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ABSTRACT

Shared-memory, multi-threaded applications often require
programmers to insert thread synchronization primitives (i.e.

locks, barriers, and condition variables) in critical sections
to synchronize data access between processes. Scaling per-
formance requires balanced per-thread workloads with little
time spent in critical sections. In practice, however, threads
often waste time waiting to acquire locks/barriers, leading to
thread imbalance and poor performance scaling. Moreover,
critical sections often stall data prefetchers that mitigate the
effects of waiting by ensuring data is preloaded in core caches
when the critical section is done.

This paper introduces a pure hardware technique to enable
safe data prefetching beyond synchronization points in chip
multiprocessors (CMPs). We show that successful prefetch-
ing beyond synchronization points requires overcoming two
significant challenges in existing techniques. First, typical
prefetchers are designed to trigger prefetches based on cur-
rent misses. Unlike cores in single-threaded applications, a
multi-threaded core stall on a synchronization point does not
produce new references to trigger a prefetcher. Second, even
if a prefetch were correctly directed to read beyond a synchro-
nization point, it will likely prefetch shared data from another
core before this data has been written. This prefetch would be
considered “accurate” but highly undesirable because it would
lead to three extra “ping-pong” movements due to coherence,
costing more latency and energy than without prefetching.
We develop a new data prefetcher, Synchronization-aware
B-Fetch (SB-Fetch), built as an extension to a previous single-
threaded data prefetcher. SB-Fetch addresses both issues for
shared memory multi-threaded workloads. The novelty in SB-
Fetch is that it explicitly issues prefetches for data beyond
synchronization points and it distinguishes between data
likely and unlikely to incur cache coherence overhead. These
two features are directly synergistic since blindly prefetching
beyond synchronization is likely to incur coherence penalties.
No prior work includes both features.
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SB-Fetch is evaluated using a representative set of bench-
marks from Parsec [4], Rodinia [7], and Parboil [39]. SB-Fetch
improves execution time by 12.3% over baseline and 4% over
best of class prefetching.
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1 INTRODUCTION

The scaling of computer systems through the final CMOS
process technology generations poses a grand challenge for
the computing industry. Despite increasing transistor density,
performance and power gains that traditionally accompanied
process scaling have largely ceased. This trend has manifested
in the current proliferation of chip-multiprocessors (CMPs)
replacing single core processors as the dominant processor
design, due to their lower power consumption for similar
performance, however, blithely scaling core counts with future
process technologies will quickly lead to diminishing returns,
particularly for shared-memory, multi-threaded applications.
In these applications, core and thread-count scaling often
leads to performance destroying workload imbalances [11,
13]. One of the major causes of these thread-level workload
imbalances, as well as degrading performance in general, is
memory latency.

Prefetching is a well-studied technique to reduce the impact
of memory latency. Prior work has shown that prefetching
produces substantial performance gains on typical single-
threaded and multi-application workloads [20, 22, 37, 38].
Unfortunately, multi-threaded applications typically see little
to no performance benefit from existing prefetching schemes.
Figure 1 shows the speedup of multi-threaded applications
under a previously proposed prefetching scheme [20, 33]. The
figure shows that, at best, the performance improvement
of the previous scheme is marginally positive, and at worst
performance is significantly degraded despite evidence that
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Figure 5b illustrates the danger of overly aggressive prefetch-
ing in this case. Here again, at the beginning of execution,
the cache line containing shared data to be written by core
1 is currently residing in core 1’s private cache, along with
several other cache blocks that core 2 will need, but will not
be written in core 1’s critical section. At the beginning of the
trace, while core 2 is idling, the prefetcher in core 2’s private

caches issues three prefetches, 9 - 11 . While two of these

prefetches, 9 and 10 , are to data that ultimately will not

be re-written in core 1, one prefetch, 11 , has not yet seen its

final write in core 1. Later, core 1 enters its critical section to
write shared data to one of the cache line that was already

prefetched (at 11 ), inducing another coherence transaction

at 12 to retrieve ownership of the shared cache line core 2

just prefetched. Once the cache line has been retrieved from
core 2, core 1 can safely write the new data and release its

lock, at which point core 2 can enter the critical section, 13 ,

and attempt to read the shared data core 1 just wrote. This
incurs yet another coherence transaction pulling this data
back to core 2 again. As the figure illustrates, here prefetching
actually incurs a large negative performance impact versus a
baseline case where prefetching does not occur.

