the “zeroed” global

bitmap. Because their logs are always appended after the

marked tail transaction and “read committed” policy is

employed in vNVML, unexpectedly flushing some data of

transactions committed after “marked tail” transaction dur-

ing the flushing procedure will not harm since all data in

DRAM must have been committed and therefore must be

written back to storage devices eventually.

The logs from head transaction to marked tail transac-

tion are discarded only after flushing is completed. If system

crashes, recovery procedure always replays all logs from the

head of committed list of this shared region.

4.5 Transaction aborts and long running
transactions

For some extreme cases, the log buffer may run out of space

if too many long running transactions, which keep writing

Fig. 9 The read/write data flow of vNVML shared mmap mode

between DRAM, NVM, and storage device

27Virtualize and share non-volatile memories in user space

1 3

data before commitment, execute concurrently. This situa-

tion can be detected when pages cannot be allocated from

the log buffer pool for a while. vNVML could actively abort

long running transactions by recording the timestamp into

the log objects when log objects are allocated by transac-

tions. The redo worker can periodically check the log objects

from the head of each open lists and can abort the transac-

tions whose elapsed time exceed some predefined threshold.

Applications can also abort transactions for various reasons.

When a transaction is aborted, since all its logs are still

in an uncommitted state (in the open list), these logs can be

discarded directly and log pages are returned back to the

log buffer pool. Moreover, because transactions of vNVML

support the “read committed” isolation property, when one

of the nested transactions needs to be aborted, aborting all

transactions involved in the nested transactions may not be

necessary and it should depend on the discretion of users.

4.6 Data recovery

Systems or applications may crash due to an unexpected fail-

ure at any moment such as power shortage, bugs of applica-

tions, or inadequate kernel resources. The mandatory func-

tion any NVM solution should provide is to ensure the data

persistency after systems or applications crash. In vNVML,

we handle this by a recovery program run by root. After

systems reboot, a recovery worker (process) first mmaps

the all NVM files (log, cache, and metadata) into its vir-

tual memory space. From Sect. 4.2 we know the recovery

worker already has all necessary information to recover the

dirty pages and log entries back to files in storage devices

by tracing the page objects, file records, and committed lists.

We always recover/write the dirty pages (by checking if

dirty bit is set) back to files before we recover the committed

logs back to files because the committed logs contain the

newest data. Reversing this order might result in that the new

data are covered by older data from dirty pages.

The order of objects in the committed list is important

and we should replay the objects sequentially. With the help

of 8-byte atomic update feature natively supported by pro-

cessors, the order of objects can be maintained correctly

by carefully handling the order of pointer updates between

objects of linked lists.

Figure 10 illustrates the process of insertion and deletion

of an object to and from a linked list at NVM. For object

insertion [the correct sequence is from (a) to (b) to (c)], we

could assume object C has been inserted into linked list only

when system crashes after (c); otherwise, we assume object

C is not inserted yet. On the other hand, for object deletion

[the correct sequence is from (c) to (b) to (a)], when system

crashes after (c) we would assume object C has been deleted

from the linked list.

After the recovery process finishes, all NVM files are

erased, and vNVML can be restarted again. This recovery

process may be re-executed as many times as needed if the

system ever crashes again during the recovery process since

all the required data and metadata are conserved in NVM

and are erased only after a successful recovery. Thus, all

data have been written back to their true destination of files.

4.7 Security

Security is a major concern in the modern computer sys-

tems, especially in the data center, where infrastructure has

to protect against any attacks from third party applications.

In vNVML, the security is guaranteed in two aspects. First,

the private regions are produced by private mmap. Due to

the Copy-on-Write mechanism brought from private mmap,

all the direct writes within this private address region will

remain within the memory (virtual address space of the

user process) and cannot impact the contents at the storage

device.

Second, all the writes to private regions must be exe-

cuted through nv_txbegin, nv_write, nv_write,...,

nv_commit command series. Those APIs are entirely con-

trolled by vNVML and accessing NVM (log buffer, cache,

and metadata) files, which are invisible to applications, is

not allowed outside vNVML. When applications try to write

beyond the mapped regions (or outside allocated virtual

address regions), the protections within the existing memory

system will detect these violations. In addition, the vNVML

bound checks will not allow these writes to proceed.

5 Evaluation

In this section, we conduct experiments to answer funda-

mental questions about vNVML as follows:

Fig. 10 The correct order of pointer updates for the objects of linked

lists in NVM. From (a) to (c) is for the object insertion; from (c) to

(a) is for object deletion

28 C. C. Chou et al.

1 3

• What are the characteristics of the vNVML?

