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ABSTRACT

Shared-memory, multi-threaded applications often require
programmers to insert thread synchronization primitives (i.e.
locks, barriers, and condition variables) in critical sections
to synchronize data access between processes. Scaling per-
formance requires balanced per-thread workloads with little
time spent in critical sections. In practice, however, threads
often waste time waiting to acquire locks/barriers, leading to
thread imbalance and poor performance scaling. Moreover,
critical sections often stall data prefetchers that mitigate the
effects of waiting by ensuring data is preloaded in core caches
when the critical section is done.

This paper introduces a pure hardware technique to enable
safe data prefetching beyond synchronization points in chip
multiprocessors (CMPs). We show that successful prefetch-
ing beyond synchronization points requires overcoming two
significant challenges in existing techniques. First, typical
prefetchers are designed to trigger prefetches based on cur-
rent misses. Unlike cores in single-threaded applications, a
multi-threaded core stall on a synchronization point does not
produce new references to trigger a prefetcher. Second, even
if a prefetch were correctly directed to read beyond a synchro-
nization point, it will likely prefetch shared data from another
core before this data has been written. This prefetch would be
considered “accurate” but highly undesirable because it would
lead to three extra “ping-pong” movements due to coherence,
costing more latency and energy than without prefetching.
We develop a new data prefetcher, Synchronization-aware
B-Fetch (SB-Fetch), built as an extension to a previous single-
threaded data prefetcher. SB-Fetch addresses both issues for
shared memory multi-threaded workloads. The novelty in SB-
Fetch is that it explicitly issues prefetches for data beyond
synchronization points and it distinguishes between data
likely and unlikely to incur cache coherence overhead. These
two features are directly synergistic since blindly prefetching
beyond synchronization is likely to incur coherence penalties.
No prior work includes both features.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

ICS ’20, June 29-July 2, 2020, Barcelona, Spain

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7983-0/20/06. .. $15.00
https://doi.org/10.1145/3392717.3392735

Paul V. Gratz
Texas A&M University
pgratzQtamu.edu

Daniel A. Jiménez
Texas A&M University
djimenez@tamu.edu

SB-Fetch is evaluated using a representative set of bench-
marks from Parsec [4], Rodinia [7], and Parboil [39]. SB-Fetch
improves execution time by 12.3% over baseline and 4% over
best of class prefetching.

CCS CONCEPTS

o Computer systems organization — Multicore architectures.

KEYWORDS

Shared-memory, chip multiprocessors, hardware prefetching

ACM Reference Format:

Laith M. AlBarakat, Paul V. Gratz, and Daniel A. Jiménez. 2020.
SB-Fetch: Synchronization Aware Hardware Prefetching for Chip
Multiprocessors. In 2020 International Conference on Supercom-
puting (ICS ’20), June 29-July 2, 2020, Barcelona, Spain. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3392717.
3392735

1 INTRODUCTION

The scaling of computer systems through the final CMOS
process technology generations poses a grand challenge for
the computing industry. Despite increasing transistor density,
performance and power gains that traditionally accompanied
process scaling have largely ceased. This trend has manifested
in the current proliferation of chip-multiprocessors (CMPs)
replacing single core processors as the dominant processor
design, due to their lower power consumption for similar
performance, however, blithely scaling core counts with future
process technologies will quickly lead to diminishing returns,
particularly for shared-memory, multi-threaded applications.
In these applications, core and thread-count scaling often
leads to performance destroying workload imbalances [11,
13]. One of the major causes of these thread-level workload
imbalances, as well as degrading performance in general, is
memory latency.

Prefetching is a well-studied technique to reduce the impact
of memory latency. Prior work has shown that prefetching
produces substantial performance gains on typical single-
threaded and multi-application workloads [20, 22, 37, 38].
Unfortunately, multi-threaded applications typically see little
to no performance benefit from existing prefetching schemes.
Figure 1 shows the speedup of multi-threaded applications
under a previously proposed prefetching scheme [20, 33]. The
figure shows that, at best, the performance improvement
of the previous scheme is marginally positive, and at worst
performance is significantly degraded despite evidence that
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Figure 1: Speedup of Parsec [4], Rodinia [7], and Parboil [39]
workloads with B-Fetch [20, 33|, normalized against a no-
prefetching baseline.

several are memory bound [4, 11]1. There are two main
reasons for the poor performance of traditional prefetching
techniques on these workloads: First, most prefetchers only
issue a prefetch when a cache miss occurs in that core. In
multi-threaded applications, the ideal time to pre-load the
cache is while a given thread is waiting on thread synchroniza-
tion. This represents a significant wasted opportunity because
thread synchronization primitives contain no (relevant) cache
misses.