This resultant cache block transitioning back and forth
between the cores due to overly aggressive prefetching has
a much worse impact on multi-threaded applications than
traditional single-threaded applications. In particular, while
the impact of a bad prefetch on a single threaded applica-
tion implies some wasted bandwidth, energy and some cache
pollution; in multi-threaded applications, this extra latency
often occurs exactly when the threads in question are literally
“critical” to performance, in that they are the only threads
executing during a mutex in their critical sections. Slowing
down these critical sections has a significantly outsized influ-
ence on application performance. We empirically determined
that these extra writebacks and invalidations account for the
performance loss shown for several benchmarks using B-Fetch
in Figure 1.

As shown in Figure 5c, ideally, one would like the idle
cores to aggressively prefetch data while spinning on a lock,
leveraging the available time and bandwidth, and yet avoid
prefetching specifically only that data that will eventually
be written by other cores. In the figure we see that the

two useful prefetches, 14 and 15 are allowed to proceed

while prefetch 16 is squashed before issuing because 16 is

predicted to be invalidated by a future write in core 1. As we
see, accurate prefetching beyond synchronization primatives
can lead to significant performance increases while preventing
performance regression due to premature prefetching. This
is the goal of SB-Fetch.

Prior works address prefetching for multi-threaded work-
loads. Jerger et al., [19] presents a taxonomy that classifies the
effects of multiprocessor prefetches. While this work suggests
invalidation filtering schemes could improve performance,
it provides no practical mechanism for such a scheme, nor

does it discuss explicitly prefetching beyond synchronization
points as SB-Fetch does. They show that, without explicitly
prefetching beyond synchronization points, the benefit of
invalidation filtering is marginal. Liu et al., [25] and Panda et

al., [32] both present schemes that attempt to tune prefetch
aggressiveness depending upon the criticality of the thread
(among other things). This interesting approach is somewhat
orthogonal to SB-Fetch and likely could be used in combina-
tion with SB-Fetch. Preliminary work by Panda et.al, [31]
proposes a hardware prefetching framework that studies and
classifies L1 misses across all threads to generate L2 cache
prefetches. In our preliminary work [2], we initially examined
the feasibility of prefetching for multithreaded workloads.
Here we expand upon this prior work.

3 PROPOSED DESIGN

SB-Fetch addresses the two issues with prefetching for multi-
threaded workloads. It must continue prefetching beyond
the synchronization semantic while the thread itself is busy
waiting. It must also avoid issuing prefetches for shared data
before it has been written.

The insight behind SB-Fetch is to use the decode stage
in the actual processor pipeline to dynamically track the
synchronization primitives and identify when a thread is
spinning on a lock. For a thread to acquire a lock, it must
load the lock and check that no other thread is currently
holding the lock. Then it must own the lock. If the thread
fails in acquiring the lock, it will stay in a spin loop until it
successfully acquires it. Once a thread acquires the lock it is
safe to execute the critical section. The thread needs to release
the lock to allow other threads to execute the critical section
as well. Acquiring and releasing a lock involves executing the
synchronization primitive instructions LL and SC described
in Section 1.

3.1 Overview

SB-Fetch is an extension to the prior work B-Fetch prefetcher
described in Section 2. To address prefetching beyond syn-
chronization points, we must detect when a thread is trying
to acquire and release a lock in the instruction stream, then
feed the first branch instruction after releasing the lock to the
B-Fetch engine to start prefetching. To this end, SB-Fetch

monitors the synchronization primitive instructions, LL/SC,
in the dynamic instruction stream. The prefetcher identifies
when a thread is spin waiting by the decoding of LL instruc-
tions. It then learns the backward branches following the LL
instruction that are part of the spin once the LL/SC pair are
successful and records these. Later, when this synchroniza-
tion point is encountered again, the prefetcher will ignore
the “correct” backward branch prediction to skip ahead of
the synchronization point, allowing prefetch to continue in
the region beyond the critical section.

