CCF Transactions on High Performance Computing (2020) 2:16-35
https://doi.org/10.1007/542514-020-00019-8

REGULAR PAPER q

Check for
updates

Virtualize and share non-volatile memories in user space

Chih Chieh Chou'® - Jaemin Jung? - A. L. Narasimha Reddy’ - Paul V. Gratz' - Doug Voigt?

Received: 15 June 2019 / Accepted: 22 January 2020 / Published online: 24 February 2020
© China Computer Federation (CCF) 2020

Abstract

Emerging non-volatile memory (NVM) has attractive characteristics such as DRAM-like low-latency together with the
non-volatility of storage devices. Recently, byte-addressable, memory bus-attached NVM has become available. This paper
addresses the problem of combining a smaller, faster byte-addressable NVM with a larger, slower storage device, such as
SSD, to create the impression of a larger and faster byte-addressable NVM which can be shared across multiple applications
concurrently. In this paper, we propose VNVML, a user space library for virtualizing and sharing NVM. vNVML provides
for applications transaction-like memory semantics that ensures write ordering, durability, and persistency guarantees across
system failures. vNVML exploits DRAM for read caching to improve performance and potentially to reduce the number
of writes to NVM, extending the NVM lifetime. vNVML is implemented in C and evaluated with realistic workloads to
show that vNVML allows applications to share NVM efficiently, both in a single OS and when docker-like containers are
employed. The results from the evaluation show that vNVML incurs less than 10% overhead while providing the benefits of

an expanded virtualized NVM space to the applications, and allowing applications to safely share the virtual NVM.

Keywords Non-volatile memory - User space library - Virtualization - Transactional semantics - Concurrent accesses

1 Introduction

Emerging non-volatile memory (NVM) technologies, such
as phase-change memory (PCM) (Lee et al. 2010), NV-
DIMM (Narayanan and Hodson 2012), and 3D-XPoint (Intel
2019), will dramatically shake up future system designs
(Dulloor et al. 2014; Kwon et al. 2017; Liang et al. 2016;
Yang et al. 2015; Zhang et al. 2015). In particular, not only
do these NVM technologies promise much faster access
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times than existing NAND-based SSDs, within an order of
magnitude of DRAM, but they also are “byte” addressable
and will be placed directly on the memory buses. Further-
more, these NVM technologies could be used to replace
existing permanent storage devices or even volatile memory
(i.e. single level system).

To date there have been some significant works in this
domain. Some prior works, such as (Condit et al. 2009;
Dulloor et al. 2014; Kwon et al. 2017; Qiu and Reddy
2013; Wu and Reddy 2011; Xu and Swanson 2016), engi-
neer novel file systems tailored for exploiting NVM. Other
prior works, such as (Venkataraman et al. 2011; Yang et al.
2015), employ NVM as the only media in their (single level)
system and carefully design their data store manipulation
mechanism to directly access some data structures stored in
NVM. Their aim is to maximize performance by eliminating
unnecessary data movement between volatile memory and
persistent storage devices. These prior schemes, however,
currently present no way to virtualize and share persistent
NVM among multiple applications and users.

Traditionally, there are two common ways for applications
to access data content in storage devices. One is through
the file system read/write interface, the other is via the
memory mapped file (mmap) interface. The cost of system
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calls incurred by accessing through the file system, how-
ever, would squander the low-latency as well as performance
provided by NVM. Thus, to attain the maximum gain from
NVM, in this paper, we focus on memory mapped file access
form, which is also the recommended form by SNIA (2017).

Currently, when files on storage devices are mmapped
to volatile memory (DRAM), the POSIX interface can sup-
port shared mmap; that is, the same region of files can be
shared/accessed between multiple processes. Also, thanks
to the swapping mechanism provided by virtual memory,
which writes dirty pages to the backend storage devices
(swap space) and therefore produces clean pages for the
future use, the impression of physical available DRAM is
extended. These two attractive properties of existing vola-
tile virtual memory, however, are not supported in the prior
work for NVM.

This paper considers this problem of virtualizing and
sharing byte-addressable NVM across multiple applications.
Here we introduce “vNVML”, an efficient library for virtu-
alizing and sharing NVM in user land. What we mean by
“sharing NVM” here is that not only can the same physical
NVM pages be reallocated and reused across users, but the
data content on NVM pages can also be seen/accessed by
applications concurrently, exactly like shared mmap access
form of virtual memory.

One of the main aims of VNVML is to provide the impres-
sion of larger NVM availability to applications, much like
virtual memory allowing the use of more main memory than
the actual physical memory in the machine. In order to vir-
tualize NVM in this manner, this paper examines extend-
ing a smaller amount of byte-addressable NVM with larger,
traditional storage devices.'

Further, we examine mechanisms to safely leverage
DRAM as cache to improve the performance of persistent
memory access. There are certain advantages in employing
DRAM even when the applications access virtual NVM.
First, DRAM may have better performance (lower latency)
than most types of NVM, except for NV-DIMM. Second,
DRAM may alleviate lifetime issues of NVM in read-
intensive workloads, since many NVM technologies have
write endurance limits. In our design, some reads can be
served by reading pages from storage devices to DRAM,
bypassing the NVM entirely. This might be a better design
choice compared to simply employing NVM as both read
and write cache in terms of reducing the number of NVM
write accesses.

We design and implement vNVML with the hope that
programmers could access (virtual) NVM with a simi-
lar interface as for existing memory mapped files. That

! Note: while our approach can be applied with magnetic disks as the
backing stores, here we limit ourselves to SSDs.

is, after a file on the storage device is mmapped as a vir-
tual NVM region, a pointer to this region is returned. This
pointer can be directly used in the programs as a typical
mmapped pointer to virtual memory. However, when NVM
is exploited as permanent storage by applications, the dura-
bility and ordering of writes must be assured. Write ordering
as required by byte-addressable NVM has been discussed
almost in every prior work (Coburn et al. 2011; Condit et al.
2009; Giles et al. 2015; Venkataraman et al. 2011; Volos
et al. 2011; Yang et al. 2015). Many approaches have been
proposed to address the write ordering problem within per-
sistent memories, including hardware capacitors to ensure
eviction order of all data from volatile memory to NVM
(Condit et al. 2009), epoch-based writes (Coburn et al. 2011;
Condit et al. 2009), transaction-like semantics (Coburn et al.
2011; Giles et al. 2015; Memaripour et al. 2017; Volos et al.
2011), versioning (Venkataraman et al. 2011), and special
data stores and algorithms designed for single level NVM
(Venkataraman et al. 2011; Yang et al. 2015). Here vNVML
proposes to use transaction-like semantics to guarantee the
write ordering, atomicity, and durability of NVM accessing.

To sum up, VNVML employs DRAM as cache, NVM as
log buffer and write cache, and the backing storage device
as the final destination of writes. From our evaluations,
VNVML incurs less than 10% throughput overhead, if the
cache system of VNVML can absorb the write traffic, com-
pared to directly accessing NVM without the atomicity and
write ordering guarantees.

The contributions of this paper are as follows:

e Propose a transactional interface for virtualizing and
sharing persistent non-volatile memory.

e An implementation of this interface in our virtualized
NVM Library, vNVML.

e This implementation leverages caching in DRAM, cou-
pled with write logging and caching in NVM and lazy
writeback to the backing storage to provide a high perfor-
mance, virtualized, and shareable NVM to applications.

e We evaluate this proposed vNVML under not only syn-
thetic but also realistic (YCSB+MongoDB) workloads
and show that vNVML is competitive with prior tech-
niques which do not support virtualization and sharing
of NVM.