Second, for those few prefetchers that issue prefetches
without a triggering miss (e.g. B-Fetch [20, 33]), prefetching
shared data, even with perfect accuracy, might incur excess
invalidations in the event that the prefetched data is read
before it is written in the producing core. This is the primary
cause of B-Fetch’s performance loss in the figure. No prior
work we are aware of has identified and addressed these two
issues in prefetching for multi-threaded applications.

Here, we present Synchronization-aware B-Fetch (SB-Fetch),
a data prefetching scheme designed for prefetching shared-
memory, multi-threaded workloads. This work makes the
following contributions:

e This is the first work we are aware of to characterize
the causes of poor prefetching performance in shared-
memory multi-threaded applications. These are the
inability to prefetch beyond synchronization points
and tendency to prefetch shared data before it has
been written.

e Building upon this characterization, we propose SB-
Fetch, a low-complexity, low-overhead prefetcher design
that addresses both issues.

e We show that SB-Fetch provides a speedup of 12.3%
over baseline and 4% over best of class prefetching [28,
38].

On single-threaded, multi-programmed workloads, B-Fetch sees an
average gain of 31%]20].
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2 MOTIVATION AND BACKGROUND
2.1 Data Prefetching

Data prefetching is a well known technique in which the cache
is pre-filled with useful data ahead of an actual demand load
request coming from the processor. Typically, the prefetching
opportunity is limited to waiting until a cache miss occurs,
and then reading either a set of lines sequentially following the
current miss [36], a set of lines following a strided pattern with
respect to the current miss [8], or a set of blocks spatially
around the miss [38]. More recent prefetchers attempt to
predict complex, irregular access patterns [15, 17, 22, 28, 35,
38]. While these methods show significant benefit, they are
inherently reactive, waiting until a cache miss occurs before
they initiate prefetches down the speculated path.

Some prefetchers, such as B-Fetch [20, 33], are triggered
by the fetch of a branch instruction by the processor, making
them more suitable for prefetching beyond synchronization
points as we will discuss. B-Fetch is a data cache prefetcher
that employs two speculative components. It speculates on the
expected path through future basic blocks, using a lookahead
mechanism that relies on branch prediction to predict that
execution path, and a scheme to predict the effective addresses
of load instructions along that path based on the register file
transformations per-basic block. B-Fetch records the variation
of register contents at earlier branch instructions and uses
this knowledge to predict the effective address.

Some recent prior work has examined the case of prefetch-
ing in specialized multi-threaded environments. In particular
Lee et al examine prefetching mechanisms for GPGPUs [24]
and Izraelevitz et al discuss how a policy of “always-abort”
can improve performance for hardware transactional mem-
ory [16]. While these a works have a similar intent to the
work presented here the specialized domains of GPUs and
HTM respectively make their solutions hard to generalize to
traditional shared memory CPUs.

2.1.1 B-Fetch Microarchitecture. Since B-Fetch is one of the
few prefetchers that explicitly speculates down a future path
of execution and that does not wait for a memory reference to
miss before it starts prefetching, we will use it as a basis for
the work in this paper. Thus we here present a recap of the
B-Fetch microarchitecture as originally published [20, 33].
Program construction can be mapped into a control flow
graph as shown in Figure 2. As shown in the figure, the
outcome of each branch determines which basic blocks will
ultimately be executed. In the figure, there are three possible
such paths, highlighted as @, and @ In each case, which
loads are issued is directly dependent upon the path taken
through the code as shown. Further, the particular effective
addresses themselves are dependent upon the path taken
through the code, as each basic block causes transformations
to the data in the register file as execution continues.
B-Fetch uses a lookahead mechanism that predicts the

likely path of execution starting from the current non-speculative

branch and issues prefetches for the memory references down
that path. B-Fetch relies on the idea that register values at
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Figure 2: Data Access and Control Flow.
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Figure 3: B-Fetch microarchitecture.

the time of effective address generation are correlated in a
predictable way from their corresponding values at a time
when their preceding branch instructions were executed and
the transformations that occur to them over the course of
the blocks to that point. Figure 3 shows the overall system
architecture of a B-Fetch together with an out-of-order pro-
cessor core. It shows the main core execution pipeline and
the auxiliary hardware for B-Fetch preftecher.

B-Fetch is composed of a 3-stage pipeline that runs parallel
to the core pipeline. The Decoded Branch Register (DBR)
connects B-Fetch to the cores’s Fetch stage. When a branch
instruction is decoded in the main execution pipeline, the
PC of the branch instruction is added to the DBR. This
branch PC and target address starts the prediction of the fu-
ture execution path, memory instructions, and their effective
addresses.