To solve the second issue, prefetch invalidation due to
premature prefetching, SB-Fetch keeps track of prefetches
that are invalidated via the cache coherence mechanism prior
to their use. This information is used to filter these “unsafe”



SB-Fetch: Synchronization Aware Hardware Prefetching for Chip Multiprocessors ICS ’20, June 29-July 2, 2020, Barcelona, Spain

I-buffer

D-cache

L1

I-cache I-L1

Issue Q

FU FU FU FU

Branch Prediction

L2

Fetch

Branch
redirect

Decode

Dispatch

L3

SB-Fetch Out-of-Order Core            2nd Tier                  3rd Tier

(1st Tier)

EXE EXE

Shared between cores

Coherence 

Protocol

Register 
Lookup

Branch
Lookahead

Prefetch 
Calculate

Branch Trace Cache

Path Confidence 

Estimator 

Alternate Register File

Memory History Table

Pre-Load Filter

Invalidation Filter

Synchronization 

Primitives Trace Cache

Complete/Retire

Functional Units

Decoded Branch 

Register 

Update

Figure 6: SB-Fetch microarchitecture. Additional components beyond B-Fetch highlighted in green.

SIMD EXE     slice 2
Load Address

(32-bit)

State

(1-bit)

Valid

(1-bit)

Figure 7: Single Synchronization Primitives Trace Cache
(SPTC) entry.

prefetches, prohibiting them from being prefetched in the
future.

Figure 6 illustrates the overall system architecture of a
system incorporating B-Fetch together with the additional
components needed to implement SB-Fetch. The figure shows
the main CPU execution pipeline and the additional hardware
for the B-Fetch prefetcher. We note that, in code that does
not have synchronization, SB-Fetch will perform identically
to B-Fetch, already one of the top performing prefetchers for
single-threaded code [20, 33].

3.2 System Components

As previously described, Figure 6 shows the SB-Fetch mi-
croarchitecture. In particular two components, the Synchro-
nization Primitives Trace Cache (SPTC) and Invalidation
Filter are added to the original B-Fetch microarchitecture.
Here we describe each.

Synchronization Primitives Trace Cache (SPTC): The SPTC
dynamically captures the atomic primitives that were used
to implement synchronization semantics. Each entry acts

as a state machine to indicate the beginning and ending of
each critical section encountered. Here, an LL instruction
followed by a SC to the same effective address, indicates the
beginning of a critical section. Once a second SC is detected,
it indicates the end of a critical section. In SB-Fetch, the
SPTC receives information from the decode stage in the Out-
of-Order pipeline. Figure 7 shows an entry in SPTC. Each
entry in the SPTC includes the lower 32 bits of the effective
address and 2 state bits. An entry is installed in SPTC on the
beginning of a critical section, then the entry becomes valid
once a second SC is detected, which indicates the end of the
critical section. Then the first branch address after the critical
section will be passed to branch lookahead component of the
B-Fetch pipeline, so B-Fetch can predict the execution path
starting from the current branch in order to prefetch data
in the next basic block after the end of the synchronization
semantic. The structures in B-Fetch/SB-Fetch pipeline are
squashed and updated on commits.

We note, as the SPTC is a multi-entry cache, it is possi-
ble to track many synchronization primitives at once, thus
complex, multi-lock synchronization structures can be easily
handled by this structure. We also note that while the above
discussion revolves around the semantics of LL/SC based
synchronization, it would be actually somewhat easier to
adapt the proposed mechanism to CISC ISAs that contain
atomic read/modify/write mechanisms. In particular, instead
of requiring monitoring for the sequence of an LL instruction
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followed by an SC, SB-Fetch would only need to monitor for
the single atomic read/modify/write instruction itself.

Invalidation Filter: To prevent useless prefetches wasting
time, bandwidth and energy, it is crucial to reduce the number
of invalidations of data prefetched but never used in the local
core. The Invalidation Filter tracks data recently prefetched
from another core’s private caches. In the event that a cache
line prefetched from another core is invalidated prior to its
use by the local core, the filter notes the associated load that
caused the prefetch. Future prefetches associated with that
load in that basic block will be dropped before issuing under
the assumption that this load is likely to lead to a premature
prefetch.

