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Abstract

Ordered Weighted L; (OWL) regularized re-
gression is a new regression analysis for high-
dimensional sparse learning. Proximal gradient
methods are used to standard approaches to solve
OWL regression. However, it is still a burning
issue to accelerate OWL regression due to con-
siderable computational cost and memory usage
when the feature or sample size is large. In this
paper, we propose the first safe screening rule for
OWL regression by exploring the order of the pri-
mal solution with the unknown order structure via
an iterative strategy, which overcomes the difficul-
ties of the non-separable regularizer. It effectively
avoids the updates of the parameters whose coef-
ficients must be zeros during the learning process.
More importantly, the proposed screening rule can
be easily applied to standard and stochastic prox-
imal gradient methods. Theoretically, we prove
that the algorithms with our screening rule is guar-
anteed to have identical results with the original
algorithms and reach the final active set in a finite
number of iterations. Experimental results on a
variety of datasets show that our screening rule
leads to a significant computational gain without
any loss of accuracy, compared to existing com-
petitive algorithms.

1. Introduction

OWL regression (Bogdan et al., 2015; Zeng & Figueiredo,
2014; lgorzata Bogdana et al., 2013; Figueiredo & Nowak,
2016; Bao et al., 2019) has emerged as a useful procedure
for high-dimensional sparse regression recently, which can
identify precise grouping structures of strongly correlated
covariates automatically during the learning process without
any prior information of feature groups. Remarkably, (Bu
et al., 2019) concluded that it has two good properties to
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achieve the minimax estimation from the estimation side
without any prior knowledge of coefficients (Bellec et al.,
2018; Su et al., 2016) and controls the false discovery rate
from the testing side (Bogdan et al., 2015; Brzyski et al.,
2019), which do not simultaneously exist in other models
such as Lasso (Tibshirani, 1996) and knockoffs (Barber
et al., 2015). Owing to its effectiveness, OWL is widely
used in various kinds of applications, e.g., gene expression
(Morik et al.; Bogdan et al., 2015), brain networks (Oswal
et al., 2016) and neural networks training (Zhang et al.,
2018).

Although proximal gradient methods are used as standard
approaches (Bondell & Reich, 2008; Su et al., 2016) to solve
OWL regression, it still suffers from high computational
cost and memory usage when the feature or sample size is
large. The main bottleneck is the computation to update the
solution in each iteration depends on all the data points. The
screening technique is an easy-to-implement and promising
approach for accelerating the training of sparse learning
models by eliminating useless features whose coefficients
must be zeros.

The safe screening rules introduced by (Laurent El Ghaoui,
2012) for generalized [; regularized problems eliminates
features whose associated coefficients are proved to be zero
at the optimum. The screening in (Laurent El Ghaoui, 2012)
is called static safe rules, which is only performed only
once, prior to any optimization algorithm. Relaxing the
safe rule, heuristic strategies, called strong rules (Tibshi-
rani et al., 2012), reduce the computational cost using an
active set strategy at the price of possible mistakes, which
requires difficult post-processing to check for features possi-
bly wrongly discarded. Another road to screening method is
called sequential safe rules (Wang et al., 2013; Xiang et al.,
2016). The sequential screening rule relies on the exact dual
optimal solution, which could be very time-consuming and
lead to be unsafe in practice.

Recently, the introduction of safe dynamic rules (Fercoq
et al., 2015) has opened a promising venue by conducting
safe screening not only at the beginning of the algorithm,
but during the learning process. Following (Fercoq et al.,
2015) for Lasso, many dynamic screening rules relying on
the duality gap are proposed in (Fercoq et al., 2015; Shiba-
gaki et al., 2016; Ndiaye et al., 2016; Rakotomamonjy et al.,
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Table 1. Representative safe screening algorithms. “Type of screening” represents the algorithm screening samples or features. “Size”
represents the number of the hyperparameters in regularization where g is the group number of sparse-group Lasso and d is feature size.
“Fixation” represents whether the regularization hyperparameter of each variable is fixed during the learning process.

