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Abstract

Emerging non-volatile memory (NVM) has attractive characteristics such as DRAM-like low-latency together with the 

non-volatility of storage devices. Recently, byte-addressable, memory bus-attached NVM has become available. This paper 

addresses the problem of combining a smaller, faster byte-addressable NVM with a larger, slower storage device, such as 

SSD, to create the impression of a larger and faster byte-addressable NVM which can be shared across multiple applications 

concurrently. In this paper, we propose vNVML, a user space library for virtualizing and sharing NVM. vNVML provides 

for applications transaction-like memory semantics that ensures write ordering, durability, and persistency guarantees across 

system failures. vNVML exploits DRAM for read caching to improve performance and potentially to reduce the number 

of writes to NVM, extending the NVM lifetime. vNVML is implemented in C and evaluated with realistic workloads to 

show that vNVML allows applications to share NVM efficiently, both in a single OS and when docker-like containers are 

employed. The results from the evaluation show that vNVML incurs less than 10% overhead while providing the benefits of 

an expanded virtualized NVM space to the applications, and allowing applications to safely share the virtual NVM.

Keywords Non-volatile memory · User space library · Virtualization · Transactional semantics · Concurrent accesses

1 Introduction

Emerging non-volatile memory (NVM) technologies, such 

as phase-change memory (PCM) (Lee et al. 2010), NV-

DIMM (Narayanan and Hodson 2012), and 3D-XPoint (Intel 

2019), will dramatically shake up future system designs 

(Dulloor et al. 2014; Kwon et al. 2017; Liang et al. 2016; 

Yang et al. 2015; Zhang et al. 2015). In particular, not only 

do these NVM technologies promise much faster access 

times than existing NAND-based SSDs, within an order of 

magnitude of DRAM, but they also are “byte” addressable 

and will be placed directly on the memory buses. Further-

more, these NVM technologies could be used to replace 

existing permanent storage devices or even volatile memory 

(i.e. single level system).

To date there have been some significant works in this 

domain. Some prior works, such as (Condit et al. 2009; 

Dulloor et  al. 2014; Kwon et  al. 2017; Qiu and Reddy 

2013; Wu and Reddy 2011; Xu and Swanson 2016), engi-

neer novel file systems tailored for exploiting NVM. Other 

prior works, such as (Venkataraman et al. 2011; Yang et al. 

2015), employ NVM as the only media in their (single level) 

system and carefully design their data store manipulation 

mechanism to directly access some data structures stored in 

NVM. Their aim is to maximize performance by eliminating 

unnecessary data movement between volatile memory and 

persistent storage devices. These prior schemes, however, 

currently present no way to virtualize and share persistent 

NVM among multiple applications and users.

Traditionally, there are two common ways for applications 

to access data content in storage devices. One is through 

the file system read/write interface, the other is via the 

memory mapped file (mmap) interface. The cost of system 
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calls incurred by accessing through the file system, how-

ever, would squander the low-latency as well as performance 

provided by NVM. Thus, to attain the maximum gain from 

NVM, in this paper, we focus on memory mapped file access 

form, which is also the recommended form by SNIA (2017).

Currently, when files on storage devices are mmapped 

to volatile memory (DRAM), the POSIX interface can sup-

port shared mmap; that is, the same region of files can be 

shared/accessed between multiple processes. Also, thanks 

to the swapping mechanism provided by virtual memory, 

which writes dirty pages to the backend storage devices 

(swap space) and therefore produces clean pages for the 

future use, the impression of physical available DRAM is 

extended. These two attractive properties of existing vola-

tile virtual memory, however, are not supported in the prior 

work for NVM.

This paper considers this problem of virtualizing and 

sharing byte-addressable NVM across multiple applications. 

Here we introduce “vNVML”, an efficient library for virtu-

alizing and sharing NVM in user land. What we mean by 

“sharing NVM” here is that not only can the same physical 

NVM pages be reallocated and reused across users, but the 

data content on NVM pages can also be seen/accessed by 

applications concurrently, exactly like shared mmap access 

form of virtual memory.

One of the main aims of vNVML is to provide the impres-

sion of larger NVM availability to applications, much like 

virtual memory allowing the use of more main memory than 

the actual physical memory in the machine. In order to vir-

tualize NVM in this manner, this paper examines extend-

ing a smaller amount of byte-addressable NVM with larger, 

traditional storage devices.1

Further, we examine mechanisms to safely leverage 

DRAM as cache to improve the performance of persistent 

memory access. There are certain advantages in employing 

DRAM even when the applications access virtual NVM. 

First, DRAM may have better performance (lower latency) 

than most types of NVM, except for NV-DIMM. Second, 

DRAM may alleviate lifetime issues of NVM in read-

intensive workloads, since many NVM technologies have 

write endurance limits. In our design, some reads can be 

served by reading pages from storage devices to DRAM, 

bypassing the NVM entirely. This might be a better design 

choice compared to simply employing NVM as both read 

and write cache in terms of reducing the number of NVM 

write accesses.

We design and implement vNVML with the hope that 

programmers could access (virtual) NVM with a simi-

lar interface as for existing memory mapped files. That 

is, after a file on the storage device is mmapped as a vir-

tual NVM region, a pointer to this region is returned. This 

pointer can be directly used in the programs as a typical 

mmapped pointer to virtual memory. However, when NVM 

is exploited as permanent storage by applications, the dura-

bility and ordering of writes must be assured. Write ordering 

as required by byte-addressable NVM has been discussed 

almost in every prior work (Coburn et al. 2011; Condit et al. 

2009; Giles et al. 2015; Venkataraman et al. 2011; Volos 

et al. 2011; Yang et al. 2015). Many approaches have been 

proposed to address the write ordering problem within per-

sistent memories, including hardware capacitors to ensure 

eviction order of all data from volatile memory to NVM 

(Condit et al. 2009), epoch-based writes (Coburn et al. 2011; 

Condit et al. 2009), transaction-like semantics (Coburn et al. 

2011; Giles et al. 2015; Memaripour et al. 2017; Volos et al. 

2011), versioning (Venkataraman et al. 2011), and special 

data stores and algorithms designed for single level NVM 

(Venkataraman et al. 2011; Yang et al. 2015). Here vNVML 

proposes to use transaction-like semantics to guarantee the 

write ordering, atomicity, and durability of NVM accessing.

To sum up, vNVML employs DRAM as cache, NVM as 

log buffer and write cache, and the backing storage device 

as the final destination of writes. From our evaluations, 

vNVML incurs less than 10% throughput overhead, if the 

cache system of vNVML can absorb the write traffic, com-

pared to directly accessing NVM without the atomicity and 

write ordering guarantees.

The contributions of this paper are as follows:

• Propose a transactional interface for virtualizing and 

sharing persistent non-volatile memory.

• An implementation of this interface in our virtualized 

NVM Library, vNVML.

• This implementation leverages caching in DRAM, cou-

pled with write logging and caching in NVM and lazy 

writeback to the backing storage to provide a high perfor-

mance, virtualized, and shareable NVM to applications.

• We evaluate this proposed vNVML under not only syn-

thetic but also realistic (YCSB+MongoDB) workloads 

and show that vNVML is competitive with prior tech-

niques which do not support virtualization and sharing 

of NVM.

The remainder of this paper is organized as follows. Sec-

tion 2 describes background and prior work in this area. Sec-

tion 3 presents a design overview and discusses the design 

decisions of vNVML. Section 4 explains the implementation 

of vNVML in detail. Section 5 presents our results of evalu-

ation of vNVML and Sect. 6 concludes.

1 Note: while our approach can be applied with magnetic disks as the 

backing stores, here we limit ourselves to SSDs.
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2  Background

Much of the early work to-date incorporating NVM in 

systems assumes basic hardware changes. New memory 

controllers are proposed (Doshi et al. 2016; Qureshi et al. 

