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On the Adversarial Robustness of Robust Estimators
Lifeng Lai, Senior Member, IEEE and Erhan Bayraktar

Abstract—Motivated by recent data analytics applications, we
study the adversarial robustness of robust estimators. Instead of
assuming that only a fraction of the data points are outliers
as considered in the classic robust estimation setup, in this
paper, we consider an adversarial setup in which an attacker can
observe the whole dataset and can modify all data samples in an
adversarial manner so as to maximize the estimation error caused
by his attack. We characterize the attacker’s optimal attack
strategy, and further introduce adversarial influence function
(AIF) to quantify an estimator’s sensitivity to such adversarial
attacks. We provide an approach to characterize AIF for any
given robust estimator, and then design optimal estimator that
minimizes AIF, which implies it is least sensitive to adversarial
attacks and hence is most robust against adversarial attacks.
From this characterization, we identify a tradeoff between
AIF (i.e., robustness against adversarial attack) and influence
function, a quantity used in classic robust estimators to measure
robustness against outliers, and design estimators that strike a
desirable tradeoff between these two quantities.

Index Terms—Robust estimators, adversarial robustness, M -
estimator, non-convex optimization.

I. INTRODUCTION

Robust estimation is a classic topic that addresses the
outlier or model uncertainty issues. In the existing setup,
a certain percentage of the data points are assumed to be
outliers. Various concepts such as influence function (IF),
breakdown point, and change of variance etc were developed
to quantify the robustness of estimators against the presence of
outliers, please see [1]–[3] and references therein for details.
Furthermore, computationally efficient robust algorithms for
high dimensional problems were developed in many recent
work [4]–[8].

These concepts are very useful for the classic setup where
a fraction (up to 50%) of data points are outliers while the
remaining data come from the true distribution. In this paper,
motivated by recent interest in data analytics, we address the
issue of adversarial robustness. In a typical data analytics
setup, a dataset is stored in a database. If an attacker has
access to the database, he can modify all data points (i.e.,
up to 100%) in an adversarial manner, and hence the existing
results on robust statistics are not directly applicable anymore.
This scenario also arises in the adversarial example phenomena
in deep neural networks that have attracted significant recent
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research interests [9]–[11]. In the adversarial example in
deep neural networks, by making small but carefully chosen
changes on the image, the attacker can mislead neural network
to make wrong decisions, even though a human will hardly
notice changes on the modified image. Certainly, if the attacker
can modify all data and no further restrictions on attacker’s
capability are imposed, then no meaningful estimator can be
constructed (this can be viewed as 100% of the data are
modified in the classic setup). In this paper, we investigate
the scenario that the total amount of change measured by
`p norm is limited, and we will study how these quantities
will affect the estimation performance. Towards this goal, we
introduce the concept of adversarial influence function (AIF)
to quantify how sensitive an estimator is to adversarial attacks.
These types of constraints are reasonable and are motivated
by real life examples. For example, in generating adversarial
examples in images [9], the total distortion should be limited,
otherwise human eyes will be able to detect such changes.
Our problem formulation could also potentially be useful for
investigating the robustness of machine learning algorithms
under various constraint on the norm of the attack vector, see
for example [12].

We first focus on the scenario with a given data set.
For this scenario, we characterize the optimal attack vector
that the attacker, who observes the whole data set, can
employ to maximize the change of estimation result. Using
this characterization, we can then analyze AIF of any given
estimator. This analysis enables us to design estimators that
are robust to adversarial attacks. In particular, from the esti-
mator’s perspective, one would like to design an estimator that
minimizes AIF, which implies that such an estimator is least
sensitive to adversarial attacks and hence is most robust against
adversarial attacks. We derive universal lower bounds on AIF
and characterize the conditions under which an estimator can
achieve this lower bound (and hence is most robustness against
adversarial attacks). We then illustrate these results for two
specific models: location estimators and scale estimators.

With the results in the given sample scenario, we then
extend our study to the population scenario, in which we
investigate the behavior of AIF as the number of samples
increases. For this case, we identify a tradeoff between robust-
ness against adversarial attacks vs robustness against outliers.
In particular, we first characterize the optimal estimator that
minimizes AIF. However, the estimator that minimizes AIF
has a poor performance in term of IF [3], [13], a quantity that
measures robustness against outliers. Realizing this fact, we
then formulate optimization problems to design estimators that
strike a desirable tradeoff between AIF (i.e., robustness against
adversarial attack) and IF (i.e., robustness against outliers).
Using tools from calculus of variations [14], [15], we are able
to exploit the unique structure of our problems and obtain



2

analytical form of the optimal solution. The obtained solution
share similar interpretation as classic robust estimators that
it will carefully trim data points that are from the distribution
tails. However, the detailed form and thresholds are determined
by different criteria.