The remainder of this paper is organized as follows. Sec-
tion 2 describes background and prior work in this area. Sec-
tion 3 presents a design overview and discusses the design
decisions of VINVML. Section 4 explains the implementation
of vNVML in detail. Section 5 presents our results of evalu-
ation of YNVML and Sect. 6 concludes.
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2 Background

Much of the early work to-date incorporating NVM in
systems assumes basic hardware changes. New memory
controllers are proposed (Doshi et al. 2016; Qureshi et al.
2009; Zhou et al. 2009). Kiln (Zhao et al. 2013) proposes
a victim cache for buffering and Atom (Joshi et al. 2017)
deploys a hardware logging approach to eliminate software
logging overhead. BPFS (Condit et al. 2009) develops a
new “epoch” for write ordering. While these approaches
show promise, they require significant hardware redesign,
which may take several years to be reflected in commercial
hardware.

In the more near term, we might prefer to the solutions
requiring little or no change to the basic processor cach-
ing and memory management hardware because memory
bus-attached NVM DIMMs have become available. For
example, recently Intel has released its Optane DC Per-
sistent Memory DIMM (Intel 2019). Near-term systems
will incorporate this type of NVM attached directly on the
memory bus, where it will be accessible via the system’s
physical address space. These system architectures argue
for a pure-system software approach to management.

Existing work to-date looking at system software
approaches to managing this (memory bus-attached) form
of NVM primarily focuses on constructing new file sys-
tems to handle the underlying NVM, such as SCMFS (Wu
and Reddy 2011), NVMFS (Qiu and Reddy 2013), BPFS
(Condit et al. 2009), PMFS (Dulloor et al. 2014), NOVA
(Xu and Swanson 2016), STRATA (Kwon et al. 2017),
FRASH (Jung et al. 2010), and Aerie (Volos et al. 2014).
Some of those works have considered building file sys-
tems across multiple types of NVM and storage technolo-
gies. These include NVMEFS (Qiu and Reddy 2013) (NVM
and SSD) and Strata (Kwon et al. 2017) (DRAM, NVM,
SSD, and HDD). The design concept of Strata is close to
our vNVML; both of them contain DRAM and NVM as
caches. However, the DRAM of Strata only caches the
pages read from SSDs and HDDs and all updates would
go directly to NVM only. Therefore, Strata needs to search
for the up-to-date data locations. In addition, Strata does
not support memory mapped files access form, which is
the primary form used by our target applications.

Accessing NVM through file system APIs has funda-
mental drawbacks. First, accessing NVM via the file sys-
tem interface is not suitable for random, small accesses to
NVM due to the high (context switch) overheads incurred
by system calls compared with the relative low-latency
that NVM offers. Next, the file system naturally cannot
support concurrent accesses of the same file by different
threads or processes, even though those threads or pro-
cesses access different objects/pages in the same file. For
example, to access a certain location of a file, users must
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acquire a file lock first, and then seek to the location
and read/write from and to that location of file. After
read/write command is completed, the file lock can be
released. Another drawback is that such (file system) soft-
ware approaches require users and applications to deploy
dedicated file systems.

Some works, such as NV-Tree (Yang et al. 2015) and
CDDS-Tree (Venkataraman et al. 2011), consider replacing
DRAM and storage devices entirely with NVM to construct
a single level, NVM-only system; their idea is to manipulate
all data structure operations directly on NVM and therefore
eliminate all data movements between DRAM and storage
devices. Such approaches can improve performance signifi-
cantly; however, they restrict themselves to only some spe-
cific data structures and cannot be easily applied to general
memory access. Also, they totally ignore the lower latency
offered by DRAM and do to further explore the potential
performance improvements. For example, their approaches
might be not suitable for the read-intensive, cache friendly
workloads.

SPAN (Fedorov et al. 2017) proposes some new swapping
enhancements in the operating system (OS) kernel to exploit
NVM as extended system memory. Its concept is similar to
the memory mode supported by Intel’s Optane DC Persis-
tent Memory (Watts 2019). NV-Heaps (Coburn et al. 2011)
provides some useful features, such as type-safe pointers and
garbage collection, but it requires programmers to use its
specific object framework and hardware must support epoch
as BPFS (Condit et al. 2009) does.

Other approaches try to create user space libraries (Giles
et al. 2015; Intel 2015; Memaripour et al. 2017; Volos et al.
2011). PMDK (Intel 2015) and KAMINO (Memaripour
et al. 2017) employ only NVM and utilize undo logging to
support in-place data updates. SoftWrAP (Giles et al. 2015)
combines NVM and DRAM and employs DRAM for write/
read accesses and NVM for redo logging. However, during
the normal operations, the data content is “retired” from
DRAM to the final locations in NVM, and the logs in NVM
are referenced only after system failures. The most closely
related work to our vNVML presented here is Mnemosyne
(Volos et al. 2011), which also uses redo logging. While
Mnemosyne provides both persistent region and persistent
heap allocation methods, vNVML does not support heap
style allocation. However, there are some fundamental
differences between these two approaches. Mnemosyne
achieves NVM virtualization by swapping, which is con-
trolled entirely by the kernel and therefore suffers from
context switching overhead in the page fault critical path;
vNVML, on the other hand, always writes the dirty pages
back to storage devices by a background thread. Further,
Mnemosyne does not employ DRAM as read cache, so it
requires an extensive search to find up-to-date data. Also,
Mnemosyne cannot support true sharing of NVM between



Virtualize and share non-volatile memories in user space

19

Table 1 Summary of prior software approaches

Categories Approaches

File system
Single level system
Persistent object system NV-heaps

User space library

SCMFS, NVMES, BPFS, PMFS, NOVA, STRATA, FRASH, Aerie
CDDS-Tree, NV-Tree

mnemosyne, PMDK, SoftWrAP, KAMINO

processes. Table 1 summaries above-mentioned software
approaches.

In this work, we propose a system software-based, user
space management approach, which makes NVM available
directly to user applications, without the block-level seman-
tics of traditional file systems. Furthermore, our work also
provides write ordering, atomicity, and endurance guaran-
tees while offering a larger than physical available NVM
space to the applications, and allows them to safely share the
virtual NVM regions while maintaining performance goals
by leveraging caching in DRAM.

3 Design overview

In this section we describe our design and provide an over-
view of the decisions made in the design of the virtual NVM
Library (vNVML), a user space library for virtualizing and
sharing NVM. Our design decisions are guided by the fol-
lowing four observations.

First, persistent memory is typically allocated and dedicated
to an application. For example, when file system writes data to
a location in persistent memory, that location cannot be reused
or reallocated by another application; otherwise, the data con-
tent of that location is corrupted. If NVM is similarly allocated
and used, then NVM cannot be easily shared” across multiple
applications if NVM is the only persistent storage device in the
systems. In data centers, with dynamic workloads, there is a
strong desire to share available resources across many applica-
tions. It is essential that we provide mechanisms to share pre-
cious resources like NVM across many applications.

Second, simply replacing traditional storage devices,
such as solid-state drives (SSDs) or hard drives (HDDs),
with NVM is not good enough. Although by doing so, all
existing applications can benefit immediately from perfor-
mance improvements provided by NVM without any modifi-
cations required; however, this ignores the byte-addressabil-
ity of NVM, and requires accessing NVM in units of blocks,
resulting in a suboptimal approach.

Third, the access latency of NVM is very close to that of
DRAM and is much faster than that of storage devices. When
storage devices are slow (for example magnetic disks), the

2 Note: the “share” here means the same physical NVM pages can be
reallocated/reused by multiple applications.

overheads paid by accessing through system calls (or context
switching) from file system APIs may not be a significant
part of the entire access latencies. However, as devices get
faster, like NVM whose latency is within an order of mag-
nitude of DRAM, these system call overheads become much
more significant and hence must be avoided. For example,
Intel Storage Performance Development Kit (SPDK) (Intel
2017) implements the whole NVMe device driver in the user
space and thus improves the accessing Ultra-Low-Latency
(ULL) SSDs, such as Intel NVM-based 3D-Xpoint or Sam-
sung Z-NAND (Samsung 2017), performance significantly.