2009; Zhou et al. 2009). Kiln (Zhao et al. 2013) proposes 

a victim cache for buffering and Atom (Joshi et al. 2017) 

deploys a hardware logging approach to eliminate software 

logging overhead. BPFS (Condit et al. 2009) develops a 

new “epoch” for write ordering. While these approaches 

show promise, they require significant hardware redesign, 

which may take several years to be reflected in commercial 

hardware.

In the more near term, we might prefer to the solutions 

requiring little or no change to the basic processor cach-

ing and memory management hardware because memory 

bus-attached NVM DIMMs have become available. For 

example, recently Intel has released its Optane DC Per-

sistent Memory DIMM (Intel 2019). Near-term systems 

will incorporate this type of NVM attached directly on the 

memory bus, where it will be accessible via the system’s 

physical address space. These system architectures argue 

for a pure-system software approach to management.

Existing work to-date looking at system software 

approaches to managing this (memory bus-attached) form 

of NVM primarily focuses on constructing new file sys-

tems to handle the underlying NVM, such as SCMFS (Wu 

and Reddy 2011), NVMFS (Qiu and Reddy 2013), BPFS 

(Condit et al. 2009), PMFS (Dulloor et al. 2014), NOVA 

(Xu and Swanson 2016), STRATA (Kwon et al. 2017), 

FRASH (Jung et al. 2010), and Aerie (Volos et al. 2014). 

Some of those works have considered building file sys-

tems across multiple types of NVM and storage technolo-

gies. These include NVMFS (Qiu and Reddy 2013) (NVM 

and SSD) and Strata (Kwon et al. 2017) (DRAM, NVM, 

SSD, and HDD). The design concept of Strata is close to 

our vNVML; both of them contain DRAM and NVM as 

caches. However, the DRAM of Strata only caches the 

pages read from SSDs and HDDs and all updates would 

go directly to NVM only. Therefore, Strata needs to search 

for the up-to-date data locations. In addition, Strata does 

not support memory mapped files access form, which is 

the primary form used by our target applications.

Accessing NVM through file system APIs has funda-

mental drawbacks. First, accessing NVM via the file sys-

tem interface is not suitable for random, small accesses to 

NVM due to the high (context switch) overheads incurred 

by system calls compared with the relative low-latency 

that NVM offers. Next, the file system naturally cannot 

support concurrent accesses of the same file by different 

threads or processes, even though those threads or pro-

cesses access different objects/pages in the same file. For 

example, to access a certain location of a file, users must 

acquire a file lock first, and then seek to the location 

and read/write from and to that location of file. After 

read/write command is completed, the file lock can be 

released. Another drawback is that such (file system) soft-

ware approaches require users and applications to deploy 

dedicated file systems.

Some works, such as NV-Tree (Yang et al. 2015) and 

CDDS-Tree (Venkataraman et al. 2011), consider replacing 

DRAM and storage devices entirely with NVM to construct 

a single level, NVM-only system; their idea is to manipulate 

all data structure operations directly on NVM and therefore 

eliminate all data movements between DRAM and storage 

devices. Such approaches can improve performance signifi-

cantly; however, they restrict themselves to only some spe-

cific data structures and cannot be easily applied to general 

memory access. Also, they totally ignore the lower latency 

offered by DRAM and do to further explore the potential 

performance improvements. For example, their approaches 

might be not suitable for the read-intensive, cache friendly 

workloads.

SPAN (Fedorov et al. 2017) proposes some new swapping 

enhancements in the operating system (OS) kernel to exploit 

NVM as extended system memory. Its concept is similar to 

the memory mode supported by Intel’s Optane DC Persis-

tent Memory (Watts 2019). NV-Heaps (Coburn et al. 2011) 

provides some useful features, such as type-safe pointers and 

garbage collection, but it requires programmers to use its 

specific object framework and hardware must support epoch 

as BPFS (Condit et al. 2009) does.

Other approaches try to create user space libraries (Giles 

et al. 2015; Intel 2015; Memaripour et al. 2017; Volos et al. 

2011). PMDK (Intel 2015) and KAMINO (Memaripour 

et al. 2017) employ only NVM and utilize undo logging to 

support in-place data updates. SoftWrAP (Giles et al. 2015) 

combines NVM and DRAM and employs DRAM for write/

read accesses and NVM for redo logging. However, during 

the normal operations, the data content is “retired” from 

DRAM to the final locations in NVM, and the logs in NVM 

are referenced only after system failures. The most closely 

related work to our vNVML presented here is Mnemosyne 

(Volos et al. 2011), which also uses redo logging. While 

Mnemosyne provides both persistent region and persistent 

heap allocation methods, vNVML does not support heap 

style allocation. However, there are some fundamental 

differences between these two approaches. Mnemosyne 

achieves NVM virtualization by swapping, which is con-

trolled entirely by the kernel and therefore suffers from 

context switching overhead in the page fault critical path; 

vNVML, on the other hand, always writes the dirty pages 

back to storage devices by a background thread. Further, 

Mnemosyne does not employ DRAM as read cache, so it 

requires an extensive search to find up-to-date data. Also, 

Mnemosyne cannot support true sharing of NVM between 
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processes. Table 1 summaries above-mentioned software 

approaches.

In this work, we propose a system software-based, user 

space management approach, which makes NVM available 

directly to user applications, without the block-level seman-

tics of traditional file systems. Furthermore, our work also 

provides write ordering, atomicity, and endurance guaran-

tees while offering a larger than physical available NVM 

space to the applications, and allows them to safely share the 

virtual NVM regions while maintaining performance goals 

by leveraging caching in DRAM.

3  Design overview

In this section we describe our design and provide an over-

view of the decisions made in the design of the virtual NVM 

Library (vNVML), a user space library for virtualizing and 

sharing NVM. Our design decisions are guided by the fol-

lowing four observations.

First, persistent memory is typically allocated and dedicated 

to an application. For example, when file system writes data to 

a location in persistent memory, that location cannot be reused 

or reallocated by another application; otherwise, the data con-

tent of that location is corrupted. If NVM is similarly allocated 

and used, then NVM cannot be easily shared2 across multiple 

applications if NVM is the only persistent storage device in the 

systems. In data centers, with dynamic workloads, there is a 

strong desire to share available resources across many applica-

tions. It is essential that we provide mechanisms to share pre-

cious resources like NVM across many applications.

Second, simply replacing traditional storage devices, 

such as solid-state drives (SSDs) or hard drives (HDDs), 

with NVM is not good enough. Although by doing so, all 

existing applications can benefit immediately from perfor-

mance improvements provided by NVM without any modifi-

cations required; however, this ignores the byte-addressabil-

ity of NVM, and requires accessing NVM in units of blocks, 

resulting in a suboptimal approach.

Third, the access latency of NVM is very close to that of 

DRAM and is much faster than that of storage devices. When 

storage devices are slow (for example magnetic disks), the 

overheads paid by accessing through system calls (or context 

switching) from file system APIs may not be a significant 

part of the entire access latencies. However, as devices get 

faster, like NVM whose latency is within an order of mag-

nitude of DRAM, these system call overheads become much 

more significant and hence must be avoided. For example, 

Intel Storage Performance Development Kit (SPDK) (Intel 

2017) implements the whole NVMe device driver in the user 

space and thus improves the accessing Ultra-Low-Latency 

(ULL) SSDs, such as Intel NVM-based 3D-Xpoint or Sam-

sung Z-NAND (Samsung 2017), performance significantly.

Finally, while it is possible (and even desirable) to con-

tinue running existing or older software on new hardware, 

software may have to be redesigned/rewritten to attain the 

most of the hardware. This can take the forms of new file 

systems, new data stores (Venkataraman et al. 2011; Yang 

et al. 2015) or new libraries (Eisner et al. 2013; Giles et al. 

