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Abstract

Policy gradient methods are a class of powerful
algorithms in reinforcement learning (RL). More
recently, some variance reduced policy gradient
methods have been developed to improve sam-
ple efficiency and obtain a near-optimal sample
complexity O)e~3+for finding an e-stationary
point of non-concave performance function in
model-free RL. However, the practical perfor-
mances of these variance reduced policy gradi-
ent methods are not consistent with their near-
optimal sample complexity, because these meth-
ods require large batches and strict learning rates
to achieve this optimal complexity. In the paper,
thus, we propose a class of efficient momentum-
based policy gradient methods, which use adap-
tive learning rates and do not require large batch-
es. Specifically, we propose a fast important-
sampling momentum-based policy gradient (IS-
MBPG) method by using the importance sam-
pling technique. We also propose a fast Hessian-
aided momentum-based policy gradient (HA-
MBPG) method via using the semi-Hessian in-
formation. Moreover, we prove that the IS-
MBPG and HA-MBPG methods reach the best
known sample complexity O)e~3-+without large
batches. In particular, we present a non-adaptive
version of IS-MBPG method (i.e., IS-MBPG¥*),
which has a simple monotonically decreasing
learning rate. We prove that the IS-MBPG* al-
so reaches the best known sample complexity
of O)e~3+without large batches. In the exper-
iments, we use some benchmark tasks to demon-
strate the effectiveness of our algorithms.
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1. Introduction

Reinforcement Learning (RL) has achieved great success
in solving many sequential decision-making problems such
as autonomous driving (Shalev-Shwartz et al., 2016), robot
manipulation (Deisenroth et al., 2013), the game of Go (Sil-
ver et al.,, 2017) and natural language processing (Wang
et al., 2018). In general, RL involves a Markov decision
process (MDP), where an agent takes actions dictated by
a policy in a stochastic environment over a sequence of
time steps, and then maximizes the long-term cumulative
rewards to obtain an optimal policy. Due to easy imple-
mentation and avoiding policy degradation, policy gradient
method (Williams, 1992; Sutton et al., 2000) is widely used
for finding the optimal policy in MDPs, especially for the
high dimensional continuous state and action spaces. To
obtain the optimal policy, policy gradient methods directly
maximize the expected total reward (also called as perfor-
mance function J)#4 via using the stochastic first-order
gradient of cumulative rewards. Recently, policy gradien-
t methods have achieved significant empirical successes in
many challenging deep reinforcement learning application-
s (Li, 2017) such as playing Go game and robot manipula-
tion.

Thus, policy gradient methods have regained much interest
in reinforcement learning, and some corresponding algo-
rithms and theory of policy gradient (Fellows et al., 2018;
Fujimoto et al., 2018; Papini et al., 2018; Haarnoja et al.,
2018; Xu et al., 2019a; Shen et al., 2019; Cheng et al.,
2019b;a; Wang et al., 2019a) have been proposed and stud-
ied. Since the classic policy gradient methods (e.g., RE-
INFORCE (Williams, 1992), PGT (Sutton et al., 2000),
GPOMDP (Baxter & Bartlett, 2001) and TRPO (Schul-
man et al., 2015a)) approximate the gradient of the expect-
ed total reward based on a batch of sampled trajectories,
they generally suffer from large variance in the estimat-
ed gradients, which results in a poor convergence. Fol-
lowing the standard stochastic gradient method (Robbins
& Monro, 1951), these gradient-based algorithms require
O)e~*+samples for finding an e-approximated stationary
point, i.e., E  J)0+ > e. Thus, recently many works
have begun té/ study fé reduce variance in the policy gra-
dient methods. For example, the early variance reduced
policy methods (Greensmith et al., 2004; Peters & Schaal,
2008) mainly focused on using unbiased baseline functions
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Table 1. Convergence properties of the representative variance-reduced policy algorithms on the non-oblivious model-free RL problem
for finding an e-approximated stationary point, i.e., E[|VJ(0)| < e. Our algorithms (IS-MBPG, IS-MBPG* and HA-MBPG) and
REINFORCE are single-loop algorithms, while the other algorithms are double-loops, which need the outer-loop and inner-loop mini-
batch sizes. Note that Papini et al. (2018) only remarked that apply the ADAM algorithm (Kingma & Ba, 2014) to the SVRPG algorithm
to obtain an adaptive learning rate, but did not provide any theoretical analysis about this learning rate.

Algorithm Reference Sample Complexity Batch-Size Adaptive Learning Rate
REINFORCE | Williams (1992) O)e 1+ O)e 2+

SVRPG Papini et al. (2018) O)e 4+ 0)e 24+& O)e 2+

SVRPG Xu et al. (2019a) O)e 1934 O)e 34& O)e 2+

HAPG Shen et al. (2019) O)e 3+ O)e 1 4+& O)e 2+
SRVR-PG Xu et al. (2019b) O)e 3+ O)e '+& O)e 2+
IS-MBPG Ours O)e 3+ 0)2+ v
HA-MBPG Ours O)e 3+ 0)2+ v
IS-MBPG* Ours O)e 3+ 0)2+

to reduce the variance. Schulman et al. (2015b) present-
ed the generalized advantage estimation (GAE) to discover
the balance between bias and variance of policy gradien-
t. Then Gu et al. (2016) applied both the GAE and linear
baseline function to reduce variance. Recently, Mao et al.
(2018); Wu et al. (2018) proposed the input-dependent and
action-dependent baselines to reduce the variance, respec-
tively. More recently, Cheng et al. (2019b) leveraged the
predictive models to reduce the variance to accelerate poli-
cy learning.

Recently, the variance reduced gradient estimators such
as SVRG (Johnson & Zhang, 2013; Allen-Zhu & Hazan,
2016; Reddi et al., 2016), SAGA (Defazio et al., 2014),
SARAH (Nguyen et al., 2017), SPIDER (Fang et al., 2018)
and SpiderBoost (Wang et al., 2019b) have been success-
ful in the oblivious supervised learning. However, the R-
L optimization problems are non-oblivious, i.e., the distri-
bution of the samples is non-stationarity and changes over
time. Thus, Du et al. (2017); Xu et al. (2017); Wai et al.
(2019) first transform the original non-oblivious policy e-
valuation problem into some oblivious subproblems, and
then use the existing variance reduced gradient estimators
(such as SVRG and SAGA) to solve these subproblems to
reach the goal of reducing the large variance in the original
RL problem. For example, Du et al. (2017) first transform-
s the empirical policy evaluation problem into a quadratic
convex-concave saddle-point problem via linear function
approximation, and then applies the variants of SVRG and
SAGA (Palaniappan & Bach, 2016) to solve this oblivious
saddle-point problem.

More recently, Papini et al. (2018); Xu et al. (2019a;b);
Shen et al. (2019) further have developed some variance
reduced policy gradient estimators directly used in the non-
oblivious model-free RL, based on the existing variance
reduced techniques such as SVRG and SPIDER used in
the oblivious supervised learning. Moreover, Xu et al.
(2019a;b); Shen et al. (2019) have effectively improved the

sample complexity by using these variance reduced poli-

cy gradients. For example, two efficient variance reduced

policy gradient methods, i.e, SRVR-PG (Xu et al., 2019b)

and HAPG (Shen et al., 2019) have been proposed based on

the SPIDER, and reach a sharp sample complexity O)e =3+
for finding an e-stationary point of non-concave perfor-

mance function (E = J)0+ > ¢), which improves the s-

tandard complexity‘b)6*443(Williams, 1992) by a factor of
O)e 1+ Since a lower bound of complexity O)e~>+for

recently proposed variance reduction techniques is estab-

lished in (Arjevani et al., 2019), both the SRVR-PG and

HAPG obtain a near-optimal sample complexity O)e 3+
However, the practical performances of these variance re-

duced policy gradient methods are not consistent with their

near-optimal sample complexity, because these methods re-

quire large batch size and strict learning rates to achieve

this optimal complexity.

In the paper, thus, we propose a class of efficient momen-
tum based policy gradient methods, which use adaptive
learning rates and do not require large batches. Specifical-
ly, our algorithms only need one trajectory at each iteration
and use adaptive learning rates based on the current and his-
torical stochastic gradients. Note that Pirotta et al. (2013)
has studied the adaptive learning rates for policy gradient
methods, which only focuses on Gaussian policy. More-
over, Pirotta et al. (2013) did not consider sample complex-
ity and can not improve it. While our algorithms not only
provide the adaptive learning rates that are suitable for any
policies, but also improve sample complexity.