Finally, while it is possible (and even desirable) to con-
tinue running existing or older software on new hardware,
software may have to be redesigned/rewritten to attain the
most of the hardware. This can take the forms of new file
systems, new data stores (Venkataraman et al. 2011; Yang
et al. 2015) or new libraries (Eisner et al. 2013; Giles et al.
2015; Intel 2015; Memaripour et al. 2017; Volos et al. 2011).
In this paper, we take the approach of developing a user
space library interface to NVM to achieve our goals.

Based on above four observations, we designed the
vNVML user space library, integrating DRAM, NVM, and
backend storage devices to construct the abstraction of vir-
tualized NVM. Like virtual memory, adopted almost univer-
sally in the modern computer systems, the main idea of our
virtual NVM is to provide the impression that applications
and users can treat (virtual) NVM contained in their system
as large as the capacity of the storage devices in the system
and as fast as the speed of NVM (or even DRAM).

Usually, applications have two means to access the data con-
tent stored on storage devices; one is through file system read/
write commands, the other is through memory mapped files
(i.e. mmap). Because traditional disks are very slow, accessing
data content in disks through file system commands, which in
turn trigger some system calls, may not incur too much perfor-
mance penalty compared to the long access latency of the disks
themselves. However, this is not the case when we deal with
NVM because of its DRAM-like low latency.

By contrast, when accessing NVM, we must avoid expen-
sive system calls triggered by the file system commands as
much as possible. This is especially true for applications
requiring abundant random memory accesses, such as tree
manipulation operations, which may issue several system
calls solely for modifying a few pointers and therefore
results in significant system overheads.
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In order to avoid context switch overheads and to expose
the byte-addressability of NVM, in this project we primarily
focus on memory mapped file accesses. Here, applications
access NVM much like memory, through byte-level load/
store interfaces without system calls. However, to utilize
the byte-addressability of persistent memory, write order-
ing issue must be paid special attention (Condit et al. 2009;
Swift 2015). Therefore, we design vNVML such that pro-
grammers use it in much the same way as they employ exist-
ing POSIX mmap access for volatile memory, except that
they must follow the transaction-like semantics for write
ordering. Meanwhile, the benefits of performance improve-
ment, atomicity, and durability are all provided by this trans-
actional interface. Furthermore, we adopt the method of user
space library hoping for executing NVM accesses in the user
space as much as possible and using system calls only when
necessary.

Since vNVML only provides the mmap-like transactional
interface and only focuses on the file read/write accesses,
meaning that vNVML still relies on file system to provide
the file system related handlings, such as metadata man-
agement, directory management, file permission control,
etc. VINVML places no limits on which file system may be
used in the system and only requires that file system must
support standard POSIX mmap. Here we want to highlight
that vNVML does not try to place the file systems; instead,
vNVML hopes to supplement and augment the current
design limitations of file systems, especially when applica-
tions require the high performance computing.

From here, we focus on vNVML’s private mmap access
mode,* meaning that virtual NVM regions can only be
accessed by a single process. The mechanism of our shared*
mmap mode is slightly different and, to avoid confusion, is
explained in Sect. 4.4.

Briefly speaking, vNVML utilizes NVM both as a log
buffer and as a write cache and DRAM as a read cache. The
reads can only be served by read caches. Modified data are
first written to the NVM log buffer only and then copied
to DRAM (read cache) when the logged data are commit-
ted. NVM (write cache) are updated by committed logs on
the background. If pages containing accessed data are not
already in NVM or DRAM, they (entire pages) are copied
from the storage devices to NVM write cache or DRAM
read cache. Data are evicted from the NVM write cache
back to storage devices only when the usage of NVM write

3 Note: our (YNVML) private mmap mode is different from the
standard POSIX private mmap mode. In our private mmap, writ-
ten data can be reflected back to storage devices, but POSIX private
mmap cannot.

* Note: the “share” here means that shared regions can be seen and
accessed by multiple processes, exactly like the existing POSIX
shared mmap method for volatile memory.
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Fig.1 The read/write data flow of VNVML private mmap mode
between DRAM, NVM, and storage device

cache exceeds some threshold (30%) of the physical avail-
able NVM. Before programs are terminated safely, all data
are completely flushed from NVM (both log buffer and write
cache) to files. The interactions between DRAM, NVM, and
storage devices are shown in Fig. 1 for both read and write
operations.

The key ideas behind our design choices are as follows:

Use NVM as log buffer Like other NVM user space librar-
ies, we also adopt transaction semantics as interface for
vNVML to provide write ordering, atomicity and durability.
All written data must be immediately stored at some tempo-
rary non-volatile storage locations before transactions com-
mit. Since this logging process must be in the write critical
path, employing NVM as temporary non-volatile log buffer
provides significant performance advantage.

Redo logging and DRAM cache Typically, there are two
approaches to logging: undo and redo logging. Both have
pros and cons toward different workloads (Wan et al. 2016).
Undo logging requires that old data are persisted as logs
before new data are updated in place. These two actions
(both logging and in place update) must be in the write criti-
cal path. Alternately, with redo logging, all new data are
persisted as logs to non-volatile media first, then new data
can be updated in place. In-place updates, because they can
be executed on the background, do not have to be in the
write critical path, but they would affect the read critical
path because reads have to be redirected to logs and have to
search for the newest data from logs.

In vNVML, we augment redo logging by using DRAM
as a read cache. Modified data are written to the NVM log
buffer, and are also written to DRAM, during the commit
command, for reads following this write. With the help of
a read cache (DRAM), only persisting writes on the (redo)
log and updating to DRAM are in the write critical path
(from the perspective of the whole transaction), and reads
do not need to be redirected to logs as usual (redo) log does.
Updating data on the storage devices can be executed in the
background, without it being in the write critical path.

Although undo and our redo logging both double the
written data in the write critical path (undo: 2 NVM versus
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our redo: 1 NVM and 1 DRAM), using our redo logging still
has three advantages. First, even though the access latency
of NVM is close to that of DRAM, the write latency of
DRAM is still shorter than that of NVM (Chen 2016; Yu and
Chen 2016). So, writing to DRAM is still faster than writing
to NVM. Second, writing to DRAM does not need order-
ing constraints, which use c1flush, clflushopt, clwb,
and sfence instructions and therefore are time-consuming
(Zhang and Swanson 2015). Third, for read-intensive work-
loads, read cache can serve some reads without accessing
NVM, which might potentially reduce the writes to NVM
and alleviate the lifetime issues of NVM.

Only committed data are updated to read cache Before
logs of uncommitted transactions can be placed into true
destinations, reading the data still in the logs requires pars-
ing the logs to find the newest data, which can be time-
consuming. This process is in the read critical path. In most
workloads, the frequency of reads is much higher than that
of writes. For example, Yahoo! Cloud Serving Benchmark
(YCSB) (Cooper et al. 2010) framework refers to workload
A (50/50 read/write ratio) as update-heavy workload. In
terms of the overall performance, shortening the read criti-
cal path is more important than write critical path. So, we
simply use DRAM as a read cache to serve all read opera-
tions, and update the data into the DRAM in the commit
command (through parsing the logs belonging to this trans-
action sequentially). By doing so, the following reads, after
transaction commits, could read directly from DRAM. Our
design doubles the written data on the write critical path,
but it makes the reads faster as data can be directly read
from DRAM, without having to search the entire log buffers.
The section 4.1 will explain the detailed mappings of read
cache, log buffer, and write cache into virtual address space
of each process.

