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Abstract

Policy gradient methods are a class of powerful

algorithms in reinforcement learning (RL). More

recently, some variance reduced policy gradient

methods have been developed to improve sam-

ple efficiency and obtain a near-optimal sample

complexity O)ε−3+for finding an ε-stationary

point of non-concave performance function in

model-free RL. However, the practical perfor-

mances of these variance reduced policy gradi-

ent methods are not consistent with their near-

optimal sample complexity, because these meth-

ods require large batches and strict learning rates

to achieve this optimal complexity. In the paper,

thus, we propose a class of efficient momentum-

based policy gradient methods, which use adap-

tive learning rates and do not require large batch-

es. Specifically, we propose a fast important-

sampling momentum-based policy gradient (IS-

MBPG) method by using the importance sam-

pling technique. We also propose a fast Hessian-

aided momentum-based policy gradient (HA-

MBPG) method via using the semi-Hessian in-

formation. Moreover, we prove that the IS-

MBPG and HA-MBPG methods reach the best

known sample complexity O)ε−3+without large

batches. In particular, we present a non-adaptive

version of IS-MBPG method (i.e., IS-MBPG*),

which has a simple monotonically decreasing

learning rate. We prove that the IS-MBPG* al-

so reaches the best known sample complexity

of O)ε−3+without large batches. In the exper-

iments, we use some benchmark tasks to demon-

strate the effectiveness of our algorithms.
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1. Introduction
Reinforcement Learning (RL) has achieved great success

in solving many sequential decision-making problems such

as autonomous driving (Shalev-Shwartz et al., 2016), robot

manipulation (Deisenroth et al., 2013), the game of Go (Sil-

ver et al., 2017) and natural language processing (Wang

et al., 2018). In general, RL involves a Markov decision

process (MDP), where an agent takes actions dictated by

a policy in a stochastic environment over a sequence of

time steps, and then maximizes the long-term cumulative

rewards to obtain an optimal policy. Due to easy imple-

mentation and avoiding policy degradation, policy gradient

method (Williams, 1992; Sutton et al., 2000) is widely used

for finding the optimal policy in MDPs, especially for the

high dimensional continuous state and action spaces. To

obtain the optimal policy, policy gradient methods directly

maximize the expected total reward (also called as perfor-

mance function J)θ+) via using the stochastic first-order

gradient of cumulative rewards. Recently, policy gradien-

t methods have achieved significant empirical successes in

many challenging deep reinforcement learning application-

s (Li, 2017) such as playing Go game and robot manipula-

tion.

Thus, policy gradient methods have regained much interest

in reinforcement learning, and some corresponding algo-

rithms and theory of policy gradient (Fellows et al., 2018;

Fujimoto et al., 2018; Papini et al., 2018; Haarnoja et al.,

2018; Xu et al., 2019a; Shen et al., 2019; Cheng et al.,

2019b;a; Wang et al., 2019a) have been proposed and stud-

ied. Since the classic policy gradient methods (e.g., RE-

INFORCE (Williams, 1992), PGT (Sutton et al., 2000),

GPOMDP (Baxter & Bartlett, 2001) and TRPO (Schul-

man et al., 2015a)) approximate the gradient of the expect-

ed total reward based on a batch of sampled trajectories,

they generally suffer from large variance in the estimat-

ed gradients, which results in a poor convergence. Fol-

lowing the standard stochastic gradient method (Robbins

& Monro, 1951), these gradient-based algorithms require

O)ε−4+samples for finding an ε-approximated stationary

point, i.e., E√ J)θ+√≥ ε. Thus, recently many works

have begun to study to reduce variance in the policy gra-

dient methods. For example, the early variance reduced

policy methods (Greensmith et al., 2004; Peters & Schaal,

2008) mainly focused on using unbiased baseline functions
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Table 1. Convergence properties of the representative variance-reduced policy algorithms on the non-oblivious model-free RL problem

for finding an ε-approximated stationary point, i.e., E‖∇J(θ)‖ ≤ ε. Our algorithms (IS-MBPG, IS-MBPG* and HA-MBPG) and

REINFORCE are single-loop algorithms, while the other algorithms are double-loops, which need the outer-loop and inner-loop mini-

batch sizes. Note that Papini et al. (2018) only remarked that apply the ADAM algorithm (Kingma & Ba, 2014) to the SVRPG algorithm

to obtain an adaptive learning rate, but did not provide any theoretical analysis about this learning rate.

Algorithm Reference Sample Complexity Batch-Size Adaptive Learning Rate
REINFORCE Williams (1992) O)ε−4+ O)ε−2+

SVRPG Papini et al. (2018) O)ε−4+ O)ε−2+& O)ε−2+

SVRPG Xu et al. (2019a) O)ε−10/3+ O)ε−4/3+& O)ε−2+
HAPG Shen et al. (2019) O)ε−3+ O)ε−1+& O)ε−2+

SRVR-PG Xu et al. (2019b) O)ε−3+ O)ε−1+& O)ε−2+
IS-MBPG Ours O)ε−3+ O)2+ �

HA-MBPG Ours O)ε−3+ O)2+ �
IS-MBPG* Ours O)ε−3+ O)2+

to reduce the variance. Schulman et al. (2015b) present-

ed the generalized advantage estimation (GAE) to discover

the balance between bias and variance of policy gradien-

t. Then Gu et al. (2016) applied both the GAE and linear

baseline function to reduce variance. Recently, Mao et al.

(2018); Wu et al. (2018) proposed the input-dependent and

action-dependent baselines to reduce the variance, respec-

tively. More recently, Cheng et al. (2019b) leveraged the

predictive models to reduce the variance to accelerate poli-

cy learning.

Recently, the variance reduced gradient estimators such

as SVRG (Johnson & Zhang, 2013; Allen-Zhu & Hazan,

2016; Reddi et al., 2016), SAGA (Defazio et al., 2014),

SARAH (Nguyen et al., 2017), SPIDER (Fang et al., 2018)

and SpiderBoost (Wang et al., 2019b) have been success-

ful in the oblivious supervised learning. However, the R-

L optimization problems are non-oblivious, i.e., the distri-

bution of the samples is non-stationarity and changes over

time. Thus, Du et al. (2017); Xu et al. (2017); Wai et al.

(2019) first transform the original non-oblivious policy e-

valuation problem into some oblivious subproblems, and

then use the existing variance reduced gradient estimators

(such as SVRG and SAGA) to solve these subproblems to

reach the goal of reducing the large variance in the original

RL problem. For example, Du et al. (2017) first transform-

s the empirical policy evaluation problem into a quadratic

convex-concave saddle-point problem via linear function

approximation, and then applies the variants of SVRG and

SAGA (Palaniappan & Bach, 2016) to solve this oblivious

saddle-point problem.

More recently, Papini et al. (2018); Xu et al. (2019a;b);

Shen et al. (2019) further have developed some variance

reduced policy gradient estimators directly used in the non-

oblivious model-free RL, based on the existing variance

reduced techniques such as SVRG and SPIDER used in

the oblivious supervised learning. Moreover, Xu et al.

(2019a;b); Shen et al. (2019) have effectively improved the

sample complexity by using these variance reduced poli-

cy gradients. For example, two efficient variance reduced

policy gradient methods, i.e, SRVR-PG (Xu et al., 2019b)

and HAPG (Shen et al., 2019) have been proposed based on

the SPIDER, and reach a sharp sample complexity O)ε−3+
for finding an ε-stationary point of non-concave perfor-

mance function (E√ J)θ+√≥ ε), which improves the s-

tandard complexity O)ε−4+(Williams, 1992) by a factor of

O)ε−1+. Since a lower bound of complexity O)ε−3+for

recently proposed variance reduction techniques is estab-

lished in (Arjevani et al., 2019), both the SRVR-PG and

HAPG obtain a near-optimal sample complexity O)ε−3+.
However, the practical performances of these variance re-

duced policy gradient methods are not consistent with their

near-optimal sample complexity, because these methods re-

quire large batch size and strict learning rates to achieve

this optimal complexity.

In the paper, thus, we propose a class of efficient momen-

tum based policy gradient methods, which use adaptive

learning rates and do not require large batches. Specifical-

ly, our algorithms only need one trajectory at each iteration

and use adaptive learning rates based on the current and his-

torical stochastic gradients. Note that Pirotta et al. (2013)

has studied the adaptive learning rates for policy gradient

methods, which only focuses on Gaussian policy. More-

over, Pirotta et al. (2013) did not consider sample complex-

ity and can not improve it. While our algorithms not only

provide the adaptive learning rates that are suitable for any

policies, but also improve sample complexity.

Contributions
Our main contributions are summarized as follows:

1) We propose a fast important-sampling momentum-

based policy gradient (IS-MBPG) method with adap-

tive learning rate, which builds on momentum-based

variance reduction technique (Cutkosky & Orabona,

2019; Tran-Dinh et al., 2019) and importance sam-

pling.
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2) We propose a fast Hessian-aided momentum-based

policy gradient (HA-MBPG) method with adaptive

learning rate, which builds on momentum-based vari-

ance reduction technique and semi-Hessian informa-

tion.

3) We study the sample complexity of our methods,

and prove that both the IS-MBPG and HA-MBPG

methods reach the best known sample complexity of

O)ε−3+without large batches (see Table 1).

4) We propose a non-adaptive version of IS-MBPG

method, i.e., IS-MBPG*, which has a simple mono-

tonically decreasing learning rate. We prove that it

also reaches the best known sample complexity of

O)ε−3+without large batches.

After our paper is accepted, we find that three related paper-

s (Xiong et al., 2020; Pham et al., 2020; Yuan et al., 2020)

more recently are released on arXiv. Xiong et al. (2020) has

studied the adaptive Adam-type gradient (PG-AMSGrad)

method, and has proved that the PG-AMSGrad still have a

high sample complexity of O)ε−4+. Subsequently, Pham

et al. (2020); Yuan et al. (2020) have proposed the poli-

cy gradient methods, i.e., ProxHSPGA and STORM-P, re-

spectively, which also build on the momentum-based vari-

ance reduced technique. Although both the ProxHSPGA

and STORM-P also reach the best known sample complex-

ity of O)ε−3+, these methods still rely on the large batches

to obtain this sample complexity and does not provide an

efficient adaptive learning rate as our methods.