Here we describe each of the major microarchitectural
components of B-Fetch and their purpose.

ICS '20, June 29-July 2, 2020, Barcelona, Spain

Branch Lookahead Stage: This stage is similar to the fetch
stage in the main pipeline. The duty of this stage is to gener-
ate the speculative exception path from the currently decoded
branch. This stage includes two main components. First, the
Branch Trace Cache that traces the branch instructions in
the dynamic instruction stream. This is used to create set
of pointers in the program control flow marked by branch
instructions, allowing the prefetcher to skip the branch in-
structions in between. By doing so, the branch trace cache
help guide the lookahead stage forward and the branch pre-
dictor and target buffer to help maneuver it in the right
direction. The second component is Path Confidence Estima-
tor that is used to throttle speculation in the event that the
cumulative branch predictions to this point are not confident.
This component prevents the issuing of useless prefetches
and cache pollution.

Register Lookup Stage: This stage retains information about
the registers which produce loads in each basic block to
generate effective addresses for the given block. This stage
includes two main components. First, the Alternate Register
File (ARF) maintains a copy of the register file contents
for use in generating predicted prefetch effective addresses.
To ensure timely updates to the ARF, a copy of execution
stage generated register values is used to perform updates.
The second component is the Memory History Table (MHT)
that maintains source register indices, current register values,
and offset values to calculate effective addresses for prefetch
candidates.

Prefetch Calculate Stage: This stage is responsible for gener-
ating the prefetch addresses that are issued to the prefetch
queue. It synthesizes the data from the MHT and ARF to
produce a stream of predicted future memory references. This
stream is then passed through the pre-load filter that keeps
track of the issued but useless prefetches on a per-load ba-
sis. Loads found to typically produce useless prefetches are
prohibited from producing a prefetch.

We note that it is beyond the scope of the current work to
discuss the full details of the previously published B-Fetch
microarchitecture, for that we point the reader towards the
prior work [20, 33]. That said, we would like to point out
that B-Fetch requires relatively little state (~12KB) and rela-
tively low hardware complexity (a handful of tables and some
adders) to achieve accurate and high coverage on traditional
workloads. Importantly, unlike other prefetching techniques,
B-Fetch provides a direct mechanism for speculating upon
the future path of the program and leveraging that specula-
tion to issue prefetches, without the overhead of running the
full core ahead, as in runahead execution [30]. Thus, we feel
that B-Fetch makes an ideal starting point for attempting to
efficiently issue prefetches beyond synchronization points.

2.2 The Shared Memory Model

With growing core counts, fully exploiting the underlying
microarchitecture and achieving scaling performance of single
applications requires dividing that application into indepen-
dent threads that can run simultaneously across the cores
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within a system and take advantage of thread-level paral-
lelism (TLP). The dominant programming model for this
form of TLP is shared memory multi-threading. In this pro-
gramming model, an application is broken into independent
threads that share a single, coherent view of memory. Typi-
cally, these independent threads share some data to complete
the task. In this model, programmers insert explicit thread
synchronization primitives (i.e. locks, barriers, and condition
variables) to coordinate data sharing between threads, en-
suring that data produced by one thread is not read by a
consuming thread before it is written and so forth.

2.2.1 Shared Memory Synchronization. Synchronization is
a central operation in parallel applications. The two major
forms of explicit synchronization operations in shared memory
multiprocessors are barriers and locks. A barrier used to
ensure no process within a group cooperating processes can
move beyond a certain point in the execution before all
processes have reached the barrier. Barriers are commonly
used to enforce such waiting.

Figure 4a illustrates how a barrier works. A task executes
its code until it reaches a barrier. Then it waits until all other
tasks have reached that barrier before proceeding. Ideally,
all tasks start at the same time and reach the barrier at the
same time, then start new phase of execution.

Thread Thread Thread Thread Thread Thread Thread Thread

| 1
| Barrier

Barrier Barrier

Time 1 l

Barrier Barrier

|1

(b) Critical threads.

f—

Phase #1
IS
Phase #1

Barrier

Phase #2

Phase #2
ra—
—

Phase #3
Phase #3

(a) Ideal barrier. J

Figure 4: Ideal barrier synchronizes and Critical threads in
the execution phases.