Contributions
Our main contributions are summarized as follows:

1) We propose a fast important-sampling momentum-
based policy gradient (IS-MBPG) method with adap-
tive learning rate, which builds on momentum-based
variance reduction technique (Cutkosky & Orabona,
2019; Tran-Dinh et al., 2019) and importance sam-

pling.
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2) We propose a fast Hessian-aided momentum-based
policy gradient (HA-MBPG) method with adaptive
learning rate, which builds on momentum-based vari-
ance reduction technique and semi-Hessian informa-
tion.

3) We study the sample complexity of our methods,
and prove that both the IS-MBPG and HA-MBPG
methods reach the best known sample complexity of
O)e3+without large batches (see Table 1).

4) We propose a non-adaptive version of IS-MBPG
method, i.e., IS-MBPG¥*, which has a simple mono-
tonically decreasing learning rate. We prove that it
also reaches the best known sample complexity of
O)e~3+without large batches.

After our paper is accepted, we find that three related paper-
s (Xiong et al., 2020; Pham et al., 2020; Yuan et al., 2020)
more recently are released on arXiv. Xiong et al. (2020) has
studied the adaptive Adam-type gradient (PG-AMSGrad)
method, and has proved that the PG-AMSGrad still have a
high sample complexity of O)e~*+ Subsequently, Pham
et al. (2020); Yuan et al. (2020) have proposed the poli-
cy gradient methods, i.e., ProxHSPGA and STORM-P, re-
spectively, which also build on the momentum-based vari-
ance reduced technique. Although both the ProxHSPGA
and STORM-P also reach the best known sample complex-
ity of O)e~3+; these methods still rely on the large batches
to obtain this sample complexity and does not provide an
efficient adaptive learning rate as our methods.

Notations
Let X fenote the vector ¢ norm and the matrix spectral
norn{ réspectively. We denote a,, [ O)b,+if a,, > cb,

for some constant ¢ > 1. E] X “and V] X “denote the expec-
tation and variance of a random variable X, respectively.
E. X[ E.]Hn, »x, 7,1 forany ¢t ~ 3.

2. Background
In the section, we will review some preliminaries of stan-
dard reinforcement learning and policy gradient.

2.1. Reinforcement Learning

Reinforcement learning is generally modeled as a dis-
crete time Markov Decision Process (MDP): P |
H,B,R,S,v,po|. Here { is the state space, B is the
action space, and py denotes the initial state distribution.
R)s'|ls, a+denotes the probability that the agent transit-
s from the state s to s’ under taking the action a / B.
S)s,a+={ OB &b ] R,R")R > 1+is the bounded
reward function, i.e., the agent obtain the reward S )s, a+
after it takes the action a at the state s, and v / )1, 2-His
the discount factor. The policy m)alls-+at the state s is rep-
resented by a conditional probability distribution 7p)a|s+
associated to the parameter 6 / R

Given a time horizon [, the agent can collect a trajectory
7 [ }S0,a0, %%, Sg—1,ag—1| under any stationary pol-
icy. Following the trajectory 7, a cumulative discounted
reward can be given as follows:

H-1

S)yr+ I 2"S)snan+ ()

h=0

where v is the discount factor. Assume that the policy my
is parameterized by an unknown parameter § / R?. Given
the initial distribution py [ p)so+ the probability distribu-
tion over trajectory 7 can be obtain

H-1

p)7IPH p)So+J

=0

R)sni1lsn, antme)anlsn+  (2)

2.2. Policy Gradient

The goal of RL is to find an optimal policy 7y that is e-
quivalent to maximize the expected discounted trajectory
reward:

ng J)0HE Erpirio)S)TH] V8 )rp)rlpr. G)

Since the underlying distribution p depends on the variable
0 and varies through the whole optimization procedure, the
problem (3) is a non-oblivious learning problem, which is
unlike the traditional supervised learning problems that the
underlying distribution p is stationary. To deal with this
problem, the policy gradient method (Williams, 1992; Sut-
ton et al., 2000) is a good choice. Specifically, we first
compute the gradient of .J)#-+with respect to ¢, and obtain

Do V) pyripatr [ VS)rE Tl rpair
[ Erepirio)] L p)7T[PAS )7+ )

Since the distribution p)7|p-Hs unknown, we can not com-
pute the exact full gradient of (4). Similar for stochastic
gradient descent (SGD), the policy gradient method sam-
ples a batch of trajectories M| }7]| ,lii‘l from the distribu-
tion p)7|P+to obtain the stochastic gradient as follows:

w00+ Il w p)nlpss)rs
i€B

At the ¢-th iteration, the parameter 6 can be updated:
Orr1 [ 000 e 26J)04 (%)

where 7, > 1 is a learning rate. In addition, since the term
pl p)7;|PHs independent of the transition probability R,
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we rewrite the stochastic gradient @ .J)60+as follows:

H 9)7i, 0+ 6)
zeB
MH H o1l mo)aj,, sjf H 7S )sh, ap Al
i€B  h=0

where g)7;, 6-+Hs an unbiased stochastic gradient based on
the trajectory 7;, i.e., E]g)m;,0+ [  J)0+ Based on the
above gradient estimator in (6), we can obtain the exist-
ing well-known gradient estimators of policy gradient such
as the REINFORCE, the PGT and the GPOMDP. Due to
E] p1pl mp)a,s+ [ 1, the REINFORCE adds a constant
baseline b and obtains a gradient estimator as follows:

H-1 H-1

oy 04 TT ol mo)a. sil T +*S)shai+ o[

h=0 h=0

Further, considering the fact that the current actions do not
rely on the previous rewards, the PGT refines the REIN-
FORCE and obtains the following gradient estimator:

H—-1H-1

oot 1111

h=0 j=h

JSS a+b

37

[ 6 Ipl 71'0)@;-“ Sz—i_

Meanwhile, the PGT estimator is equivalent to the popular
GPOMDP estimator defined as follows:

H—-1 h

9)7i, 04 H H o1pl Wg)Gé,Sé%vhS)sz,a§l+ b+

h=0j=0

3. Momentum-Based Policy Gradients

In the section, we propose a class of fast momentum-
based policy gradient methods based on a new momentum-
based variance reduction method, i.e., STORM (Cutkosky
& Orabona, 2019). Although the STORM shows its effec-
tiveness in the oblivious learning problems, it is not well
suitable for the non-oblivious learning problem , where the
underlying distribution p) %-depends on the variable 6 and
varies through the whole optimization procedure. To deal
with this challenge, we will apply two effective techniques,
i.e., importance sampling (Metelli et al., 2018; Papini et al.,
2018) and Hessian-aided (Shen et al., 2019), and propose
the corresponded policy gradient methods, respectively.

3.1. Important-Sampling Momentum-Based Policy
Gradient

In the subsection, we propose a fast important-sampling

momentum-based policy gradient (IS-MBPG) method by

using the importance sampling technique. Algorithm 1 de-

scribes the algorithmic framework of IS-MBPG method.

Since the problem (3) is non-oblivious or non-stationarity
that the underlying distribution p)7|f+depends on the vari-
able 0 and varies through the whole optimization proce-
dure, we have E._,;j0)lg)T[P+ g)7|P'+ {  J)0+

J)0'+ Given T sampled from p)7|f+4 we define an im-
portance sampling weight

H-1

, p)TIP'+ o' )an sn+
w) TP, 0+ —— 7
A el n/:o a7
to obtain ETNp(’Tle):Ig)T‘pJ'_ w)Tm/’e_'g)T‘p/ [
J)0+  J)0'+ In Algorithm 1, we use the follqwing

momentum-based variance reduced stochastic gradient

ug [ )2 ﬁt‘i}gtfl 0 g)7¢|Pet+ w)Tt|pt1,9t4§)Tt|pt1+<

SARAH
0 Big)7elPe+
/—\—
SGD
where 3; / |1,2". When 3; [ 2, the IS-MBPG will reduce

to the REINFORCE. When /3; [ 1, it will reduce to the
SRVR-PG.