• How does vNVML impact the performance when used

by real applications?

• How to decide the size of the log buffer and the cache

given a fixed and limited size of NVM in the platform?

• How does the vNVML perform when multiple processes

concurrently access the NVM through vNVML?

• What is the impact of using vNVML within the container

environment?

• What is the impact of different log buffer sizes, cache

sizes, and single cache page size on life span of backend

SSD?

• How does the vNVML perform compared to other user

space libraries?

5.1 Experimental setup

Due to the absence of real NVM, we emulate NVM with

DRAM for all our experiments. We mount the NVM with

the Ext4 file system in order to utilize the DAX (direct

access) feature provided by Ext4.

We evaluate vNVML on a platform with 16GB DRAM,

12GB emulated NVM, and Intel i7-4770 four-core 3.4 GHz

processor with hyperthreading enabled. Samsung enterprise

PM863 480GB SSD (SATA 6.0 Gbps) is adopted as our

example of the storage devices. We implement vNVML on

the Linux kernel 4.13 version.

5.2 MongoDB and YCSB

In this subsection, we explore and analyze the impact of

accessing NVM through vNVML by real applications. We

adopt a popular open-source database MongoDB version

3.6.0 (mongoDB 2008b) as our target application because its

MMAPv1 storage engine uses memory mapped file form to

access the data in the storage devices, which is perfect for our

vNVML to employ. We modify part of the source code of

MongoDB for our transactional interface to deploy vNVML.

We choose YCSB (Cooper et al. 2010) to generate the

read/write traffic of MongoDB. The setup of experiment is

delineated in Fig. 11. To simplify our analyses, we configure

the size of all records’ fieldcount as 128 and fieldlength as

512 and readallfields and writeallfields are both set as true in

the configuration file of YCSB workloads, meaning that each

read/write request will access exactly 64 KB data, which is

also the data written per transaction. 100 K operations (read/

write requests) are executed for all experiments. We deploy

the different read/write ratios and two request distributions

(zipfian or uniform) to observe the impact of performance.

YCSB has two phases: one is inserting records into

the target data store, the other is accessing (read or write)

records in the target data store. To avoid polluting the NVM

cache of vNVML before the accessing phase, in the insertion

phase MongoDB employs nv_allocate to private mmap

files in the storage devices, and then, instead of using nv_

write vNVML commands, MongoDB only adopts its orig-

inal (unmodified) insertion functions to access the memory

mapped regions, meaning that all records are only inserted

into the memory (due to the Copy-on-Write mechanism pro-

vided by private mmap used by nv_allocate).

All experiments are conducted by accessing four Mon-

goDB instances concurrently in a single OS. However, since

the MMAPv1 storage engine uses padding and the power of

two sized allocation mechanisms (mongoDB 2008a), four

instances would generate total 8.8 GB files in the storage

devices when each instance is inserted 10 K records, and

total 33 GB files after 30 K records are inserted into each

of four instances. Therefore, 12 GB emulated NVM in our

platform can only accommodate files created by four Mon-

goDB instances inserted at most 13 K records, respectively.

However, from Table 2, we find that the YCSB throughputs

of one instance are very close to each other even with differ-

ent numbers and different distributions of inserted records

if all files generated are stored only in NVM. We assume

this observation still holds in the 4-instance case. Therefore,

we insert 10 K records to each of four instances, remove

the periodic msync calls by MongoDB, disable journaling

with nojournal option, and employ NVM as the only storage

device of MongoDBs as our baseline5.

Fig. 11 The experimental setup

of YCSB, MongoDB, and

vNVML

Table 2 Throughputs of single MongoDB instance with different

numbers and distributions of inserted records when NVM is the only

storage device

of records (K) Uniform (op/s) Zipfian (op/s)

30 1500 1505

10 1509 1498

5 Note: our platform does not have enough NVM to accommodate all

files generated by eight instances inserted 10 K as baseline, respec-

tively. Also, when eight MongoDB instances adopting vNVML are

running concurrently, some of instances would crash because of out-

of-memory (OOM) error from private mmap. Therefore, executing at

most four instances concurrently is the limitation of our platform.

29Virtualize and share non-volatile memories in user space

1 3

Figure 12 shows the normalized throughputs of differ-

ent request distributions (zipfian and uniform) and differ-

ent read/write ratios (5/95, 70/30, and 100/0). The results

(normalized throughputs) are the summation of throughputs6

(op/s), generated from YCSB when YCSB accesses one of

four MongoDB instances employing vNVML, divided by

the summation of throughputs of four MongoDB baseline

instances with the same request distributions and the same

read/write ratios.