2015; Intel 2015; Memaripour et al. 2017; Volos et al. 2011). 

In this paper, we take the approach of developing a user 

space library interface to NVM to achieve our goals.

Based on above four observations, we designed the 

vNVML user space library, integrating DRAM, NVM, and 

backend storage devices to construct the abstraction of vir-

tualized NVM. Like virtual memory, adopted almost univer-

sally in the modern computer systems, the main idea of our 

virtual NVM is to provide the impression that applications 

and users can treat (virtual) NVM contained in their system 

as large as the capacity of the storage devices in the system 

and as fast as the speed of NVM (or even DRAM).

Usually, applications have two means to access the data con-

tent stored on storage devices; one is through file system read/

write commands, the other is through memory mapped files 

(i.e. mmap). Because traditional disks are very slow, accessing 

data content in disks through file system commands, which in 

turn trigger some system calls, may not incur too much perfor-

mance penalty compared to the long access latency of the disks 

themselves. However, this is not the case when we deal with 

NVM because of its DRAM-like low latency.

By contrast, when accessing NVM, we must avoid expen-

sive system calls triggered by the file system commands as 

much as possible. This is especially true for applications 

requiring abundant random memory accesses, such as tree 

manipulation operations, which may issue several system 

calls solely for modifying a few pointers and therefore 

results in significant system overheads.

Table 1  Summary of prior software approaches

Categories Approaches

File system SCMFS, NVMFS, BPFS, PMFS, NOVA, STRATA, FRASH, Aerie

Single level system CDDS-Tree, NV-Tree

Persistent object system NV-heaps

User space library mnemosyne, PMDK, SoftWrAP, KAMINO

2 Note: the “share” here means the same physical NVM pages can be 

reallocated/reused by multiple applications.
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In order to avoid context switch overheads and to expose 

the byte-addressability of NVM, in this project we primarily 

focus on memory mapped file accesses. Here, applications 

access NVM much like memory, through byte-level load/

store interfaces without system calls. However, to utilize 

the byte-addressability of persistent memory, write order-

ing issue must be paid special attention (Condit et al. 2009; 

Swift 2015). Therefore, we design vNVML such that pro-

grammers use it in much the same way as they employ exist-

ing POSIX mmap access for volatile memory, except that 

they must follow the transaction-like semantics for write 

ordering. Meanwhile, the benefits of performance improve-

ment, atomicity, and durability are all provided by this trans-

actional interface. Furthermore, we adopt the method of user 

space library hoping for executing NVM accesses in the user 

space as much as possible and using system calls only when 

necessary.

Since vNVML only provides the mmap-like transactional 

interface and only focuses on the file read/write accesses, 

meaning that vNVML still relies on file system to provide 

the file system related handlings, such as metadata man-

agement, directory management, file permission control, 

etc. vNVML places no limits on which file system may be 

used in the system and only requires that file system must 

support standard POSIX mmap. Here we want to highlight 

that vNVML does not try to place the file systems; instead, 

vNVML hopes to supplement and augment the current 

design limitations of file systems, especially when applica-

tions require the high performance computing.

From here, we focus on vNVML’s private mmap access 

mode,3 meaning that virtual NVM regions can only be 

accessed by a single process. The mechanism of our shared4 

mmap mode is slightly different and, to avoid confusion, is 

explained in Sect. 4.4.

Briefly speaking, vNVML utilizes NVM both as a log 

buffer and as a write cache and DRAM as a read cache. The 

reads can only be served by read caches. Modified data are 

first written to the NVM log buffer only and then copied 

to DRAM (read cache) when the logged data are commit-

ted. NVM (write cache) are updated by committed logs on 

the background. If pages containing accessed data are not 

already in NVM or DRAM, they (entire pages) are copied 

from the storage devices to NVM write cache or DRAM 

read cache. Data are evicted from the NVM write cache 

back to storage devices only when the usage of NVM write 

cache exceeds some threshold (30%) of the physical avail-

able NVM. Before programs are terminated safely, all data 

are completely flushed from NVM (both log buffer and write 

cache) to files. The interactions between DRAM, NVM, and 

storage devices are shown in Fig. 1 for both read and write 

operations. 

The key ideas behind our design choices are as follows:

Use NVM as log buffer Like other NVM user space librar-

ies, we also adopt transaction semantics as interface for 

vNVML to provide write ordering, atomicity and durability. 

All written data must be immediately stored at some tempo-

rary non-volatile storage locations before transactions com-

mit. Since this logging process must be in the write critical 

path, employing NVM as temporary non-volatile log buffer 

provides significant performance advantage.

Redo logging and DRAM cache Typically, there are two 

approaches to logging: undo and redo logging. Both have 

pros and cons toward different workloads (Wan et al. 2016). 

Undo logging requires that old data are persisted as logs 

before new data are updated in place. These two actions 

(both logging and in place update) must be in the write criti-

cal path. Alternately, with redo logging, all new data are 

persisted as logs to non-volatile media first, then new data 

can be updated in place. In-place updates, because they can 

be executed on the background, do not have to be in the 

write critical path, but they would affect the read critical 

path because reads have to be redirected to logs and have to 

search for the newest data from logs.

In vNVML, we augment redo logging by using DRAM 

as a read cache. Modified data are written to the NVM log 

buffer, and are also written to DRAM, during the commit 

command, for reads following this write. With the help of 

a read cache (DRAM), only persisting writes on the (redo) 

log and updating to DRAM are in the write critical path 

(from the perspective of the whole transaction), and reads 

do not need to be redirected to logs as usual (redo) log does. 

Updating data on the storage devices can be executed in the 

background, without it being in the write critical path.

Although undo and our redo logging both double the 

written data in the write critical path (undo: 2 NVM versus 

Fig. 1  The read/write data flow of vNVML private mmap mode 

between DRAM, NVM, and storage device

3 Note: our (vNVML) private mmap mode is different from the 

standard POSIX private mmap mode. In our private mmap, writ-

ten data can be reflected back to storage devices, but POSIX private 

mmap cannot.
4 Note: the “share” here means that shared regions can be seen and 

accessed by multiple processes, exactly like the existing POSIX 

shared mmap method for volatile memory.
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our redo: 1 NVM and 1 DRAM), using our redo logging still 

has three advantages. First, even though the access latency 

of NVM is close to that of DRAM, the write latency of 

DRAM is still shorter than that of NVM (Chen 2016; Yu and 

Chen 2016). So, writing to DRAM is still faster than writing 

to NVM. Second, writing to DRAM does not need order-

ing constraints, which use clflush, clflushopt, clwb, 

and sfence instructions and therefore are time-consuming 

(Zhang and Swanson 2015). Third, for read-intensive work-

loads, read cache can serve some reads without accessing 

NVM, which might potentially reduce the writes to NVM 

and alleviate the lifetime issues of NVM.

Only committed data are updated to read cache Before 

logs of uncommitted transactions can be placed into true 

destinations, reading the data still in the logs requires pars-

ing the logs to find the newest data, which can be time-

consuming. This process is in the read critical path. In most 

workloads, the frequency of reads is much higher than that 

of writes. For example, Yahoo! Cloud Serving Benchmark 

(YCSB) (Cooper et al. 2010) framework refers to workload 

A (50/50 read/write ratio) as update-heavy workload. In 

terms of the overall performance, shortening the read criti-

cal path is more important than write critical path. So, we 

simply use DRAM as a read cache to serve all read opera-

tions, and update the data into the DRAM in the commit 

command (through parsing the logs belonging to this trans-

action sequentially). By doing so, the following reads, after 

transaction commits, could read directly from DRAM. Our 

design doubles the written data on the write critical path, 

but it makes the reads faster as data can be directly read 

from DRAM, without having to search the entire log buffers. 