Two restrictions are related to this read cache: (1) reads
can only be served by the read cache and (2) written data are
copied to read cache only when the transaction commits to
accomplish the isolation property; that is, only committed
data are visible. This is sometimes referred as “read commit-
ted” transaction isolation level (Microsoft 2017). However,
our transactions are defined differently from transactions of
the traditional database systems. In database systems, the
focus is on the consistency of transactions to ensure cor-
rect data are accessed between multiple concurrent trans-
actions. In vNVML, we emphasize the persistency (Pelley
et al. 2014) of transactions. Here we define the committed
(uncommitted, respectively) data are that the written data
must be valid (invalid, respectively) after system crashes;
meanwhile, the atomicity and durability of data are also
guaranteed. We leave the consistency of transactions to the
discretion of programmers/applications.

Employ NVM as write cache All written data are at
the log buffer when transactions commit. Data need to be

gradually moved from the log buffer to their true destina-
tions on storage devices to avoid overflowing the log buffer.
We utilize part of NVM as a write cache and committed data
are moved to NVM write cache before they are moved to
much slower storage devices. This allows us to migrate the
logs quickly to more permanent locations and to prevent the
log buffer from taking too much space.

A background worker (thread) is responsible for copy-
ing data from (NVM) log buffer to (NVM) write cache to
avoid extra overhead in the write critical path. This design is
also suitable for the cache-friendly workloads (or the write
working set of workloads is smaller than write cache size)
because logs could always be directly copied to NVM cache
(where data are moved from NVM to NVM). Writing data
to NVM allows us to maintain data safety, providing a better
performance if future writes hit in the write cache.

Update to storage devices from NVM write cache (private
mmap mode) or DRAM cache (shared mmap mode) Data
are written to the log buffer using the write commands, and
then moved to NVM write cache in the background. These
data are also written to the DRAM read cache upon the com-
mit command being issued. Therefore, the data can have
two paths, from DRAM or from NVM, to reach the storage
devices. Depending on whether the regions (or modes) of
virtual NVM are to be shared across applications or not, we
adopt different strategies.

For private virtual NVM regions (private mmap mode),
We construct DRAM (read-only) cache by leveraging the
existing POSIX private mmap, which adopts Copy-on-Write
mechanism and all written data can only remain at DRAM.
Therefore, the data can only be written back to storage
devices from NVM cache. We choose this design choice
with the hope that NVM write cache can absorb all write
traffic (if cache size is larger than the write working set)
and avoid all storage device accesses to gain the maximum
performance.

On the other hand, when shared NVM regions (shared
mmap mode) are required, the existing POSIX shared mmap
is adopted to construct the DRAM (read/write) cache, and
data are written from DRAM to storage devices. Here NVM
cache is not used and logs in NVM log buffer are referenced
only when recovering from system failures is needed. This
design concept is similar to Soft WrAP (Giles et al. 2015).
Further details are provided in Sect. 4.4.

Figure 2 illustrates the read/write flow of accessing pri-
vate virtual NVM region and the page movement between
DRAM, NVM, and storage device in detail. (a) A file on
the storage with page A and B initially. (b) A read from
page A lets page A is copied from the storage device to
the memory and then the application reads page A directly
from the memory. (c) A write to page A results in a log AA
is appended to the log buffer. (d) Another write to page B
also results in a log AB is appended to the log buffer. (e)
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B e B B 4.1 vNVML API
DRAM :
read cache
Function nv_init (void)
if caller is the first caller then
AR initialize VNVML;
NVM “AB" construct linked lists for NVM cache and log buffer;
log buffer
end
mmap NVM files such as cache, log buffer, and metadata
— m . 1.nto caller’s v1rtua1. memory space;
. — unction nv_release (void)
write cache Ly il wait for redo background worker to apply committed
logs to NVM write cache;
e = e =5 flush all dirty pages to the storage;
Storage E E E E E * I.nunmap 3.111 NVM files;
if caller is the last caller then
E E E E E “ release all resources allocated by vNVML;

—
Q
-

(b) (c) (d) (e) (f)

Fig.2 The read/write data flow and page movement of VNVML pri-
vate mmap mode

The transaction commits. The page A in memory is updated
with AA to page A’, and page B is copied from storage to the
memory by Copy-on-Write mechanism and is also updated
with AB to page B’. Page A and B are read from storage
device to NVM cache and are applied the logs AA and AB to
be page A’ and B’ by a redo background thread. (f) Another
writeback background thread writes the page A’ and B’ from
NVM cache back to the storage device.

4 vNVML APl and implementation

In this section, we explain the implementation of vNVML
in detail. We start from the introduction of the APIs that
VvNVML provides and describe their functions. Next, we
describe the data structures that vNVML manages in the
user space of applications, and then introduce two back-
ground workers (per process) for parallel processing in
vNVML. Then, we explain the implementation of shared
regions of vNVML. Finally, we discuss some general issues
in vNVML implementation.

@ Springer

erase all NVM files;

end

Function nv_allocate (path filepath, size n, mapping_mode

mode)

acquire fd by open(filepath);

get fileptr from mmap(n, mode, fd);

return fileptr;

Function nv_free (pointer fileptr, size n)

‘ munmap(fileptr, n);

Function nv_txbegin (void)

generate a unique transaction tid;

return tid;

Function nv_write (id tid, address dst, address src, length n)

if log buffer is needed and no log buffer is available then
‘ return the number of written data;

end

Allocates a page from log buffer if necessary;

Add written data from address src to src+n as log entries
of tid to one of the open log lists;

return the number of written data;

Function nv_commit (id tid)

update the read cache by parsing logs of tid;

move logs of tid from one of open log lists to the tail of a
committed log list;

Function nv_abort (id tid)

remove logs of tid from open log lists;

Algorithm 1: vNVML APIL.

Algorithm 1 shows all APIs that VNVML offers and their
brief implementation.

Every application (process) first needs tocall nv_init
once before it starts to utilize VNVML. The first caller
creates (a log buffer, a cache, along with associated meta-
data) files in NVM and a shared memory object by call-
ing shm_open. The first caller is also responsible for
constructing one linked list for pages of NVM cache as
a free list and one linked list for pages of the log buffer.
Section 4.2 describes the linked list data structure in more
detail. The shared memory object contains and provides
global information accessible by all VNVML users such as
number of total current vVNVML users, unique application
ids assigned to each application, and unique transaction ids
for each transaction. Because NVM pages in the free list
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Fig.3 Structure of a file record for recovery process
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Fig.4 The mapping of virtual address space of a process after calling
nv_initandnv_allocate

and in the log buffer do not contain useful information and
therefore do not relate to recovery process as well as they
also need to be accessible by all applications, their linked
list heads are stored in this shared memory object, too.

All callers must shared mmap all files created in NVM
using the nv_init command in their virtual address
space. These files are mapped by vNVML and are invis-
ible to applications. Therefore, applications have no
information of mapped address regions of these files, and
all accesses to NVM files from applications can only be
through vNVML.

To allocate virtual NVM regions, applications call nv_
allocate by passing a path filepath in the storage, a file
size n, and the mapping mode (private or shared). If a file
exists in the filepath, then that file is opened; if it does not, a
new file is created at filepath and is posix fallocated
with size n. The file descriptor fd returned from open com-
mand, along with application id and filepath are stored as a
file record entry (application id, fd, filepath) of the metadata
file for recovery process if needed. Figure 3 illustrates an
entry of file record. Finally, A file pointer fileptr obtained
by (private or shared) mmapping this file is returned to
the caller.

Figure 4 illustrates the virtual address space of a process
after callingnv_initandnv_allocate forafile. Only
the mapping regions of files in the storage devices are known
by applications.

After virtual NVM regions are allocated, applications
can access virtual NVM like accessing real NVM through
fileptr (virtual address returned from nv_allocate) for
reading or the nv_txbegin,nv_write,nv_write,..,
nv_commit command series for writing. The nv_txbe-
gin generates and returns a unique transaction tid for the
following nv_write (s) and nv_commit commands to
construct a single transaction.