From these results we can make some useful observa-

tions. First, the case that cache size is 1 GB, log size is 2 GB,

and four MongoDB instances with 30 K inserted records (4

* 30K * 64 KB = 7.32 GB) already proves that vNVML can

provide virtualization and shareability of NVM successfully.

Second, not only can vNVML achieve over 90% of the

throughput of baseline (if the log buffer and cache can

“absorb” the input write traffic, such as the line of 8GB

cache in Fig. 12e, f), but vNVML can also provide the guar-

antees of atomicity, persistency, and write ordering, which

Fig. 12 Normalized total throughput of four instances. Numbers of

X-axis stand for inserted records to each database, and numbers of

Y-axis stand for normalized throughput. a–d Fix 4 GB cache size and

adjust log buffer size from 2 GB to 128 MB. e– h Fix 2 GB log buffer

and change cache size from 8 to 1 GB. i 100% read uniform request

6 Note: since all four throughputs from YCSB are almost the same

(with usually less than 1% difference).

30 C. C. Chou et al.

1 3

are our baseline, the MongoDB without journaling and write

ordering, cannot. This less than 10% overhead results from

writing data to NVM log buffer and from redoing logs to

DRAM read cache.

Third, larger write working sets (more inserted records

or uniform access requests), and more write requests (lower

R/W ratio) degrade the throughput of vNVML. Larger write

working sets require more NVM cache to store all data at

run-time. Furthermore, if the write working sets are even

larger than the capacity of NVM cache owned by applica-

tions, then cache pages are frequently written back to stor-

age devices. Finally, when all cache pages become dirty, the

overall performance would deteriorate to write throughputs

of storage devices.

Fourth, through (a) to (d), when cache sizes are all fixed,

the adjustment of log buffer only affects at most 10% nor-

malized throughput7 of baseline in all these cases.

Fifth, from (e) to (h), when sizes of log buffer are fixed,

their throughputs vary highly, especially in the case of (f):

read/write ratio is 5/95, uniform request, and 30K inserted

records. In (f), the throughputs differ by almost 50%, mean-

ing that cache size impacts vNVML throughput more sig-

nificantly than that of the log buffer. For the bottleneck of

vNVML performance is the access throughput of storage

devices, the cache size can impact vNVML performance sig-

nificantly. As more NVM caches are able to store more write

traffic, less writes (if NVM cache hits) to storage devices

will be needed. The actual throughput of vNVML should

be a function dominated by factors of NVM cache size and

access performance of storage device.

On the other hand, unlike NVM cache, NVM log buffer

only temporarily stores the write traffic as logs before logs

are written to NVM cache pages. As a result, log buffer can

only impact/improve performance slightly until log buffer

is full; usually the log buffer will be full much quickly than

NVM cache if the write working sets are huge and the stor-

age devices are frequently accessed in order to fill the NVM

pages before applying the corresponding log entries to cache

pages.

Finally, (i) shows at 100% read, uniform distribution

request case, vNVML can achieve around 92% throughput

regardless of the number of inserted records. It matches our

expectation of vNVML since the read is entirely handled by

the read cache (memory) and 16 GB memory is enough to

handle the 30 K records working set since 30 K × 64 K × 4

∼ 7.32 GB.

Therefore, from aforementioned observations, we sup-

pose that under limited NVM resources, only some reason-

able amount of NVM should be allocated as log buffer, and

the rest should be cache to achieve higher performance of

vNVML.

Next, we would like to examine the impact of using

vNVML within docker containers (Docker 2013). Docker

is a popular virtualization technique in data centers and

recently has drawn significant attention from industry and

academia due to its lightweight execution environment com-

pared to traditional virtual machines. In this experiment,

we launch four docker containers, use bind mount (Docker

2018) to mount 12 GB emulated NVM into each container

so all containers can access and share content in NVM, and

run single MongoDB instance within each container. Log

buffer is configured as fixed 2 GB, the cache size as well as

read/write ratio are adjusted to various settings. Each data

point is normalized with individual counterpart, which is

the same configuration without using containers. Figure 13

shows that all the data are close to 1; that is, using vNVML

within docker containers does not affect the performance.

Fig. 13 Normalized throughput of four instances inside Docker con-

tainer

7 At (a), the normalized throughput is 0.876 (0.776, respectively)

when log buffer is 2 GB (128 MB, respectively) and inserted records

are 30,000. At (b), the normalized throughput is 0.638 (0.542, respec-

tively) when log buffer is 2 GB (128 MB, respectively) and inserted

records are 30,000.