Problem Type of screening | Size | Separability | Fixation

SVM (Liu et al., 2013) samples 1 Separable Fixed

Lasso (Fercoq et al., 2015) features 1 Separable Fixed

Sparse SVM (Shibagaki et al., 2016) features and samples 3 Separable Fixed

Sparse-group Lasso (Ndiaye et al., 2016) features g+2 Separable Fixed

Sparse SVM (Zhang et al., 2017) features and samples 3 Separable Fixed

Proximal Weighted Lasso (Rakotomamonjy et al., 2019) features d Separable Fixed
OWL regression (Ours) features d | Non-separable | Unfixed

2019; Zhai et al., 2019) for a broad class of learning prob-
lems with both good empirical and theoretical results. This
work is concerned with algorithmic acceleration of OWL re-
gression through safe screening rules to safely avoid useless
computation whose parameters must be zeros during the
training process without any influence on the final learned
model. We summarized several representative safe screen-
ing algorithms in Table 1. It shows that existing safe screen-
ing rules have been widely used to accelerate algorithms
in sparse learning by screening samples or features while
all of them are limited to separable penalties and the fixed
regularization hyperparameter of each variable, which is
essential to derive the screening rules. So far there are still
no safe screening rules proposed for OWL regression. This
vacuum is because OWL penalty is non-separable, meaning
it cannot be written as Q,(3) = Zle Aiw(B;) and thus
all the hyperparameters for each variable in OWL penalty
are unfixed until we finish the whole learning process while
they are fixed in other models at the initial stage. Besides,
how to derive an efficient screening rule with the numer-
ous hyperparameters is another key point to be considered.
Because of the challenges to derive screening rules for the
non-separable OWL penalty with numerous unfixed hyper-
parameters, speeding up OWL regression by screening rules
is still an open and challenging problem.

To address these challenges, in this paper, we propose a
safe screening rule for the linear regression with the fam-
ily of OWL regularizers based on the intermediate duality
gap, which is significantly helpful for accelerating the algo-
rithms. As far as we know, this work is the first attempt in
this direction. We effectively explore the order of the primal
solution with the unknown order structure by overcoming
the difficulties caused by the non-separable penalty via the
iterative strategy, which leads to better understanding of
the non-separable penalty for future. Specifically, in high-
dimensional tasks, as the size of non-zero coefficients is
much smaller than the size of features, our screening rule
can effectively identify the features whose parameters must
be zeros in each iteration and then accelerate the original
algorithms by skipping the useless updates of these param-

eters. Theoretically, we not only rigorously prove that our
screening rule is safe and can be safely applied to exist-
ing standard iterative optimization algorithms both in the
batch and stochastic setting without any loss of accuracy,
but also proved that our screening rule can reach the final
active set in a finite number of iterations. The empirical
performance shows the superiority of our algorithms with
significant computational gain to the most popular proximal
gradient methods, such as APGD (accelerated proximal gra-
dient) and SPGD (stochastic proximal gradient algorithm
with variance reduction).

2. Preliminary
2.1. OWL Regularized Regression

We consider the linear regression with the family of OWL
norms as follows:

1

d
min P5(8) := 5y = X513 + > AilBlia,

7 (D

i=1

where X = [x1,29, - ,24] € R"*? is the design ma-
trix, y € R4 is the measurement vector, [ is the unknown
coefficient vector, A = [A1, A2, -+, \g4] is a non-negative
regularization parameter vector of d non-increasing weights
and [B][1) > |Bliz) > - - - |B|(a are the ordered coefficients in
absolute value. Each feature has a corresponding regulariza-
tion parameter. OWL penalty (denoted as 2, (/3) henceforth)
penalizes the coefficients according to their magnitude: the
larger the magnitude, the larger the penalty. OWL regression
has been shown to outperform conventional Lasso in many
applications, particularly when 3 is sparse and d is larger
than n (Bogdan et al., 2015). (Zeng & Figueiredo, 2014;
Figueiredo & Nowak, 2016) provided theoretical analyses
of the sparsity and grouping properties of OWL penalty for
sparse linear regression with strongly correlated features.