The nv_write commands are used to write data into
virtual NVM. Through nv_write commands, all data are
written as redo logs in the log buffer. The first nv_write
command must allocate a log page from log buffer. If a log
page is needed but no log page is available, then nv_write
returns the size of written data so far.

To write logs, a log object to store the log pages of this
transaction is allocated from NVM and is put into one of 32
open lists of this process according to its transaction tid%32
(modulus operator). Log pages, allocated from the linked
list of log buffer by the same transaction, are appended to
the tail of the corresponding linked list of the log object in
the open lists.

A single nv_write command may create several log
entries. It first depends on the destination position and then
depends on the left space of the current log page. This is
because we want the data from a single log entry to be
placed entirely within a single NVM cache page to simplify
the design and implementation of redo background worker
described at Sect. 4.3.

Inspired by some prior works (Condit et al. 2009; Wang
et al. 2015; Zhang and Swanson 2015), we know when deal-
ing with byte-addressable, memory-bus attached NVM,
write ordering is required. To do so, modern CPUs provide
cacheline flushing (c1flush, clflushopt, and clwb)
instructions and memory fence (sfence and mfence
instructions to help to enforce write ordering. For exam-
ple, store-clflush pair combined with mfence (or
sfence) is adopted by several prior works (Dulloor et al.
2014; Qiu and Reddy 2013; Wu and Reddy 2011; Xu and
Swanson 2016). Some other prior works (Giles et al. 2015;
Kwon et al. 2017; Xu and Swanson 2016; Zhang and Swan-
son 2015) further replace the store-clflush pair with
non-temporal store (ntstore) instructions. The ntstore
instructions can bypass the CPU caches and directly write
data to DRAM or NVM. By doing so, nt store eliminates
the expensive cacheline flushing operations (Zhang and
Swanson 2015) and significantly improves the NVM per-
sisting performance. Therefore, we also employ ntstore
to write data to log buffer at nv_write commands.

When the nv_commit command is called, YNVML
sequentially traces all log entries of log pages from the
linked list of log objects for the committed transaction fid,
and copies all committed data from log entries to the DRAM
read-only cache. Because writing to DRAM does not require
ordering, the standard memcpy function is sufficient for
copying and therefore may be used to attain better perfor-
mance. After copying to the DRAM cache, YNVML moves
this log object (along with all log pages linked to this log
object) from the corresponding open list to the tail of the
only committed list of this process and persists all log entries
and a log object in NVM. This committed list head is stored
at the metadata of the applications in NVM. All log entries
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in the committed list are guaranteed to be preserved across
power failures.

Finally, applications call nv_free (nv_release,
respectively) if they do not want to access a certain file (do
not want to access entire virtual NVM, respectively). nv__
freeisused to munmap a file mapped by the nv_allo-
cate. After nv_release is called, the applications must
wait for all committed logs, if they exist, to be applied to
NVM cache by the redo background worker, actively flush
all dirty cache pages back to the storage devices, and mun-—
map all NVM files mapped at nv_init.

Algorithm 2 shows a typical example of using VNVML.

nv_init();

ptr = nv_allocate(filepath, filesize, mode);
tid = nv_txbegin();

x = 100;

y =200;

nv_write(tid, ptr, &x, sizeof(x));
nv_write(tid, ptr+sizeof(x), &y, sizeof(y));
nv_commit(tid);

nv_free(ptr, filesize);

nv_release();

Algorithm 2: Example of vNVML.

4.2 vNVML data structures

The NVM log buffer and NVM cache are partitioned into
units of 4KB pages and organized as linked lists. The imple-
mentation of linked lists for pages is via metadata; that
is, for each page, a corresponding page object is created
from NVM metadata file and connected with each other as
a linked list. Therefore, allocating a page object from the
linked list also equals to allocating the corresponding page.

As mentioned in (Swanson 2017), however, construct-
ing the linked list in NVM is not the same as constructing
a typical linked list in memory. The virtual address cannot
be directly used as a pointer to be stored in NVM because
there is no guarantee that the NVM files can be mounted into
the same virtual space regions (1) by multiple concurrent
processes or (2) by a single process before and after system
crashes. Thus, we replace the address with the index of the
page starting from O to construct the linked lists in NVM.
Similarly, we substitute the offset from the starting address
to the current position, when an access needs to be made,
for the address to be stored into NVM.

Page objects for the log buffer and cache are created by
different metadata files at nv_init. After a page object of
log buffer is allocated, the application id is stored into page
object, and the log entries (from nv_write) can be written
directly into the corresponding log pages. The first field of
the log page is the total written bytes to this page, and log
entries are appended sequentially. Figure 5 illustrates the
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fields of a log page and log entries in the log page. The log
entry contains log header, including length of this entry, file
descriptor, and offset (from the first byte of this file to the
destination location), followed by the redo raw data. The
page object (application id), the log entry header (len, fd,
and offset), and file record (application id, fd, and filepath)
already contain all necessary information for the recovery
worker to write the committed log entries directly back to
corresponding files of storage devices.

To handle cache pages, one free list is created through the
shared memory object, and the others, dirty and clean lists,
are created within each application. The dirty and clean lists
implement the LRU replacement policy.

Figure 6 illustrates the page movements between the free
list, dirty list, and clean list. Cache pages are always allo-
cated from the free list, until the page share of an application
is reached, and become dirty pages inserted to the head of
dirty list after the redo background worker copies the corre-
sponding pages from files in the storage devices and applies
corresponding log entries on them. Dirty pages (of the tail of
dirty list) become clean ones and are inserted to the head of
the clean list after the writeback background worker writes
the dirty pages back to files in the storage device. When a
cache is hit, regardless of whether the page is in the dirty or
clean list, the page is applied the redo log and inserted into
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Fig.7 Structure of a page object for writeback and recovery process

the head of the dirty list. When a cache miss happens, the
tail page of clean list is always picked and is filled with the
corresponding page from file in the storage devices. This
page is inserted into the head of the dirty list after writing
the redo log on it.

For the individual cache page, besides the application id
of the page owner, some extra information is also stored into
the corresponding page object, such as the fd (file descrip-
tor), file offset, and dirty flag. The file offset is the offset
which is used to seek the file and to access the page of
files in the storage devices. The fd and file offset can be
known from the header of log entries by redo worker when
it redoes. The dirty flag is set only if this page is dirty (in the
dirty list). This flag is cleaned after writeback worker writes
this dirty page back to files and puts it into the clean list.
Thus, the recovery worker only needs to handle the pages
whose dirty flag are set. Also, the information contained
in the page object (application id, fd, file offset, and dirty
flag) and the file record (application id, fd, and filepath) are
enough for recover worker to write the dirty pages back if
system crashes. Figure 7 illustrates an entry of page object.

Partitioning the log buffer and cache page at a 4 KB page-
size granularity and organizing them as linked lists has some
advantages. First, the allocation and deallocation of pages
from log buffer and free list are both O(1). Second, the
management of log buffer and cache space becomes easier
since the space is managed in terms of pages, rather than
bytes or variable size segments. Third, it makes it easier to
share pages of the log buffer and free list across applications
through linked lists maintained at the shared memory object.

To prevent a single application from allocating all log
pages and all cache pages, VNVML adopts the equal share
policy through the shared memory object, containing the
total number of current applications. Applications can allo-
cate log pages from the log buffer or cache pages from the
free list if and only if the number of allocated pages does not
reach their shares. A new joining user of VNVML may result
in all current users exceeding their shares. Two background
workers, described in the following section, help to return
extra pages back to log buffer and free list.

Figure 8 illustrates the relation between open list, com-
mitted list, log object, and page object.