3
1

V
irtu

alize an
d

 sh
are n

o
n

-vo
latile m

em
o

ries in
 u

ser sp
ace

1
 3

Fig. 14 Total number of NVM cache pages written to SSD of all four instances. Numbers of X-axis stand for inserted records to each database, and numbers of Y-axis stand for total number of

pages written to SSD. a–d Fix 4 GB cache size and adjust log buffer size from 2 GB to 128 MB. e–h Fix 2 GB log buffer and change cache size from 8 to 1 GB

32 C. C. Chou et al.

1 3

Moreover, we want to examine the impact of different

sizes of NVM log buffer and NVM cache on life span (or

write counts) of backend SSD. We measure the number of

total NVM (cache) pages written to storage devices after

all logs have been replayed from log buffer to NVM cache

pages, and cache pages would then be written to backing

SSD if the percentage of dirty pages are over 30%. Figure 14

shows the results, from which our conclusions are drawn.

First, larger write working sets usually have more num-

bers of written pages (more write counts), but some excep-

tions can also be found. For instance, cache size is 1 GB at

(e) and (f). This phenomenon is because writeback back-

ground worker starts to write NVM cache pages back only

when the percentage of dirty pages is over 30%. So, it is pos-

sible that even larger write working sets make all instances

with higher percentage of dirty pages, but none of them is

more than 30%. On the other hand, smaller write working

sets cause instances with lower percentage of dirty pages,

but once the percentage of one instance is over 30%, then

smaller write working sets might result in more write counts

than larger ones.

Second, from (a) to (d), all results (of various log buffer

sizes) are almost the same. This also proves that log buffer

only temporarily stores the write traffic and cannot influence

the access frequencies and patterns of storage devices. It also

matches the conclusion made from results of Fig. 12.

Third, one interesting point is the case of 8 GB cache at

(g). We can find out that when number of inserted records is

10,000, the number of write count is zero; that is, all writes

are stored entirely on NVM cache and none is written to

SSD. This means that if we have enough NVM cache to store

incoming write traffic, vNVML can achieve not only better

performance but also longer life span of SSD.

Next, we consider the impact of different SSD page sizes

on write counts and performance. We assume the size of

NVM cache page should be the same as the page size of

backend SSD; otherwise, the write amplification must be

considerable. As a result, we only change the page size of

NVM cache as 8 KB and compare the write counts and per-

formance with NVM cache of 4 KB page size. Since we have

learned from Fig. 14 that the size of log buffer cannot impact

the write counts, we only employ different cache size here.

R/W ratios of all experiments are fixed as 5/95. Figure 15

shows the result.

From our experiments, doubling the page size (as

8 KB) will cause the write counts slightly more than 50%

of those of 4 KB page size at all experiments, and has

almost no impact on the performance of vNVML. This is

reasonable because larger cache pages can absorb more

write logs than smaller cache pages before they are writ-

ten to SSD and therefore require less writes to backend

SSD.

Fig. 15 Comparisons of 4 KB and 8 KB size of NVM cache page. All

read/write ratios are 5/95. The log buffer size is 2GB and cache sizes

are from 8GB to 1GB. Numbers of X-axis stand for inserted records

to each database. a–d Total number of NVM cache pages written to

SSD of all four instances (numbers of Y-axis) with different request

distributions and page size. e–h Normalized throughputs (numbers of

Y-axis) with different request distributions and page size

33Virtualize and share non-volatile memories in user space

1 3

5.3 Microbenchmark

We use a simple microbenchmark to compare the perfor-

mance between Intel’s PMDK (Intel 2015), SoftWrAP (Giles

et al. 2015), and our vNVML. In this experiment, we create a

2GB array in NVM (virtual NVM, respectively) for PMDK

and SoftWrAP (vNVML, respectively), and write different

amounts of data (from 16B to 512B) per page sequentially.

Each transaction contains 32 page writes.

To use PMDK, we use pmemobj_create to create a

4 GB NVM pool because 2 GB NVM pool is not enough

to accommodate 2 GB array. We always set PMEM_IS_

PMEM_FORCE=1 when executing PMDK to avoid unnec-

essary msync or fsync when accessing NVM. For fair-

ness, we use 2 GB log buffer and 2 GB cache when running

vNVML. We only use default setting for SoftWrAP since

it does not provide API for internal buffer size adjustment.

Figure 16a shows the result. We use the total execution

time of PMDK as our baseline, and show the total time of

writing the 2 GB array for once. The result indicates that

among others our vNVML performs better as the total writ-

ten data keeps increasing. Figure 16b shows another experi-

ment, which we enlarge the NVM to 8 GB and want to com-

pare the upper bound of each library. We write the 2 GB

NVM array 16 times. Its result is similar as Fig. 16a.