Leter [ ue J)0:+ It is easily verified that

Ele; [ E])Q Bet—10 5t) )Tt|9t+ J)0 440 )2 B+

—T1

x|t w)TelPi-1,0e49) T Pr—1+  J)0H0 )01+

=T,

[ )2 ﬂt’ﬂE]et—lA7 ®)

where the last equality holds by E., _,-j9,)]71" [ 1 and
Er ~prjo)]T2" [ 1. By Cauchy-Schwarz inequality, we
can obtain

j\/ )2 5f+Ejt 1 O3ﬂtE\7\/

03)2 B+FE ©)

2
Since O) éZ Gt 0,—1 2+] O)n? 24 we
can choo }{proprlate m: and [y Mo reduce th v¥{r1ance

of stochastic gradient u;. From the following theoretical
results, our IS-MBPG algorithm can generate the adaptive
and monotonically decreasing learning rate n; / )1, ii
and the monotonically decreasing parameter 5; / )1,2"

3.2. Hessian-Aided Momentum-Based Policy Gradient

In the subsection, we propose a fast Hessian-aided
momentum-based policy gradient (HA-MBPG) method via
using the semi-Hessian information. Algorithm 2 describes
the algorithmic framework of HA-MBPG method.

In Algorithm 2, at the 8-th step, we use an unbiased term A ¢
ie., E.,.t,\,p(.,.wt(a))]/\“[ J)0+ J)Gt,l—{-[instead of
the biased term g)7|p+ ¢)7|P:—1+ To construct the term

(
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Algorithm 1 Important-Sampling Momentum-Based Poli-
cy Gradient (IS-MBPG) Algorithm

Algorithm 2 Hessian-Aided Momentum-Based Policy
Gradient (HA-MBPG) Algorithm

1: Input: Total iteration 7', parameters }k,m, ¢| and ini-
tial input 64 ;

2: fort| 2,3,...,Tdo

3 ift[ 2then

4: Sample a trajectory 71 from p)7|f1 4 and compute
ur [ g)milpt

5:  else

6: Sample a trajectory 7 from p)7|P; 4 and compute

ug [ Beg)me|Pe 0 )2 ﬁt‘i}utfl 0 g)1e|pe+
w)7¢|Pi—1,0:4g) 7t |P:—1-+, where the importance
sampling weight w)7¢|P;\1, 0;+can be computed
by using (7);

7:  endif

8:  Compute G; [ g)7|Pe+;,

9:  Compute 7; | W,

10: Update 9t+1 [ 925 0 ’I’];’U,t,

11:  Update B¢v1 [ cn?;

12: end for

13: Output: 6, chosen uniformly random from }6,| - ;.

A%, we first assume that the function J)0+is twice differ-
entiable as in (Furmston et al., 2016; Shen et al., 2019). By
the Taylor’s expansion (or Newton-Leibniz formula), the
gradient difference J)6;+  J)6,_;-+can be written as

1
Dot Dot 1V 208 )atda fr a0
0
975,1 and 9t)a+[ a9t 0 )2 a—{Qt,l
Following (Furmston et al., 2016;
2])0+as

where vy [ 0
for some « / ]1,2"
Shen et al., 2019), we obtain the policy Hessian
follows:

*NO0H Eropriey]  mlp)7lp+ wl p)rlpL
0 Zml p)r|pS)T

[ Ermpirioy] ©)7IP+ tg] p)Tlp 0 2W)rp4]
where ¥)7[f+ [ hH;()l f;hl YIr)s;j, a;+pl To)an, sp+
Given the random tuple ), 74 where « samples uniformly

from ]1,2"and 7 samples from the distribution p)7|f: )+
we can construct A ; as follows:

Ay 2%)0,)ak T, (11)
where E. (-0, (a))] 22)0t) a7+ 2J)0;)a+rand

U)7|py)a+ 1l p)7|hr)a+H"
0 2U)7|h)a+

a2)9ta 7_+[

Note that E,pjo1y] 2J)0:)a+ |
implies the wunbiased estimator

Z: 2.7)0,)a-+Hedor
J)0)&+- with

1: Input: Total iteration 7', parameters }k,m, ¢| and ini-
tial input 64 ;

2: fort| 2,3,...,Tdo

3 ift[ 2then

4: Sample a trajectory 71 from p)7|p1 4 and compute
ur [ g)mlpit

5.  else

6: Choose « uniformly at random from ]1,2", and
compute 0;)a+ «b; 0 )2  a#;_1;

7: Sample a trajectory 7 from p)7|P;)a+; and com-
pute uy [ ﬁtw)nmt,ﬁt)a—i—ig)rt\ﬂt—l—o )2

Bitui—10 A [, where w)T|py, ;) a-+Hand A ¢ can
be computed by using (7) and (11), respectively;
8: endif
9:  Compute G [ ¢)7|pi+;,
10: Compute Nt [ 4(m+2251 G?)I/B 5
11: Update 9t+1 [ Qt 0 Nt Ut
12: Update Bi11 [ cni;
13: end for
14: Output: 6. chosen uniformly random from }6,| 7.

& uniformly sampled from ]1,2" Given & we

have ETNP(th(a))]aQ)et)%i;T—F [ ZJ)Ht)%H—
According to the equation (10), thus we have
Eanvo,1), 7op(rios (@)™ | J)0+ J)0r—1+%

where U]1, 2" denotes the uniform distribution over |1, 2

Next, we rewrite (11) as follows:

Ay pl p)7|P)eH v [ U)T|P) o+

0 2U)7|h)a+e;. (12)

Considering the second term in (12) is a time-consuming
Hessian-vector product, in practice, we use can the finite
difference method to estimate  2W)7|f; )+, as follows:

U7 (B ) oy
U)7|P) a0 dv+
30
[ 2U)7p)ater, (13)

\I/)T|pt)04+ (;’Ut+
Ut

where 6 > 1 is very small and 6,)a+ / ]6;)a+
dv, 0y)a+0 dv,” is obtained by the mean-value theorem.
Suppose )7 |f+Hs La-second-order smooth, we can upper
bound the approximated error:

W) 7(Br) ater Q‘I’)TWOO&H%\/Z L2\/vtj- (14)

Vv

Thus, we take a sufficiency small § to obtain arbitrarily s-
mall approximated error.
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In Algorithm 2, we use the following momentum-based
variance reduced stochastic gradient

u [ Brw)7|Pe, 01)aHg)TIPi40 )2 Bitur 10 At

where 3; / |1,2°. When 5, [ 2, the HA-MBPG will
reduce to the REINFORCE. When f3; [ 1, it will reduce to
the HAPG.

Leter [ ue J)0:+ It is also easily verified that
Ele,"[ E])2 Bider—10 Bo)w)r|Br, 0r)atg)TPet J)0r+
=Ty
0)2 pBi+Ay J)O:H0 J)9t1+[(
~ -
[ )2 BiEle1’, (15)

where the last equality holds by E, (6, (a))]73"[ 1and
Erp(rioi(an]Ta” [ 1. Similarly, by Cauchy-Schwarz in-
equality, we can obtain

¢ 22>)2 BFE ¢4 20 36/E
\7 0 3)2 Bt\ZE \7\/
+ 24

Since O)ﬁg 2+ 0) 6 0i
we can choos¥ appropriate 7, and 6)/ to reduce th VAri-

ance of stochastic gradient u;. From the following theo-
retical results, our HA-MBPG algorithm can also gener-
ate the adaptive and monotonically decreasing learning rate
ne /)1, 2 I ", and the monotonically decreasing parameter

Be /)1,

3.3. Non-Adaptive IS-MBPG*

In this subsection, we propose a non-adaptive version of
IS-MBPG algorithm, i.e., IS-MBPG¥*. The IS-MBPG* al-
gorithm is given in Algorithm 3. Specifically, Algorithm 3
applies a simple monotonically decreasing learning rate 7,
which only depends on the number of iteration ¢.