A thread is critical if its progress determines the progress
of the whole application and forces other threads to wait for
it. Due to load imbalance between threads, different threads
can be critical during execution. As Figure 4b shows other
threads need to wait untill the critical thread get to the
barrier before resume execution. A synchronization barrier
can lead to performance degradation. The slowest thread
prevents forward progress of other threads and forces other
threads to wait on the barrier. The performance of synchro-
nization barriers in shared memory is often unpredictable
and a performance bottleneck.
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2.2.2 Architectural Support for Shared Memory Synchroniza-
tion. To facilitate the construction of synchronization primi-
tives, most architectures provide some form of read-modify-
write instructions that are capable of updating (i.e., reading
and writing) a memory location as an atomic operation. For
example, RISC style ISAs, such as Arm and ALPHA, support
Load Linked (LL) and Store Conditional (SC) instructions to
implement synchronization primitives [10, 18]. In this scheme,
the LL instruction loads a block of data into the cache and
marks this cache line for tracking. The following SC instruc-
tion attempts to write a new value to the same block. This
write succeeds only if the block has not been referenced since
the preceding LL. Any memory reference to the block from
another processor between the LL and SC pair causes the SC
to fail. Upon failure, the locking thread will typically retry
the full LL/SC pair until atomic read/modify/write success
is achieved.

For a thread to acquire the lock, it needs to load the lock
and check if no other thread is holding the lock. After that
it needs to own the lock. If the thread fails to acquire the
lock, it will stay in a spin loop until it successfully acquires
it. Once a thread acquires the lock it is safe to execute the
critical section. Upon entering the critical section, only then
is it “safe” to write or update data shared between threads
because only one thread may enter the critical section to
modify that data at any given time. Once this shared data
is written, the thread then releases the lock to allow other
threads to execute the critical section, and modify the shared
data as well. Acquiring and releasing a lock involves executing
primitive instructions.

We note that CISC ISAs typically employ single read/-
modify /write atomic instructions that produce similar behav-
ior in implementing shared memory synchronization seman-
tics. For the purpose of discussion we focus on the LL/SC
but our approach can be easily applied to CISC ISAs. In
Section 3.2 we briefly discus the changes required to support
CISC ISAs.

2.3 Cache Coherence

Cache coherence is the hardware mechanism by which shared
data in different cores’ private caches are kept coherent. Many
coherence schemes have been proposed [3, 9, 14, 23, 26, 27].
One commonly used approach is a directory based cache
coherence scheme. In this scheme, a directory, typically co-
located with the shared, last-level cache, maintains the shar-
ing state of all the cache lines in the individual cores’ private
caches. In such a scheme, when a core issues a request to
acquire or change the state of a cache line in its private cache
it must send a message to the directory. The directory then
may need to send messages to the other cores’ private caches,
waiting for their acknowledgment before finally replying back
to the requesting core. This transaction incurs a significant
latency [12, 21, 29, 40].

Figure ba illustrates the typical case for the sharing of
data in a cache coherent shared memory system. The fig-
ure shows two threads communicating through shared data,
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Figure 5: Cache Coherence and Prefetching.

synchronized by a lock. In the figure, core 1 first enters its
critical section ((1)). In this case the cache line containing
the shared data with the lock variable happens to be in the
local private cache and the critical section finishes quickly.
Note that, at @ and beyond, the cache line containing the
lock variable will remain in the private cache of core 1, while
core 2 executes, prior to its critical section. Here, at @, core
2 is spinning, waiting for the write of this shared data. Once
core 1 has completed its critical section, core 2 is free to enter
the critical section and access the data in question. Since this
data is on a cache line in core 1’s private cache, a request
is made to the directory for a shared copy, @ At @, this
request leads to a writeback request to core 1. At @, core
1’s private cache issues a writeback to the LLC of the line
containing the shared data. Finally, at @, this line is then
forwarded to core 2 and core 2’s critical section can proceed
((®). All of this back and forth between the caches, directory
and LLC, can incur hundreds of cycles of overhead at exactly
the most critical time in the execution of a multi-threaded
application.

2.3.1 Prefetching in Multithreaded Workloads. Multithreaded
applications are just as likely to experience lost performance
due to long-latency memory accesses as traditional, single
threaded applications. Thus, prefetching should be a good
way to improve performance. As discussed in the previous
section, prefetching for multi-threaded applications produces
unique challenges, in that threads waiting on synchronization
typically do not induce prefetches for data beyond those
synchronization points. Moreover, reckless prefetching of data
beyond synchronization points could hurt performance due
to premature prefetching of shared data before it has been
written.