Notations
Let √×√denote the vector �2 norm and the matrix spectral

norm, respectively. We denote an [ O)bn+if an ≥ cbn
for some constant c > 1. E]Xˆand V]Xˆdenote the expec-

tation and variance of a random variable X , respectively.

Eτt ]×̂[ Eτt ]×‖τ1,×××, τt−1ˆfor any t ∼ 3.

2. Background
In the section, we will review some preliminaries of stan-

dard reinforcement learning and policy gradient.

2.1. Reinforcement Learning

Reinforcement learning is generally modeled as a dis-

crete time Markov Decision Process (MDP): P [
}{ ,B ,R,S , γ, ρ0| . Here { is the state space, B is the

action space, and ρ0 denotes the initial state distribution.

R)s′‖s, a+denotes the probability that the agent transit-

s from the state s to s′ under taking the action a � B .

S )s, a+={ ©B A∞ ] R,Rˆ )R > 1+is the bounded

reward function, i.e., the agent obtain the reward S )s, a+
after it takes the action a at the state s, and γ � )1, 2+is

the discount factor. The policy π)a‖s+at the state s is rep-

resented by a conditional probability distribution πθ)a‖s+
associated to the parameter θ � R

d.

Given a time horizon H , the agent can collect a trajectory

τ [ }s0, a0,×××, sH−1, aH−1| under any stationary pol-

icy. Following the trajectory τ , a cumulative discounted

reward can be given as follows:

S )τ+[
H−1∏
h=0

γhS )sh, ah+, (1)

where γ is the discount factor. Assume that the policy πθ

is parameterized by an unknown parameter θ � R
d. Given

the initial distribution ρ0 [ ρ)s0+, the probability distribu-

tion over trajectory τ can be obtain

p)τ‖θ+[ ρ)s0+

H−1∫
h=0

R)sh+1‖sh, ah+πθ)ah‖sh+. (2)

2.2. Policy Gradient

The goal of RL is to find an optimal policy πθ that is e-

quivalent to maximize the expected discounted trajectory

reward:

n g˜
θ∈Rd

J)θ+=[ Eτ∼p(τ |θ)]S )τ+̂ [

√
S )τ+p)τ‖θ+dτ. (3)

Since the underlying distribution p depends on the variable

θ and varies through the whole optimization procedure, the

problem (3) is a non-oblivious learning problem, which is

unlike the traditional supervised learning problems that the

underlying distribution p is stationary. To deal with this

problem, the policy gradient method (Williams, 1992; Sut-

ton et al., 2000) is a good choice. Specifically, we first

compute the gradient of J)θ+with respect to θ, and obtain

J)θ+[

√
S )τ+ p)τ‖θ+dτ [

√
S )τ+ p)τ‖θ+

p)τ‖θ+p)τ‖θ+dτ

[ Eτ∼p(τ |θ)
]

mpl p)τ‖θ+S )τ+(. (4)

Since the distribution p)τ‖θ+is unknown, we can not com-

pute the exact full gradient of (4). Similar for stochastic

gradient descent (SGD), the policy gradient method sam-

ples a batch of trajectories M[ }τi| |B|i=1 from the distribu-

tion p)τ‖θ+to obtain the stochastic gradient as follows:

a J)θ+[
2

‖M‖
∏
i∈B

mpl p)τi‖θ+S )τi+.

At the t-th iteration, the parameter θ can be updated:

θt+1 [ θt 0 ηt a θJ)θ+, (5)

where ηt > 1 is a learning rate. In addition, since the term

mpl p)τi‖θ+is independent of the transition probabilityR,
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we rewrite the stochastic gradient a J)θ+as follows:

a J)θ+[
2

‖M‖
∏
i∈B

g)τi, θ+ (6)

[
2

‖M‖
∏
i∈B

H−1∏
h=0

θmpl πθ)a
i
h, s

i
h+
[ H−1∏

h=0

γhS )sih, aih+
[
,

where g)τi, θ+is an unbiased stochastic gradient based on

the trajectory τi, i.e., E]g)τi, θ+̂ [ J)θ+. Based on the

above gradient estimator in (6), we can obtain the exist-

ing well-known gradient estimators of policy gradient such

as the REINFORCE, the PGT and the GPOMDP. Due to

E] θmpl πθ)a, s+̂ [ 1, the REINFORCE adds a constant

baseline b and obtains a gradient estimator as follows:

g)τi, θ+[
H−1∏
h=0

θmpl πθ)a
i
h, s

i
h+
[ H−1∏

h=0

γhS )sih, aih+ b
[
.

Further, considering the fact that the current actions do not

rely on the previous rewards, the PGT refines the REIN-

FORCE and obtains the following gradient estimator:

g)τi, θ+[
H−1∏
h=0

H−1∏
j=h

γjS )sij , aij+ bj
[

θmpl πθ)a
i
h, s

i
h+.

Meanwhile, the PGT estimator is equivalent to the popular

GPOMDP estimator defined as follows:

g)τi, θ+[
H−1∏
h=0

h∏
j=0

θmpl πθ)a
i
j , s

i
j+)γ

hS )sih, aih+ bh+.

3. Momentum-Based Policy Gradients
In the section, we propose a class of fast momentum-

based policy gradient methods based on a new momentum-

based variance reduction method, i.e., STORM (Cutkosky

& Orabona, 2019). Although the STORM shows its effec-

tiveness in the oblivious learning problems, it is not well

suitable for the non-oblivious learning problem , where the

underlying distribution p)×+depends on the variable θ and

varies through the whole optimization procedure. To deal

with this challenge, we will apply two effective techniques,

i.e., importance sampling (Metelli et al., 2018; Papini et al.,

2018) and Hessian-aided (Shen et al., 2019), and propose

the corresponded policy gradient methods, respectively.

3.1. Important-Sampling Momentum-Based Policy
Gradient

In the subsection, we propose a fast important-sampling

momentum-based policy gradient (IS-MBPG) method by

using the importance sampling technique. Algorithm 1 de-

scribes the algorithmic framework of IS-MBPG method.

Since the problem (3) is non-oblivious or non-stationarity
that the underlying distribution p)τ‖θ+depends on the vari-

able θ and varies through the whole optimization proce-

dure, we have Eτ∼p(τ |θ)]g)τ‖θ+ g)τ‖θ′+̂ 	[ J)θ+
J)θ′+. Given τ sampled from p)τ‖θ+, we define an im-

portance sampling weight

w)τ‖θ′, θ+[ p)τ‖θ′+
p)τ‖θ+[

H−1∫
h=0

πθ′)ah‖sh+
πθ)ah‖sh+ (7)

to obtain Eτ∼p(τ |θ)
]
g)τ‖θ+ w)τ‖θ′, θ+g)τ‖θ′+( [

J)θ+ J)θ′+. In Algorithm 1, we use the following

momentum-based variance reduced stochastic gradient

ut [ )2 βt+
]
ut−1 0 g)τt‖θt+ w)τt‖θt−1, θt+g)τt‖θt−1+︸ ︸︷

SARAH

(

0 βt g)τt‖θt+︸ ︸︷
SGD

,

where βt � ]1, 2 .̂ When βt [ 2, the IS-MBPG will reduce

to the REINFORCE. When βt [ 1, it will reduce to the

SRVR-PG.

Let et [ ut J)θt+. It is easily verified that

E]et [̂ E
]
)2 βt+et−10 βt)g)τt‖θt+ J)θt+︸ ︸︷

=T1

+0 )2 βt+

×g)τt‖θt+ w)τt‖θt−1, θt+g)τt‖θt−1+ J)θt+0 J)θt−1+︸ ︸︷
=T2

[(

[ )2 βt+E]et−1 ,̂ (8)

where the last equality holds by Eτt∼p(τ |θt)]T1ˆ [ 1 and

Eτt∼p(τ |θt)]T2ˆ [ 1. By Cauchy-Schwarz inequality, we

can obtain

E√et√2 ≥)2 βt+
2
E√et−1√2 0 3β2

t E√T1√2
0 3)2 βt+

2
E√T2√2. (9)

Since O)√T2√2+[ O)√θt θt−1√2+[ O)η2t√ut√2+, we

can choose appropriate ηt and βt to reduce the variance

of stochastic gradient ut. From the following theoretical

results, our IS-MBPG algorithm can generate the adaptive

and monotonically decreasing learning rate ηt � )1, 1
2L ,̂

and the monotonically decreasing parameter βt � )1, 2 .̂

3.2. Hessian-Aided Momentum-Based Policy Gradient

In the subsection, we propose a fast Hessian-aided

momentum-based policy gradient (HA-MBPG) method via

using the semi-Hessian information. Algorithm 2 describes

the algorithmic framework of HA-MBPG method.

In Algorithm 2, at the 8-th step, we use an unbiased termΛ t

i.e., Eτt∼p(τ |θt(α))]Λ
tˆ[ J)θt+ J)θt−1+

[
instead of

the biased term g)τ‖θt+ g)τ‖θt−1+. To construct the term
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Algorithm 1 Important-Sampling Momentum-Based Poli-

cy Gradient (IS-MBPG) Algorithm

1: Input: Total iteration T , parameters }k,m, c| and ini-

tial input θ1;

2: for t [ 2, 3, . . . , T do
3: if t [ 2 then
4: Sample a trajectory τ1 from p)τ‖θ1+, and compute

u1 [ g)τ1‖θ1+;
5: else
6: Sample a trajectory τt from p)τ‖θt+, and compute

ut [ βtg)τt‖θt+0 )2 βt+
]
ut−1 0 g)τt‖θt+

w)τt‖θt−1, θt+g)τt‖θt−1+
(
, where the importance

sampling weight w)τt‖θt−1, θt+can be computed

by using (7);

7: end if
8: Compute Gt [ √g)τ‖θt+√;
9: Compute ηt [

k
(m+

∑t
i=1 G2

i )
1/3 ;

10: Update θt+1 [ θt 0 ηtut;

11: Update βt+1 [ cη2t ;

12: end for
13: Output: θζ chosen uniformly random from }θt| Tt=1.