The section 4.1 will explain the detailed mappings of read 

cache, log buffer, and write cache into virtual address space 

of each process.

Two restrictions are related to this read cache: (1) reads 

can only be served by the read cache and (2) written data are 

copied to read cache only when the transaction commits to 

accomplish the isolation property; that is, only committed 

data are visible. This is sometimes referred as “read commit-

ted” transaction isolation level (Microsoft 2017). However, 

our transactions are defined differently from transactions of 

the traditional database systems. In database systems, the 

focus is on the consistency of transactions to ensure cor-

rect data are accessed between multiple concurrent trans-

actions. In vNVML, we emphasize the persistency (Pelley 

et al. 2014) of transactions. Here we define the committed 

(uncommitted, respectively) data are that the written data 

must be valid (invalid, respectively) after system crashes; 

meanwhile, the atomicity and durability of data are also 

guaranteed. We leave the consistency of transactions to the 

discretion of programmers/applications.

Employ NVM as write cache All written data are at 

the log buffer when transactions commit. Data need to be 

gradually moved from the log buffer to their true destina-

tions on storage devices to avoid overflowing the log buffer. 

We utilize part of NVM as a write cache and committed data 

are moved to NVM write cache before they are moved to 

much slower storage devices. This allows us to migrate the 

logs quickly to more permanent locations and to prevent the 

log buffer from taking too much space.

A background worker (thread) is responsible for copy-

ing data from (NVM) log buffer to (NVM) write cache to 

avoid extra overhead in the write critical path. This design is 

also suitable for the cache-friendly workloads (or the write 

working set of workloads is smaller than write cache size) 

because logs could always be directly copied to NVM cache 

(where data are moved from NVM to NVM). Writing data 

to NVM allows us to maintain data safety, providing a better 

performance if future writes hit in the write cache.

Update to storage devices from NVM write cache (private 

mmap mode) or DRAM cache (shared mmap mode) Data 

are written to the log buffer using the write commands, and 

then moved to NVM write cache in the background. These 

data are also written to the DRAM read cache upon the com-

mit command being issued. Therefore, the data can have 

two paths, from DRAM or from NVM, to reach the storage 

devices. Depending on whether the regions (or modes) of 

virtual NVM are to be shared across applications or not, we 

adopt different strategies.

For private virtual NVM regions (private mmap mode), 

We construct DRAM (read-only) cache by leveraging the 

existing POSIX private mmap, which adopts Copy-on-Write 

mechanism and all written data can only remain at DRAM. 

Therefore, the data can only be written back to storage 

devices from NVM cache. We choose this design choice 

with the hope that NVM write cache can absorb all write 

traffic (if cache size is larger than the write working set) 

and avoid all storage device accesses to gain the maximum 

performance.

On the other hand, when shared NVM regions (shared 

mmap mode) are required, the existing POSIX shared mmap 

is adopted to construct the DRAM (read/write) cache, and 

data are written from DRAM to storage devices. Here NVM 

cache is not used and logs in NVM log buffer are referenced 

only when recovering from system failures is needed. This 

design concept is similar to SoftWrAP (Giles et al. 2015). 

Further details are provided in Sect. 4.4.

Figure 2 illustrates the read/write flow of accessing pri-

vate virtual NVM region and the page movement between 

DRAM, NVM, and storage device in detail. (a) A file on 

the storage with page A and B initially. (b) A read from 

page A lets page A is copied from the storage device to 

the memory and then the application reads page A directly 

from the memory. (c) A write to page A results in a log Δ A 

is appended to the log buffer. (d) Another write to page B 

also results in a log Δ B is appended to the log buffer. (e) 
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The transaction commits. The page A in memory is updated 

with Δ A to page A’, and page B is copied from storage to the 

memory by Copy-on-Write mechanism and is also updated 

with Δ B to page B’. Page A and B are read from storage 

device to NVM cache and are applied the logs Δ A and Δ B to 

be page A’ and B’ by a redo background thread. (f) Another 

writeback background thread writes the page A’ and B’ from 

NVM cache back to the storage device. 

4  vNVML API and implementation

In this section, we explain the implementation of vNVML 

in detail. We start from the introduction of the APIs that 

vNVML provides and describe their functions. Next, we 

describe the data structures that vNVML manages in the 

user space of applications, and then introduce two back-

ground workers (per process) for parallel processing in 

vNVML. Then, we explain the implementation of shared 

regions of vNVML. Finally, we discuss some general issues 

in vNVML implementation.

4.1  vNVML API

Algorithm 1 shows all APIs that vNVML offers and their 

brief implementation.

Every application (process) first needs to call nv_init 

once before it starts to utilize vNVML. The first caller 

creates (a log buffer, a cache, along with associated meta-

data) files in NVM and a shared memory object by call-

ing shm_open. The first caller is also responsible for 

constructing one linked list for pages of NVM cache as 

a free list and one linked list for pages of the log buffer. 

Section 4.2 describes the linked list data structure in more 

detail. The shared memory object contains and provides 

global information accessible by all vNVML users such as 

number of total current vNVML users, unique application 

ids assigned to each application, and unique transaction ids 

for each transaction. Because NVM pages in the free list 

Fig. 2  The read/write data flow and page movement of vNVML pri-

vate mmap mode
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and in the log buffer do not contain useful information and 

therefore do not relate to recovery process as well as they 

also need to be accessible by all applications, their linked 

list heads are stored in this shared memory object, too.

All callers must shared mmap all files created in NVM 

using the nv_init command in their virtual address 

space. These files are mapped by vNVML and are invis-

ible to applications. Therefore, applications have no 

information of mapped address regions of these files, and 

all accesses to NVM files from applications can only be 

through vNVML.

To allocate virtual NVM regions, applications call nv_

allocate by passing a path filepath in the storage, a file 

size n, and the mapping mode (private or shared). If a file 

exists in the filepath, then that file is opened; if it does not, a 

new file is created at filepath and is posix_fallocated 

with size n. The file descriptor fd returned from open com-

mand, along with application id and filepath are stored as a 

file record entry (application id, fd, filepath) of the metadata 

file for recovery process if needed. Figure 3 illustrates an 

entry of file record. Finally, A file pointer fileptr obtained 

by (private or shared) mmapping this file is returned to 

the caller.

Figure 4 illustrates the virtual address space of a process 

after calling nv_init and nv_allocate for a file. Only 

the mapping regions of files in the storage devices are known 

by applications.

After virtual NVM regions are allocated, applications 

can access virtual NVM like accessing real NVM through 

fileptr (virtual address returned from nv_allocate) for 

reading or the nv_txbegin, nv_write, nv_write, ..., 

nv_commit command series for writing. The nv_txbe-
gin generates and returns a unique transaction tid for the 

following nv_write(s) and nv_commit commands to 

construct a single transaction.

The nv_write commands are used to write data into 

virtual NVM. Through nv_write commands, all data are 

written as redo logs in the log buffer. The first nv_write 

command must allocate a log page from log buffer. If a log 

page is needed but no log page is available, then nv_write 

returns the size of written data so far.

To write logs, a log object to store the log pages of this 

transaction is allocated from NVM and is put into one of 32 

open lists of this process according to its transaction tid%32 

(modulus operator). Log pages, allocated from the linked 

list of log buffer by the same transaction, are appended to 

the tail of the corresponding linked list of the log object in 

the open lists.

A single nv_write command may create several log 

entries. It first depends on the destination position and then 

depends on the left space of the current log page. This is 

because we want the data from a single log entry to be 

placed entirely within a single NVM cache page to simplify 

the design and implementation of redo background worker 

described at Sect. 4.3.