6 Conclusion

In this paper we presented vNVML, a byte-level user

space library to access NVM that provides transaction-

like semantics for applications, ensures write ordering,

and provides persistency guarantees across failures. Our

system employs NVM as a write log and a write cache,

while also employing DRAM as a cache.

We implemented vNVML and evaluated it with realistic

workloads to show that our system allows applications to

share NVM, both in a single OS and when docker-like con-

tainers are employed. The results from the evaluation show

that vNVML incurs less than 10% overhead while providing

a larger than available physical NVM space to the applica-

tions and allowing them to safely share the virtual NVM.

Acknowledgements The conference version of this paper was pre-

sented in MSST 2019. We thank the anonymous reviewers for their

valuable comments and feedback to improve the content and quality of

this work. We also thank the National Science Foundation, which sup-

ports this work through Grants I/UCRC-1439722 and FoMR-1823403,

and generous support from Hewlett Packard Enterprise.

Compliance with ethical standards

Conflict of interest On behalf of all authors, the corresponding author

states that there is no conflict of interest.

References

Chen, A.: A review of emerging non-volatile memory (NVM) tech-

nologies and applications. Solid-State Electron. 125, 25–38

(2016)

Coburn, J., Caulfield, A.M,, Akel, A., Grupp, L.M., Gupta, R.K., Jhala,

R., Swanson, S.: NV-heaps: making persistent objects fast and

safe with next-generation, non-volatile memories. In: ASPLOS

XVI Proceedings of the Sixteenth International Conference on

Architectural Support for Programming Languages and Operating

Systems, pp. 105–118. ACM, Newport Beach (2011)

Condit, J., Nightingale, E.B., Frost, C., Ipek, E., Lee, B., Burger,

D., Coetzee, D.: Better i/o through byte-addressable, persistent

memory. In: SOSP ’09 Proceedings of the ACM SIGOPS 22nd

Symposium on Operating Systems Principles. ACM, Big Sky,

Montana (2009)

Cooper, B.F., Silberstein, A., ErwinTam, Ramakrishnan, R., Sears, R.:

Benchmarking cloud serving systems with YCSB. In: SoCC ’10

Proceedings of the 1st ACM Symposium on Cloud Computing,

pp 143–154. ACM, Indianapolis (2010)

Docker. Docker container. https ://www.docke r.com/ (2013)

Docker (2018) Docker container bind mounts. https ://docs.docke r.com/

stora ge/bind-mount s/

Doshi, K., Giles, E.R., Varman, P.: Atomic persistence for scm with a

non-intrusive backend controller. In: HPCA ’16 Proceedings of

the IEEE International Symposium on High Performance Com-

puter Architecture. IEEE, Barcelona (2016)

Dulloor, S.R., Kumar, S., Keshavamurthy, A., Lantz, P., Reddy, D.,

Sankaran, R., Jackson, J.: System software for persistent memory.

(a) Normalized vNVML and SoftWrap execution time with the same

NVM size. (Lower is better.)

(b) Normalized vNVML and SoftWrap execution time assuming

unlimited NVM size. (Lower is better.)

Fig. 16 Normalized vNVML and SoftWrap execution time. Numbers

of x-axis stand for the amount of written data per page

https://www.docker.com/
https://docs.docker.com/storage/bind-mounts/
https://docs.docker.com/storage/bind-mounts/

34 C. C. Chou et al.

1 3

In: EuroSys ’14 Proceedings of the Ninth European Conference

on Computer Systems, ACM, Amsterdam (2014)

Eisner, L.A., Mollov, T., Swanson, S.: Quill: Exploiting fast non-

volatile memory by transparently bypassing the file system. In:

Technical report, UCSD (2013)

Fedorov, V., Kim, J., Qin, M., Gratz, P.V., Reddy, A.L.N.: Speculative

paging for future NVM storage. In: MEMSYS ’17 Proceedings of

the International Symposium on Memory Systems, Alexandria,

Virginia (2017)

Giles, E.R., Doshi, K., Varman, P.: Softwrap: A lightweight framework

for transactional support of storage class memory. In: MSST ’15

Proceedings of the 31st Symposium on Mass Storage Systems and

Technologies, pp. 1–14. IEEE, Santa Clara (2015)

Intel.: Persistent memory development kit (2015). https ://pmem.io/

pmdk/

Intel. Storage performance development kit (2017). https ://spdk.io/

Intel: Intel optane dc persistent memory (2019). https ://www.intel .com/

conte nt/www/us/en/archi tectu re-and-techn ology /optan e-dc-persi

stent -memor y.html

Joshi, A., Nagarajan, V., Viglas, S., Cintra, M.: Atom: Atomic durabil-

ity in non-volatile memory through hardware logging. In: HPCA

’17 Proceedings of the IEEE International Symposium on High

Performance Computer Architecture. IEEE, Austin (2017)