Note that OWL regression is a general form of a set of
sparse learning models. For example, Lasso (Tibshirani,
1996) is a special case of (1) if A\ = Ao = --- = Ag > 0,
where \; > 0. L,,-norm regression is a special case of (1)
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if Ay >0and Ay = --- = Ay = 0. OSCAR (Bondell &
Reich, 2008) is a special case of (1) if A; = ag + aa(d — i),
where o and a are non-negative parameters.

We get the Fermat’s rule of OWL regression by subdifferen-
tials (Kruger, 2003; Mordukhovich et al., 2006) as follows:

XT(y—XB7) € 00(8"), )
where 982, () is the subdifferential of 2 ().

From (2), we can derive the optimality conditions of OWL
regression as follows:

—x] (y — XB*) + Appe)sign(B7) =0, ifB7 #0, (3)
2 (y — XB)| < Appr), ifBF =0, (4

where 7(5}) is the order of |3}| in coefficient 5 w.r.z. abso-
lute value.

2.2. Proximal Gradient Methods

Proximal gradient methods are used as standard approaches
to solve OSCAR or OWL regression. However, a major
drawback is that it has slow convergence. Thus, accelerated
proximal gradient algorithms (denoted as APGD henceforth)
are proposed to solve the optimization problems with the
non-smooth penalty. Inspired by FISTA (Beck & Teboulle,
2009), (Zhong & Kwok, 2012) proposed an APGD algo-
rithm to solve OSCAR by efficiently addressing the prox-
imal operator. Further, (Bogdan et al., 2015) proposed an
APGD algorithm to solve OWL regression with the proxi-
mal operator as:

d
prox(y, A) := argmin%”y—x”% +Z/\i|x|m. ®)
z€R4 =1

Nevertheless, APGD still suffers from high computation
costs and memory burden when either the size of features
or samples is large. Specifically, the computation of each
proximal step above takes O(d log d). The computation cost
of APGD for each iteration is O(d(n + log d)).

Further, as an update of each iteration in APGD depends on
all the samples, each iteration of APGD can be very expen-
sive since it requires the computation of full gradients. In
large-scale learning, stochastic proximal gradient algorithms
with variance reduction (denoted as SPGD henceforth) are
proposed in (Xiao & Zhang, 2014) as an effective alterna-
tive, which only requires the gradient of the samples of a
mini-batch size each time.

Remark 1. In practice, OWL regression is typically per-
formed in the high-dimensional setting. Hence, APGD and
SPGD usually suffers from high computation costs and mem-
ory burden for large feature size d. Thus, it is important
and promising to speed up OWL regression by the screening
technique for both APGD and SPGD.

3. Screening Rule

In this section, we first derive the screening test and then
provide safe screening rules for OWL regression.

3.1. Screening Test

We consider the primal objective (1) of OWL regression,
which is convex, non-smooth and non-separable. Suppose
[ and 6 are the intermediate solutions of the primal and the
dual respectively, the dual formulation derived is as follows:

1
mglxDA(e) = —§||9||§ -0y, (6)
st X0 = Arseys %)

where 3* is the optimum of the primal, \,.(g~) is the vector
of A,(x) and <X means the conditions are satisfied element-
wisely.

Suppose the optimum solution is known, we can derive the
screening condition for each variable from the dual as:

2] 0% < Apgary = BF =0, (8)

where 0* is the optimum of the dual. However, the opti-
mum in the left and right term are both unknown during the
training process.

Hence, the aim of our screening rule is to screen as many
variables whose coefficients should be zero as possible by
constructing a small and safe region for the left term of (8)
with the unknown dual optimum and exploring the unknown
order structure of the primal optimum for the right term of

(8).

3.2. Upper Bound for the Left Term

In this part, we derive a tight upper bound for |z, 6*] in (8)
by utilizing the intermediate duality gap at each iteration.