In the first case, where prefetching does not occur past
synchronization points, there is a great lost opportunity for
performance gain. As we see in Figure 5a, at point @, core
2 is effectively idle waiting for core 1 to finish its critical
section. If prefetching of data that core 2 will need after this
synchronization point could be performed, it would be a great
opportunity to leverage available, unused memory bandwidth
in core 2. However, if core 2 is overly aggressive and prefetches
shared data before it is written, the performance impact could
be greater than the benefit of correct, on-time prefetches.
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Figure 5b illustrates the danger of overly aggressive prefetch-
ing in this case. Here again, at the beginning of execution,
the cache line containing shared data to be written by core
1 is currently residing in core 1’s private cache, along with
several other cache blocks that core 2 will need, but will not
be written in core 1’s critical section. At the beginning of the
trace, while core 2 is idling, the prefetcher in core 2’s private

caches issues three prefetches, @-@ While two of these
prefetches, @ and , are to data that ultimately will not

be re-written in core 1, one prefetch, , has not yet seen its
final write in core 1. Later, core 1 enters its critical section to
write shared data to one of the cache line that was already
prefetched (at @), inducing another coherence transaction

at @ to retrieve ownership of the shared cache line core 2
just prefetched. Once the cache line has been retrieved from
core 2, core 1 can safely write the new data and release its
lock, at which point core 2 can enter the critical section, @,
and attempt to read the shared data core 1 just wrote. This
incurs yet another coherence transaction pulling this data
back to core 2 again. As the figure illustrates, here prefetching
actually incurs a large negative performance impact versus a
baseline case where prefetching does not occur.

This resultant cache block transitioning back and forth
between the cores due to overly aggressive prefetching has
a much worse impact on multi-threaded applications than
traditional single-threaded applications. In particular, while
the impact of a bad prefetch on a single threaded applica-
tion implies some wasted bandwidth, energy and some cache
pollution; in multi-threaded applications, this extra latency
often occurs exactly when the threads in question are literally
“critical” to performance, in that they are the only threads
executing during a mutex in their critical sections. Slowing
down these critical sections has a significantly outsized influ-
ence on application performance. We empirically determined
that these extra writebacks and invalidations account for the
performance loss shown for several benchmarks using B-Fetch
in Figure 1.

As shown in Figure 5c, ideally, one would like the idle
cores to aggressively prefetch data while spinning on a lock,
leveraging the available time and bandwidth, and yet avoid
prefetching specifically only that data that will eventually
be written by other cores. In the figure we see that the

two useful prefetches, and @ are allowed to proceed

while prefetch is squashed before issuing because is
predicted to be invalidated by a future write in core 1. As we
see, accurate prefetching beyond synchronization primatives
can lead to significant performance increases while preventing
performance regression due to premature prefetching. This
is the goal of SB-Fetch.

Prior works address prefetching for multi-threaded work-
loads. Jerger et al., [19] presents a taxonomy that classifies the
effects of multiprocessor prefetches. While this work suggests
invalidation filtering schemes could improve performance,
it provides no practical mechanism for such a scheme, nor
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does it discuss explicitly prefetching beyond synchronization
points as SB-Fetch does. They show that, without explicitly
prefetching beyond synchronization points, the benefit of
invalidation filtering is marginal. Liu et al., [25] and Panda et
al., [32] both present schemes that attempt to tune prefetch
aggressiveness depending upon the criticality of the thread
(among other things). This interesting approach is somewhat
orthogonal to SB-Fetch and likely could be used in combina-
tion with SB-Fetch. Preliminary work by Panda et.al, [31]
proposes a hardware prefetching framework that studies and
classifies L1 misses across all threads to generate L2 cache
prefetches. In our preliminary work [2], we initially examined
the feasibility of prefetching for multithreaded workloads.
Here we expand upon this prior work.

3 PROPOSED DESIGN

SB-Fetch addresses the two issues with prefetching for multi-
threaded workloads. It must continue prefetching beyond
the synchronization semantic while the thread itself is busy
waiting. It must also avoid issuing prefetches for shared data
before it has been written.

The insight behind SB-Fetch is to use the decode stage
in the actual processor pipeline to dynamically track the
synchronization primitives and identify when a thread is
spinning on a lock. For a thread to acquire a lock, it must
load the lock and check that no other thread is currently
holding the lock. Then it must own the lock. If the thread
fails in acquiring the lock, it will stay in a spin loop until it
successfully acquires it. Once a thread acquires the lock it is
safe to execute the critical section. The thread needs to release
the lock to allow other threads to execute the critical section
as well. Acquiring and releasing a lock involves executing the
synchronization primitive instructions LL and SC described
in Section 1.