Λ t, we first assume that the function J)θ+is twice differ-

entiable as in (Furmston et al., 2016; Shen et al., 2019). By

the Taylor’s expansion (or Newton-Leibniz formula), the

gradient difference J)θt+ J)θt−1+can be written as

J)θt+ J)θt−1+[
]√1

0

2J)θt)α++dα
(
vt, (10)

where vt [ θt θt−1 and θt)α+[ αθt 0 )2 α+θt−1

for some α � ]1, 2 .̂ Following (Furmston et al., 2016;

Shen et al., 2019), we obtain the policy Hessian 2J)θ+as

follows:

2J)θ+[ Eτ∼p(τ |θ)
]

mpl p)τ‖θ+ mpl p)τ‖θ+T
0 2mpl p)τ‖θ+[S )τ+(

[ Eτ∼p(τ |θ)
]
Ψ)τ‖θ+ mpl p)τ‖θ+T 0 2Ψ)τ‖θ+(,

whereΨ)τ‖θ+[ ∫ H−1
h=0

∫ H−1
j=h γjr)sj , aj+mpl πθ)ah, sh+.

Given the random tuple )α, τ+, where α samples uniformly

from ]1, 2ˆand τ samples from the distribution p)τ‖θt)α++,
we can construct Λ t as follows:

Λ t =[ a 2)θt)α+, τ+vt, (11)

where Eτ∼p(τ |θt(α))] a
2)θt)α+, τ+̂ [ 2J)θt)α++and

a 2)θt, τ+[ Ψ)τ‖θt)α++ mpl p)τ‖θt)α++T
0 2Ψ)τ‖θt)α++.

Note that Eα∼U [0,1]]
2J)θt)α++̂ [

∑1

0
2J)θt)α++dα

implies the unbiased estimator 2J)θ)%α++ with

Algorithm 2 Hessian-Aided Momentum-Based Policy

Gradient (HA-MBPG) Algorithm

1: Input: Total iteration T , parameters }k,m, c| and ini-

tial input θ1;

2: for t [ 2, 3, . . . , T do
3: if t [ 2 then
4: Sample a trajectory τ1 from p)τ‖θ1+, and compute

u1 [ g)τ1‖θ1+;
5: else
6: Choose α uniformly at random from ]1, 2 ,̂ and

compute θt)α+[ αθt 0 )2 α+θt−1;

7: Sample a trajectory τt from p)τ‖θt)α++, and com-

pute ut [ βtw)τt‖θt, θt)α++g)τt‖θt+0 )2
βt+ut−10 Λ t

[
, where w)τ‖θt, θt)α++andΛ t can

be computed by using (7) and (11), respectively;

8: end if
9: Compute Gt [ √g)τ‖θt+√;

10: Compute ηt [
k

(m+
∑t

i=1 G2
i )

1/3 ;

11: Update θt+1 [ θt 0 ηtut;

12: Update βt+1 [ cη2t ;

13: end for
14: Output: θζ chosen uniformly random from }θt| Tt=1.

%α uniformly sampled from ]1, 2 .̂ Given %α, we

have Eτ∼p(τ |θt(ᾱ))] a
2)θt)%α+, τ+̂ [ 2J)θt)%α++.

According to the equation (10), thus we have

Eα∼U [0,1], τ∼p(τ |θt(α))]Λ tˆ [ J)θt+ J)θt−1+,
where U ]1, 2ˆdenotes the uniform distribution over ]1, 2 .̂

Next, we rewrite (11) as follows:

Λ t [ mpl p)τ‖θt)α++T vt
[

Ψ)τ‖θt)α++
0 2Ψ)τ‖θt)α++vt. (12)

Considering the second term in (12) is a time-consuming

Hessian-vector product, in practice, we use can the finite

difference method to estimate 2Ψ)τ‖θt)α++vt as follows:

2Ψ)τ‖θt)α++vt
→ Ψ)τ‖θt)α+0 δvt+ Ψ)τ‖θt)α+ δvt+

3δ
vt

[ 2Ψ)τ‖θt)α++vt, (13)

where δ > 1 is very small and θt)α+ � ]
θt)α+

δvt, θt)α+0 δvtˆ is obtained by the mean-value theorem.

Suppose Ψ)τ‖θ+is L2-second-order smooth, we can upper

bound the approximated error:

√ 2Ψ)τ‖θt)α++vt 2Ψ)τ‖θt)α++vt√≥ L2√vt√δ. (14)

Thus, we take a sufficiency small δ to obtain arbitrarily s-

mall approximated error.
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In Algorithm 2, we use the following momentum-based

variance reduced stochastic gradient

ut [ βtw)τ‖θt, θt)α++g)τ‖θt+0 )2 βt+ut−1 0 Λ t

[
,

where βt � ]1, 2 .̂ When βt [ 2, the HA-MBPG will

reduce to the REINFORCE. When βt [ 1, it will reduce to

the HAPG.

Let et [ ut J)θt+. It is also easily verified that

E]etˆ[ E
]
)2 βt+et−1 0 βt)w)τ‖θt, θt)α++g)τ‖θt+ J)θt+︸ ︸︷

=T3

+

0 )2 βt+ Λ t J)θt+0 J)θt−1+︸ ︸︷
=T4

[(

[ )2 βt+E]et−1 ,̂ (15)

where the last equality holds by Eτ∼p(τ |θt(α))]T3ˆ[ 1 and

Eτ∼p(τ |θt(α))]T4ˆ [ 1. Similarly, by Cauchy-Schwarz in-

equality, we can obtain

E√et√2 ≥)2 βt+
2
E√et−1√2 0 3β2

t E√T3√2
0 3)2 βt+

2
E√T4√2. (16)

Since O)√T4√2+ [ O)√θt θt−1√2+ [ O)η2t√ut√2+,
we can choose appropriate ηt and βt to reduce the vari-

ance of stochastic gradient ut. From the following theo-

retical results, our HA-MBPG algorithm can also gener-

ate the adaptive and monotonically decreasing learning rate

ηt � )1, 1
2L ,̂ and the monotonically decreasing parameter

βt � )1, 2 .̂

3.3. Non-Adaptive IS-MBPG*
In this subsection, we propose a non-adaptive version of

IS-MBPG algorithm, i.e., IS-MBPG*. The IS-MBPG* al-

gorithm is given in Algorithm 3. Specifically, Algorithm 3

applies a simple monotonically decreasing learning rate ηt,
which only depends on the number of iteration t.

4. Convergence Analysis
In this section, we will study the convergence proper-

ties of our algorithms, i.e., IS-MBPG, HA-MBPG and IS-

MBPG*. All related proofs are provided in supplementary
document. We first give some assumptions as follows:

Assumption 1. Gradient and Hessian matrix of func-
tion mpl πθ)a‖s+are bounded, i.e., there exist constants
Mg,Mh > 1 such that

√ θmpl πθ)a‖s+√≥Mg, √ 2
θmpl πθ)a‖s+√≥Mh. (17)

Assumption 2. Variance of stochastic gradient g)τ‖θ+is
bounded, i.e., there exists a constant σ > 1, for all πθ such
that V)g)τ‖θ++[ E√g)τ‖θ+ J)θ+√2 ≥ σ2.
Assumption 3. Variance of importance sampling weight
w)τ‖θ1, θ2+[ p)τ‖θ1+/p)τ‖θ2+is bounded, i.e., there ex-
ists a constant W > 1, it follows V)w)τ‖θ1, θ2++≥ W for
any θ1, θ2 � R

d and τ ≈ p)τ‖θ2+.

Algorithm 3 IS-MBPG* Algorithm

1: Input: Total iteration T , parameters }k,m, c| and ini-

tial input θ1;

2: for t [ 2, 3, . . . , T do
3: if t [ 2 then
4: Sample a trajectory τ1 from p)τ‖θ1+, and compute

u1 [ g)τ1‖θ1+;
5: else
6: Sample a trajectory τt from p)τ‖θt+, and compute

ut [ βtg)τt‖θt+0 )2 βt+
]
ut−1 0 g)τt‖θt+

w)τt‖θt−1, θt+g)τt‖θt−1+
(
;

7: end if
8: Compute ηt [

k
(m+t)1/3

;

9: Update θt+1 [ θt 0 ηtut;

10: Update βt+1 [ cη2t ;

11: end for
12: Output: θζ chosen uniformly random from }θt| Tt=1.

Assumptions 1 and 2 have been commonly used in the

convergence analysis of policy gradient algorithms (Papini

et al., 2018; Xu et al., 2019a;b; Shen et al., 2019). Assump-

tion 3 has been used in the study of variance reduced policy

gradient algorithms (Papini et al., 2018; Xu et al., 2019a;b).

Note that the bounded importance sampling weight in As-

sumption 3 might be violated in practice. For example,

because when using neural networks (NNs) as the policy,

small perturbations in θ might raise a large gap in the point

probability due to some activation functions in NNs. Thus,

we usually clip the importance sampling weights to make

our algorithms (i.e., IS-MBPG and HA-MBPG) more ef-

fective. Based on Assumption 1, we give some useful prop-

erties of stochastic gradient g)τ‖θ+and a 2)θt, τ+, respec-

tively.

Proposition 1. (Proposition 4.2 in (Xu et al., 2019b)) Sup-
pose g)τ‖θ+is the PGT estimator. By Assumption 1, we
have

1) g)τ‖θ+ is aL-Lipschitz differential, i.e., √g)τ‖θ+
g)τ‖θ′+√≥ L√θ θ′√with aL [ MhR/)2 γ+2;

2) J)θ+is aL-smooth, i.e.,√ 2J)θ+√≥ aL;
3) g)τ‖θ+is bounded, i.e., √g)τ‖θ+√≥ G for all θ � R

d

with G [ MgR/)2 γ+2.