By the triangle inequality, we can derive the following
bound as:

] 0] < ] O] + [laill]|6* — 6. ©)

Notice that the dual is a strongly concave function, as shown
in Property 1.

Property 1. Dual D(0) is strongly concave w.r.t. 6. Hence,
we have

D(#) < D(8*) ~ VDE") T (0%~ 6) — 510 — 0% 3. (10

We can further bound the distance between the intermedi-
ate solution and the optimum of the dual in Corollary 1
based on the first-order optimality condition of constrained
optimization.
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Corollary 1. Suppose 6 and 0* are any feasible and the
optimum of the dual respectively, we have:

16— 0] < V2G(8,0). (11)

where G(8,0) = P(3) — D(0) is the intermediate duality
gap.

Proof. By the first-order optimality condition for strongly
concave dual D(#), we have:

VD) (6* —6) > 0. (12)

Hence, based on (10), we have:

1
5116 = 6%[13 < D(6*) — D(®). (13)

By strong duality that P(83) > D(6*), we have

1 *

310 = 0715 < P(8) = D(9), (14)
which completes the proof. O

Hence, substituting ||§ — 6*|| in (8) by Corollary 1, we can
derive the screening test with the upper bound of the left
term as follows:

|2 6] + ||| v/2G(8,6) < Ar(B)- (15)

The intermediate duality gap can be computed by 5 and
. 3 and 6 can be obtained easily in the original proximal
gradient algorithms.

3.3. Iterative Strategy for the Screening Rule

The screening condition (8) only works when the order of
the primal optimum is known in advance, which is unknown
until we finish the training process in practice. To make the
screening condition applicable, we design an efficient and
effective iterative strategy to explore the order of the primal
optimum with the unknown order structure.

We can do screening test first as:

2 0] + ||z V2G(B,0) < \a = BF =0.  (16)

According to the screening test above, we can partition the
variables into an safe active set .A and an safe inactive set
A’ where the active set is the set of the variables that cannot
be removed yet by our screening rule and the inactive set is
the complementary set of the active set.

Suppose active set A has m active features at iteration &,
we can assign an arbitrary permutation of d — m smallest
parameters A\, 41, A2, -+, Aq to these screened coeffi-
cients without any influence to the final learned model. Thus,

the order of these variables whose coefficients must be zeros
is known to be d — m minimal absolute values of all.

Then, by doing screening test as

|z 0] + ||| V2G(B,0) < Ay = B =0,  (17)

we can find new active set .4’ with m’ active features where
m’ < m and further derive the order of the m —m/ screened
variables by assigning the parameters similarly as above.

At each iteration, we repeat the screening test to explore
the order of primal optimum until the active set keeps un-
changed. The procedure of our iterative screening rule is
summarized in Algorithm 1.

The following property show our screening rule is safe to
screen the variables whose coefficients should be zero with
the unknown dual optimum and the unknown order structure
of the primal optimum.

Property 2. The iterative screening rule we proposed is
guaranteed to be safe for Algorithm 1 and the whole training
process of OWL regression.

Proof. First, we prove our screening rule is safe for Algo-
rithm 1. At the first iteration of Algorithm 1, active set A
has total d active features. We do screening test (16). Since
A = [A1, A, -+, Ag] is a non-increasing vector, we have
Ad < Ap(px)- Hence, the screening test above can make sure

|z 0]+ ||x:]|/2G (B, 0) < Xp(s). Thus, our screening test
is safe at the first iteration.

Suppose our screening test is safe for the first £ iterations
and active set .4 has m active features at iteration k, the pa-
rameters of the d — m screened variables whose coefficients
should be zero at the optimum are assigned as a permutation
of \t1, Am—2, -, Ag- Then, the new regularization pa-
rameter vector for the variables that has not been screened
is a permutation of A = [A1, g, -+, Al

Thus, we can do the screening test for the left active vari-
ables as (17) to make sure |z, 0| + ||x;]|\/2G(3,0) <
)\r( B which shows the screening test is safe at iteration
k + 1. Thus, our screening rule is proved to be safe for
Algorithm 1.