3.1 Overview

SB-Fetch is an extension to the prior work B-Fetch prefetcher
described in Section 2. To address prefetching beyond syn-
chronization points, we must detect when a thread is trying
to acquire and release a lock in the instruction stream, then
feed the first branch instruction after releasing the lock to the
B-Fetch engine to start prefetching. To this end, SB-Fetch
monitors the synchronization primitive instructions, LL/SC,
in the dynamic instruction stream. The prefetcher identifies
when a thread is spin waiting by the decoding of LL instruc-
tions. It then learns the backward branches following the LL
instruction that are part of the spin once the LL/SC pair are
successful and records these. Later, when this synchroniza-
tion point is encountered again, the prefetcher will ignore
the “correct” backward branch prediction to skip ahead of
the synchronization point, allowing prefetch to continue in
the region beyond the critical section.

To solve the second issue, prefetch invalidation due to
premature prefetching, SB-Fetch keeps track of prefetches
that are invalidated via the cache coherence mechanism prior
to their use. This information is used to filter these “unsafe”
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Figure 6: SB-Fetch microarchitecture. Additional components beyond B-Fetch highlighted in green.
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prefetches, prohibiting them from being prefetched in the
future.

Figure 6 illustrates the overall system architecture of a
system incorporating B-Fetch together with the additional
components needed to implement SB-Fetch. The figure shows
the main CPU execution pipeline and the additional hardware
for the B-Fetch prefetcher. We note that, in code that does
not have synchronization, SB-Fetch will perform identically
to B-Fetch, already one of the top performing prefetchers for
single-threaded code [20, 33].

3.2 System Components

As previously described, Figure 6 shows the SB-Fetch mi-
croarchitecture. In particular two components, the Synchro-
nization Primitives Trace Cache (SPTC) and Invalidation
Filter are added to the original B-Fetch microarchitecture.
Here we describe each.

Synchronization Primitives Trace Cache (SPTC): The SPTC
dynamically captures the atomic primitives that were used
to implement synchronization semantics. Each entry acts

as a state machine to indicate the beginning and ending of
each critical section encountered. Here, an LL instruction
followed by a SC to the same effective address, indicates the
beginning of a critical section. Once a second SC is detected,
it indicates the end of a critical section. In SB-Fetch, the
SPTC receives information from the decode stage in the Out-
of-Order pipeline. Figure 7 shows an entry in SPTC. Each
entry in the SPTC includes the lower 32 bits of the effective
address and 2 state bits. An entry is installed in SPTC on the
beginning of a critical section, then the entry becomes valid
once a second SC is detected, which indicates the end of the
critical section. Then the first branch address after the critical
section will be passed to branch lookahead component of the
B-Fetch pipeline, so B-Fetch can predict the execution path
starting from the current branch in order to prefetch data
in the next basic block after the end of the synchronization
semantic. The structures in B-Fetch/SB-Fetch pipeline are
squashed and updated on commits.

We note, as the SPTC is a multi-entry cache, it is possi-
ble to track many synchronization primitives at once, thus
complex, multi-lock synchronization structures can be easily
handled by this structure. We also note that while the above
discussion revolves around the semantics of LL/SC based
synchronization, it would be actually somewhat easier to
adapt the proposed mechanism to CISC ISAs that contain
atomic read/modify/write mechanisms. In particular, instead
of requiring monitoring for the sequence of an LL instruction
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followed by an SC, SB-Fetch would only need to monitor for
the single atomic read/modify/write instruction itself.

Invalidation Filter: To prevent useless prefetches wasting
time, bandwidth and energy, it is crucial to reduce the number
of invalidations of data prefetched but never used in the local
core. The Invalidation Filter tracks data recently prefetched
from another core’s private caches. In the event that a cache
line prefetched from another core is invalidated prior to its
use by the local core, the filter notes the associated load that
caused the prefetch. Future prefetches associated with that
load in that basic block will be dropped before issuing under
the assumption that this load is likely to lead to a premature
prefetch.

The invalidation filter consists of a table that keeps track
of the prefetched cache block that was invalidated by the
coherence protocol. The invalidation filter is indexed by a
10-bit hash of the load PC for the prefetch address. The
invalidation filter has precedence over the branch confidence
and per-load filter. That is, regardless of current branch
confidence and per-load confidence, if a prefetch results in
invalidation, we stop prefetching for the load PC that prefetch
is predicted for.

The Invalidation filter by default will never un-learn that
a given location is unsafe for prefetching. To allow for more
adaptive behavior, we employ a simple, counter-based, ran-
dom clear mechanism. The counter counts cycles up to a
definable maximum, Cy,. When this maximum is reached a
single entry in the table is chosen to be cleared. Thus, the
entire table is cleared every Cm, * k cycles where k is the size
of the table.