Jung, J., Won, Y., Kim, E., Shin, H., Jeon, B.: Frash: exploiting storage

class memory in hybrid file system for hierarchical storage. ACM

Trans. Storage (TOS) 6(1), 1–25 (2010)

Kwon, Y., Fingler, H., Hunt, T., Peter, S., Witchel, E., Anderson. T.:

Strata: A cross media file system. In: SOSP ’17 Proceedings of the

26th Symposium on Operating Systems Principles, pp. 460–477.

ACM, Shangha (2017)

Lee, B.C., Zhou, P., Yang, J., Zhang, Y., Zhao, B., Ipek, E., Mutlu,

O., Burger, D.: Phase-change technology and the future of main

memory. IEEE Micro 30, 131–141 (2010)

Liang, L., Chen, R., Chen, H., Xia, Y., Park, K., Zang, B., Guan, H.: A

case for virtualizing persistent memory. In: SoCC ’16 Proceedings

of the Seventh ACM Symposium on Cloud Computing. ACM,

Santa Clara (2016)

Memaripour, A., Badam, A., Phanishayee, A., Zhou, Y., Alagappan, R.,

Strauss, K., Swanson, S.: Atomic in-place updates for non-volatile

main memories with kamino-tx. In: EuroSys ’17 Proceedings of

the Twelfth European Conference on Computer Systems, pp.

499–512.ACM, Belgrade (2017)

Microsoft: Transaction isolation levels (2017). https ://docs.micro soft.

com/en-us/sql/odbc/refer ence/devel op-app/trans actio n-isola tion-

level s?view=sql-serve r-2017

mongoDB (2008a) Mmapv1 storage engine. https ://docs.mongo

db.com/manua l/core/mmapv 1/

mongoDB (2008b) Mongodb data base. https ://githu b.com/mongo db

Narayanan, D., Hodson, O.: Whole-system persistence. In: ASPLOS

XVII Proceedings of the seventeenth international conference on

Architectural Support for Programming Languages and Operating

Systems. ACM, London (2012)

Pelley, S., Chen, P.M., Wenisch, T.F.: Memory persistency. ISCA ’14

Proceeding of the 41st annual international symposium on Com-

puter architecuture, pp. 265–276. Minneapolis, Minnesota (2014)

Qiu, S., Reddy, A.L.N.: Nvmfs: a hybrid file system for improving

random write in NAND-flash SSD. In: MSST ’13 IEEE 29th

Symposium on Mass Storage Systems and Technologies. IEEE,

Long Beach (2013)

Qureshi, M.K., Srinivasan, V., Rivers, J.A.: Scalable high performance

main memory system using phase-change memory technology. In:

ISCA ’09 Proceedings of the 36th Annual International Sympo-

sium on Computer Architecture. ACM, Austin (2009)

Samsung (2017) Ultra-low latency with Samsung z-nand ssd. https

://www.samsu ng.com/semic onduc tor/globa l.semi.stati c/Ultra

-Low_Laten cy_with_Samsu ng_Z-NAND_SSD-0.pdf

SNIA: NVM Programming Model. In: Storage Networking Industry

Association, rev., vol. 1, no. 2 (2017)

Swanson, S.: A vision of persistence (2017). https ://www.sigar ch.org/a-

visio n-of-persi stenc e/

Swift, M.: Persistent memory ordering (2015). http://mater ials.dagst

uhl.de/files /15/15021 /15021 .Micha elSwi ft1.Slide s.pdf

Venkataraman, S., Tolia, N., Ranganathan, P., Campbell, R.H.: Consist-

ent and durable data structures for non-volatile byte-addressable

memory. In: FAST ’11 Proceedings of the 9th USENIX Confer-

ence on File and Storage Technologies, USENIX (2011)

Volos, H., Tack, A.J., Swift, M.M.: Mnemosyne: Lightweight persistent

memory. In: ASPLOS XVI Proceedings of the Sixteenth Inter-

national Conference on Architectural Support for Programming

Languages and Operating Systems, pp. 91–104. ACM, Newport

Beach, California (2011)

Volos, H., Nalli, S., Panneerselvam, S., Varadarajan, V., Saxena, P.,

Swift, M.M.: Aerie: Flexible file-system interfaces to storage-

class memory. In: EuroSys ’14 Proceedings of the Ninth Euro-

pean Conference on Computer Systems. ACM, Amsterdam (2014)

Wan, H., Lu, Y., Xu, Y., Shu, J.: Empirical study of redo and undo

logging in persistent memory. In: NVMSA ’16 Proceeding of the

5th Non-Volatile Memory Systems and Applications Symposium,

pp. 1–6. IEEE, Daegu (2016)

Wang, C., Wei, Q., Yang, J., Chen, C., Xue, M.: How to be consistent

with persistent memory? an evaluation approach. NAS ’15, pp.