4.3 Background workers

Two background workers (threads) are created for each
process at nv_init. The redo background worker keeps

open list committed list

BH-o

tid |, log object @: page object (log page)

Fig.8 Open list contains log objects of transactions. Each log object
may link several page objects (of log pages). After transaction com-
mits, the log object (along with its log pages) of the transaction is
appended to the tail of the committed list. Redo worker always redoes
from the head of the committed list; therefore, the transactions which
is committed early would also be replayed early

checking the committed list. If the committed list is empty,
the worker goes to sleep for a while (10us in the current con-
figuration) and then checks the committed list again after it
wakes up. If the committed list is not empty, the redo worker
obtains the first log object (of some transaction) from the
head of the committed list, and replays all the log entries
sequentially from log pages of this log object to NVM cache
pages. Since in this redo operation, data are moved from
NVM to NVM, write ordering is also required; therefore, we
also employ nt store instructions here for writing to NVM
cache pages. If a cache miss happens, redo worker is also
responsible for reading this page from files in the storage
device to NVM cache page. All log pages can be discarded
and returned to the log buffer pool only after the entire logs
of a transaction are completely replayed by the redo worker.

Here we want to highlight the limitation that, since the
committed logs are always appended to the tail of the only
one committed list (per process) at nv_commit (mentioned
at Sect. 4.1), and redo background worker always redoes logs
from the head of this committed list; therefore, programmers
should keep in mind that the transaction which writes to an
object first should also be committed first for the consistency
of DRAM cache and the file on the storage device when
multiple threads write to the same objects, but there is no
constraint when threads write to different objects. This is a
much weaker constraint compared to accessing a file by file
system, which requires locking the whole file, even if differ-
ent objects of the same file are being accessed.

The other writeback background worker is responsible
for writing the dirty NVM cache pages back to the storage
devices. To avoid accessing storage devices too frequently,
we employ a threshold on dirty NVM pages accumulated
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in the dirty list (we use 30% of cache page share). Dirty
pages are written back to the storage device by the write-
back worker after the number of dirty pages is more than
threshold. The dirty pages are inserted to the head of the
clean list after writing back to storage devices. Furthermore,
if the number of allocated cache pages exceeds the share
due to new joining applications, the writeback worker may
further release some clean pages back to the free list. After
the number of the dirty pages drops below some threshold
(we set 10% of cache page share), the writeback background
worker is stopped and dirty pages may accumulate again.

Both background workers are killed upon the nv__
release command.

4.4 Sharing NVM between processes

The implementation of shared NVM regions between pro-
cesses is slightly different from what we have implemented
for private regions. What we mean by ‘“‘shared region” here
is that a memory region can be accessed concurrently by
multiple processes and all processes could see the same view
of this region. This is exactly the same as existing POSIX
shared mmap for volatile memory.

Shared regions are constructed by nv_allocate
command. When nv_allocate is called, a file is shared
mmapped to construct the DRAM read/write cache and a
committed list head is created and maintained as metadata in
NVM for each shared mmapped region. By DRAM cache
constructed from shared mmap of the file, processes which
require to access this region can share the same view.

Because a committed list is required for each shared
region, the same limitation, the transaction writing to an
object first should also be committed first, must also be
obeyed. In addition, one more limitation is required when
writing to shared regions; that is, all true destinations of
writes from a single transaction must lie within the same
single shared region. Without this limitation, if a transac-
tion can write to multiple shared regions, then multiple log
objects, each log object is for a shared region, should be
created to be appended to multiple committed lists when
transaction commits. This would cause a serious problem
if system crashes while a transaction commits, resulting in
some log objects have been appended to some committed
lists but some not.

When we write to a shared region, data are still written
to log buffer first. At transaction commits, the data from log
buffer are replayed to the DRAM of a single shared mmap
region, and all logs of this transaction are moved from one of
32 open lists of a process to the committed list of this shared
region. We do not utilize NVM cache here to simplify our
design and implementation. Figure 9 illustrates the read/
write data flow of accessing a shared virtual NVM region.
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Since shared mmap is employed to create our shared
regions, the msync system call is required to write the modi-
fied data back to storage devices. Different from fsync, how-
ever, calling ms ync requires to know all the modified virtual
address regions (i.e. start addresses and their lengths). To avoid
parsing all logs when flushing (msync) data back to storage
devices later, a global bitmap of dirty pages dedicated to this
shared region is maintained in DRAM and is updated at the
end of each nv_commit command by the local bitmap of
each transaction; the local bitmap is constructed when logs are
parsed and replayed to DRAM at nv_commit.

After logs have been accumulated to a certain thresh-
old, upon a call to nv_commit, a background thread is
triggered and atomically copies the global bitmap of this
shared region to a “copied global bitmap” variable, zeroes
this global bitmap, and marks the tail transaction of the com-
mitted list. Then several msyncs might be issued to flush
dirty pages back to storage devices according to the copied
global bitmap. Only after flushing is completed, can logs of
transactions (from the head to the marked tail) be removed
from the committed list.

During the flushing procedure, new transactions can still
proceed, be committed, and update the “zeroed” global
bitmap. Because their logs are always appended after the
marked tail transaction and “read committed” policy is
employed in vNVML, unexpectedly flushing some data of
transactions committed after “marked tail” transaction dur-
ing the flushing procedure will not harm since all data in
DRAM must have been committed and therefore must be
written back to storage devices eventually.

The logs from head transaction to marked tail transac-
tion are discarded only after flushing is completed. If system
crashes, recovery procedure always replays all logs from the
head of committed list of this shared region.

4.5 Transaction aborts and long running
transactions

For some extreme cases, the log buffer may run out of space
if too many long running transactions, which keep writing
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data before commitment, execute concurrently. This situa-
tion can be detected when pages cannot be allocated from
the log buffer pool for a while. VNVML could actively abort
long running transactions by recording the timestamp into
the log objects when log objects are allocated by transac-
tions. The redo worker can periodically check the log objects
from the head of each open lists and can abort the transac-
tions whose elapsed time exceed some predefined threshold.
Applications can also abort transactions for various reasons.
When a transaction is aborted, since all its logs are still
in an uncommitted state (in the open list), these logs can be
discarded directly and log pages are returned back to the
log buffer pool. Moreover, because transactions of vNVML
support the “read committed” isolation property, when one
of the nested transactions needs to be aborted, aborting all
transactions involved in the nested transactions may not be
necessary and it should depend on the discretion of users.

4.6 Datarecovery

Systems or applications may crash due to an unexpected fail-
ure at any moment such as power shortage, bugs of applica-
tions, or inadequate kernel resources. The mandatory func-
tion any NVM solution should provide is to ensure the data
persistency after systems or applications crash. In vNVML,
we handle this by a recovery program run by root. After
systems reboot, a recovery worker (process) first mmaps
the all NVM files (log, cache, and metadata) into its vir-
tual memory space. From Sect. 4.2 we know the recovery
worker already has all necessary information to recover the
dirty pages and log entries back to files in storage devices
by tracing the page objects, file records, and committed lists.

We always recover/write the dirty pages (by checking if
dirty bit is set) back to files before we recover the committed
logs back to files because the committed logs contain the
newest data. Reversing this order might result in that the new
data are covered by older data from dirty pages.

The order of objects in the committed list is important
and we should replay the objects sequentially. With the help
of 8-byte atomic update feature natively supported by pro-
cessors, the order of objects can be maintained correctly
by carefully handling the order of pointer updates between
objects of linked lists.

Figure 10 illustrates the process of insertion and deletion
of an object to and from a linked list at NVM. For object
insertion [the correct sequence is from (a) to (b) to (c)], we
could assume object C has been inserted into linked list only
when system crashes after (c); otherwise, we assume object
C is not inserted yet. On the other hand, for object deletion
[the correct sequence is from (c) to (b) to (a)], when system
crashes after (c) we would assume object C has been deleted
from the linked list.