Since √ J)θ+√[ √E]g)τ‖θ+̂√≥ E√g)τ‖θ+√≥ G, Propo-

sition 1 implies that J)θ+is G-Lipschitz. Without loss of

generality, we use the PGT estimator to generate the gradi-

ent g)τ‖θ+in our algorithms, so Gt [ √g)τ‖θ+√≥ G.

Proposition 2. (Lemma 4.1 in (Shen et al., 2019)) Under
Assumption 1, we have for all θ

√a 2)θ, τ+√2 ≥ H2M4
gR

2 0 M2
hR

2

)2 γ+4
[ L2. (18)
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Since √ 2J)θ+√[ √E] a 2)θ, τ+̂√≥ E√a 2)θ, τ+√≥ L,

Proposition 2 implies that J)θ+is L-smooth. Let L [
n g˜)aL,L+, so J)θ+is L-smooth.

4.1. Convergence Analysis of IS-MBPG Algorithm
In the subsection, we analyze the convergence prop-

erties of the IS-MBPG algorithm. For notational

simplicity, let B2 [ L2 0 3G2C2
w with Cw [√

H)3HM2
g 0 Mh+)W 0 2+.

Theorem 1. Assume that the sequence }θt| Tt=1 be generat-
ed from Algorithm 1. Set k [ O)G

2/3

L +, c [ G2

3k3L 0 215B
2,

m [ n g˜}3G2, )3Lk+3, ) ck2L+
3| and η0 [

k
m1/3 , we have

E√ J)θζ+√≥
∇
3´m1/6 0 3´ 3/4

∇
T

0
3
∇
´ σ1/3

T 1/3
, (19)

where ´ [ 1
k 27)J∗ J)θ1++0

m1/3

8B2kσ
2 0 c2k3

4B2 mo)T 0 3+
[

with J∗ [ uxs θ J)θ+< 0 ∈ .
Remark 1. Since ´ [ O)mo)T++, Theorem 1 shows that
the IS-MBPG algorithm has O)

√
mo)T+/T

1
3+convergence

rate. The IS-MBPG algorithm needs 2 trajectory to es-
timate the stochastic policy gradient ut at each iteration,
and needs T iterations. Without loss of generality, we omit
a relative small term

√
mo)T+. By T−

1
3 ≥ ε, we choose

T [ ε−3. Thus, the IS-MBPG has the sample complexity
of 2×T [ O)ε−3+for finding an ε-stationary point.

4.2. Convergence Analysis of HA-MBPG Algorithm
In the subsection, we analyze the convergence properties of

the HA-MBPG algorithm.

Theorem 2. Assume that the sequence }θt| Tt=1 be gener-
ated from Algorithm 2, and let k [ O)G

2/3

L +, c [ G2

3k3L 0

63L2, m [ n g˜}3G2, )3Lk+3, ) ck2L+
3| and η0 [

k
m1/3 , we

have

E√ J)θζ+√≥
∇
3Φm1/6 0 3Φ3/4

∇
T

0
3
∇
Φσ1/3

T 1/3
,

where Φ [ 1
k 27)J∗ J)θ1++ 0 m1/3

4L2kσ
2 0

(W+1)c2k3

2L2 mo)T 0 3+
[

with J∗ [ uxs θ J)θ+< 0 ∈ .
Remark 2. Since Φ [ O)mo)T++, Theorem 2 shows
that the HA-MBPG algorithm has O)

√
mo)T+/T

1
3+conver-

gence rate. The HA-MBPG algorithm needs 2 trajectory to
estimate the stochastic policy gradient ut at each iteration,
and needs T iterations. Without loss of generality, we omit
a relative small term

√
mo)T+. By T−

1
3 ≥ ε, we choose

T [ ε−3. Thus, the HA-MBPG has the sample complexity
of 2×T [ O)ε−3+for finding an ε-stationary point.

4.3. Convergence Analysis of IS-MBPG* Algorithm
In the subsection, we give the convergence properties of the

IS-MBPG* algorithm.

(a) CartPole (b) Walker

(c) Hopper (d) HalfCheetah

Figure 1. Four environments we used. (a) Cartpole: balance a

pole on a cart; (b) Walker: make a 2D robot walk; (c) Hopper:

make a 2D robot hop; (d) HalfCheetah: make a 2D cheetah robot

run.

Theorem 3. Assume that the sequence }θt| Tt=1 be gener-
ated from Algorithm 3, and let B2 [ L2 0 3G2C2

w, k > 1
c [ 1

3k3L 0 215B2, m [ n g˜}3, )3Lk+3, ) ck2L+3| and
η0 [

k
m1/3 , we have

E√ J)θζ+√[ 2

T

T∏
t=1

E√ J)θt+√≥
∇

m1/6

∇
T

0

∇

T 1/3
,

where [ 1
k 27)J∗ J)θ1++0

m1/3

8B2kσ
20 c2k3σ2

4B2 mo)T 0 3+
[

with J∗ [ uxs θ J)θ+< 0 ∈ .

Remark 3. Since [ O)mo)T++, Theorem 3 shows
that the IS-MBPG* algorithm has O)

√
mo)T+/T

1
3+conver-

gence rate. The IS-MBPG* algorithm needs 2 trajectory to
estimate the stochastic policy gradient ut at each iteration,
and needs T iterations. Without loss of generality, we omit
a relative small term

√
mo)T+. By T−

1
3 ≥ ε, we choose

T [ ε−3. Thus, the IS-MBPG* also has the sample com-
plexity of 2×T [ O)ε−3+for finding an ε-stationary point.

5. Experiments
In this section, we demonstrate the performance of our

algorithms on four standard reinforcement learning tasks,

which are CartPole, Walker, HalfCheetah and Hopper. The

first one is a discrete task from classic control, and the lat-

er three tasks are continuous RL task, which are popular

MuJoCo environments (Todorov et al., 2012). Detailed de-

scription of these environments is shown in Fig. 1.

5.1. Experimental Setup
In the experiment, we use Categorical Policy for CartPole,

and Gaussian Policy for all the other environments. Al-

l Policies are parameterized by the fully connected neu-
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(a) CartPole (b) Walker

(c) Hopper (d) HalfCheetah

Figure 2. Experimental results of our algorithms (IS-MBPG and HA-MBPG) and baseline algorithms at four environments.

ral network. The detail of network architecture and acti-

vation function used are shown in the Appendix A. The

network settings are similar to the HAPG (Shen et al.,

2019) algorithm. We implement our algorithms by us-

ing garage (garage contributors, 2019) and pytorch (Paszke

et al., 2019). Note that Previous works mostly use envi-

ronments implemented by old versions of garage, while

latest version of garage directly use environments from

gym (Brockman et al., 2016). As a result, there might be an

inconsistency of the reward calculation between this paper

and previous works due to the difference of environment

implementation.

In the experiments, we compare our algorithm with the

existing two best algorithms: Hessian Aided Policy Gra-

dient (HAPG) (Shen et al., 2019), Stochastic Recursive

Variance Reduced Policy Gradient (SRVR-PG) (Xu et al.,

2019b) and a baseline algorithm: REINFORCE (Sutton

et al., 2000). For a fair comparison, the policies of al-

l methods use the same initialization, which ensures that

they have similar start point. Moreover, to ease the im-

pact of randomness, we run each method 10 times, and plot

mean as well as variance interval for each of them.

In addition, for the purpose of fair comparison, we use the

same batch size ‖M‖ for all algorithms, though our algo-

rithms do not have a requirement on it. HAPG and SRVR-

PG have sub-iterations (or inner loop), and requires addi-

tional hyper-parameters. The inner batch size for HAPG

and SRVR-PG is also set to be the same value. For all

the other hyper-parameters, we try to make them be analo-

gous to the settings in their original paper. One may argue

that our algorithms need three hyper-parameters k, m and

c to control the evolution of learning rate while for other

algorithms one hyper parameter is enough to control the

learning rate. However, it should be noticed that our algo-

rithms do not involve any sub-iterations unlike HAPG and

SRVR-PG. Introducing sub-iterations itself naturally bring

more hyper-parameters such as the number of sub-iteration

and the inner batch size. From this perspective, the hyper-

parameter complexity of our algorithms resembles HAPG

and SRVR-PG. The more details of hyper-parameter selec-

tion are shown in the Appendix A.

Similar to the HAPG algorithm, we use the system probes
(i.e., the number of state transitions) as the measurement of

sample complexity instead of number of trajectories. The

reason of doing so is because each trajectory may have dif-

ferent length of states due to a failure flag returned from the

environment (often happens at the beginning of training).

Besides this reason, if using the number of trajectories as

complexity measurement and the environment can return

a failure flag, a faster algorithm may have a lot more sys-

tem probes given the same number of trajectories. We also
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(a) IS-MBPG (b) HA-MBPG

Figure 3. Different batch sizes for our algorithms (IS-MBPG and HA-MBPG) at CartPole environment.

(a) CartPole (b) Walker

Figure 4. Results of IS-MBPG and IS-MBPG* algorithms at CartPole and Walker environment.

use average episode return as used in HAPG (Shen et al.,

2019).

5.2. Experimental Results
The results of experiments are presented in Fig. 2. In the

CartPole environment, our IS-MBPG and HA-MBPG algo-

rithms have better performances than the other methods. In

the Walker environment, our algorithms start to have more

advantages. Specifically, the average return of IS-MBPG

and HA-MBPG grows rapidly at the beginning of train-

ing. Moreover, our IS-MBPG algorithm achieves the best

final performance with a obvious margin. HA-MBPG per-

forms similar compared to SRVR-PG and HAPG, though

it has an advantage at the beginning. In Hopper environ-

ment, our IS-MBPG and HA-MBPG algorithms are sig-

nificantly faster compared to all other methods, while the

final average reward are similar for different algorithms.

In HalfCheetah environment, IS-MBPG, HA-MBPG and

SRVR-PG performs similarly at the beginning. In the end

of training, IS-MBPG can achieve the best performance.