For the latter sub-problem with less parameters and features
to be solved in the iterative optimization algorithms, the way
to do the screening test is similar as the original problem.
Thus, following the proof above, we can easily prove that
our screening rule is safe for the whole training process of
OWL regression.

O
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Algorithm 1 Safe Screening Rule for OWL Regression with
Iterative Strategy

Algorithm 3 Stochastic Proximal Gradient Descent Algo-

rithm with Safe Screening Rules

Imput: A, \, B, 0k, G(Bk, 01), X.
1: while A still changes do
2: Do the screening test based on (17).
3:  Update A.
4: end while
Output: New active set A.

4. Screening Rule in Proximal Gradient
Algorithms

In this section, we apply the screening rule to APGD and
SPGD in the batch and stochastic settings respectively for
OWL regression.

4.1. Proposed Algorithm

In the batch setting, we compute the dual solution and dual-
ity gap first. Then, we compute the active set by Algorithm
1 and update the solution as the original APGD algorithm
with the obtained active variables. As the iteration increases,
the solution is closer to the optimum and thus the duality
gap also becomes smaller. Correspondingly, more inactive
variables are screened by our screening rule.

Similarly, in the stochastic setting, we compute the dual
solution and duality gap in the main loop first. After that,
we derive the active set by Algorithm 1 and update the
solution as the original SPGD algorithm with the active
variables. We summarize our algorithms in Algorithms 2
and 3, respectively.

Algorithm 2 Accelerated Proximal Gradient Descent Algo-
rithm with Safe Screening Rules

Input: 5°,b! = 39ty = 1.
1: fork=1,2,--- do
2:  Compute dual 8 and duality gap.
Compute active set .4 based on Algorithm 1.
B* = prox,, (0" — X' (Xb* —y)).

3
4:
S: tper = 3(1+/1+482).
6:
7:

P = BE 4 Bl (gl — g,

tht1
end for

Qutput: Coefficient .

Interestingly, the duality gap, which is the main time-
consuming step of our screening rule in Algorithm 1, is
pre-computed by the original APGD and SPGD algorithm.
Besides, suppose the size of the active set for iteration k is
dy,, the computation complexity of screening rule for each
iteration is only O(d}, ), which is even cheaper than the com-
plexity O(d) of the original stopping criterion evaluation
and can be skipped for the analysis with the complexity

Input: 5°,1.
1: fork=1,2,--- do
2:  Compute dual § and duality gap.

3:  Compute active set A based on Algorithm 1.
4 5 — 5k71-

5. 0=VF(f).

6: B0 =4.

7. fort=1,2,---,Tdo

8: Pick mini-batch [; C X of size .
9w = (V1 (87Y) — V1, (B)/1 + .
10: B = prox, \ (6" —nuy).

11:  end for

12 k=47

13: end for

Output: Coefficient 5.

O(di(n—+logdy)) or O(dy(n+T1+T logdy)) for each it-
eration in APGD and SPGD respectively. More importantly,
our Algorithm 2 only requires O(d(n + log dy,)) for itera-
tion &, which is much smaller than the complexity O(d(n +
log d)) required by the original APGD algorithm. Similarly,
our Algorithm 3 only requires O(dy(n+T1+T logdy)) for
main loop k where T is inner loop size and [ is mini-batch
size, which is much smaller than O(d(n + Tl + T log d))
required by the original SPGD algorithm. Hence, in high-
dimensional sparse learning, the computation costs of both
APGD and SPGD algorithms are effectively reduced by our
screening rule.

4.2. Theoretical Analysis

In this part, we give the properties of convergence and
screening ability when our screening rule is applied to stan-
dard iterative optimization algorithms as APGD, SPGD and
et al.

In terms of the convergence, our algorithms has the follow-
ing Property 3.

Property 3. Iterative algorithm U with our screening rule
to solve OWL regression converges to the optimum if U
converges to the optimum.