(16)

4. Convergence Analysis

In this section, we will study the convergence proper-
ties of our algorithms, i.e., IS-MBPG, HA-MBPG and IS-
MBPG*. All related proofs are provided in supplementary
document. We first give some assumptions as follows:

Assumption 1. Gradient and Hessian matrix of func-
tion 1pl mg)al|ls+are bounded, i.e., there exist constants
Mg, My > 1 such that

y o1l mp)alls+ ¢_ o 5 ml w@)a|b+¢z My. (17)

Assumption 2. Variance of stochastic gradient g)|P+is
bounded, i.e., there exists a constant o > 1, for all ™y such
that Vg)r|p+ E ¢)7|p+  J)0+2 > o2
Assumption 3. Variance of importance sampling weight
w)T|P1, 024 p)T|P14/p)T|P2+is bounded, i.e., there ex-
ists a constant W > 1, it follows V)w)r|p1, O2+H> W for
any 01,05 / R and 7 =~ p)7|Pa+

Algorithm 3 IS-MBPG* Algorithm

1: Input: Total iteration 7', parameters }k, m, ¢| and ini-
tial input 64 ;

2: fort| 2,3,...,Tdo

3: ift[ 2then

4: Sample a trajectory 7 from p)7|P; 4+ and compute
ur [ g)milpt

5.  else

6: Sample a trajectory 7 from p)7|P;4; and compute
ug [ Brg)Te|Pe40 )2 ﬁt‘i}ut—l 0 g)1e|pe+
W) |Pe—1, 0¢49) e |Pr— 145

7. endif

8:  Compute 7 | W;

9:  Update Oy 1 [ 0;0 nuy;

10:  Update B¢v1 [ cn?;

11: end for
12: Output: 6, chosen uniformly random from }6,| - ;.

Assumptions 1 and 2 have been commonly used in the
convergence analysis of policy gradient algorithms (Papini
etal., 2018; Xu et al., 2019a;b; Shen et al., 2019). Assump-
tion 3 has been used in the study of variance reduced policy
gradient algorithms (Papini et al., 2018; Xu et al., 2019a;b).
Note that the bounded importance sampling weight in As-
sumption 3 might be violated in practice. For example,
because when using neural networks (NNs) as the policy,
small perturbations in 6 might raise a large gap in the point
probability due to some activation functions in NNs. Thus,
we usually clip the importance sampling weights to make
our algorithms (i.e., IS-MBPG and HA-MBPG) more ef-
fective. Based on Assumption 1, we give some useful prop-
erties of stochastic gradient g)7|f+and 22)6;, 7 respec-
tively.

Proposition 1. (Proposition 4.2 in (Xu et al., 2019b)) Sup-
pose g)T|P+is the PGT estimator. By Assumption 1, we
have

1) g)7|p+is B-Lipschitz differential, i.e., )7 |B+
orlp+,> L g 0 with & [ MyRN2 ~#
vy
2) J)0+is B-smooth, i.e., , 2J)0+ > B

Vv

¢

3) g)7|P+is bounded, i.e., —&—\/Z G forall § / R?
with G| MyR/)2 ~
Since p+ >E g)r|p+ > G, Propo-

sition ]/1mp11ek/tha} J)0+is G/ Llpsé'gltz ithout loss of
generality, we use the PGT estimator to generate the gradi-
ent g)7|P+n our algorithms, so G; [ g)7|p+ > G.

Proposition 2. (Lemma 4.1 in (Shen et al., 2019)) Under
Assumption 1, we have for all 6

)7Ip

H2M*R?0 M2R?
42 g h 2. 18

>
Nas

\/a )9,
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Since , 2J)0+ | f]fﬂ)ﬂ T >E a2)g,r+ > L
Propos\{lon 2 1ﬁ{phe that J 0—1—1&/ L- sn%)oth Le‘t/ L
g7 )#, L4 so J)0-+Hs L-smooth.

4.1. Convergence Analysis of IS-MBPG Algorithm

In the subsection, we analyze the convergence prop-
erties of the IS-MBPG algorithm. For notational
simplicity, let B> [ L? 0 3G?C2? with C, |
}/H)?)HMQQO Mu4HW 0 2+

heorem 1. Assume that the sequence }0;| I_, be generat-
ed from Algorithm 1. Set k | O)GQL/S—kc [ G’ () 21582,

36T
m [ ng }3G2,)3Lk+,) & £| and no | m]f/d,wehave

V__ V_
37 ml/G 03" 3/4 3 - 01/3
E, J)0<+¢z v 0 "5 (19)

where " [ 1 27)J* J)6;H0 g};;k 20 f“gz
with J* [ s, J)0+< 0 € .

Remark 1. Since © [ O)m)T+H Theorem 1 shows that
the IS-MBPG algorithm has O) /) T+/T% +convergence
rate. The IS-MBPG algorithm ‘needs 2 trajectory to es-
timate the stochastic policy gradient u; at each iteration,
and needs T iterations. Without loss of generality, we omit
a relative small term _/m)T+ By T3 > €, we choose
T | € 3. Thus, the IS-MBPG has the sample complexity
of 2 X' | O)e 3+for finding an e-stationary point.

)70 34

4.2. Convergence Analysis of HA-MBPG Algorithm

In the subsection, we analyze the convergence properties of
the HA-MBPG algorithm.

Theorem 2. Assume that the sequence }0;| L, be gener-
ated from Algorithm 2, and let k [ O) GQL/J +c] % 0

63L% m [ ng }3G%)3Lk+E,) & R| andny [ —r, we
have - -
30m!/00 30%1 3 Pol/3
E , J)fc+ > V= S
VoY T T
where & [ Lon)r D)6+ 0 mre? 0

WAL 10)T 0 34f with J* | xs g J)f+< 0 € .
Remark 2. Since ® [ O)m)T-+H Theorem 2 shows
that the HA-MBPG algorithm has O) _ /)T /T3 +conver-
gence rate. The HA-MBPG algorithm'needs 2 trajectory to
estimate the stochastic policy gradient u; at each iteration,
and needs T iterations. Without loss of generality, we omit
a relative small term _/m)T+ By T3 > €, we choose
T [ € 3. Thus, the HA-MBPG has the sample complexity
of 2 XI' | O)e 3+for finding an e-stationary point.

4.3. Convergence Analysis of IS-MBPG* Algorithm

In the subsection, we give the convergence properties of the
IS-MBPG* algorithm.

(a) CartPole (b) Walker

(c) Hopper (d) HalfCheetah

Figure 1. Four environments we used. (a) Cartpole: balance a
pole on a cart; (b) Walker: make a 2D robot walk; (c) Hopper:
make a 2D robot hop; (d) HalfCheetah: make a 2D cheetah robot
run.

Theorem 3. Assume that the sequence }0;| L, be gener-
atedfrom Algorithm 3, and let B [ L?0 3G*C2?, k > 1
¢ | o570 215B% m [ ng }3,)3LkE,) L | and
Mo | m’f/s, we have

) T v_
IE\/ T[[

9t+>45"—0

Tl/S7

where [ 1 27)J* J)b

with J* | us, J)0+< 0 € .
Remark 3. Since [ O)w)T+H Theorem 3 shows
that the IS-MBPG* algorithm has O) _/m)T+/T'3 +conver-
gence rate. The IS-MBPG* algorithm'needs 2 trajectory to
estimate the stochastic policy gradient u; at each iteration,
and needs T iterations. Without loss of generality, we omit

a relative small term _/w)T+ By T3 > ¢, we choose
T €3, Thus, the ISSMBPG* also has the sample com-

plexity of 2 XI' | O)e3+for finding an e-stationary point.

Pl e
832k 20 4B2 )TO 341{

5. Experiments

In this section, we demonstrate the performance of our
algorithms on four standard reinforcement learning tasks,
which are CartPole, Walker, HalfCheetah and Hopper. The
first one is a discrete task from classic control, and the lat-
er three tasks are continuous RL task, which are popular
MuJoCo environments (Todorov et al., 2012). Detailed de-
scription of these environments is shown in Fig. 1.

5.1. Experimental Setup

In the experiment, we use Categorical Policy for CartPole,
and Gaussian Policy for all the other environments. Al-
1 Policies are parameterized by the fully connected neu-
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Figure 2. Experimental results of our algorithms (IS-MBPG and HA-MBPG) and baseline algorithms at four environments.

ral network. The detail of network architecture and acti-
vation function used are shown in the Appendix A. The
network settings are similar to the HAPG (Shen et al.,
2019) algorithm. We implement our algorithms by us-
ing garage (garage contributors, 2019) and pytorch (Paszke
et al., 2019). Note that Previous works mostly use envi-
ronments implemented by old versions of garage, while
latest version of garage directly use environments from
gym (Brockman et al., 2016). As a result, there might be an
inconsistency of the reward calculation between this paper
and previous works due to the difference of environment
implementation.