Inspired by some prior works (Condit et al. 2009; Wang 

et al. 2015; Zhang and Swanson 2015), we know when deal-

ing with byte-addressable, memory-bus attached NVM, 

write ordering is required. To do so, modern CPUs provide 

cacheline flushing (clflush, clflushopt, and clwb) 

instructions and memory fence (sfence and mfence 

instructions to help to enforce write ordering. For exam-

ple, store-clflush pair combined with mfence (or 

sfence) is adopted by several prior works (Dulloor et al. 

2014; Qiu and Reddy 2013; Wu and Reddy 2011; Xu and 

Swanson 2016). Some other prior works (Giles et al. 2015; 

Kwon et al. 2017; Xu and Swanson 2016; Zhang and Swan-

son 2015) further replace the store-clflush pair with 

non-temporal store (ntstore) instructions. The ntstore 

instructions can bypass the CPU caches and directly write 

data to DRAM or NVM. By doing so, ntstore eliminates 

the expensive cacheline flushing operations (Zhang and 

Swanson 2015) and significantly improves the NVM per-

sisting performance. Therefore, we also employ ntstore 

to write data to log buffer at nv_write commands.

When the nv_commit command is called, vNVML 

sequentially traces all log entries of log pages from the 

linked list of log objects for the committed transaction tid, 

and copies all committed data from log entries to the DRAM 

read-only cache. Because writing to DRAM does not require 

ordering, the standard memcpy function is sufficient for 

copying and therefore may be used to attain better perfor-

mance. After copying to the DRAM cache, vNVML moves 

this log object (along with all log pages linked to this log 

object) from the corresponding open list to the tail of the 

only committed list of this process and persists all log entries 

and a log object in NVM. This committed list head is stored 

at the metadata of the applications in NVM. All log entries 

Fig. 3  Structure of a file record for recovery process

Fig. 4  The mapping of virtual address space of a process after calling 

nv_init and nv_allocate 
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in the committed list are guaranteed to be preserved across 

power failures.

Finally, applications call nv_free (nv_release, 

respectively) if they do not want to access a certain file (do 

not want to access entire virtual NVM, respectively). nv_

free is used to munmap a file mapped by the nv_allo-
cate. After nv_release is called, the applications must 

wait for all committed logs, if they exist, to be applied to 

NVM cache by the redo background worker, actively flush 

all dirty cache pages back to the storage devices, and mun-
map all NVM files mapped at nv_init.

Algorithm 2 shows a typical example of using vNVML. 

4.2  vNVML data structures

The NVM log buffer and NVM cache are partitioned into 

units of 4KB pages and organized as linked lists. The imple-

mentation of linked lists for pages is via metadata; that 

is, for each page, a corresponding page object is created 

from NVM metadata file and connected with each other as 

a linked list. Therefore, allocating a page object from the 

linked list also equals to allocating the corresponding page.

As mentioned in (Swanson 2017), however, construct-

ing the linked list in NVM is not the same as constructing 

a typical linked list in memory. The virtual address cannot 

be directly used as a pointer to be stored in NVM because 

there is no guarantee that the NVM files can be mounted into 

the same virtual space regions (1) by multiple concurrent 

processes or (2) by a single process before and after system 

crashes. Thus, we replace the address with the index of the 

page starting from 0 to construct the linked lists in NVM. 

Similarly, we substitute the offset from the starting address 

to the current position, when an access needs to be made, 

for the address to be stored into NVM.

Page objects for the log buffer and cache are created by 

different metadata files at nv_init. After a page object of 

log buffer is allocated, the application id is stored into page 

object, and the log entries (from nv_write) can be written 

directly into the corresponding log pages. The first field of 

the log page is the total written bytes to this page, and log 

entries are appended sequentially. Figure 5 illustrates the 

fields of a log page and log entries in the log page. The log 

entry contains log header, including length of this entry, file 

descriptor, and offset (from the first byte of this file to the 

destination location), followed by the redo raw data. The 

page object (application id), the log entry header (len, fd, 

and offset), and file record (application id, fd, and filepath) 

already contain all necessary information for the recovery 

worker to write the committed log entries directly back to 

corresponding files of storage devices. 

To handle cache pages, one free list is created through the 

shared memory object, and the others, dirty and clean lists, 

are created within each application. The dirty and clean lists 

implement the LRU replacement policy.

Figure 6 illustrates the page movements between the free 

list, dirty list, and clean list. Cache pages are always allo-

cated from the free list, until the page share of an application 

is reached, and become dirty pages inserted to the head of 

dirty list after the redo background worker copies the corre-

sponding pages from files in the storage devices and applies 

corresponding log entries on them. Dirty pages (of the tail of 

dirty list) become clean ones and are inserted to the head of 

the clean list after the writeback background worker writes 

the dirty pages back to files in the storage device. When a 

cache is hit, regardless of whether the page is in the dirty or 

clean list, the page is applied the redo log and inserted into 

Fig. 5  Structure of a log page and its log entries

Fig. 6  Page movements of LRU policy between free list, dirty list, 

and clean list
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the head of the dirty list. When a cache miss happens, the 

tail page of clean list is always picked and is filled with the 

corresponding page from file in the storage devices. This 

page is inserted into the head of the dirty list after writing 

the redo log on it. 

For the individual cache page, besides the application id 

of the page owner, some extra information is also stored into 

the corresponding page object, such as the fd (file descrip-

tor), file offset, and dirty flag. The file offset is the offset 

which is used to seek the file and to access the page of 

files in the storage devices. The fd and file offset can be 

known from the header of log entries by redo worker when 

it redoes. The dirty flag is set only if this page is dirty (in the 

dirty list). This flag is cleaned after writeback worker writes 

this dirty page back to files and puts it into the clean list. 

Thus, the recovery worker only needs to handle the pages 

whose dirty flag are set. Also, the information contained 

in the page object (application id, fd, file offset, and dirty 

flag) and the file record (application id, fd, and filepath) are 

enough for recover worker to write the dirty pages back if 

system crashes. Figure 7 illustrates an entry of page object.

Partitioning the log buffer and cache page at a 4 KB page-

size granularity and organizing them as linked lists has some 

advantages. First, the allocation and deallocation of pages 

from log buffer and free list are both O(1). Second, the 

management of log buffer and cache space becomes easier 

since the space is managed in terms of pages, rather than 

bytes or variable size segments. Third, it makes it easier to 

share pages of the log buffer and free list across applications 

through linked lists maintained at the shared memory object.

To prevent a single application from allocating all log 

pages and all cache pages, vNVML adopts the equal share 

policy through the shared memory object, containing the 

total number of current applications. Applications can allo-

cate log pages from the log buffer or cache pages from the 

free list if and only if the number of allocated pages does not 

reach their shares. A new joining user of vNVML may result 

in all current users exceeding their shares. Two background 

workers, described in the following section, help to return 

extra pages back to log buffer and free list.

Figure 8 illustrates the relation between open list, com-

mitted list, log object, and page object.

4.3  Background workers

Two background workers (threads) are created for each 

process at nv_init. The redo background worker keeps 

checking the committed list. If the committed list is empty, 

the worker goes to sleep for a while (10us in the current con-

figuration) and then checks the committed list again after it 

wakes up. If the committed list is not empty, the redo worker 

obtains the first log object (of some transaction) from the 

head of the committed list, and replays all the log entries 

sequentially from log pages of this log object to NVM cache 

pages. Since in this redo operation, data are moved from 

NVM to NVM, write ordering is also required; therefore, we 

also employ ntstore instructions here for writing to NVM 

cache pages. If a cache miss happens, redo worker is also 

responsible for reading this page from files in the storage 

device to NVM cache page. All log pages can be discarded 

and returned to the log buffer pool only after the entire logs 

of a transaction are completely replayed by the redo worker.