We note that HAPG performs poorly on this task, which

is probably because of the normalized gradient and fixed

learning rate in their algorithm. For all tasks, HA-MBPG

are always inferior to the IS-MBPG. One possible reason

for this observation is that we use the estimated Hessian

vector product instead of the exact Hessian vector product

in HA-MBPG algorithm, which brings additional estima-

tion error to the algorithm.

In Fig. 3, we plot the average reward when changing

batch size in CartPole environment. From Fig. 3, we find

that when 31( of the original batch size, our HA-MBPG

and IS-MBPG algorithms still outperform the HAPG and

SRVR-PG algorithms, respectively. When the batch size is

1, our HA-MBPG and IS-MBPG algorithms still reach a

good performance. These results demonstrate that our HA-

MBPG and IS-MBPG algorithms are not sensitive to the

selection of batch size. Fig. 4 shows that the non-adaptive

IS-MBPG* algorithm also has similar performances as the

adaptive IS-MBPG algorithm.

6. Conclusion
In the paper, we proposed a class of efficient momentum-

based policy gradient methods, which do not require large

batches and use adaptive learning rates. Specifically, we

proposed a fast IS-MBPG method by using the importance

sampling technique. At the same time, we also presented a

fast HA-MBPG method via using the semi-Hessian infor-

mation. Moreover, we proved that both IS-MBPG and HA-

MBPG methods reach the best known sample complexity

O)ε−3+without large batches. In particular, we also pre-

sented a non-adaptive version of IS-MBPG method (i.e.,

IS-MBPG*), which has a simple monotonically decreasing

learning rate. We proved that the IS-MBPG* also reaches

the best known sample complexity of O)ε−3+without large

batches.
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Environments CartPole Walker Hopper HalfCheetah

Horizon 100 500 1000 500

Baseline None Linear Linear Linear

Neural Network sizes 9©9 75©75 75©75 75©75
Number of timesteps 6©215 2©217 2©217 2©217

Batch size ‖M‖ 50 100 50 100

HAPG ‖Msub‖ 10 10 10 10

SRVR-PG ‖Msub‖ 10 10 10 10

HAPG nsub 5 10 10 10

SRVR-PG nsub 3 2 2 2

IS-MBPG/HA-MBPG k 0.75 0.75 0.75 0.75

IS-MBPG/HA-MBPG c 2 2 1 1

IS-MBPG/HA-MBPG m 2 12 3 3

REINFORCE learning rate η 0.01 0.01 0.01 0.01

HAPG learning rate η 0.01 0.01 0.01 0.01

SRVR-PG learning rate η 0.1 0.1 0.1 0.1

Table 2. Hyper-parameter Details. |Bsub| represents sub-iteration (inner-loop) batch size. nsub represents number of sub-iterations, which

is called p in the original paper of HAPG and m in the oringinal paper of SRVR-PG. Although the learning rate η of HAPG is given a

small value η = ε in the theoretical analysis, we choose learning rate η = 0.01 as given in the experiments of (Shen et al., 2019).

A. Supplementary Materials for “Momentum-Based Policy Gradient Methods”
In this section, we first provide the details of hyper-parameter selection for the algorithms in Table 2. Table 2 also shows

that the detail of network architecture and activation function used in the experiments. Next, we study the convergence

properties of our algorithms. We begin with giving some useful lemmas.

Lemma 1. (Lemma 1 in (Cortes et al., 2010)) Let w)x+[ P )x+/Q)x+be the importance weight for distributions P and
Q. The following identities hold for the expectation, second moment, and variance of w)x+

E]w)x+̂ [ 2, E]w2)x+̂ [ d2)P‖‖Q+, V]w)x+̂ [ d2)P‖‖Q+ 2, (20)

where d2)P‖‖Q+[ 3D(P ||Q), and D)P‖‖Q+is the Rēnyi divergence between distributions P and Q.
Lemma 2. Under Assumptions 1 and 3, let w)τ‖θt−1, θt+[ g)τ‖θt−1+/g)τ‖θt+, we have

V]w)τ‖θt−1, θt+̂≥ C2
w√θt θt−1√2, (21)

where Cw [
√

H)3HM2
g 0 Mh+)W 0 2+.

Proof. This proof can easy follow the proof of Lemma 6.1 in (Xu et al., 2019a).

Lemma 3. Under Assumption 1, let et [ J)θt+ ut. Given 1 ≥ ηt ≥ 1
2L for all t ∼ 2, we have

E]J)θt+1+̂∼ E]J)θt+
4ηt
5
√et√2 0 ηt

9
√ J)θt+√2 .̂ (22)

Proof. Let et [ J)θt+ ut. By using J)θ+is L-smooth, we have

E]J)θt+1+̂∼ E]J)θt+0 J)θt+
T )θt+1 θt+

L

3
√θt+1 θt√2ˆ[ E]J)θt+0 ηt J)θt+

Tut
Lη2t
3
√ut√2ˆ

[ E]J)θt+0 ηt) J)θt+ ut+
Tut 0 ηt√ut√2 Lη2t

3
√ut√2ˆ

∼ E]J)θt+
ηt
3
√ J)θt+ ut√2 0 ηt

3
)2 Lηt+√ut√2ˆ

∼ E]J)θt+
ηt
3
√ J)θt+ ut√2 0 ηt

5
√ut√2ˆ

∼ E]J)θt+
4ηt
5
√et√2 0 ηt

9
√ J)θt+√2 ,̂ (23)
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where the second inequality holds by Young’s inequality, and the third inequality holds by 1 < ηt ≥ 1
2L , and the last

inequality follows by√ J)θt+√2 ≥ 3√ut√2 0 3√ J)θt+ ut√2 [ 3√ut√2 0 3√et√2.

A.1. Convergence Analysis of IS-MBPG Algorithm
In this subsection, we analyze the convergence properties of IS-MBPG algorithm. For notational simplicity, let J)θ+
denote θJ)θ+.

Lemma 4. Assume that the stochastic policy gradient ut be generated from Algorithm 1, and let et [ ut J)θt+, we
have

E
]
η−1
t−1√et√2

(≥ 3β2
t η
−1
t−1G

2
t 0 η−1

t−1)2 βt+
2 2 0 9η2t−1B

2
[
E√et−1√2 0 9)2 βt+

2B2ηt−1√ J)θt−1+√2,

where B2 [ L2 0 3G2C2
w with Cw [

√
H)3HM2

g 0 Mh+)W 0 2+.

Proof. By the definition of ut in Algorithm 1, we have

ut ut−1 [ βtut−1 0 βtg)τt‖θt+0 )2 βt+g)τt‖θt+ w)τt‖θt−1, θt+g)τt‖θt−1+
[
. (24)

Then we have

E
]
η−1
t−1√et√2

(
[ E

]
η−1
t−1√ J)θt−1+ ut−1 0 J)θt+ J)θt−1+ )ut ut−1+√2

(
(25)

[ E
]
η−1
t−1√ J)θt−1+ ut−1 0 J)θt+ J)θt−1+0 βtut−1 βtg)τt‖θt+

)2 βt+g)τt‖θt+ w)τt‖θt−1, θt+g)τt‖θt−1+
[√2(

[ E
]
η−1
t−1√)2 βt+) J)θt−1+ ut−1+0 βt) J)θt+ g)τt‖θt++

)2 βt+g)τt‖θt+ w)τt‖θt−1, θt+g)τt‖θt−1+ ) J)θt+ J)θt−1++
[√2(

[ η−1
t−1)2 βt+

2
E√ J)θt−1+ ut−1√2 0 η−1

t−1E
]√βt) J)θt+ g)τt‖θt++

)2 βt+g)τt‖θt+ w)τt‖θt−1, θt+g)τt‖θt−1+ ) J)θt+ J)θt−1++
[√2(

≥ η−1
t−1)2 βt+

2
E√ J)θt−1+ ut−1√2 0 3β2

t η
−1
t−1E√ J)θt+ g)τt‖θt+√2

0 3)2 βt+
2
E√g)τt‖θt+ w)τt‖θt−1, θt+g)τt‖θt−1+ ) J)θt+ J)θt−1++√2

≥ η−1
t−1)2 βt+

2
E√et−1√2 0 3β2

t η
−1
t−1E√g)τt‖θt+√2 0 3)2 βt+

2η−1
t−1E√g)τt‖θt+ w)τt‖θt−1, θt+g)τt‖θt−1+√2

[ η−1
t−1)2 βt+

2
E√et−1√2 0 3β2

t η
−1
t−1G

2
t 0 3)2 βt+

2η−1
t−1 E√g)τt‖θt+ w)τt‖θt−1, θt+g)τt‖θt−1+√2︸ ︸︷

=T1

,

where the forth equality holds by Eτt∼p(τ |θt)]g)τt‖θt+̂ [ J)θt+and Eτt∼p(τ |θt)]g)τt‖θt+ w)τt‖θt−1, θt+g)τt‖θt−1+̂ [
J)θt+ J)θt−1+; the first inequality follows by Young’s inequality; and the last inequality holds by E√ζ E]ζ √̂2 [

E√ζ√2 )E]ζ +̂2 ≥ E√ζ√2.