3.3 Hardware Cost

The additional hardware storage requirements for SB-Fetch,
B-Fetch, BOP and SMS are summarized in Table 1. Two
additional components have been added to B-Fetch. In term
of hardware budget Synchronization Primitives Trace Cache
(SPTC) is 0.53125KB and the Invalidation Filter is 4.0KB. To
optimize the performance of SMS, we used the configuration
used by Somogyi, et al. [37] and 2KB spatial regions, a 64-
entry accumulation table, and a 16K-entry pattern history
table. Thus, SB-Fetch incurs a small, 4.53125KB overhead
over B-Fetch, which is still significantly less hardware state
than SMS requires.

4 EVALUATION
4.1 Methodology

We used gemb [6], a cycle accurate simulator, to evaluate
SB-Fetch. The baseline configuration is summarized in Ta-
ble 2. We used a set of nine multi-threaded programs from
PARSEC benchmark suite [5], four applications from the
Rodinia benchmark suite [7], and three benchmarks from the
Parboil benchmark suite [39]. These benchmark applications
represent widely used shared memory applications that use
the P-threads library to handle synchronization. The bench-
mark applications are cross-compiled for the ALPHA ISA
and run on gemb configured with the O3CPU CPU model
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Table 1: Hardware storage overhead in KB

[ Prefetcher | Component | # Entries | Size (KB) |
Branch Trace Cache 256 2.06
Memory History Table 128 4.5
Alternate Register File 32 0.156
B-Fetch Per-Load Prefetch Filter 2048 2.25
Additional Cache bits - 1.37
Prefetch Queue 100 0.51
Path Confidence Estimator 2048 2
TOTAL SIZE : 12.84
B-Fetch - 12.84
Primitives Trace Cache 128 0.53
SB-Fetch Tnvalidation Filter 1024 1
TOTAL SIZE : 17.37
Recent Requests Table 256 6
BOP Additional Cache bits - 4
BO prefetcher state - 0.8
TOTAL SIZE : 10.8
Active Generation Table 64 0.57
SMS Pattern History Table 16k 36
TOTAL SIZE : 36.57

(Out-of-Order) and the detailed (classic) memory model. The
benchmarks were run in Full System (FS) mode.

The baseline hardware is a 4-core CMP machine with
three level cache hierarchy as specified in Table 2. Each core’s
private cache is split into I-cache (32KB) and D-cache(32KB),
256KB second level cache and 1024KB per core third level
shared cache.

Table 2: Target Microarchitecture Parameters

Simulator Gemb Simulator, ALPHA ISA, Full
System Simulation
Architecture O3 processor, 4-wide, 192-entry ROB

ICache / DCache | 32KB, 8-way set-associative

L2Cache 256 KB, 8-way set-associative

Shared L3Cache | 1024KB per core, 16-way set-
associative

Memory DDR3-1600 x64 channel, Micron
MT41J512M8

SB-Fetch results are compared against four light-weight
prefetcher designs: Stride, SMS, BOP and the original B-
Fetch. In the cases of SMS and BOP, the code for these
prefetchers as well as their configuration was directly adapted
from their respective submissions to the First [34], and Sec-
ond [1] Data Prefetching Competitions. We note that BOP
was the winner of the Second Data Prefetching competition.
The Stride prefetcher was configured as in prior work [20].

4.2 Results

4.2.1 Performance. Figure 8 shows the performance of each
of the five prefetcher designs as the speedup compared to the
baseline no-prefetching configuration. For all results, the exe-
cution time is the time spent in the region of interest (ROI).
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Figure 11 decomposes the benefits provided by different
Figure 10: Coverage for each prefetcher across all bench- components of the proposed SB-Fetch. We observe that al-
marks. most all benchmarks benefit to some degree from both tech-

In the figure we see that SB-Fetch provides a significant per-
formance increase across all benchmarks of 12.3% versus the

niques lock bypassing and invalidate filtering. For example,
in ferret ~ 50% of the benefit comes from lock bypassing and
~ 50% from invalidate filtering. Meanwhile, x264 benchmark
~ 21% comes from lock bypassing and ~ 79% from invalidate
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filtering. We also note that each of the benchmarks that see
significant performance losses for B-Fetch: dedup, stream-
cluster and x264, are also the benchmarks for which the
invalidation filter provides a significant benefit. The matches
the intuition that the cause of performance losses in these
benchmarks is due to the impact of invalidations on critical
thread execution.