In the experiments, we compare our algorithm with the
existing two best algorithms: Hessian Aided Policy Gra-
dient (HAPG) (Shen et al., 2019), Stochastic Recursive
Variance Reduced Policy Gradient (SRVR-PG) (Xu et al.,
2019b) and a baseline algorithm: REINFORCE (Sutton
et al., 2000). For a fair comparison, the policies of al-
1 methods use the same initialization, which ensures that
they have similar start point. Moreover, to ease the im-
pact of randomness, we run each method 10 times, and plot
mean as well as variance interval for each of them.

In addition, for the purpose of fair comparison, we use the
same batch size ||M|for all algorithms, though our algo-
rithms do not have a requirement on it. HAPG and SRVR-

PG have sub-iterations (or inner loop), and requires addi-
tional hyper-parameters. The inner batch size for HAPG
and SRVR-PG is also set to be the same value. For all
the other hyper-parameters, we try to make them be analo-
gous to the settings in their original paper. One may argue
that our algorithms need three hyper-parameters &, m and
¢ to control the evolution of learning rate while for other
algorithms one hyper parameter is enough to control the
learning rate. However, it should be noticed that our algo-
rithms do not involve any sub-iterations unlike HAPG and
SRVR-PG. Introducing sub-iterations itself naturally bring
more hyper-parameters such as the number of sub-iteration
and the inner batch size. From this perspective, the hyper-
parameter complexity of our algorithms resembles HAPG
and SRVR-PG. The more details of hyper-parameter selec-
tion are shown in the Appendix A.

Similar to the HAPG algorithm, we use the system probes
(i.e., the number of state transitions) as the measurement of
sample complexity instead of number of trajectories. The
reason of doing so is because each trajectory may have dif-
ferent length of states due to a failure flag returned from the
environment (often happens at the beginning of training).
Besides this reason, if using the number of trajectories as
complexity measurement and the environment can return
a failure flag, a faster algorithm may have a lot more sys-
tem probes given the same number of trajectories. We also
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Figure 3. Different batch sizes for our algorithms (IS-MBPG and HA-MBPG) at CartPole environment.
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Figure 4. Results of IS-MBPG and IS-MBPG¥* algorithms at CartPole and Walker environment.

use average episode return as used in HAPG (Shen et al.,
2019).

5.2. Experimental Results

The results of experiments are presented in Fig. 2. In the
CartPole environment, our IS-MBPG and HA-MBPG algo-
rithms have better performances than the other methods. In
the Walker environment, our algorithms start to have more
advantages. Specifically, the average return of IS-MBPG
and HA-MBPG grows rapidly at the beginning of train-
ing. Moreover, our IS-MBPG algorithm achieves the best
final performance with a obvious margin. HA-MBPG per-
forms similar compared to SRVR-PG and HAPG, though
it has an advantage at the beginning. In Hopper environ-
ment, our IS-MBPG and HA-MBPG algorithms are sig-
nificantly faster compared to all other methods, while the
final average reward are similar for different algorithms.
In HalfCheetah environment, IS-MBPG, HA-MBPG and
SRVR-PG performs similarly at the beginning. In the end
of training, IS-MBPG can achieve the best performance.
We note that HAPG performs poorly on this task, which
is probably because of the normalized gradient and fixed
learning rate in their algorithm. For all tasks, HA-MBPG
are always inferior to the IS-MBPG. One possible reason
for this observation is that we use the estimated Hessian
vector product instead of the exact Hessian vector product
in HA-MBPG algorithm, which brings additional estima-
tion error to the algorithm.

In Fig. 3, we plot the average reward when changing
batch size in CartPole environment. From Fig. 3, we find
that when 31( of the original batch size, our HA-MBPG
and IS-MBPG algorithms still outperform the HAPG and
SRVR-PG algorithms, respectively. When the batch size is
1, our HA-MBPG and IS-MBPG algorithms still reach a
good performance. These results demonstrate that our HA-
MBPG and IS-MBPG algorithms are not sensitive to the
selection of batch size. Fig. 4 shows that the non-adaptive
IS-MBPG* algorithm also has similar performances as the
adaptive IS-MBPG algorithm.

6. Conclusion

In the paper, we proposed a class of efficient momentum-
based policy gradient methods, which do not require large
batches and use adaptive learning rates. Specifically, we
proposed a fast IS-MBPG method by using the importance
sampling technique. At the same time, we also presented a
fast HA-MBPG method via using the semi-Hessian infor-
mation. Moreover, we proved that both IS-MBPG and HA-
MBPG methods reach the best known sample complexity
O)e~3+without large batches. In particular, we also pre-
sented a non-adaptive version of IS-MBPG method (i.e.,
IS-MBPG*), which has a simple monotonically decreasing
learning rate. We proved that the IS-MBPG* also reaches
the best known sample complexity of O)e~3-without large
batches.
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Environments \ CartPole \ Walker \ Hopper \ HalfCheetah
Horizon 100 500 1000 500
Baseline None Linear Linear Linear

Neural Network sizes 909 75O | 5075 7575
Number of timesteps 6(021° | 20217 | 20217 20217
Batch size Ml 50 100 50 100
HAPG |Mo || 10 10 10 10
SRVR-PG M || 10 10 10 10
HAPG ngyp 5 10 10 10
SRVR-PG ngyp 3 2 2 2
IS-MBPG/HA-MBPG k 0.75 0.75 0.75 0.75
IS-MBPG/HA-MBPG ¢ 2 2 1 1
IS-MBPG/HA-MBPG m 2 12 3 3
REINFORCE learning rate n 0.01 0.01 0.01 0.01
HAPG learning rate 7 0.01 0.01 0.01 0.01
SRVR-PG learning rate 7 0.1 0.1 0.1 0.1

Table 2. Hyper-parameter Details. |Bsub| represents sub-iteration (inner-loop) batch size. ngu, represents number of sub-iterations, which
is called p in the original paper of HAPG and m in the oringinal paper of SRVR-PG. Although the learning rate  of HAPG is given a
small value 7 = € in the theoretical analysis, we choose learning rate 7 = 0.01 as given in the experiments of (Shen et al., 2019).

A. Supplementary Materials for “Momentum-Based Policy Gradient Methods™

In this section, we first provide the details of hyper-parameter selection for the algorithms in Table 2. Table 2 also shows
that the detail of network architecture and activation function used in the experiments. Next, we study the convergence
properties of our algorithms. We begin with giving some useful lemmas.

Lemma 1. (Lemma 1 in (Cortes et al., 2010)) Let w)x+[ P)xz+4/Q)x~+be the importance weight for distributions P and
Q. The following identities hold for the expectation, second moment, and variance of w)x+

Elw)a+[ 2, Elw?)a+[ do)PIQ+ Viw)a+[ d2)PllQ+ 2, (20)

where dy) P||Q+ 3PPI9), and D)P||Q-+is the Renyi divergence between distributions P and Q.
Lemma 2. Under Assumptions I and 3, let w)T|Pi—1,0:+ 9)7|Pr—14/9)T|P:+ we have

V]w)7'|9t_1, 9,5-132 Cﬁ] (9,5 9t_1 2, (21)
vV v
where Cy, | \/H)3HM(]2 0 MpHW o0 2+
Proof. This proof can easy follow the proof of Lemma 6.1 in (Xu et al., 2019a). O
Lemma 3. Under Assumption 1, lete; | J)0i+ wuy. Givenl > > iﬁ)r allt ~ 2, we have

)0+ (22)

) 4
E]J)0p 41+ ~ E]J)0,+ ﬁjt 20 1 -

J
5VV 0 9V
Proof. Letey [ J)0i+ ws. By using J)0-+Hs L-smooth, we have

E|))0; 1+~ El)0A0 D)4 )01 Ot §9t+1 0, 2°[ ElNOAH0 1, )0+ uy Lo .2
i L?;{? 2 3V
[ E]N6A40 m) O+ wetus 0 me ye 2 =5y 20
~ENG+ L Do+ w20 m)j énmu 3t ;}AW
2 e Noa VY
~ E]J)0;+ 37:/ J)jt+ntUt\/O B\th\/
~EVOE S0 30 g D0 (23)
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where the second inequality holds by Young’s inequality, and the third inequality holds by 1 < n; > 5 L, and the last

inequality follows by\/ J)(‘)t—i—j > 3\7 \/20 3\/ J)0+ ut\/z [ 3\}%\?0 3\?\/2- O

A.1. Convergence Analysis of IS-MBPG Algorithm
In this subsection, we analyze the convergence properties of IS-MBPG algorithm. For notational simplicity, let J)0+
denote  .J)0+