186–194. IEEE, Boston (2015)

Watts, D.: Intel optane dc persistent memory product guide (2019).

https ://lenov opres s.com/lp106 6-intel -optan e-dc-persi stent -memor

y

Wu, X., Reddy, A.L.N., (2011) SCMFS: a file system for storage class

memory. In: SC ’11 Proceedings of International Conference for

High Performance Computing. Networking, Storage and Analysis.

ACM, Seattle (2011)

Xu, J., Swanson, S.: Nova: A log-structured file system for hybrid vola-

tile/non-volatile main memories. In: FAST ’16 Proceedings of the

14th USENIX Conference on File and Storage Technologies, pp.

323–338. USENIX, Santa Clara (2016)

Yang, J., Wei, Q., Chen, C., Wang, C., Yong, K.L., He, B.: NV-Tree:

Reducing consistency cost for NVM-based single level systems.

In: FAST ’15 Proceedings of the 13th USENIX Conference on

File and Storage Technologies. USENIX, Santa Clara (2015)

Yu, S., Chen, P.Y.: Emerging memory technologies: recent trends and

prospects. IEEE Solid-State Circuits Mag. 8(2), 43–56 (2016)

Zhang, Y., Swanson, S.: A study of application performance with non-

volatile main memory. In: MSST ’15 Proceedings of the 31st

Symposium on Mass Storage Systems and Technologies. IEEE,

Santa Clara (2015)

Zhang, Y., Yang, J., Memaripour, A., Swanson, S.: Mojim: a reliable

and highly-available non-volatile memory system. In: ASPLOS

’15 Proceedings of the Twentieth International Conference on

Architectural Support for Programming Languages and Operat-

ing Systems. ACM, Istanbul (2015)

Zhao, J., Li, S., Yoon, D.H., Xie, Y., Jouppi, N.P.: Kiln: closing the

performance gap between systems with and without persistence

support. In: MICRO ’13 Proceedings of the 46th Annual IEEE/

ACM International Symposium on Microarchitecture. IEEE,

Davis (2013)

Zhou, P., Zhao, B., Yang, J., Zhang, Y.: A durable and energy efficient

main memory using phase change memory technology. In: ISCA

’09 Proceedings of the 36th Annual International Symposium on

Computer Architecture. ACM, Austin (2009)

https://pmem.io/pmdk/
https://pmem.io/pmdk/
https://spdk.io/
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://docs.microsoft.com/en-us/sql/odbc/reference/develop-app/transaction-isolation-levels?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/odbc/reference/develop-app/transaction-isolation-levels?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/odbc/reference/develop-app/transaction-isolation-levels?view=sql-server-2017
https://docs.mongodb.com/manual/core/mmapv1/
https://docs.mongodb.com/manual/core/mmapv1/
https://github.com/mongodb
https://www.samsung.com/semiconductor/global.semi.static/Ultra-Low_Latency_with_Samsung_Z-NAND_SSD-0.pdf
https://www.samsung.com/semiconductor/global.semi.static/Ultra-Low_Latency_with_Samsung_Z-NAND_SSD-0.pdf
https://www.samsung.com/semiconductor/global.semi.static/Ultra-Low_Latency_with_Samsung_Z-NAND_SSD-0.pdf
https://www.sigarch.org/a-vision-of-persistence/
https://www.sigarch.org/a-vision-of-persistence/
http://materials.dagstuhl.de/files/15/15021/15021.MichaelSwift1.Slides.pdf
http://materials.dagstuhl.de/files/15/15021/15021.MichaelSwift1.Slides.pdf
https://lenovopress.com/lp1066-intel-optane-dc-persistent-memory
https://lenovopress.com/lp1066-intel-optane-dc-persistent-memory

35Virtualize and share non-volatile memories in user space

1 3

Chih Chieh Chou received the

B.S. degree in Electrical Engi-

neering in 2003 and M.S. degree

in Communication Engineering

in 2005, both from National

Tsing Hua University, Hsinchu,

Taiwan. From 2005 to 2011, he

was a Software Development

Engineer with MediaTek Inc.,

Hsinchu, Taiwan. He is currently

a Ph.D. student in Electrical and

Computer Engineering at Texas

A&M University, College Sta-

tion, Texas, USA, from 2014. He

is also currently a Software

Development Engineer with

Amazon Lab126, Sunnyvale, California, USA, from 2020. His research

interests include Non-Volatile Memories, Memory Systems, Operating

Systems, and Computer Architecture. He is a student member of IEEE.