(a) (b) (c)

Fig. 10 The correct order of pointer updates for the objects of linked
lists in NVM. From (a) to (c) is for the object insertion; from (c) to
(a) is for object deletion

After the recovery process finishes, all NVM files are
erased, and VNVML can be restarted again. This recovery
process may be re-executed as many times as needed if the
system ever crashes again during the recovery process since
all the required data and metadata are conserved in NVM
and are erased only after a successful recovery. Thus, all
data have been written back to their true destination of files.

4.7 Security

Security is a major concern in the modern computer sys-
tems, especially in the data center, where infrastructure has
to protect against any attacks from third party applications.
In vNVML, the security is guaranteed in two aspects. First,
the private regions are produced by private mmap. Due to
the Copy-on-Write mechanism brought from private mmap,
all the direct writes within this private address region will
remain within the memory (virtual address space of the
user process) and cannot impact the contents at the storage
device.

Second, all the writes to private regions must be exe-
cuted through nv_txbegin,nv_write,nv _write,..,
nv_commit command series. Those APIs are entirely con-
trolled by vNVML and accessing NVM (log buffer, cache,
and metadata) files, which are invisible to applications, is
not allowed outside VNVML. When applications try to write
beyond the mapped regions (or outside allocated virtual
address regions), the protections within the existing memory
system will detect these violations. In addition, the vNVML
bound checks will not allow these writes to proceed.

5 Evaluation

In this section, we conduct experiments to answer funda-
mental questions about VNVML as follows:
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e What are the characteristics of the VNVML?

e How does vNVML impact the performance when used
by real applications?

e How to decide the size of the log buffer and the cache
given a fixed and limited size of NVM in the platform?

e How does the YNVML perform when multiple processes
concurrently access the NVM through vNVML?

e What is the impact of using VNVML within the container
environment?

e What is the impact of different log buffer sizes, cache
sizes, and single cache page size on life span of backend
SSD?

e How does the VNVML perform compared to other user
space libraries?

5.1 Experimental setup

Due to the absence of real NVM, we emulate NVM with
DRAM for all our experiments. We mount the NVM with
the Ext4 file system in order to utilize the DAX (direct
access) feature provided by Ext4.

We evaluate vWNVML on a platform with 16GB DRAM,
12GB emulated NVM, and Intel i7-4770 four-core 3.4 GHz
processor with hyperthreading enabled. Samsung enterprise
PM863 480GB SSD (SATA 6.0 Gbps) is adopted as our
example of the storage devices. We implement vNVML on
the Linux kernel 4.13 version.

5.2 MongoDB and YCSB

In this subsection, we explore and analyze the impact of
accessing NVM through vNVML by real applications. We
adopt a popular open-source database MongoDB version
3.6.0 (mongoDB 2008b) as our target application because its
MMAPv1 storage engine uses memory mapped file form to
access the data in the storage devices, which is perfect for our
VvNVML to employ. We modify part of the source code of
MongoDB for our transactional interface to deploy vNVML.
We choose YCSB (Cooper et al. 2010) to generate the
read/write traffic of MongoDB. The setup of experiment is
delineated in Fig. 11. To simplify our analyses, we configure
the size of all records’ fieldcount as 128 and fieldlength as
512 and readallfields and writeallfields are both set as true in
the configuration file of YCSB workloads, meaning that each
read/write request will access exactly 64 KB data, which is
also the data written per transaction. 100 K operations (read/
write requests) are executed for all experiments. We deploy
the different read/write ratios and two request distributions
(zipfian or uniform) to observe the impact of performance.
YCSB has two phases: one is inserting records into
the target data store, the other is accessing (read or write)
records in the target data store. To avoid polluting the NVM
cache of VNVML before the accessing phase, in the insertion
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Fig. 11 The experimental setup
of YCSB, MongoDB, and
vNVML
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Table2 Throughputs of single MongoDB instance with different
numbers and distributions of inserted records when NVM is the only
storage device

# of records (K) Uniform (op/s) Zipfian (op/s)
30 1500 1505
10 1509 1498

phase MongoDB employs nv_allocate to private mmap
files in the storage devices, and then, instead of using nv__
write vNVML commands, MongoDB only adopts its orig-
inal (unmodified) insertion functions to access the memory
mapped regions, meaning that all records are only inserted
into the memory (due to the Copy-on-Write mechanism pro-
vided by private mmap used by nv_allocate).

All experiments are conducted by accessing four Mon-
goDB instances concurrently in a single OS. However, since
the MMAPv1 storage engine uses padding and the power of
two sized allocation mechanisms (mongoDB 2008a), four
instances would generate total 8.8 GB files in the storage
devices when each instance is inserted 10 K records, and
total 33 GB files after 30 K records are inserted into each
of four instances. Therefore, 12 GB emulated NVM in our
platform can only accommodate files created by four Mon-
goDB instances inserted at most 13 K records, respectively.
However, from Table 2, we find that the YCSB throughputs
of one instance are very close to each other even with differ-
ent numbers and different distributions of inserted records
if all files generated are stored only in NVM. We assume
this observation still holds in the 4-instance case. Therefore,
we insert 10 K records to each of four instances, remove
the periodic msync calls by MongoDB, disable journaling
with nojournal option, and employ NVM as the only storage
device of MongoDBs as our baseline®.

3 Note: our platform does not have enough NVM to accommodate all
files generated by eight instances inserted 10 K as baseline, respec-
tively. Also, when eight MongoDB instances adopting vVNVML are
running concurrently, some of instances would crash because of out-
of-memory (OOM) error from private mmap. Therefore, executing at
most four instances concurrently is the limitation of our platform.
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Fig. 12 Normalized total throughput of four instances. Numbers of
X-axis stand for inserted records to each database, and numbers of
Y-axis stand for normalized throughput. a—d Fix 4 GB cache size and

Figure 12 shows the normalized throughputs of differ-
ent request distributions (zipfian and uniform) and differ-
ent read/write ratios (5/95, 70/30, and 100/0). The results
(normalized throughputs) are the summation of throughputs®
(op/s), generated from YCSB when YCSB accesses one of
four MongoDB instances employing vNVML, divided by
the summation of throughputs of four MongoDB baseline

6 Note: since all four throughputs from YCSB are almost the same
(with usually less than 1% difference).

(h) Uniform, R/W ratio = 70/30

(i) Uniform, R/W ratio = 100/0

adjust log buffer size from 2 GB to 128 MB. e— h Fix 2 GB log buffer
and change cache size from 8 to 1 GB. i 100% read uniform request

instances with the same request distributions and the same
read/write ratios.

From these results we can make some useful observa-
tions. First, the case that cache size is 1 GB, log size is 2 GB,
and four MongoDB instances with 30 K inserted records (4
* 30K * 64 KB = 7.32 GB) already proves that VNVML can
provide virtualization and shareability of NVM successfully.

Second, not only can vNVML achieve over 90% of the
throughput of baseline (if the log buffer and cache can
“absorb” the input write traffic, such as the line of 8GB
cache in Fig. 12e, f), but VNVML can also provide the guar-
antees of atomicity, persistency, and write ordering, which
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are our baseline, the MongoDB without journaling and write
ordering, cannot. This less than 10% overhead results from
writing data to NVM log buffer and from redoing logs to
DRAM read cache.

Third, larger write working sets (more inserted records
or uniform access requests), and more write requests (lower
R/W ratio) degrade the throughput of vNVML. Larger write
working sets require more NVM cache to store all data at
run-time. Furthermore, if the write working sets are even
larger than the capacity of NVM cache owned by applica-
tions, then cache pages are frequently written back to stor-
age devices. Finally, when all cache pages become dirty, the
overall performance would deteriorate to write throughputs
of storage devices.

Fourth, through (a) to (d), when cache sizes are all fixed,
the adjustment of log buffer only affects at most 10% nor-
malized throughput’ of baseline in all these cases.