The invalidation filter consists of a table that keeps track
of the prefetched cache block that was invalidated by the
coherence protocol. The invalidation filter is indexed by a
10-bit hash of the load PC for the prefetch address. The
invalidation filter has precedence over the branch confidence
and per-load filter. That is, regardless of current branch
confidence and per-load confidence, if a prefetch results in
invalidation, we stop prefetching for the load PC that prefetch
is predicted for.

The Invalidation filter by default will never un-learn that
a given location is unsafe for prefetching. To allow for more
adaptive behavior, we employ a simple, counter-based, ran-
dom clear mechanism. The counter counts cycles up to a
definable maximum, Cm. When this maximum is reached a
single entry in the table is chosen to be cleared. Thus, the
entire table is cleared every Cm ∗ k cycles where k is the size
of the table.

3.3 Hardware Cost

The additional hardware storage requirements for SB-Fetch,
B-Fetch, BOP and SMS are summarized in Table 1. Two
additional components have been added to B-Fetch. In term
of hardware budget Synchronization Primitives Trace Cache
(SPTC) is 0.53125KB and the Invalidation Filter is 4.0KB. To
optimize the performance of SMS, we used the configuration
used by Somogyi, et al. [37] and 2KB spatial regions, a 64-
entry accumulation table, and a 16K-entry pattern history
table. Thus, SB-Fetch incurs a small, 4.53125KB overhead
over B-Fetch, which is still significantly less hardware state
than SMS requires.

4 EVALUATION

4.1 Methodology

We used gem5 [6], a cycle accurate simulator, to evaluate
SB-Fetch. The baseline configuration is summarized in Ta-
ble 2. We used a set of nine multi-threaded programs from
PARSEC benchmark suite [5], four applications from the
Rodinia benchmark suite [7], and three benchmarks from the
Parboil benchmark suite [39]. These benchmark applications
represent widely used shared memory applications that use
the P-threads library to handle synchronization. The bench-
mark applications are cross-compiled for the ALPHA ISA
and run on gem5 configured with the O3CPU CPU model

Table 1: Hardware storage overhead in KB

Prefetcher Component # Entries Size (KB)

B-Fetch

Branch Trace Cache 256 2.06
Memory History Table 128 4.5
Alternate Register File 32 0.156

Per-Load Prefetch Filter 2048 2.25
Additional Cache bits - 1.37

Prefetch Queue 100 0.51
Path Confidence Estimator 2048 2
TOTAL SIZE : 12.84

SB-Fetch

B-Fetch – 12.84
Primitives Trace Cache 128 0.53

Invalidation Filter 1024 4
TOTAL SIZE : 17.37

BOP
Recent Requests Table 256 6
Additional Cache bits - 4
BO prefetcher state - 0.8

TOTAL SIZE : 10.8

SMS
Active Generation Table 64 0.57
Pattern History Table 16k 36

TOTAL SIZE : 36.57

(Out-of-Order) and the detailed (classic) memory model. The
benchmarks were run in Full System (FS) mode.

The baseline hardware is a 4-core CMP machine with
three level cache hierarchy as specified in Table 2. Each core’s
private cache is split into I-cache (32KB) and D-cache(32KB),
256KB second level cache and 1024KB per core third level
shared cache.

Table 2: Target Microarchitecture Parameters

Simulator Gem5 Simulator, ALPHA ISA, Full
System Simulation

Architecture O3 processor, 4-wide, 192-entry ROB

ICache / DCache 32KB, 8-way set-associative

L2Cache 256KB, 8-way set-associative

Shared L3Cache 1024KB per core, 16-way set-
associative

Memory DDR3-1600 x64 channel, Micron
MT41J512M8

SB-Fetch results are compared against four light-weight
prefetcher designs: Stride, SMS, BOP and the original B-
Fetch. In the cases of SMS and BOP, the code for these
prefetchers as well as their configuration was directly adapted
from their respective submissions to the First [34], and Sec-
ond [1] Data Prefetching Competitions. We note that BOP
was the winner of the Second Data Prefetching competition.
The Stride prefetcher was configured as in prior work [20].

4.2 Results

4.2.1 Performance. Figure 8 shows the performance of each
of the five prefetcher designs as the speedup compared to the
baseline no-prefetching configuration. For all results, the exe-
cution time is the time spent in the region of interest (ROI).
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