Next, we give an upper bound of the term T1 as follows:

T1 [ E√g)τt‖θt+ w)τt‖θt−1, θt+g)τt‖θt−1+√2
[ E√g)τt‖θt+ g)τt‖θt−1+0 g)τt‖θt−1+ w)τt‖θt−1, θt+g)τt‖θt−1+√2
≥ 3E√g)τt‖θt+ g)τt‖θt−1+√2 0 3E√)2 w)τt‖θt−1, θt++g)τt‖θt−1+√2
≥ 3L2√θt θt−1√2 0 3G2

E√2 w)τt‖θt−1, θt+√2
[ 3L2√θt θt−1√2 0 3G2

V w)τt‖θt−1, θt+
[

≥ 3)L2 0 3G2C2
w+√θt θt−1√2, (26)

where the second inequality holds by Proposition 1, and the third equality holds by Lemma 1, and the last inequality

follows by Lemma 2.
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Combining the inequalities (25) with (26), let B2 [ L2 0 3G2C2
w, we have

E
]
η−1
t−1√et√2

(≥ η−1
t−1)2 βt+

2
E√et−1√2 0 3β2

t η
−1
t−1G

2
t 0 5)2 βt+

2η−1
t−1B

2√θt θt−1√2
[ η−1

t−1)2 βt+
2
E√et−1√2 0 3β2

t η
−1
t−1G

2
t 0 5)2 βt+

2B2ηt−1√ut−1√2
[ η−1

t−1)2 βt+
2
E√et−1√2 0 3β2

t η
−1
t−1G

2
t 0 5)2 βt+

2B2ηt−1√et−1 0 J)θt−1+√2
≥ 3β2

t η
−1
t−1G

2
t 0 η−1

t−1)2 βt+
2 2 0 9η2t−1B

2
[
E√et−1√2 0 9)2 βt+

2B2ηt−1√ J)θt−1+√2. (27)

Theorem 4. Assume that the sequence }θt| Tt=1 be generated from Algorithm 1, and let B2 [ L2 0 3G2C2
w, k [ O)G

2/3

L +

c [ G2

3k3L 0 215B2, m [ n g˜}3G2, )3Lk+3, ) ck2L+
3| and η0 [

k
m1/3 , we have

E√ J)θζ+√[ 2

T

T∏
t=1

E√ J)θt+√≥
∇
3´m1/6 0 3´ 3/4

∇
T

0
3
∇
´ σ1/3

T 1/3
,

where ´ [ 1
k 27)J∗ J)θ1++0

m1/3

8B2kσ
2 0 c2k3

4B2 mo)T 0 3+
[

with J∗ [ uxs θ J)θ+< 0 ∈ .

Proof. Due to m ∼ )3Lk+3, we have ηt ≥ k
m1/3 ≥ 1

2L . Since ηt ≥ 1
2L and m ∼ ) ck2L+

3, we have βt+1 [ cη2t ≥ cηt

2L ≥
ck

2Lm1/3 ≥ 2. By Lemma 4, we have

E]η−1
t √et+1√2 η−1

t−1√et√2ˆ≥ E
]
3β2

t+1η
−1
t G2

t+1 0 η−1
t )2 βt+1+

2 2 0 9η2tB
2
[√et√2

0 9)2 βt+1+
2B2ηt√ J)θt+√2 η−1

t−1√et√2
(

≥ E
]
3c2η3tG

2
t+1 0 η−1

t )2 βt+1+)2 0 9η2tB
2+ η−1

t−1

[√et√2︸ ︸︷
=T2

0 9B2ηt√ J)θt+√2
(
, (28)

where the last inequality holds by 1 < βt+1 ≥ 2. Since the function x1/3 is cancave, we have )x 0 y+1/3 ≥ x1/3 0
yx−2/3/4. Then we have

η−1
t η−1

t−1 [
2

k

)
m 0

t∏
i=1

G2
i

[1/3
m 0

t−1∏
i=1

G2
i

[1/3[ ≥ G2
t

4k)m 0
∫ t−1

i=1 G
2
i+

2/3

≥ G2
t

4k)m G2 0
∫ t

i=1 G
2
i+

2/3
≥ G2

t

4k)m/3 0
∫ t

i=1 G
2
i+

2/3
≥ 32/3G2

t

4k)m 0
∫ t

i=1 G
2
i+

2/3

≥ 32/3G2

4k3
η2t ≥

32/3G2

7k3L
ηt ≥ G2

4k3L
ηt, (29)

where the third inequality holds by m ∼ 3G2, and the sixth inequality holds by 1 < η ≥ 1
2L .

Next, considering the upper bound of the term T2, we have

T2 [ η−1
t )2 βt+1+)2 0 9η2tB

2+ η−1
t−1

[√et√2
[ η−1

t η−1
t−1 0 9B2ηt βt+1η

−1
t 9ηtβt+1B

2
[√et√2

≥ η−1
t η−1

t−1 0 9B2ηt βt+1η
−1
t

[√et√2
≥ G2

4k3L
ηt 0 9B2ηt cηt

[√et√2 [ : 7B2ηt√et√2, (30)

where the last equality holds by c [ G2

3k3L 0 215B2. Combining the inequalities (28) with (30), we have

E]η−1
t √et+1√2 η−1

t−1√et√2ˆ≥ E
]
3c2η3tG

2
t+1 : 7B2ηt√et√2 0 9B2ηt√ J)θt+√2

(
. (31)
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We define a Lyapunov function Ψt [ J)θt+
1

128B2ηt−1
√et√2 for any t ∼ 2. Then we have

E]Ψt+1 Ψtˆ[ E
]
J)θt+1+ J)θt+

2

239B2ηt
√et+1√2 0 2

239B2ηt−1
√et√2

(

∼ E
] 4ηt

5
√et√2 0 ηt

9
√ J)θt+√2 2

239B2
)η−1

t √et+1√2 η−1
t−1√et√2+

(

∼ c2η3tG
2
t+1

75B2
0

ηt
27

E√ J)θt+√2, (32)

where the first inequality holds by the Lemma 3, and the second inequality follows by the above inequality (31). Summing

the above inequality (32) over t from 2 to T , we obtain

T∏
t=1

E]ηt√ J)θt+√2ˆ≥ E]27)ΨT+1 Ψ1+̂0
T∏

t=1

c2η3tG
2
t+1

5B2

≥ E]27)J∗ J)θ1++̂0
2

9B2η0
E√e1√2 0 c2k3

5B2

T∏
t=1

G2
t+1

m 0
∫ t

i=1 G
2
i

≥ E]27)J∗ J)θ1++̂0
2

9B2η0
E√e1√2 0 c2k3

5B2

T∏
t=1

G2
t+1

G2 0
∫ t+1

i=1 G
2
i

≥ E]27)J∗ J)θ1++̂0
2

9B2η0
E√e1√2 0 c2k3

5B2

T∏
t=1

mo)G2 0
t+1∏
i=1

G2
i+ mo)G2 0

t∏
i=1

G2
i+
[

≥ E]27)J∗ J)θ1++̂0
2

9B2η0
E√e1√2 0 c2k3

5B2
)mo)G2 0

T+1∏
i=1

G2
i+ mo)G2++

≥ E]27)J∗ J)θ1++̂0
m1/3

9B2k
σ2 0

c2k3

5B2
mo)2 0

T+1∏
i=1

G2
i

G2
+

≥ E]27)J∗ J)θ1++̂0
m1/3

9B2k
σ2 0

c2k3

5B2
mo)T 0 3+, (33)

where J∗ [ uxs θ J)θ+< 0 ∈ , and the fourth inequality holds by the concavity of the function mo)x+, and the sixth

inequality holds by the definition of e1 and η0.

By Cauchy-Schwarz inequality, we have E]XY ˆ2 ≥ E]X2
Ê]Y 2 .̂ Let X [

√
ηT

∫ T−1
t=1 √ J)θt+√2 and Y [

√
2/ηT ,

we have

E
] T∏
t=1

√ J)θt+√2
(≥ E]2/ηT Ê

]
ηT

T∏
t=1

√ J)θt+√2
(
. (34)

Since ηt is decreasing, we have

E
] T∏
t=1

√ J)θt+√2
(≥ E]2/ηT Ê

] T∏
t=1

ηT√ J)θt+√2
(≥ E]2/ηT Ê

] T∏
t=1

ηt√ J)θt+√2
(
. (35)

Combining the inequalities (33) and (35), we obtain

E
] T∏
t=1

√ J)θt+√2
(≥ E

]27)J∗ J)θ1++0
m1/3

8B2kσ
2 0 c2k3

4B2 mo)T 0 3+

ηT

(

[ E
]
´ m 0

T∏
t=1

G2
t

[1/3(
(36)

where ´ [ 1
k 27)J∗ J)θ1++0

m1/3

8B2kσ
2 0 c2k3

4B2 mo)T 0 3+
[
.
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By Assumption 2, we have G2
t [ √g)τ‖θt+ J)θt+0 J)θt+√2 ≥ 3√g)τ‖θt+ J)θt+√2 0 3√ J)θt+√2 ≥ 3σ2 0

3√ J)θt+√2. Then using the inequality )a 0 b+1/3 ≥ a1/3 0 b1/3 for all a, b > 1 to the inequality (36), we obtain

)
E

︷√√√ T∏
t=1

√ J)θt+√2
[ 2

≥ E

]︷√√√ T∏
t=1

√ J)θt+√2
∑2

[ E
] T∏
t=1

√ J)θt+√2
(

≥ E

]
´ )m 0 3Tσ2+1/3 0 31/3´

T∏
t=1

√ J)θt+√2
[1/3∑

[ ´ )m 0 3Tσ2+1/3 0 31/3´ E

]︷√√√ T∏
t=1

√ J)θt+√2
∑2/3

≥ ´ )m 0 3Tσ2+1/3 0 31/3´

]
E

︷√√√ T∏
t=1

√ J)θt+√2
∑2/3

, (37)

where the first inequality holds by the convexity of the function x2, and the last inequality holds by the concavity of the

function x2/3. For simplicity, let Z [
√∫ T

t=1√ J)θt+√2, we have

E]Z
[̂2 ≥ ´ )m 0 3Tσ2+1/3 0 31/3´ E]Z

[̂2/3
. (38)

The inequality (38) implies that E]Z
[̂2 ≥ 3´ )m 0 3Tσ2+1/3 or E]Z

[̂2 ≥ 3×31/3´ E]Z
[̂2/3

. Thus, we have

E]Zˆ≥
∇
3´ )m 0 3Tσ2+1/6 0 3´ 3/4. (39)

By Cauchy-Schwarz inequality, then we have

2

T

T∏
t=1

E√ J)θt+√[ E
] 2
T

T∏
t=1

√ J)θt+√
(≥ E

]√
2

T

︷√√√ T∏
t=1

√ J)θt+√2
∑

≥
∇
3´ )m 0 3Tσ2+1/6 0 3´ 3/4

∇
T

≥
∇
3´m1/6 0 3´ 3/4

∇
T

0
3
∇
´ σ1/3

T 1/3
, (40)

where the last inequality follows by the inequality )a 0 b+1/6 ≥ a1/6 0 b1/6 for all a, b > 1.