Proof. We denote the sub-problem at iteration k as Py. First,
we know U converges to the optimum at the first iteration
for P;. Then, suppose algorithm ¥ with the screening rule
converges to the optimum for Pj,. Considering iteration
k + 1, Px41 is a sub-problem of Pj. Thus, the convergence
of Pty can be guaranteed as Py, which completes the
proof.

O
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In terms of screening ability, our algorithms has the follow-
ing Properties 4 and 5.

Property 4. 0 converges to 0* of the dual if 3 converges to
B* of the primal.

Property 4 can be obtained easily by the primal-dual link
equation (see Appendix for the details) as:
0* =y — XB*. (18)

Property 4 shows the convergence of the dual can be guar-
anteed by the convergence of the primal, which means the
intermediate duality gap becomes smaller as the iteration
increases.

Further, we give Property 5 to show the excellent screening

ability of our screening rule.

Property 5. Based on the optimality conditions, we have

that final active set A* satisfies that mjiéln z] 0% = X as).
i€ A*

Then, as ¥ converges, there exists an iteration number Kq €
N s.t. Vk > Ky, any variable j ¢ A* is screened by our
screening rule.

Proof. As W converges, owing to the strong duality, the
intermediate duality gap converges towards zero. Thus, for
any given e, there exists K such that Vk > K|, we have

|6¥ — 6*||s < e and \/m <e (19)
For any j, we have
] 08| + |25l 2G (8%, 0%) (20)
] (0% =07 + |2} 0| + [l /2G(B*, 6%) 21)

2[|zle + |2 6% (22)

IN

IN

The first inequality is obtained by triangle inequality and the
second inequality is obtained by (19). Thus, if we choose

A * - TG*
x| — |z 0% 23)
2||z]|

where \| 4| — |x}—0*| > 0 is easily obtained since j ¢ S™,
we have |z 0%| + ||z || \/2G (8%, 0%) < X| 4+|, which is the
screening rule we proposed. That is to say, variable j is

screened out by our screening rule at this iteration, which
completes the proof. O

Property 5 shows all the inactive variables 8, ¢ A* are
correctly detected and effectively screened by our screening
rule in a finite number of iterations.

5. Experiments

In this section, we first give the experimental setup and then
present our experimental results with discussions.

Table 2. The real-world datasets used in the experiments.

DATASET SAMPLE SIZE ATTRIBUTES
DUKE BREAST CANCER 44 7129
CoLON CANCER 62 2000
CARDIAC LEFT 3360 1600
CARDIAC RIGHT 3360 1600
INDOORLOC LONGITUDE 21048 529
SLICE LOCALIZATION 53500 386

5.1. Experimental Setup
5.1.1. DESIGN OF EXPERIMENTS

We conduct experiments on six real-world benchmark
datasets not only to verify the effectiveness of our algorithm
on reducing running time, but also to show the effectiveness
and safety on screening inactive variables.

To validate the effectiveness of our algorithms on reducing
running time, we evaluate the running time of our algorithms
and other competitive algorithms to solve OWL regression
under different settings. To confirm the effectiveness and
safety of our algorithms on screening inactive variables,
we evaluate the screening rate at each iteration of our algo-
rithm and the prediction errors of different algorithms. The
compared algorithms are summarized as follows:

o APGD: Accelerated proximal gradient descent (Bogdan
etal., 2015).

e APGD + Screening: Accelerated proximal gradient de-
scent with the safe screening rule.

e SPGD: Stochastic proximal gradient descent with vari-
ance reduction we adopt in (Xiao & Zhang, 2014).

e SPGD + Screening: Stochastic proximal gradient
method with the safe screening rule.