Fifth, from (e) to (h), when sizes of log buffer are fixed,
their throughputs vary highly, especially in the case of (f):
read/write ratio is 5/95, uniform request, and 30K inserted
records. In (f), the throughputs differ by almost 50%, mean-
ing that cache size impacts VNVML throughput more sig-
nificantly than that of the log buffer. For the bottleneck of
vNVML performance is the access throughput of storage
devices, the cache size can impact VNVML performance sig-
nificantly. As more NVM caches are able to store more write
traffic, less writes (if NVM cache hits) to storage devices
will be needed. The actual throughput of vVNVML should
be a function dominated by factors of NVM cache size and
access performance of storage device.

On the other hand, unlike NVM cache, NVM log buffer
only temporarily stores the write traffic as logs before logs
are written to NVM cache pages. As a result, log buffer can
only impact/improve performance slightly until log buffer
is full; usually the log buffer will be full much quickly than
NVM cache if the write working sets are huge and the stor-
age devices are frequently accessed in order to fill the NVM
pages before applying the corresponding log entries to cache
pages.

Finally, (i) shows at 100% read, uniform distribution
request case, VNVML can achieve around 92% throughput
regardless of the number of inserted records. It matches our
expectation of vVNVML since the read is entirely handled by
the read cache (memory) and 16 GB memory is enough to
handle the 30 K records working set since 30 K X 64 K x 4
~17.32 GB.

7 At (a), the normalized throughput is 0.876 (0.776, respectively)
when log buffer is 2 GB (128 MB, respectively) and inserted records
are 30,000. At (b), the normalized throughput is 0.638 (0.542, respec-
tively) when log buffer is 2 GB (128 MB, respectively) and inserted
records are 30,000.

@ Springer

Therefore, from aforementioned observations, we sup-
pose that under limited NVM resources, only some reason-
able amount of NVM should be allocated as log buffer, and
the rest should be cache to achieve higher performance of
vNVML.

Next, we would like to examine the impact of using
vNVML within docker containers (Docker 2013). Docker
is a popular virtualization technique in data centers and
recently has drawn significant attention from industry and
academia due to its lightweight execution environment com-
pared to traditional virtual machines. In this experiment,
we launch four docker containers, use bind mount (Docker
2018) to mount 12 GB emulated NVM into each container
so all containers can access and share content in NVM, and
run single MongoDB instance within each container. Log
buffer is configured as fixed 2 GB, the cache size as well as
read/write ratio are adjusted to various settings. Each data
point is normalized with individual counterpart, which is
the same configuration without using containers. Figure 13
shows that all the data are close to 1; that is, using VNVML
within docker containers does not affect the performance.
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Fig. 13 Normalized throughput of four instances inside Docker con-
tainer
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Moreover, we want to examine the impact of different
sizes of NVM log buffer and NVM cache on life span (or
write counts) of backend SSD. We measure the number of
total NVM (cache) pages written to storage devices after
all logs have been replayed from log buffer to NVM cache
pages, and cache pages would then be written to backing
SSD if the percentage of dirty pages are over 30%. Figure 14
shows the results, from which our conclusions are drawn.

First, larger write working sets usually have more num-
bers of written pages (more write counts), but some excep-
tions can also be found. For instance, cache size is 1 GB at
(e) and (f). This phenomenon is because writeback back-
ground worker starts to write NVM cache pages back only
when the percentage of dirty pages is over 30%. So, it is pos-
sible that even larger write working sets make all instances
with higher percentage of dirty pages, but none of them is
more than 30%. On the other hand, smaller write working
sets cause instances with lower percentage of dirty pages,
but once the percentage of one instance is over 30%, then
smaller write working sets might result in more write counts
than larger ones.

Second, from (a) to (d), all results (of various log buffer
sizes) are almost the same. This also proves that log buffer
only temporarily stores the write traffic and cannot influence
the access frequencies and patterns of storage devices. It also
matches the conclusion made from results of Fig. 12.

20000 25000 30000 10000 15000 20000 25000

Cahe 26 Cache 16 e—(ache 86 ===(ache:4G che 26

(e) Zipfian, 4KB (f) Zipfian, 8KB

Fig. 15 Comparisons of 4 KB and 8 KB size of NVM cache page. All
read/write ratios are 5/95. The log buffer size is 2GB and cache sizes
are from 8GB to 1GB. Numbers of X-axis stand for inserted records
to each database. a—d Total number of NVM cache pages written to
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Third, one interesting point is the case of 8 GB cache at
(g). We can find out that when number of inserted records is
10,000, the number of write count is zero; that is, all writes
are stored entirely on NVM cache and none is written to
SSD. This means that if we have enough NVM cache to store
incoming write traffic, YNVML can achieve not only better
performance but also longer life span of SSD.

Next, we consider the impact of different SSD page sizes
on write counts and performance. We assume the size of
NVM cache page should be the same as the page size of
backend SSD; otherwise, the write amplification must be
considerable. As a result, we only change the page size of
NVM cache as 8 KB and compare the write counts and per-
formance with NVM cache of 4 KB page size. Since we have
learned from Fig. 14 that the size of log buffer cannot impact
the write counts, we only employ different cache size here.
R/W ratios of all experiments are fixed as 5/95. Figure 15
shows the result.

From our experiments, doubling the page size (as
8 KB) will cause the write counts slightly more than 50%
of those of 4 KB page size at all experiments, and has
almost no impact on the performance of vNVML. This is
reasonable because larger cache pages can absorb more
write logs than smaller cache pages before they are writ-
ten to SSD and therefore require less writes to backend
SSD.

— ol B —
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20000 25000 30000 10000 15000 20000 2500 30000

=Cache 86 == Cache 4G Cache 26 Cache:16 —Cache 86 mmmCache:4G Cache:26 Cache :16
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SSD of all four instances (numbers of Y-axis) with different request
distributions and page size. e-h Normalized throughputs (numbers of
Y-axis) with different request distributions and page size
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Fig. 16 Normalized vYNVML and SoftWrap execution time. Numbers
of x-axis stand for the amount of written data per page

5.3 Microbenchmark

We use a simple microbenchmark to compare the perfor-
mance between Intel’s PMDK (Intel 2015), SoftWrAP (Giles
et al. 2015), and our vNVML. In this experiment, we create a
2GB array in NVM (virtual NVM, respectively) for PMDK
and SoftWrAP (VNVML, respectively), and write different
amounts of data (from 16B to 512B) per page sequentially.
Each transaction contains 32 page writes.

To use PMDK, we use pmemobj create to create a
4 GB NVM pool because 2 GB NVM pool is not enough
to accommodate 2 GB array. We always set PMEM_IS_
PMEM_FORCE=1 when executing PMDK to avoid unnec-
essary msync or £sync when accessing NVM. For fair-
ness, we use 2 GB log buffer and 2 GB cache when running
vNVML. We only use default setting for SoftWrAP since
it does not provide API for internal buffer size adjustment.

Figure 16a shows the result. We use the total execution
time of PMDK as our baseline, and show the total time of
writing the 2 GB array for once. The result indicates that
among others our VINVML performs better as the total writ-
ten data keeps increasing. Figure 16b shows another experi-
ment, which we enlarge the NVM to 8 GB and want to com-
pare the upper bound of each library. We write the 2 GB
NVM array 16 times. Its result is similar as Fig. 16a.

6 Conclusion

In this paper we presented vNVML, a byte-level user
space library to access NVM that provides transaction-
like semantics for applications, ensures write ordering,
and provides persistency guarantees across failures. Our
system employs NVM as a write log and a write cache,
while also employing DRAM as a cache.

We implemented vNVML and evaluated it with realistic
workloads to show that our system allows applications to
share NVM, both in a single OS and when docker-like con-
tainers are employed. The results from the evaluation show
that YNVML incurs less than 10% overhead while providing
a larger than available physical NVM space to the applica-
tions and allowing them to safely share the virtual NVM.
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