Here we want to highlight the limitation that, since the 

committed logs are always appended to the tail of the only 

one committed list (per process) at nv_commit (mentioned 

at Sect. 4.1), and redo background worker always redoes logs 

from the head of this committed list; therefore, programmers 

should keep in mind that the transaction which writes to an 

object first should also be committed first for the consistency 

of DRAM cache and the file on the storage device when 

multiple threads write to the same objects, but there is no 

constraint when threads write to different objects. This is a 

much weaker constraint compared to accessing a file by file 

system, which requires locking the whole file, even if differ-

ent objects of the same file are being accessed.

The other writeback background worker is responsible 

for writing the dirty NVM cache pages back to the storage 

devices. To avoid accessing storage devices too frequently, 

we employ a threshold on dirty NVM pages accumulated 

Fig. 7  Structure of a page object for writeback and recovery process

Fig. 8  Open list contains log objects of transactions. Each log object 

may link several page objects (of log pages). After transaction com-

mits, the log object (along with its log pages) of the transaction is 

appended to the tail of the committed list. Redo worker always redoes 

from the head of the committed list; therefore, the transactions which 

is committed early would also be replayed early
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in the dirty list (we use 30% of cache page share). Dirty 

pages are written back to the storage device by the write-

back worker after the number of dirty pages is more than 

threshold. The dirty pages are inserted to the head of the 

clean list after writing back to storage devices. Furthermore, 

if the number of allocated cache pages exceeds the share 

due to new joining applications, the writeback worker may 

further release some clean pages back to the free list. After 

the number of the dirty pages drops below some threshold 

(we set 10% of cache page share), the writeback background 

worker is stopped and dirty pages may accumulate again.

Both background workers are killed upon the nv_

release command.

4.4  Sharing NVM between processes

The implementation of shared NVM regions between pro-

cesses is slightly different from what we have implemented 

for private regions. What we mean by “shared region” here 

is that a memory region can be accessed concurrently by 

multiple processes and all processes could see the same view 

of this region. This is exactly the same as existing POSIX 

shared mmap for volatile memory.

Shared regions are constructed by nv_allocate 

command. When nv_allocate is called, a file is shared 

mmapped to construct the DRAM read/write cache and a 

committed list head is created and maintained as metadata in 

NVM for each shared mmapped region. By DRAM cache 

constructed from shared mmap of the file, processes which 

require to access this region can share the same view.

Because a committed list is required for each shared 

region, the same limitation, the transaction writing to an 

object first should also be committed first, must also be 

obeyed. In addition, one more limitation is required when 

writing to shared regions; that is, all true destinations of 

writes from a single transaction must lie within the same 

single shared region. Without this limitation, if a transac-

tion can write to multiple shared regions, then multiple log 

objects, each log object is for a shared region, should be 

created to be appended to multiple committed lists when 

transaction commits. This would cause a serious problem 

if system crashes while a transaction commits, resulting in 

some log objects have been appended to some committed 

lists but some not.

When we write to a shared region, data are still written 

to log buffer first. At transaction commits, the data from log 

buffer are replayed to the DRAM of a single shared mmap 

region, and all logs of this transaction are moved from one of 

32 open lists of a process to the committed list of this shared 

region. We do not utilize NVM cache here to simplify our 

design and implementation. Figure 9 illustrates the read/

write data flow of accessing a shared virtual NVM region. 

Since shared mmap is employed to create our shared 

regions, the msync system call is required to write the modi-

fied data back to storage devices. Different from fsync, how-

ever, calling msync requires to know all the modified virtual 

address regions (i.e. start addresses and their lengths). To avoid 

parsing all logs when flushing (msync) data back to storage 

devices later, a global bitmap of dirty pages dedicated to this 

shared region is maintained in DRAM and is updated at the 

end of each nv_commit command by the local bitmap of 

each transaction; the local bitmap is constructed when logs are 

parsed and replayed to DRAM at nv_commit.

After logs have been accumulated to a certain thresh-

old, upon a call to nv_commit, a background thread is 

triggered and atomically copies the global bitmap of this 

shared region to a “copied global bitmap” variable, zeroes 

this global bitmap, and marks the tail transaction of the com-

mitted list. Then several msyncs might be issued to flush 

dirty pages back to storage devices according to the copied 

global bitmap. Only after flushing is completed, can logs of 

transactions (from the head to the marked tail) be removed 

from the committed list.

During the flushing procedure, new transactions can still 

proceed, be committed, and update the “zeroed” global 

bitmap. Because their logs are always appended after the 

marked tail transaction and “read committed” policy is 

employed in vNVML, unexpectedly flushing some data of 

transactions committed after “marked tail” transaction dur-

ing the flushing procedure will not harm since all data in 

DRAM must have been committed and therefore must be 

written back to storage devices eventually.

The logs from head transaction to marked tail transac-

tion are discarded only after flushing is completed. If system 

crashes, recovery procedure always replays all logs from the 

head of committed list of this shared region.

4.5  Transaction aborts and long running 
transactions

For some extreme cases, the log buffer may run out of space 

if too many long running transactions, which keep writing 

Fig. 9  The read/write data flow of vNVML shared mmap mode 

between DRAM, NVM, and storage device
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data before commitment, execute concurrently. This situa-

tion can be detected when pages cannot be allocated from 

the log buffer pool for a while. vNVML could actively abort 

long running transactions by recording the timestamp into 

the log objects when log objects are allocated by transac-

tions. The redo worker can periodically check the log objects 

from the head of each open lists and can abort the transac-

tions whose elapsed time exceed some predefined threshold. 

Applications can also abort transactions for various reasons.

When a transaction is aborted, since all its logs are still 

in an uncommitted state (in the open list), these logs can be 

discarded directly and log pages are returned back to the 

log buffer pool. Moreover, because transactions of vNVML 

support the “read committed” isolation property, when one 

of the nested transactions needs to be aborted, aborting all 

transactions involved in the nested transactions may not be 

necessary and it should depend on the discretion of users.

4.6  Data recovery

Systems or applications may crash due to an unexpected fail-

ure at any moment such as power shortage, bugs of applica-

tions, or inadequate kernel resources. The mandatory func-

tion any NVM solution should provide is to ensure the data 

persistency after systems or applications crash. In vNVML, 

we handle this by a recovery program run by root. After 

systems reboot, a recovery worker (process) first mmaps 

the all NVM files (log, cache, and metadata) into its vir-

tual memory space. From Sect. 4.2 we know the recovery 

worker already has all necessary information to recover the 

dirty pages and log entries back to files in storage devices 

by tracing the page objects, file records, and committed lists.

We always recover/write the dirty pages (by checking if 

dirty bit is set) back to files before we recover the committed 

logs back to files because the committed logs contain the 

newest data. Reversing this order might result in that the new 

data are covered by older data from dirty pages.

The order of objects in the committed list is important 

and we should replay the objects sequentially. With the help 

of 8-byte atomic update feature natively supported by pro-

cessors, the order of objects can be maintained correctly 

by carefully handling the order of pointer updates between 

objects of linked lists.

Figure 10 illustrates the process of insertion and deletion 

of an object to and from a linked list at NVM. For object 

insertion [the correct sequence is from (a) to (b) to (c)], we 

could assume object C has been inserted into linked list only 

when system crashes after (c); otherwise, we assume object 

C is not inserted yet. On the other hand, for object deletion 

[the correct sequence is from (c) to (b) to (a)], when system 

crashes after (c) we would assume object C has been deleted 

from the linked list.

After the recovery process finishes, all NVM files are 

erased, and vNVML can be restarted again. This recovery 

process may be re-executed as many times as needed if the 

system ever crashes again during the recovery process since 

all the required data and metadata are conserved in NVM 

and are erased only after a successful recovery. Thus, all 

data have been written back to their true destination of files.

4.7  Security

Security is a major concern in the modern computer sys-

tems, especially in the data center, where infrastructure has 

to protect against any attacks from third party applications. 