5.1.2. IMPLEMENTATION DETAILS

Our experiments were performed on a 4-core Intel 17-6820
machine. We implement all the algorithms in MATLAB
and compare the average running CPU time of different
algorithms for 5 trials. For the comparison convenience, the
CPU time of each algorithm is shown as the percentage of
APGD under each setting. Following the setting in (Bogdan
et al., 2015), tolerance error € of duality gap in our experi-
ments is set as 107°. At the very early stage, the solution is
far from the optimum and thus the screening rule can only
screen a small portion of variables. We run our algorithms
with a warm start. Please note all the experimental setup in
Algorithm 2 and 3 follows the original APGD and SPGD
algorithms with the same hyperparameters of the size of
mini-batch, the number of inner loop and step size 7, which
ranges from 5 to 60, 5 to 80 and 10~ to 1073 respectively
for different datasets, are selected by coarse grid search.
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Table 3. Prediction errors of different algorithms.

DATASET APGD APGD + SCREENING SPGD SPGD + SCREENING
DUKE BREAST CANCER 0.6523 0.6523 0.6523 0.6523
COLON CANCER 0.9453 0.9453 0.9453 0.9453
CARDIAC LEFT 0.9453 0.9453 0.9453 0.9453
CARDIAC RIGHT 0.5276 0.5276 0.5276 0.5276
INDOORLOC LONGITUDE 0.5531 0.5531 0.5531 0.5531
SLICE LOCALIZATION 0.6162 0.6162 0.6162 0.6162
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Figure 1. Average running time of different algorithms without and with safe screening rules under different settings.

We use the popular OSCAR setting (also called OWL re-
gression with linear decay), which is widely used in (Oswal
et al., 2016; Zhong & Kwok, 2012; Zhang et al., 2018), as

i = aq + ao(d — 1), (24)

where a; = s||X Tyl and as = ay/d. For a fair com-
parison, the factor s is used to control the sparsity. In our
experiments, we setsetas s; = ixe” 7,1 =1,2,3, 7 =2
for Duke Breast Cancer, IndoorLoc Longitude and Slice
Localization datasets and 7 = 2 for Colon Cancer, Cardiac
Left and Cardiac Right datasets.

To evaluate the screening rate of our algorithms, the screen-
ing rate is defined as the percentage of the inactive variables
we screened to the total inactive ones. We set s = s; here
and for the following.

To compare the prediction error of different algorithms, we
randomly divide the dataset into the training and testing
set in proportion to 4 : 1 and use root mean squared error
(RMSE) as the performance criterion of the linear regression

tasks.

5.1.3. DATASETS

Table 2 summarizes six benchmark datasets used in our ex-
periments. Duke Breast Cancer and Colon Cancer datasets
are from the LIBSVM repository, which is available at https:
/Iwww.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/. Indoor-
Loc Longitude and Slice Localization datasets are from the
UCI benchmark repository (Dua & Graff, 2017) which is
available at https://archive.ics.uci.edu/ml/datasets.php. Car-
diac Left and Right datasets are collected from 3360 MRI
images by hospitals (Gu et al., 2014).

5.2. Experimental Results and discussions

5.2.1. RUNNING TIME

Figures 1(a)-(f) provide the results of the average running
time of four algorithms on the six datasets for the OWL
regularized regression tasks in different situations. The
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Figure 2. The screening rate of different datasets in the stochastic setting.

results confirm that the methods with our screening rule are
always much faster than the original ones. This is because
our screening rule could screen a large portion of inactive
variables during the training process. Thus, the algorithm
with our screening rule reduces much computation cost of
the original algorithms.

When n < d, the results show, with our safe screening
rule, APGD and SPGD have similar performances. APGD
with our safe screening rule achieves the computational gain
to APGD by a factor of 3x to 10x. SPGD with our safe
screening rule achieves the computational gain to SPGD
by 4x to 28x. For large-scale learning where n ~ d and
n > d, the results show SPGD with our safe screening rule
always achieve the largest computational gain, which can
accelerate the original APGD by 4x to 25x. This is because
the stochastic methods can reduce computational burden in
large-scale learning. Interestingly, with our screening rule,
stochastic methods could achieve significant computational
gain even when n = d. This is because the problem degen-
erates into a sub-problem that n >> d during the training
process. Also note we benefit from the screening rule more
with larger and sparser datasets.