Lemma 4. Assume that the stochastic policy gradient u; be generated from Algorithm 1, and let e; |y J)0:+ we
have

E]n, 1jt (> 3B LG7 0 n )2 Bf 20 9n3,lBQ[Ejt,Ijo 9)2 ﬁtﬁBQm,W J>9H+j,

where B2 [ L%0 3G2C2 with Cy, | \/H)3HM92 0 MyHW 0 2+

Proof. By the definition of u; in Algorithm 1, we have

ug w1 [ Brug—10 Beg)T|PeA0 )2 Bitg)Te|Pet w)Ttlptflvet“ig)Ttlptfl"'[' (24)
Then we have
E]n, 1\7\/( E|n, 11\/ J)0i—1+ w1 0 D)0+ J)0—1+ Jur ug— 1+ i (25)
E 77t 1, Db+ w10 J)0+ NNO140 Srus—1 Beg) ™ |Pet

i+ 9) TPt w)Te|Pi—1,0:4) Tt|9t—1+[ <
77t Y2 B Dbt w0 B) D)0 )7l
b/-i-g )7t w) TP 179Hﬁ)Tt|pt 1+ ) S0+ J)etﬁ“{j(
[ 77t71)2 B#E | J)b_1+ weq 20 77t71]E]ft) D)0+ )Tl
)2 ﬂﬁg)rﬁﬁ W)T|Pr—1, 049) TP+ ) SO+ T+ 2(
>0 )2 BBE D)0+ uiq 20 3820 LE D)0+ g)m|pit?
03)2 BFE g)rlpet+ w0)relpir,O0)elPeat+ ) )0+ J)é/tfl‘H'z
> n,)2 5t‘£ﬂ¥g -1 20 333W;11Ei)7t|9t+20 3)2  Bifn \E g)mlpit w)milfi 1,9t‘~§)7—t|pt71+\/2

[ )2 5t+E\;t 120 36870, 4G 0 3)2  Bi#n, L E Q)Tt|pt+ w)7|Pe—1, Oe4g) e |Pe— 1+
-1

where the forth equality holds by E., ,rj0,)]9)7e|Pe+ [ J)0:+and B _pirjo,)]9)TelPe+ w)TelPe— 1,9ﬁg)7}|9t 1+
9t+ )Ht 1 the first inequality follows by Young’s inequality; and the last inequality holds by E \; El¢" 2 |

v
gy JTZEL

Next, we give an upper bound of the term 77 as follows:

\ﬂ )Te|Pet w) T |Pe—1, Ocg) e P — 1+2
JTWH‘ 9)7¢|Pr—140 g)TtWt 1+ w)Te|Pe—1, O0eg) T |Pe— 142

I\/ I\/ﬁﬁ

)TthJF 9)7e|pr—1+20 3E )2 w)Tt|Pt—1,9tW)Tt|Pt—1+\/Q
\/t 0,1 20 3G*E w)n\ﬂt,l,ﬁt—i—\/z
[ 3L* ¢, 6,1 20 3G*V w)n|Pi—1, 0
>3)L 9/0 3G2C2 40, 0, 2 (26)

v va
where the second inequality holds by Proposition 1, and the third equality holds by Lemma 1, and the last inequality
follows by Lemma 2.
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Combining the inequalities (25) with (26), let B® [ L? 0 3G*C?2, we have

77t 1\? \/<> M 1)2 Bi#E ¢1 20 35157% 11G20 5)2 /Bt"g??:lBg Gt etfl\/Q
[ 7)2 BPE ¢4 20 36in G0 5)2 BB
[ 771)2 BiRE ey 20 3620, ,G?0 5)2 BB 1 e 10 J)b_1+2
> 3670, 1G7 0 ;)2 Bif 20 97 B*[E jmjo 9)2° BB y f)é)tﬁj. 27)

O

Theorem 4. Assume that the sequence }0;| I_, be generated from Algorithm 1, and let B% | L?0 3G%C2, k[ O) GQL/S +

c| 32;% 0 215B% m [ ng }3G?,)3Lk+E,) 52| andny [ 5. we have
2 VErmife 3034 g o1
[ TH = T 0 T1/3

E\/ J)9<+

where © [+ 27)J* J)b, m 2520 1

o )T 0 34 with J* [ uxs g J)0+< 0 € .

Proof Due to m ~ )3Lk-, we have 1, > m}f/s > L. Sincen, > S and m ~ )£ £, we have Bii1 [ onf > L& >

W > 2. By Lemma 4, we have

]m‘ljm\j M 1\7t "> E[387.m; 'GEL 0 N2 B 20 97It232
092 B 1£B%n )9t+ n 1 ‘54(
> E|3¢*n}G7, 1 0 m )2 ﬁt+1—920 97733 | 2093%

_T2

J)0:+> ( (28)

Vv v

where the last inequality holds by 1 < f3,,1 > 2. Since the function z'/3 is cancave, we have )z 0 y+/% > /30
yz—2/3 /4. Then we have

‘ t—1
_ _ 2 1/3 1/3 G
! =) mo G; m 0 G { = t
M M- | k’) g [ 11;[1 Z[ ~ 4k)mO [ f;i Gi/3

a2 N a2 N 32/3G2

dkym G20 [ G?R/3 T 4kym/30 [ G383 T dk)m0 [ |_, GI/3
32/3G2 ) 32/3G2 G2

T T ATy AL

>

(29)

where the third inequality holds by m ~ 3G?, and the sixth inequality holds by 1 < 7 > i

Next, considering the upper bound of the term 75, we have

002 Bera$20 9B [
net om0 9B Bepang 977tﬁt+1B2[\7t

[
[
> 77f1 77;11 0 9B%n, 5t+177;1[jt\/2
G2

mmo 9B, C"]t[jt\/Q [ 1732%\7:&\/27 (30)

2

Vv

Y

where the last equality holds by ¢ | 353 7 0 215B=. 2. Combining the inequalities (28) with (30), we have

jtJrl\/ M~ 1\; \/ E]3c¢*n}G? :7B277t\7t\/20 9327715\/ J)9t+\/2< (31
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We define a Lyapunov function ¥y [ J)0i+ 155 32 \ﬁ \/ 2 for any t ~ 2. Then we have

2
EjW,., U [ E|J)0 NNt o 70 SeamE— 6t
[Pep1 O EJT)Orirt J)0t+ 239B2 th\/ 239821, 1\?‘/(
NE] 477t 20 nt

S Sy ) e ] g

6277?Gt+1 Tt
——=0 —E 0 2
gz arty 0 52)

where the first inequality holds by the Lemma 3, and the second inequality follows by the above inequality (31). Summing
the above inequality (32) over ¢ from 2 to 7', we obtain

2,312
c 77th+1

r T
2 R

||E]m¢ DBt "2 B2 U W10 [ —%

=1 t=1

C2k3 L Gt+1
5B =1 m0 f i=1 G

2
E|27)J*  J)0;+H0 ——E ¢ 20
DT DO By

T
2
> EJ27)J* 0 ——E e; 20 G
] 7)J J)91—H-O 932,,70 \71\/ B2 H G20 f t+1 G2
2 k3 i
> E|2 * 0 ——FE 2 2 2 2 2
207 D00 Gpa B 61 70 T GOHG+ mGOHG{

t=1

T+1
m)G2o [[ G+ w)G*+

=1

2 k3
—— F e 20
9821, \71\/ 52

> EJ27)J*  J)0,+0

ml/3 T+~
> R0 D)0 o 520 < 5?m )20 H —+
ml/S c2k3
E|27)J*  J);+0 S5k 20 @m)TO 34 (33)

where J* [ wuxs,J)0+< 0 €, and the fourth inequality holds by the concavity of the function m)z; and the sixth
inequality holds by the definition of e; and 7.