In vNVML, the security is guaranteed in two aspects. First, 

the private regions are produced by private mmap. Due to 

the Copy-on-Write mechanism brought from private mmap, 

all the direct writes within this private address region will 

remain within the memory (virtual address space of the 

user process) and cannot impact the contents at the storage 

device.

Second, all the writes to private regions must be exe-

cuted through nv_txbegin, nv_write, nv_write,..., 

nv_commit command series. Those APIs are entirely con-

trolled by vNVML and accessing NVM (log buffer, cache, 

and metadata) files, which are invisible to applications, is 

not allowed outside vNVML. When applications try to write 

beyond the mapped regions (or outside allocated virtual 

address regions), the protections within the existing memory 

system will detect these violations. In addition, the vNVML 

bound checks will not allow these writes to proceed.

5  Evaluation

In this section, we conduct experiments to answer funda-

mental questions about vNVML as follows:

Fig. 10  The correct order of pointer updates for the objects of linked 

lists in NVM. From (a) to (c) is for the object insertion; from (c) to 

(a) is for object deletion
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• What are the characteristics of the vNVML?

• How does vNVML impact the performance when used 

by real applications?

• How to decide the size of the log buffer and the cache 

given a fixed and limited size of NVM in the platform?

• How does the vNVML perform when multiple processes 

concurrently access the NVM through vNVML?

• What is the impact of using vNVML within the container 

environment?

• What is the impact of different log buffer sizes, cache 

sizes, and single cache page size on life span of backend 

SSD?

• How does the vNVML perform compared to other user 

space libraries?

5.1  Experimental setup

Due to the absence of real NVM, we emulate NVM with 

DRAM for all our experiments. We mount the NVM with 

the Ext4 file system in order to utilize the DAX (direct 

access) feature provided by Ext4.

We evaluate vNVML on a platform with 16GB DRAM, 

12GB emulated NVM, and Intel i7-4770 four-core 3.4 GHz 

processor with hyperthreading enabled. Samsung enterprise 

PM863 480GB SSD (SATA 6.0 Gbps) is adopted as our 

example of the storage devices. We implement vNVML on 

the Linux kernel 4.13 version.

5.2  MongoDB and YCSB

In this subsection, we explore and analyze the impact of 

accessing NVM through vNVML by real applications. We 

adopt a popular open-source database MongoDB version 

3.6.0 (mongoDB 2008b) as our target application because its 

MMAPv1 storage engine uses memory mapped file form to 

access the data in the storage devices, which is perfect for our 

vNVML to employ. We modify part of the source code of 

MongoDB for our transactional interface to deploy vNVML.

We choose YCSB (Cooper et al. 2010) to generate the 

read/write traffic of MongoDB. The setup of experiment is 

delineated in Fig.  11. To simplify our analyses, we configure 

the size of all records’ fieldcount as 128 and fieldlength as 

512 and readallfields and writeallfields are both set as true in 

the configuration file of YCSB workloads, meaning that each 

read/write request will access exactly 64 KB data, which is 

also the data written per transaction. 100 K operations (read/

write requests) are executed for all experiments. We deploy 

the different read/write ratios and two request distributions 

(zipfian or uniform) to observe the impact of performance. 

YCSB has two phases: one is inserting records into 

the target data store, the other is accessing (read or write) 

records in the target data store. To avoid polluting the NVM 

cache of vNVML before the accessing phase, in the insertion 

phase MongoDB employs nv_allocate to private mmap 

files in the storage devices, and then, instead of using nv_

write vNVML commands, MongoDB only adopts its orig-

inal (unmodified) insertion functions to access the memory 

mapped regions, meaning that all records are only inserted 

into the memory (due to the Copy-on-Write mechanism pro-

vided by private mmap used by nv_allocate).

All experiments are conducted by accessing four Mon-

goDB instances concurrently in a single OS. However, since 

the MMAPv1 storage engine uses padding and the power of 

two sized allocation mechanisms (mongoDB 2008a), four 

instances would generate total 8.8 GB files in the storage 

devices when each instance is inserted 10 K records, and 

total 33 GB files after 30 K records are inserted into each 

of four instances. Therefore, 12 GB emulated NVM in our 

platform can only accommodate files created by four Mon-

goDB instances inserted at most 13 K records, respectively. 

However, from Table 2, we find that the YCSB throughputs 

of one instance are very close to each other even with differ-

ent numbers and different distributions of inserted records 

if all files generated are stored only in NVM. We assume 

this observation still holds in the 4-instance case. Therefore, 

we insert 10 K records to each of four instances, remove 

the periodic msync calls by MongoDB, disable journaling 

with nojournal option, and employ NVM as the only storage 

device of MongoDBs as our baseline5.

Fig. 11  The experimental setup 

of YCSB, MongoDB, and 

vNVML

Table 2  Throughputs of single MongoDB instance with different 

numbers and distributions of inserted records when NVM is the only 

storage device

# of records (K) Uniform (op/s) Zipfian (op/s)

30 1500 1505

10 1509 1498

5 Note: our platform does not have enough NVM to accommodate all 

files generated by eight instances inserted 10 K as baseline, respec-

tively. Also, when eight MongoDB instances adopting vNVML are 

running concurrently, some of instances would crash because of out-

of-memory (OOM) error from private mmap. Therefore, executing at 

most four instances concurrently is the limitation of our platform.
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Figure 12 shows the normalized throughputs of differ-

ent request distributions (zipfian and uniform) and differ-

ent read/write ratios (5/95, 70/30, and 100/0). The results 

(normalized throughputs) are the summation of throughputs6 

(op/s), generated from YCSB when YCSB accesses one of 

four MongoDB instances employing vNVML, divided by 

the summation of throughputs of four MongoDB baseline 

instances with the same request distributions and the same 

read/write ratios. 

From these results we can make some useful observa-

tions. First, the case that cache size is 1 GB, log size is 2 GB, 

and four MongoDB instances with 30 K inserted records (4 

* 30K * 64 KB = 7.32 GB) already proves that vNVML can 

provide virtualization and shareability of NVM successfully.

Second, not only can vNVML achieve over 90% of the 

throughput of baseline (if the log buffer and cache can 

“absorb” the input write traffic, such as the line of 8GB 

cache in Fig. 12e, f), but vNVML can also provide the guar-

antees of atomicity, persistency, and write ordering, which 

Fig. 12  Normalized total throughput of four instances. Numbers of 

X-axis stand for inserted records to each database, and numbers of 

Y-axis stand for normalized throughput. a–d Fix 4 GB cache size and 

adjust log buffer size from 2 GB to 128 MB. e– h Fix 2 GB log buffer 

and change cache size from 8 to 1 GB. i 100% read uniform request

6 Note: since all four throughputs from YCSB are almost the same 

(with usually less than 1% difference).
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are our baseline, the MongoDB without journaling and write 

ordering, cannot. This less than 10% overhead results from 

writing data to NVM log buffer and from redoing logs to 

DRAM read cache.

Third, larger write working sets (more inserted records 

or uniform access requests), and more write requests (lower 

R/W ratio) degrade the throughput of vNVML. Larger write 

working sets require more NVM cache to store all data at 

run-time. Furthermore, if the write working sets are even 

larger than the capacity of NVM cache owned by applica-

tions, then cache pages are frequently written back to stor-

age devices. Finally, when all cache pages become dirty, the 

overall performance would deteriorate to write throughputs 

of storage devices.

Fourth, through (a) to (d), when cache sizes are all fixed, 

the adjustment of log buffer only affects at most 10% nor-

malized throughput7 of baseline in all these cases.