4.2.2 Coverage and Accuracy Analysis. Figure 12 shows the
number of useful versus useless prefetches for each prefetcher.
Each bar is the arithmetic average across all benchmarks.
The figure illustrates several points about the behavior seen
in the performance results (Figure 8). First we see that, for
the Stride prefetcher where very small performance gains
are seen, generally few prefetches are issued, thus the per-
formance gains are minimal. Interestingly for SMS, which
sees some gains, there are actually fewer useful prefetches
and more useless than even Stride. In this case, the useless
prefetches were not enough to pollute the caches significantly,
while there were more useful prefetches issued on the critical
thread, thus more performance gains. BOP, which slightly
outperforms SMS, appears to have nearly identical useful
vs. useless prefetches. The original B-Fetch, while issuing
slightly more useful prefetches than BOP, also issues more
than twice as many useless prefetches. The original B-Fetch,
often will get stuck in spin-lock loops, prefetching the lock
cache line itself, which is not only useless but can cause
worse performance because the lock cache line will have to
be invalidated back to the core currently holding the lock.
Further, for the occasions when B-Fetch does prefetch beyond
the critical section (when it predicts the lock will not spin),
B-Fetch often prefetches cache lines from other core’s private
caches before the writing core has written the data, caus-
ing performance loss as the cache line ping pongs back and
forth between the private caches. In the figure, we see that
SB-Fetch, by contrast, successfully converts the majority of
B-Fetch’s useless prefetches into useful prefetches, this is the
dominant reason why SB-Fetch outperforms the competition
on these workloads.

5
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Figure 12: Useful and useless prefetches issued, averaged
across all benchmarks for each prefetcher.

Figure 9 shows the percentage of invalidated prefetches
for each prefetcher. Generally, we see that SB-Fetch has the
lowest invalidation fraction, relative to the other prefetchers.
Interestingly, we see that the rates of invalidation are actually
quite low. We found that in part this is because the total
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number of prefetches issued can vary widely, with very few
prefetches issued for blackscholes for instance.

Finally, Figure 10 examines the coverage for all prefetchers
across all benchmarks. Here prefetching coverage is measured
as the number of useful prefetches normalized to the num-
ber of data misses in the baseline configuration without a
prefetcher. As shown in the figure, SB-Fetch achieves a geo-
metric mean coverage of 35% which is the highest coverage
across all benchmarks compared to the other prefetchers such
as BOP that achieved a geometric mean of 23%.

4.2.3 Sensitivity Analysis. This section provides a sensitiv-
ity analysis of SB-Fetch. We study the impact of different
parameters and structures on the performance.

Invalidation Filter Size: Figure 14 examines the impact
of invalidation filter size on performance. This is the table
that tracks cache lines which are invalidated due to coher-
ence traffic. Here we see that generally SB-Fetch is highly
insensitive to invalidation filter size with only small gains
seen as the filter grows.

Synchronization Primitives Trace Cache: Figure 15 exam-
ines the impact of invalidation filter size on performance. This
cache tracks the beginning and ending of synchronization
primatives so SB-Fetch can skip their branches. Similar to
the Invalidation filter, SB-Fetch is highly insensitive to SPTC
size.

Branch Confidence: Figure 16 examines the impact of the
B-Fetch branch confidence threshold on performance. This
confidence threshold throttles the aggressiveness of the un-
derlying B-Fetch prefetcher. Here we see that the best perfor-
mance is achieved at the default .75 confidence. This value is
the same as was default in the original B-Fetch.

Scalability: Finally, figure 13 shows the performance scalbil-
ity for SB-Fetch going from 4 cores to 8 cores. For this number
of cores SB-Fetch scales well, with an average performance
increase from 12% to ~ 16%.

5 CONCLUSION

With increasing core-counts, shared memory multi-threading
is becoming an ever more critical programming paradigm.
Shared memory multi-threaded applications are similarly im-
pacted by latency in the memory system as single-threaded
applications, however, current memory prefetchers are unable
to produce much performance benefit in these workloads. In
this paper we identify two primary causes for poor perfor-
mance in existing prefetchers for multi-threaded workloads:
the inability to prefetch beyond synchronization semantics
and the premature prefetching of data before it has been
written in the producing core when the prefetcher is able
to prefetch beyond those semantics. We then show a low
overhead technique which allows prefetching beyond syn-
chronization semantics while avoiding prefetching of data
which has not yet been written by its producing thread. This
scheme, SB-Fetch, achieves a geometric mean speedup of
12.3% over baseline, more than twice the gains of the nearest
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competitor light-weight prefetcher on these workloads. As a
final note, none of the proposed additions negatively impact
the single thread performance gains seen in the proposed
prefetcher.
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