By Cauchy-Schwarz inequality, we have E] XY 2 > E|X2E]Y2" Let X | \/nT =t y NO+2and Y [ /07,

we have %
T T
E N0+2 (> E]2/nr E J)0+2 | 34
]g\/ )t\/(]/ﬂT ]ﬂTtE[l\/ )t\/< (34)
Since 7 is decreasing, we have
T T
H J)0y+>2 <> E]2/nr E] H 9t+¢ (z El2/nr E] ] " J)9t+\/2< (35)
pali t=1

Combining the inequalities (33) and (35), we obtain

T * ml/3 2k®
27)J*  J)01H0 Zrro?0 SEm)T 0 3+
E J9+2 >]E 8Bk 4B
iy e o
, L 2rl/3
[ E]” mo J] G7[ ( (36)
t=1

" 1/ c
Lon)gr D)0i+0 B0 Sk m)T 0 34

where [ =
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By Assumption 2, we have G7 | TP+ )0A0  N0i+2 >3 g)TlPe+ N)0+20 3, J)0i+2 > 3020
3\/ J)0t+\/2. Then using the inequaYity )a 0 b4/3 > a1/3 0 61/3 fér all a¥b > 1 to the 1nequ%'({1ty (SY{) we OB{aln

t=1 t=1

)Eﬁfﬁﬁ)"f*frﬂ]’@¢ ‘”2 B e

T
>E]’)m0 3702450 33 T, 1)6i+2 13

3
(=)
(o8]
~
Q
o
+,_.
~
w
o
w
it
S~
w
i.
711
~
S
=
_|_
o
%
w

T z2:/3
> Ym0 3Ta%4/30 31/3'] h‘[ y 9t+2 ; (37
t=1

where the first inequality holds by the convexity of the function -2, and the last inequality holds by the concavity of the

function #/3. For simplicity, let Z [ /[ |_, y J)0+2, ¥ we have

E)Z[2 > " )ym0 3Ta>4/30 313 ®Z[°. (38)
The inequality (38) implies that E]Z7[* > 3" )ym 0 3To?4/3 or E]Z[> >331/3" E]Z[*°. Thus, we have
V— 4
E]Z > 37 )m0 3To>4/%0 37 3/4, (39)
By Cauchy-Schwarz inequality, then we have
T T =
2 2 2 3
~1IE , Do+ *H J)0i+ N h‘[ J)b+2
T v Tiav T oy v
37) 2.1/6 £ 3/4
.3 mosﬁvgj/ 033/
o T
V3T 37w g) 7
VT T (40)
where the last inequality follows by the inequality )a 0 b£/6 > /60 b'/6 forall a,b > 1. O
A.2. Convergence Analysis of HA-MBPG Algorithm
In this subsection, we analyze the convergence properties of HA-MBPG algorithm.
Lemma 5. Assume that the stochastic policy gradient u; be generated from Algorithm 2. Let e; | uy J)0:+ we have
E]n, ljt (> 5)W 0 24820, G20 n,1)2 B2 20 5p2 L2 [Ejt,ljo 5)2 BHELQWW J)9H+j.

Proof. By the definition of u; in Algorithm 2, we have

wr U1 [ Brup—1 0 Bew)Te|Pr, 0r)aHg) P40 )2 BrA L. (41)
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Then we have

E]n; 1\7t ( E|n; 1\/ N1+ w10 N0+ O+ uy Ut—1+2<( (42)
[ Eln; Y )9t 1+ w10 )0 J)0i 140 Brus 1 Brw)we|Pr, 0r)aHg)TelPet )2 BHAt<
E] 77t Y 49 J)0r1+ w110 By) J)0r+ w)Tely, Or) oty ) e[+
+At S0+ J)0;- 1'H'[

[ m— 1)2 B-£E J)Ht 1+ w20 7715 o ]\f) D)0+ w)Te|P, 0r) atg) e[ P+
)2 Be+ Ay ) )9t+ Qt_rH-[ g

_1E

t—1

>n)2 BEE | D)0+ wir 20 357 D0+ w)r|Py, 0:)aHg) e |42

v v
03)2 pB+E ?( ) DO+ )0+
>n0,0)2 B Jy 20 367n; 1E }U)Tt|9t»9t)a+tg)7t|9t+ 03)2  fBifn; 1E\f\t\/27
—Ta
where the forth equality holds by E, «,(r(6,(a))]w) 7t |Ps, 0t )atHg) e |Pe+ [ J)0s+and E op(- |9t(a))]A/ [ )Ht—i—
J)0;_14 the first inequality follows by Young’s inequality; and the last inequality holds by E \; C 21 E

JEICR > E v
Next, we give an upper bound of the term 773 as follows:

Ts [ E w)ri|pr, 00)a+g)|pi+>

[ ﬂgﬂ)Tth@t)aﬂL@)Ttpﬁ 9)7elfet0 g)7elPet-?

>3 )7t P, O )t [ )7i|Pe+2 0 3]Eé/(7)7t| i+

Z 3 )Tt|9t,0t a+H- 2 Tt| —|— 0 E )Tt| t+2

Vel ST
>3)W 0 2462, (43)

where the last inequality holds by Proposition 1 and Assumption 3.

Finally, combining the inequalities (42) with (43), we have

E]n; 1jt (> )2 BPE ey 20 582 )W 0 24620 3)2  BiEn Y, Eé/a%ot,m 2
> 1, 1>2 Bi#E 61 20 B87n, )W 0 24670 3)2 Bty '\ L°E 6, 6,1 >
[ n74)2 BPE e1 20 587, )W 0 24670 3)2  BifL%mp—1 e-10  J)Op_1+2

>5)W 0 24820, L,G20 n,Y)2 BB 20 5nf L2 Ejt 1;0 5)2  BBL%n,_ ry /at 1+

where the second inequality holds by the Proposition 2.
O

Theorem 5. Assume that the sequence }0;| I_, be generated from Algorithm 2, and let k | O) Gi/s +c [ 3k3 7 0 63L%

m | ng }3G?,)3LkE,) 2| andny [ 7. we have

vV__ v_
T

2 3dm/60 3934 3 Pgl/3
E  J)0-+ —|| O+ > V— 0 ,
v )C\/[ Tes v )t\/i T s

where ® [ L 27)7% 1040 o2 0 WEVEE 10)T 0 340 with J* [ s, J)f+< 0 € .

Ea
v
&

Proof. This proof mainly follows the proof of the above Theorem 4. Due to m ~ )3Lk-£, we have n; > —i73
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Since 1, > 5 and m ~ )%ﬁ we have ;41 [ onf > S > Lm1/3 > 2. By Lemma 5, we have

jtJrl\/ M 1\7 o >E )W o 2'178t+177t 1Gt+10 un )2 Bt+1+ 20 577t2L2 j \/
05)2 BrafL? . J)9t+ U 1 (
>E|5)W 0 246277?@“0 o 2 ﬂt+149>/0 5m “+ o[ g J05Ly

—T4

v
(44)

y J)9t+2<

where the last inequality holds by 1 < f3,,1 > 2. Since the function z'/3 is cancave, we have )z 0 y+/% > /30
yz—2/3 /4. Then we have

t t—1
_ _ 2 1/3 1/3 G?
1 1 2 2 t
n M- | ) m0 G; m0 G; [ > -
ooy e Ll et 2 sme e
GQ G2 32/3G2
> > > —
4k)ym G20 f G242/3 k)m/30 f L G2R/3 7 Ak)ym 0 [ oy G2R/3
32/3G2 ) 32/3G2 G2
>- 7 > 45
= 4k3 e = 7I€3L N = 4k3Lnta ( )
where the third inequality holds by m ~ 3G?, and the sixth inequality holds by 1 < n > ﬁ
Next, considering the upper bound of the term 7}, we have
o[ 07 h)2 B H20 507 L%+ n[fl[\;t ’
[ on ' 00 50 Beyan, 577t5t+1L2[\7t\/2
> 0t om0 5Ly, ﬂt+177t_1[\7t ’
G? v
2 2 2 2
> mmo 5L my C"]t[\;t\/ [ 59L Utjt\/ (46)
where the last equality holds by ¢ | 353 7 0 63L2. Combining the inequalities (44) with (46), we have
Eln, ' es1 2 m e 2°>E 15)W 0 24’0} G} 59L%n; e 20 5L%n; |, J)0+2 . 47)
VARV VAN e V'V vy
We define a Lyapunov function Q; [ J)0;+ 64L2m - \7 J 2 for any ¢t ~ 2. Then we have
ElQ1 Q7 E]J)9t+1+ J)0+ L 141 20 # ;2
75020,/ ¢ 7521/ '/
4ny 2
~ ]E —_— O )9t+ —_— t+1 n
] 5f2¢32¢ Jomm e g
wWo 2 G
) e Mt t+1 0 7E J)0t+ , (48)

4312 27/ v

where the first inequality holds by the Lemma 3, and the second inequality follows by the above inequality (47). Summing
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the above inequality (48) over ¢ from 2 to 7', we obtain

242} G4
3L2

X ). YW 0
HIE 9t+¢ > E27) Q01 Q140 H

t=1 t=1

2 W0 2462k 1o G2,
> E]27)J*  J)6+H0 ——FE e; 20 +
o " 5L ‘;1\/ 3L =1 m0 f i-1G

2 W0 242k3 14 G?
> [E]27)J* 0,-+H0 ——F e 2 tl
> EJ27)J"  J)01+H0 L2 \71\/0 H

32 5 GP0 [ LG
> E]27)J*  J)61+0 M%Ejljo Wogffwtlj )G? 0 ﬁlau m)G? 0 H G2
EJ27)0"  J)03+0 ﬁﬂa g WO 2K ) o ﬁlag+ )G
E)127)J*  J)01-+H0 ?;2/2020 )W%kag )20 ﬁl
> E|27)J*  J)6;+H0 gLLIQ/Z&o )W%szzk?) )70 3+ (49)

where J* [ uxs,J)0+< 0 €, and the fourth inequality holds by the concavity of the function )z and the sixth
inequality holds by the definition of e; and 7).