Fifth, from (e) to (h), when sizes of log buffer are fixed, 

their throughputs vary highly, especially in the case of (f): 

read/write ratio is 5/95, uniform request, and 30K inserted 

records. In (f), the throughputs differ by almost 50%, mean-

ing that cache size impacts vNVML throughput more sig-

nificantly than that of the log buffer. For the bottleneck of 

vNVML performance is the access throughput of storage 

devices, the cache size can impact vNVML performance sig-

nificantly. As more NVM caches are able to store more write 

traffic, less writes (if NVM cache hits) to storage devices 

will be needed. The actual throughput of vNVML should 

be a function dominated by factors of NVM cache size and 

access performance of storage device.

On the other hand, unlike NVM cache, NVM log buffer 

only temporarily stores the write traffic as logs before logs 

are written to NVM cache pages. As a result, log buffer can 

only impact/improve performance slightly until log buffer 

is full; usually the log buffer will be full much quickly than 

NVM cache if the write working sets are huge and the stor-

age devices are frequently accessed in order to fill the NVM 

pages before applying the corresponding log entries to cache 

pages.

Finally, (i) shows at 100% read, uniform distribution 

request case, vNVML can achieve around 92% throughput 

regardless of the number of inserted records. It matches our 

expectation of vNVML since the read is entirely handled by 

the read cache (memory) and 16 GB memory is enough to 

handle the 30 K records working set since 30 K × 64 K × 4 

∼ 7.32 GB.

Therefore, from aforementioned observations, we sup-

pose that under limited NVM resources, only some reason-

able amount of NVM should be allocated as log buffer, and 

the rest should be cache to achieve higher performance of 

vNVML.

Next, we would like to examine the impact of using 

vNVML within docker containers (Docker 2013). Docker 

is a popular virtualization technique in data centers and 

recently has drawn significant attention from industry and 

academia due to its lightweight execution environment com-

pared to traditional virtual machines. In this experiment, 

we launch four docker containers, use bind mount (Docker 

2018) to mount 12 GB emulated NVM into each container 

so all containers can access and share content in NVM, and 

run single MongoDB instance within each container. Log 

buffer is configured as fixed 2 GB, the cache size as well as 

read/write ratio are adjusted to various settings. Each data 

point is normalized with individual counterpart, which is 

the same configuration without using containers. Figure 13 

shows that all the data are close to 1; that is, using vNVML 

within docker containers does not affect the performance.

Fig. 13  Normalized throughput of four instances inside Docker con-

tainer

7 At (a), the normalized throughput is 0.876 (0.776, respectively) 

when log buffer is 2 GB (128 MB, respectively) and inserted records 

are 30,000. At (b), the normalized throughput is 0.638 (0.542, respec-

tively) when log buffer is 2 GB (128 MB, respectively) and inserted 

records are 30,000.
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Fig. 14  Total number of NVM cache pages written to SSD of all four instances. Numbers of X-axis stand for inserted records to each database, and numbers of Y-axis stand for total number of 

pages written to SSD. a–d Fix 4 GB cache size and adjust log buffer size from 2 GB to 128 MB. e–h Fix 2 GB log buffer and change cache size from 8 to 1 GB
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Moreover, we want to examine the impact of different 

sizes of NVM log buffer and NVM cache on life span (or 

write counts) of backend SSD. We measure the number of 

total NVM (cache) pages written to storage devices after 

all logs have been replayed from log buffer to NVM cache 

pages, and cache pages would then be written to backing 

SSD if the percentage of dirty pages are over 30%. Figure 14 

shows the results, from which our conclusions are drawn. 

First, larger write working sets usually have more num-

bers of written pages (more write counts), but some excep-

tions can also be found. For instance, cache size is 1 GB at 

(e) and (f). This phenomenon is because writeback back-

ground worker starts to write NVM cache pages back only 

when the percentage of dirty pages is over 30%. So, it is pos-

sible that even larger write working sets make all instances 

with higher percentage of dirty pages, but none of them is 

more than 30%. On the other hand, smaller write working 

sets cause instances with lower percentage of dirty pages, 

but once the percentage of one instance is over 30%, then 

smaller write working sets might result in more write counts 

than larger ones.

Second, from (a) to (d), all results (of various log buffer 

sizes) are almost the same. This also proves that log buffer 

only temporarily stores the write traffic and cannot influence 

the access frequencies and patterns of storage devices. It also 

matches the conclusion made from results of Fig. 12.

Third, one interesting point is the case of 8 GB cache at 

(g). We can find out that when number of inserted records is 

10,000, the number of write count is zero; that is, all writes 

are stored entirely on NVM cache and none is written to 

SSD. This means that if we have enough NVM cache to store 

incoming write traffic, vNVML can achieve not only better 

performance but also longer life span of SSD.

Next, we consider the impact of different SSD page sizes 

on write counts and performance. We assume the size of 

NVM cache page should be the same as the page size of 

backend SSD; otherwise, the write amplification must be 

considerable. As a result, we only change the page size of 

NVM cache as 8 KB and compare the write counts and per-

formance with NVM cache of 4 KB page size. Since we have 

learned from Fig. 14 that the size of log buffer cannot impact 

the write counts, we only employ different cache size here. 

R/W ratios of all experiments are fixed as 5/95. Figure 15 

shows the result.

From our experiments, doubling the page size (as 

8 KB) will cause the write counts slightly more than 50% 

of those of 4 KB page size at all experiments, and has 

almost no impact on the performance of vNVML. This is 

reasonable because larger cache pages can absorb more 

write logs than smaller cache pages before they are writ-

ten to SSD and therefore require less writes to backend 

SSD.

Fig. 15  Comparisons of 4 KB and 8 KB size of NVM cache page. All 

read/write ratios are 5/95. The log buffer size is 2GB and cache sizes 

are from 8GB to 1GB. Numbers of X-axis stand for inserted records 

to each database. a–d Total number of NVM cache pages written to 

SSD of all four instances (numbers of Y-axis) with different request 

distributions and page size. e–h Normalized throughputs (numbers of 

Y-axis) with different request distributions and page size
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5.3  Microbenchmark

We use a simple microbenchmark to compare the perfor-

mance between Intel’s PMDK (Intel 2015), SoftWrAP (Giles 

et al. 2015), and our vNVML. In this experiment, we create a 

2GB array in NVM (virtual NVM, respectively) for PMDK 

and SoftWrAP (vNVML, respectively), and write different 

amounts of data (from 16B to 512B) per page sequentially. 

Each transaction contains 32 page writes.

To use PMDK, we use pmemobj_create to create a 

4 GB NVM pool because 2 GB NVM pool is not enough 

to accommodate 2 GB array. We always set PMEM_IS_

PMEM_FORCE=1 when executing PMDK to avoid unnec-

essary msync or fsync when accessing NVM. For fair-

ness, we use 2 GB log buffer and 2 GB cache when running 

vNVML. We only use default setting for SoftWrAP since 

it does not provide API for internal buffer size adjustment.

Figure 16a shows the result. We use the total execution 

time of PMDK as our baseline, and show the total time of 

writing the 2 GB array for once. The result indicates that 

among others our vNVML performs better as the total writ-

ten data keeps increasing. Figure 16b shows another experi-

ment, which we enlarge the NVM to 8 GB and want to com-

pare the upper bound of each library. We write the 2 GB 

NVM array 16 times. Its result is similar as Fig. 16a. 

6  Conclusion

In this paper we presented vNVML, a byte-level user 

space library to access NVM that provides transaction-

like semantics for applications, ensures write ordering, 

and provides persistency guarantees across failures. Our 

system employs NVM as a write log and a write cache, 

while also employing DRAM as a cache.

We implemented vNVML and evaluated it with realistic 

workloads to show that our system allows applications to 

share NVM, both in a single OS and when docker-like con-

tainers are employed. The results from the evaluation show 

that vNVML incurs less than 10% overhead while providing 

a larger than available physical NVM space to the applica-

tions and allowing them to safely share the virtual NVM.
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