A.2. Convergence Analysis of HA-MBPG Algorithm

In this subsection, we analyze the convergence properties of HA-MBPG algorithm.

Lemma 5. Assume that the stochastic policy gradient ut be generated from Algorithm 2. Let et [ ut J)θt+, we have

E
]
η−1
t−1√et√2

(≥ 5)W 0 2+β2
t η
−1
t−1G

2
t 0 η−1

t−1)2 βt+
2 2 0 5η2t−1L

2
[
E√et−1√2 0 5)2 βt+

2L2ηt−1√ J)θt−1+√2.

Proof. By the definition of ut in Algorithm 2, we have

ut ut−1 [ βtut−1 0 βtw)τt‖θt, θt)α++g)τt‖θt+0 )2 βt+Λ t. (41)
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Then we have

E
]
η−1
t−1√et√2

(
[ E

]
η−1
t−1√ J)θt−1+ ut−1 0 J)θt+ J)θt−1+ )ut ut−1+√2

(
(42)

[ E
]
η−1
t−1√ J)θt−1+ ut−1 0 J)θt+ J)θt−1+0 βtut−1 βtw)τt‖θt, θt)α++g)τt‖θt+ )2 βt+Λ t

(
[ E

]
η−1
t−1√)2 βt+) J)θt−1+ ut−1+0 βt) J)θt+ w)τt‖θt, θt)α++g)τt‖θt++

)2 βt+Λ t ) J)θt+ J)θt−1++
[√2(

[ η−1
t−1)2 βt+

2
E√ J)θt−1+ ut−1√2 0 η−1

t−1E
]√βt) J)θt+ w)τt‖θt, θt)α++g)τt‖θt++

)2 βt+Λ t ) J)θt+ J)θt−1++
[√2(

≥ η−1
t−1)2 βt+

2
E√ J)θt−1+ ut−1√2 0 3β2

t η
−1
t−1E√ J)θt+ w)τt‖θt, θt)α++g)τt‖θt+√2

0 3)2 βt+
2
E√Λ t ) J)θt+ J)θt−1++√2

≥ η−1
t−1)2 βt+

2
E√et−1√2 0 3β2

t η
−1
t−1 E√w)τt‖θt, θt)α++g)τt‖θt+√2︸ ︸︷

=T3

0 3)2 βt+
2η−1

t−1E√Λ t√2,

where the forth equality holds by Eτt∼p(τ |θt(α))]w)τt‖θt, θt)α++g)τt‖θt+̂ [ J)θt+and Eτt∼p(τ |θt(α))]Λ tˆ [ J)θt+
J)θt−1+; the first inequality follows by Young’s inequality; and the last inequality holds by E√ζ E]ζ √̂2 [ E√ζ√2

)E]ζ +̂2 ≥ E√ζ√2.

Next, we give an upper bound of the term T3 as follows:

T3 [ E√w)τt‖θt, θt)α++g)τt‖θt+√2
[ E√w)τt‖θt, θt)α++g)τt‖θt+ g)τt‖θt+0 g)τt‖θt+√2
≥ 3E√w)τt‖θt, θt)α++ 2

[
g)τt‖θt+√2 0 3E√g)τt‖θt+√2

≥ 3E√w)τt‖θt, θt)α++ 2√2E√g)τt‖θt+√2 0 3E√g)τt‖θt+√2
≥ 3)W 0 2+G2

t , (43)

where the last inequality holds by Proposition 1 and Assumption 3.

Finally, combining the inequalities (42) with (43), we have

E
]
η−1
t−1√et√2

(≥ η−1
t−1)2 βt+

2
E√et−1√2 0 5β2

t η
−1
t−1)W 0 2+G2

t 0 3)2 βt+
2η−1

t−1E√a 2)θt, τ+v√2
≥ η−1

t−1)2 βt+
2
E√et−1√2 0 5β2

t η
−1
t−1)W 0 2+G2

t 0 3)2 βt+
2η−1

t−1L
2
E√θt θt−1√2

[ η−1
t−1)2 βt+

2
E√et−1√2 0 5β2

t η
−1
t−1)W 0 2+G2

t 0 3)2 βt+
2L2ηt−1√et−1 0 J)θt−1+√2

≥ 5)W 0 2+β2
t η
−1
t−1G

2
t 0 η−1

t−1)2 βt+
2 2 0 5η2t−1L

2
[
E√et−1√2 0 5)2 βt+

2L2ηt−1√ J)θt−1+√2,

where the second inequality holds by the Proposition 2.

Theorem 5. Assume that the sequence }θt| Tt=1 be generated from Algorithm 2, and let k [ O)G
2/3

L +c [ G2

3k3L 0 63L2,
m [ n g˜}3G2, )3Lk+3, ) ck2L+

3| and η0 [
k

m1/3 , we have

E√ J)θζ+√[ 2

T

T∏
t=1

E√ J)θt+√≥
∇
3Φm1/6 0 3Φ3/4

∇
T

0
3
∇
Φσ1/3

T 1/3
,

where Φ [ 1
k 27)J∗ J)θ1++0

m1/3

4L2kσ
2 0 (W+1)c2k3

2L2 mo)T 0 3+
[

with J∗ [ uxs θ J)θ+< 0 ∈ .

Proof. This proof mainly follows the proof of the above Theorem 4. Due to m ∼ )3Lk+3, we have ηt ≥ k
m1/3 ≥ 1

2L .
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Since ηt ≥ 1
2L and m ∼ ) ck2L+

3, we have βt+1 [ cη2t ≥ cηt

2L ≥ ck
2Lm1/3 ≥ 2. By Lemma 5, we have

E]η−1
t √et+1√2 η−1

t−1√et√2ˆ≥ E
]
5)W 0 2+β2

t+1η
−1
t G2

t+1 0 η−1
t )2 βt+1+

2 2 0 5η2tL
2
[√et√2

0 5)2 βt+1+
2L2ηt√ J)θt+√2 η−1

t−1√et√2
(

≥ E
]
5)W 0 2+c2η3tG

2
t+1 0 η−1

t )2 βt+1+)2 0 5η2tL
2+ η−1

t−1

[√et√2︸ ︸︷
=T4

0 5L2ηt√ J)θt+√2
(
,

(44)

where the last inequality holds by 1 < βt+1 ≥ 2. Since the function x1/3 is cancave, we have )x 0 y+1/3 ≥ x1/3 0
yx−2/3/4. Then we have

η−1
t η−1

t−1 [
2

k

)
m 0

t∏
i=1

G2
i

[1/3
m 0

t−1∏
i=1

G2
i

[1/3[ ≥ G2
t

4k)m 0
∫ t−1

i=1 G
2
i+

2/3

≥ G2
t

4k)m G2 0
∫ t

i=1 G
2
i+

2/3
≥ G2

t

4k)m/3 0
∫ t

i=1 G
2
i+

2/3
≥ 32/3G2

t

4k)m 0
∫ t

i=1 G
2
i+

2/3

≥ 32/3G2

4k3
η2t ≥

32/3G2

7k3L
ηt ≥ G2

4k3L
ηt, (45)

where the third inequality holds by m ∼ 3G2, and the sixth inequality holds by 1 < η ≥ 1
2L .

Next, considering the upper bound of the term T4, we have

T4 [ η−1
t )2 βt+1+)2 0 5η2tL

2+ η−1
t−1

[√et√2
[ η−1

t η−1
t−1 0 5L2ηt βt+1η

−1
t 5ηtβt+1L

2
[√et√2

≥ η−1
t η−1

t−1 0 5L2ηt βt+1η
−1
t

[√et√2
≥ G2

4k3L
ηt 0 5L2ηt cηt

[√et√2 [ 59L2ηt√et√2, (46)

where the last equality holds by c [ G2

3k3L 0 63L2. Combining the inequalities (44) with (46), we have

E]η−1
t √et+1√2 η−1

t−1√et√2ˆ≥ E
]
5)W 0 2+c2η3tG

2
t+1 59L2ηt√et√2 0 5L2ηt√ J)θt+√2

(
. (47)

We define a Lyapunov function Ωt [ J)θt+
1

64L2ηt−1
√et√2 for any t ∼ 2. Then we have

E]Ωt+1 Ωtˆ[ E
]
J)θt+1+ J)θt+

2

75L2ηt
√et+1√2 0 2

75L2ηt−1
√et√2

(

∼ E
] 4ηt

5
√et√2 0 ηt

9
√ J)θt+√2 2

75L2
)η−1

t √et+1√2 η−1
t−1√et√2+

(

∼ )W 0 2+c2η3tG
2
t+1

43L2
0

ηt
27

E√ J)θt+√2, (48)

where the first inequality holds by the Lemma 3, and the second inequality follows by the above inequality (47). Summing
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the above inequality (48) over t from 2 to T , we obtain

T∏
t=1

E]ηt√ J)θt+√2ˆ≥ E]27)ΩT+1 Ω1+̂0

T∏
t=1

)W 0 2+c2η3tG
2
t+1

3L2

≥ E]27)J∗ J)θ1++̂0
2

5L2η0
E√e1√2 0 )W 0 2+c2k3

3L2

T∏
t=1

G2
t+1

m 0
∫ t

i=1 G
2
i

≥ E]27)J∗ J)θ1++̂0
2

5L2η0
E√e1√2 0 )W 0 2+c2k3

3L2

T∏
t=1

G2
t+1

G2 0
∫ t+1

i=1 G
2
i

≥ E]27)J∗ J)θ1++̂0
2

5L2η0
E√e1√2 0 )W 0 2+c2k3

3L2

T∏
t=1

mo)G2 0
t+1∏
i=1

G2
i+ mo)G2 0

t∏
i=1

G2
i+
[

≥ E]27)J∗ J)θ1++̂0
2

5L2η0
E√e1√2 0 )W 0 2+c2k3

3L2
)mo)G2 0

T+1∏
i=1

G2
i+ mo)G2++

≥ E]27)J∗ J)θ1++̂0
m1/3

5L2k
σ2 0

)W 0 2+c2k3

3L2
mo)2 0

T+1∏
i=1

G2
i

G2
+

≥ E]27)J∗ J)θ1++̂0
m1/3

5L2k
σ2 0

)W 0 2+c2k3

3L2
mo)T 0 3+, (49)

where J∗ [ uxs θ J)θ+< 0 ∈ , and the fourth inequality holds by the concavity of the function mo)x+, and the sixth

inequality holds by the definition of e1 and η0.