By Cauchy-Schwarz inequality, we have E| XY 2 > E] X2 E|Y?" Let X | \/77T Ik tT;ll N+2andY [ /2/nr,
we have 4 %

T T
)0:+2 (> E|2/nr E] 2 50
EN ; ( 12/n7 nTH¢ w( (50)
Since 7 is decreasing, we have
T T T
)0,+2 (> E|2/nr E] > EJ2/nr E J)0+2 (. 51
EN ( /wg ¢< }/nT]tr_[l¢>W< (51)

Combining the inequalities (49) and (51), we obtain

21)JF )0 HO Mg WALSE )1 34

ﬁ v HH— (> E} nr (

t=1

T
[ E]Je mo [ Gf[l/?’( (52)

t=1

where ® [ + 27)J*  J)6, ZLLIZ,/;UQO (Wzi)zc%:; W) T0 34.

By Assumption 2, we have G7 | f)7|9t+ J)0:+0 J)(%—i—\/2 > 3\7)T|Pt+ J)9t+\/2 03 J)Ht—k\/2 > 3020

Vv
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3\/ J)0t+\/2. Then using the inequality )a 0 b4/2 > a'/3 0 b'/3 for all a, b > 1 to the inequality (52), we obtain
J)0;+2
v v

2r1/3)
J)9t+\/[

~

)E ff[w J)0;+2 [ ] h‘[ et#i[ E]

=

t

Il
-

> E] ®)m 0 3To%4/30 3139

=
<

t=1

/3
[ ®)m0 3702430 31/3<I>]E} f J)9t+2i
LV v

~

=

~
I

~

>
Do +2% (53)
RVARRY

where the first inequality holds by the convexity of the function =2, and the last inequality holds by the concavity of the

function z%/3. For simplicity, let Z [ /[ [_, y J)0:+2, o we have

E)Z ]2 > ®)m0 3To>4/30 3130 Bz "°. (54)

=

> ®)m 0 3704/ 0 31/3@]1E f
t

2/3. Thus, we have

The inequality (54) implies that E]Z[* > 3®)m 0 3T024/3 or E|Z[* > 3 31/3% E|Z
vV__
E]Z > 3®)m0 3Tc4/50 38%/4, (55)
By Cauchy-Schwarz inequality, then we have
P
T T e
2 2 2 ¥
= H No+ [ B =] , Do+ (> E} w = h‘[ J)0;+2
T % o TV 2 vi
30)m 0 3Tg°+/50 393/

(56)
where the last inequality follows by the inequality )a 0 b4/6 > a'/¢0 b'/6 forall a,b > 1. O

A.3. Convergence Analysis of IS-MBPG* Algorithm

In this subsection, we detailedly provide the convergence properties of our IS-MBPG* algorithm.

Lemma 6. Assume that the stochastic policy gradient u; be generated from Algorithm 3, and let ey [ uy J)0+ we
have

J)9t71+27

v v

E]n, jtj gz 360?00 )2 Bef 20 9nf_ B[E o jo 92 BB

where B2 [ L20 3G2C2 with C,, | \/H)3HMg2 0 Mu-HW 0 2+

Proof. The proof is the similar to that of Lemma 4. The only difference is that instead of using 3377, 11E \/ J )0t+
)Tt\ﬂt—k\/ > 3671, 0% instead of 337n; 11E\/ J)0+ g)Tt|Pt+\/ > 362, 4 E \7)7’,5|ﬂt+\/2 [ 38%n,,G?
Theorem 6. Assume that the sequence }0;| L, be generated from Algorithm 3, and let B> | L?0 3G?*C2, k > 1

c| 3k3L 0 215B%, m [ ng }3,)3Lk+, )Ck | and no | m1/3, we have
~ S V-
E , o+ =[[E , )it > —Ve—0 ——,
4 VT VY T = T3

27)J* T+ Zarro?0 S )T 0 34 with J* [ uxsy J)04< 0 € .

Ealle

where |
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Proof. This proof mainly follows the proof of the above Theorem 4. Due to m ~ )3Lk-+, we have n; > m’f 5 = i
Since 1, > 5 and m ~ )££ 2, we have By [ enf > SE > 5 1/5 > 2. By Lemma 6, we have
E}m‘l\;m e 1jt "> E[36%am 0?0 )2 B 20 977332 L7y
Vv Vv
092 Bia¥Bn , J)0i+7 1@7
> E|3c¢ni0% 0 1, 1)2 Bip1420 977t 20932% y J)9t+\/2< (57)

where the last inequality holds by 1 < S,41 > 2. Since the function 2'/3 is cancave, we have )z 0 y+/3 > 21/3 0
yz~2/3 /4. Then we have

_ _ 2 1/3 1/3 2
1 1

— 0t 0t 2
e e | k) [ " U 2 Tgmo 2o

2 32/3
> >
~ 4k)m/30 t£/3 ~ 4k)ym 0 t-£/3
32/3 ) 32/3 )
> 153 > A > TR (58)

where the second inequality holds by m ~ 3, and the fifth inequality holds by 1 < 7 > ﬁ

Next, considering the upper bound of the term 75, we have

Ts [ n7h)2 B $H20 B>+ n [ e ?

[
[ ot 77;11 0 9B%*n,  Bewimg 977t5t+1B j \/
> 77;1 My 1 0 9B° M 5t+177t j \/

9
> gm0 9B%*n, o jt\/ :7B m\;t\j, (59)

where the last equality holds by ¢ | 3k3 70 215B2. Combining the inequalities (57) with (59), we have

2,3 2

E]nt_l\ﬁt_lrl\j 77t_711\7t\jAZ E]Sc n;o : m\; 20 9By, J)9t+\/2< (60)

We define a Lyapunov function ¥y [ J)0;+ 155 32 \ﬁ J 2 for any t ~ 2. Then we have

. 2 ) 2 )
E]\Ift+1 \Ift [ E]J)9t+1+ J)0t+ mit+1\/0 23932’[’]151jt\/<
NE] 4y 20 1 J)0p+2 2 Yot L2t 2
5 5y W 23982y Hitﬁ(

Anjo?
0 Mg 1 61

where the first inequality holds by the Lemma 3, and the second inequality follows by the above inequality (60). Summing
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the above inequality (61) over ¢ from 2 to 7', we obtain

a > Enpo’
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ml/3 2k352
E|27).J* 01+ 2 T 2
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where J* [ wxs, J)0+< 0 €, and the third inequality is due to m ~ 3, and the last inequality holds by [ le H—% >
Y rsdt > w)T0 3+

Since 7 [ W is decreasing, we have
T
0t+ > 2/7’]T 9t+2
[1=, 03 =2 T, 0
_ 20T J)6HO g”;:fk 20 €k 10)T0 3+
B nr
[ moT[? (63)
where [ L 27)J%  J)0,+H0 2020 CE2Cwm)T 0 34.
According to Jensen’s inequality, we have
V_ V_ V_
T T 1/6
2 2 1/2 m0 T[ \_;nl/6
il E  J)o = > V= > —~=0 64
L EVRVER o | VLI T T T T (4

where the last inequality follows by the inequality Ja 0 b+/% > a/6 0 /6 forall a,b > 1. O