5.2.2. SCREENING RATE

Figures 2(a)-(f) present the results of the screening rate of
our algorithms on six datasets in the stochastic setting to
show the screening ability and characteristics of our screen-
ing rule. The results support the conclusion that our algo-
rithm can successfully screen most of the inactive variables

at the very early stage, reach the final active set and screen
almost all the inactive variables in a finite number of itera-
tions. This is because the upper bound of our screening test
is tight and the iterative strategy is effective to explore the
order structure of primal solution to screen more inactive
variables.

5.2.3. PREDICTION ERROR

Table 3 provides the results of prediction errors of four
algorithms on six datasets for OWL regularized regression.
According to the experimental results, the prediction errors
of our algorithms are identical with the original algorithms.
The reason is that our screening rule is guaranteed to be
safe and thus our algorithms with our screening rule are
guaranteed to yield the same solution as the original ones.

6. Conclusion

In this paper, we propose the first safe screening rule for
OWL regularized regression by effectively tackling the non-
separable penalty, which allows to avoid the computation
of the parameters whose coefficients must be zeros. The
proposed screening rule can be easily and safely applied to
existing iterative optimization algorithms. Theoretically, we
prove that the screening rule is able to guarantee identical
results with the original algorithms and reach the final active
set in a finite number of iterations. Extensive experiments
on six benchmark datasets verify that the screening rule
leads to significant computation gain without any loss of
accuracy by screening inactive variables.
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A. Supplementary Material for Faster OSCAR and OWL with Safe Screening Rules
A.1. Dual of OWL Regression and Screening Conditions

In this part, we derive the dual and the screening condition of OWL regression in section 3.1. As a side result, we also derive
the primal-dual link equation of OWL regression in section 4.2.

The primal of OWL regression is

1

d
min Py (6) := 5 lly = XBIE + 3 il Bl (25)
=1

Following the derivation of [; regularized regression in appendix E of (Johnson & Guestrin, 2015), let a; = X, ZT and
fi(z:) = 3(y; — 2;)? being the quadratic loss function, we can derive the dual of OWL regression as follows:

d
1
nlﬁln§\\y—Xﬁ||§+ZAilﬁ|[iJ (26)
=1
1 n d
= Hgn 3 Z(yi —a; B)* + Z il Bl (27
=1 =1
n d
= mﬁiani(aiTﬁ)+Z)\i|ﬁ|[i] (28)
=1 =1
n d
= min ) £ (@] )+ Y Alsly (29)
=1 =1
n d
= min} max{(a/ B)0; — f (0] + 3 NilBl (30)
i=1 i=1
n d
= nlénm;}x—Zf;(ﬁi)+BTXT9+Z)\1|5\[i] 3D
=1 =1
n d
= max—Y_ f7(6:) +mﬁmﬂTXT9+ZAi|@\m (32)
=1 =1
1
= — 20|12 - o7 33
W 10112 = 6"y, (33)

where A, (g+) is the vector of A,(g-) and < means the conditions are satisfied element-wisely. We can see dual D(0) is
strongly concave w.r.t. §. Note that f/ is the convex conjugate of function f; as:

f(0:) = max6;z; — fi(z:). (34)
The last step (33) to derive the dual uses the optimality condition of the following problem:
d
mgnBTXTGJrZ/\iW\[i]. 35)
i=1

Suppose the order of 5* is known, optimality condition (35) is as follows:

2] 0% + Appysign(B7) = 0, if B; #0, (36)
2 6% < M\pary,  ifBF =0, 37

which can be transformed as the constraint of the dual in (33). Hence, we get the dual of OWL regression as above.
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Also, we can get screening conditions for OWL regression from (37) as:
|z 6% < Av(ar) = BF =0.
In addition, considering the maximization part of (32), we have
1
max — 2613~ 07 (y — X5).

We can get the primal-dual link equation as:

0* =y — XB".

(38)

(39)

(40)