By Cauchy-Schwarz inequality, we have E]XY ˆ2 ≥ E]X2
Ê]Y 2 .̂ Let X [

√
ηT

∫ T−1
t=1 √ J)θt+√2 and Y [

√
2/ηT ,

we have

E
] T∏
t=1

√ J)θt+√2
(≥ E]2/ηT Ê

]
ηT

T∏
t=1

√ J)θt+√2
(
. (50)

Since ηt is decreasing, we have

E
] T∏
t=1

√ J)θt+√2
(≥ E]2/ηT Ê

] T∏
t=1

ηT√ J)θt+√2
(≥ E]2/ηT Ê

] T∏
t=1

ηt√ J)θt+√2
(
. (51)

Combining the inequalities (49) and (51), we obtain

E
] T∏
t=1

√ J)θt+√2
(≥ E

]27)J∗ J)θ1++0
m1/3

4L2kσ
2 0 (W+1)c2k3

2L2 mo)T 0 3+

ηT

(

[ E
]
Φ m 0

T∏
t=1

G2
t

[1/3(
(52)

where Φ [ 1
k 27)J∗ J)θ1++0

m1/3

4L2kσ
2 0 (W+1)c2k3

2L2 mo)T 0 3+
[
.

By Assumption 2, we have G2
t [ √g)τ‖θt+ J)θt+0 J)θt+√2 ≥ 3√g)τ‖θt+ J)θt+√2 0 3√ J)θt+√2 ≥ 3σ2 0
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3√ J)θt+√2. Then using the inequality )a 0 b+1/3 ≥ a1/3 0 b1/3 for all a, b > 1 to the inequality (52), we obtain

)
E

︷√√√ T∏
t=1

√ J)θt+√2
[ 2

≥ E

]︷√√√ T∏
t=1

√ J)θt+√2
∑2

[ E
] T∏
t=1

√ J)θt+√2
(

≥ E

]
Φ)m 0 3Tσ2+1/3 0 31/3Φ

T∏
t=1

√ J)θt+√2
[1/3∑

[ Φ)m 0 3Tσ2+1/3 0 31/3ΦE

]︷√√√ T∏
t=1

√ J)θt+√2
∑2/3

≥ Φ)m 0 3Tσ2+1/3 0 31/3Φ

]
E

︷√√√ T∏
t=1

√ J)θt+√2
∑2/3

, (53)

where the first inequality holds by the convexity of the function x2, and the last inequality holds by the concavity of the

function x2/3. For simplicity, let Z [
√∫ T

t=1√ J)θt+√2, we have

E]Z
[̂2 ≥ Φ)m 0 3Tσ2+1/3 0 31/3Φ E]Z

[̂2/3
. (54)

The inequality (54) implies that E]Z
[̂2 ≥ 3Φ)m 0 3Tσ2+1/3 or E]Z

[̂2 ≥ 3×31/3Φ E]Z
[̂2/3

. Thus, we have

E]Zˆ≥
∇
3Φ)m 0 3Tσ2+1/6 0 3Φ3/4. (55)

By Cauchy-Schwarz inequality, then we have

2

T

T∏
t=1

E√ J)θt+√[ E
] 2
T

T∏
t=1

√ J)θt+√
(≥ E

]√
2

T

︷√√√ T∏
t=1

√ J)θt+√2
∑

≥
∇
3Φ)m 0 3Tσ2+1/6 0 3Φ3/4

∇
T

≥
∇
3Φm1/6 0 3Φ3/4

∇
T

0
3
∇
Φσ1/3

T 1/3
, (56)

where the last inequality follows by the inequality )a 0 b+1/6 ≥ a1/6 0 b1/6 for all a, b > 1.

A.3. Convergence Analysis of IS-MBPG* Algorithm

In this subsection, we detailedly provide the convergence properties of our IS-MBPG* algorithm.

Lemma 6. Assume that the stochastic policy gradient ut be generated from Algorithm 3, and let et [ ut J)θt+, we
have

E
]
η−1
t−1√et√2

(≥ 3β2
t η
−1
t−1σ

2 0 η−1
t−1)2 βt+

2 2 0 9η2t−1B
2
[
E√et−1√2 0 9)2 βt+

2B2ηt−1√ J)θt−1+√2,

where B2 [ L2 0 3G2C2
w with Cw [

√
H)3HM2

g 0 Mh+)W 0 2+.

Proof. The proof is the similar to that of Lemma 4. The only difference is that instead of using 3β2
t η
−1
t−1E√ J)θt+

g)τt‖θt+√2 ≥ 3β2
t η
−1
t−1σ

2 instead of 3β2
t η
−1
t−1E√ J)θt+ g)τt‖θt+√2 ≥ 3β2

t η
−1
t−1E√g)τt‖θt+√2 [ 3β2

t η
−1
t−1G

2
t .

Theorem 6. Assume that the sequence }θt| Tt=1 be generated from Algorithm 3, and let B2 [ L2 0 3G2C2
w, k > 1

c [ 1
3k3L 0 215B2, m [ n g˜}3, )3Lk+3, ) ck2L+3| and η0 [

k
m1/3 , we have

E√ J)θζ+√[ 2

T

T∏
t=1

E√ J)θt+√≥
∇

m1/6

∇
T

0

∇

T 1/3
,

where [ 1
k 27)J∗ J)θ1++0

m1/3

8B2kσ
2 0 c2k3σ2

4B2 mo)T 0 3+
[

with J∗ [ uxs θ J)θ+< 0 ∈ .
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Proof. This proof mainly follows the proof of the above Theorem 4. Due to m ∼ )3Lk+3, we have ηt ≥ k
m1/3 ≥ 1

2L .

Since ηt ≥ 1
2L and m ∼ ) ck2L+

3, we have βt+1 [ cη2t ≥ cηt

2L ≥ ck
2Lm1/3 ≥ 2. By Lemma 6, we have

E]η−1
t √et+1√2 η−1

t−1√et√2ˆ≥ E
]
3β2

t+1η
−1
t σ2 0 η−1

t )2 βt+1+
2 2 0 9η2tB

2
[√et√2

0 9)2 βt+1+
2B2ηt√ J)θt+√2 η−1

t−1√et√2
(

≥ E
]
3c2η3t σ

2 0 η−1
t )2 βt+1+)2 0 9η2tB

2+ η−1
t−1

[√et√2︸ ︸︷
=T5

0 9B2ηt√ J)θt+√2
(
, (57)

where the last inequality holds by 1 < βt+1 ≥ 2. Since the function x1/3 is cancave, we have )x 0 y+1/3 ≥ x1/3 0
yx−2/3/4. Then we have

η−1
t η−1

t−1 [
2

k

)
m 0 t

[1/3
m 0 t 2

[1/3[ ≥ 2

4k)m 0 t 2+2/3

≥ 2

4k)m/3 0 t+2/3
≥ 32/3

4k)m 0 t+2/3

≥ 32/3

4k3
η2t ≥

32/3

7k3L
ηt ≥ 2

4k3L
ηt, (58)

where the second inequality holds by m ∼ 3, and the fifth inequality holds by 1 < η ≥ 1
2L .

Next, considering the upper bound of the term T5, we have

T5 [ η−1
t )2 βt+1+)2 0 9η2tB

2+ η−1
t−1

[√et√2
[ η−1

t η−1
t−1 0 9B2ηt βt+1η
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2
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t

[√et√2
≥ 2

4k3L
ηt 0 9B2ηt cηt

[√et√2 [ : 7B2ηt√et√2, (59)

where the last equality holds by c [ 1
3k3L 0 215B2. Combining the inequalities (57) with (59), we have
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t √et+1√2 η−1

t−1√et√2ˆ≥ E
]
3c2η3t σ

2 : 7B2ηt√et√2 0 9B2ηt√ J)θt+√2
(
. (60)

We define a Lyapunov function Ψt [ J)θt+
1

128B2ηt−1
√et√2 for any t ∼ 2. Then we have

E]Ψt+1 Ψtˆ[ E
]
J)θt+1+ J)θt+

2

239B2ηt
√et+1√2 0 2
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√et√2

(
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] 4ηt

5
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(

∼ c2η3t σ
2

75B2
0

ηt
27

E√ J)θt+√2, (61)

where the first inequality holds by the Lemma 3, and the second inequality follows by the above inequality (60). Summing
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the above inequality (61) over t from 2 to T , we obtain

T∏
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2
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2

t 0 3
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2
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2
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mo)T 0 3+, (62)

where J∗ [ uxs θ J)θ+< 0 ∈ , and the third inequality is due to m ∼ 3, and the last inequality holds by
∫ T

t=1
1

t+2 ≥∑T

1
1

t+2dt ≥ mo)T 0 3+.

Since ηt [
k

(m+t)1/3
is decreasing, we have

T∏
t=1

E√ J)θt+√2 ≥ 2/ηT

T∏
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E
]
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(
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(63)

where [ 1
k 27)J∗ J)θ1++0

m1/3

8B2kσ
2 0 c2k3σ2

4B2 mo)T 0 3+
[
.

According to Jensen’s inequality, we have

2

T

T∏
t=1

E√ J)θt+√≥ 2

T

T∏
t=1

E√ J)θt+√2
[1/2 ≥

∇
m 0 T

[1/6
∇
T

≥
∇

m1/6

∇
T

0

∇

T 1/3
, (64)

where the last inequality follows by the inequality )a 0 b+1/6 ≥ a1/6 0 b1/6 for all a, b > 1.