Jaemin Jung received the B.S.,

M.S., and Ph.D. degrees in Com-

puter Science from Hanyang

University, Seoul, Korea, in

2007, 2009, and 2016, respec-

tively. He continued his research

as a Postdoc in Texas A&M Uni-

versity, College Station, Texas,

USA, from 2016. He is currently

a Senior Engineer in Samsung

Semiconductor, San Jose, Cali-

fornia, USA, from 2018. His

research interests include Stor-

age Systems, Persistent Memo-

r i e s , and Nea r-Memor y

Computing.

A. L. Narasimha Reddy received

a B.Tech. degree in Electronics

and Electrical Communications

Engineering from the Indian

Institute of Technology, Kharag-

pur, India in August 1985, and

M.S. and Ph.D. degrees in Com-

puter Engineering from the Uni-

versity of Illinois at Urbana-

Champaign in May 1987 and

August 1990, respectively.

Reddy is currently a J.W.

Runyon Professor in the depart-

ment of Electrical and Computer

Engineering at Texas A&M Uni-

versity as well as the Associate

Dean for Research with the Texas A&M Engineering Program and the

Assistant Director of Strategic Initiatives & Centers with the Texas

A&M Engineering Experiment Station. Reddy’s research interests are

in Computer Networks, Storage Systems, Multimedia Systems, and

Computer Architecture. During 1990–1995, he was a Research Staff

Member at IBM Almaden Research Center in San Jose where he

worked on projects related to disk arrays, multiprocessor communica-

tion, hierarchical storage systems and video servers. Reddy holds five

patents and was awarded a technical accomplishment award while at

IBM. He received an NSF Career Award in 1996. He was a Faculty

Fellow of the College of Engineering at Texas A&M during 1999–

2000. His honors include an Outstanding Professor award by the IEEE

student branch at Texas A&M during 1997–1998, an Outstanding Fac-

ulty award by the Department of Electrical and Computer Engineering

during 2003–2004, a Distinguished Achievement award for teaching

from the Former Students Association of Texas A&M University, and

a citation “for one of the most influential papers from the 1st ACM

Multimedia Conference”. Reddy is a Fellow of IEEE Computer Society

and is a member of ACM.

Paul V. Gratz (SM’16) received

the B.S. and M.S. degrees from

the University of Florida,

Gainesville, FL, USA, in 1994

and 1997, respectively, both in

Electrical Engineering, and the

Ph.D. degree in Electrical and

Computer Engineering from the

University of Texas at Austin,

Austin, TX, USA, in 2008. He is

an Associate Professor with the

Department of Electrical and

Computer Engineering, Texas

A&M University, College Sta-

tion, TX, USA. From 1997 to

2002, he was a Design Engineer

with Intel Corporation, Santa Clara, CA, USA. His current research

interests include energy efficient and reliable design in the context of

high performance computer architecture, processor memory systems,

and on-chip interconnection networks. Dr. Gratz is a member of ACM.

Doug Voigt is a retired Distin-

guished Technologist who

worked for HP and HPE storage

for his entire 40 year career. He

has developed firmware and soft-

ware for disk controllers, disk

arrays and storage management.

He has led HP and HPE virtual

array advanced development

projects and strategy between

1990 and his retirement in 2018.

Since 2012 his technical focus

has been on non-volatile mem-

ory systems. Throughout his

career Doug was a strong propo-

nent of industry standards. He

has been a member the Storage Network Industry Association (SNIA)

since 2009. He served on the SNIA board of directors, technical council

and as co-chair of the NVM Programming Technical Working Group.

Doug has over 50 patents mostly in the areas of virtual arrays and

persistent memory. Doug’s hobbies include music, photography and

reading science fiction/fantasy.

	Virtualize and share non-volatile memories in user space
	Abstract
	1 Introduction
	2 Background
	3 Design overview
	4 vNVML API and implementation
	4.1 vNVML API
	4.2 vNVML data structures
	4.3 Background workers
	4.4 Sharing NVM between processes
	4.5 Transaction aborts and long running transactions
	4.6 Data recovery
	4.7 Security

	5 Evaluation
	5.1 Experimental setup
	5.2 MongoDB and YCSB
	5.3 Microbenchmark

	6 Conclusion
	Acknowledgements
	References