In the above discussion, we mainly focus on a class of
widely used robust estimators: M -estimator. However, the
developed tools and analysis can be extended to analyze other
types of robust estimators. In this paper, we will use L-
estimator as an example to discuss how to extend the analysis
to other types of estimators.

Our paper is related to a growing list of recent work on
adversarial machine learning. Here we give several examples
on data poisoning attack that is related to our work. For
example, [16] considers an adversarial principal component
analysis (PCA) problem. Different from many interesting work
on robust PCA [17], in the model considered in [16], an
attacker adds an extra data point in an adversarial manner so
as to maximize the error of subspace estimated by PCA. [18]
investigates data poisoning attack in regression problems, in
which the attacker adds data points to the training dataset with
the goal of introducing errors into or guiding the results of
regression models. [19] studies an attack that inserts carefully
chosen data points to the training set for support vector
machine. [20] considers learning problems from untrusted
data. In particular, under the assumption that at least α percent
of data points are drawn from a distribution of interest, [20]
considers two frameworks: 1) list-decodable learning, whose
goal is to return a list of answers, with the guarantee that at
least one of them is accurate; and 2) semi-verified learning,
in which one has a small dataset of trusted data that can
be leveraged to enable the accurate extraction of information
from a much larger but untrusted dataset. There are also a
large number of recent work on robust estimators in high
dimensions [4]–[8]. These papers focus on designing compu-
tationally efficient algorithms in the high dimension region. A
major difference between our work and these interesting work
is that the existing work assume that a certain percentage of
data points are not compromised, while in our work all data
points could be compromised. Our paper is also related to
a recent interesting paper [21] that studies the problem of
robust linear regression with response variable corruptions.
[21] considers an oblivious adversary model, in which the
adversary changes a fraction of responses without knowledge
of the data, and provides a nearly linear time estimator that
is consistent even when the majority of the data is corrupted.
In our paper, the modification introduced by the attack can be
dependent on the whole dataset.

The remainder of the paper is organized as follows. In Sec-
tion II, we introduce our problem formulation. In Section III,
we introduce the necessary background. In Section IV, we
investigate AIF for the given sample scenario. In Section V,
we consider the population scenario. We extend the study to L-
estimator in Section VI. Numerical examples are given in Sec-
tion VII. Finally, we offer concluding remarks in Section VIII.

II. MODEL

We consider an adversarially robust parameter estima-
tion problem in which the adversary has access to the
whole dataset. In particular, we have a given data set x =
{x1, · · · , xN}, in which xn are i.i.d realizations of random
variable X ∈ R that has cumulative density function (cdf)
Fθ(x) with unknown parameter θ ∈ R. We will use fθ(x) to
denote the corresponding probability density function (pdf).
From this given data set, we would like to estimate the
unknown parameter θ. However, as the adversary has access
to the whole dataset, it will modify the data to x∆ =
x + ∆x := {x1 + ∆x1, · · · , xN + ∆xN}, in which ∆x =
{∆x1, · · · ,∆xN} is the attack vector chosen by the adversary
after observing x. We will discuss the attacker’s optimal attack
strategy in choosing ∆x in the sequel. In the classic robust
estimation setup, it is typically assume that some percentage
(up to 50%) of the data points are outliers, that is some entries
in ∆x are nonzero while the remainders are zero. In this work,
we consider the case where the attacker can modify all data
points, which is a more suitable setup for recent data analytical
applications. However, certain restrictions need to be put on
∆x, otherwise the estimation problem will not be meaningful.
In this paper, we assume that

1

N
||∆x||pp ≤ ηp, (1)

in which || · ||p is the `p norm. The normalization factor N
implies that the per-dimension change (on average) is upper-
bound by ηp. As mentioned in the introduction, this type
of constraints are reasonable and are motivated by real life
examples. The classic setup can be viewed as a special case
of our formulation by letting p→ 0, i.e., the classic setup has
constraint on the total number of data points that the attacker
can modify.

Following notation used in robust statistics [2], [3], we will
use TN (x) to denote an estimator. For a given estimator TN ,
we would like to characterize how sensitive the estimator is
with respect to the adversarial attack. In this paper, we consider
a scenario where the goal of the attacker is to maximize the
deviation in the estimator’s output caused by the attack. In
particular, the attacker aims to choose ∆x by solving the
following optimization problem

max
∆x

|TN (x + ∆x)− TN (x)|, (2)

s.t.
1

N
||∆x||pp ≤ ηp.

We use ∆TN (x) to denote the optimal value obtained
from the optimization problem (2), and define the adversarial
influence function (AIF) of estimator TN at x under `p norm
constraint as

AIF(TN ,x, p) = lim
η↓0

∆TN (x)

η
.

This quantity, a generalization of the concept of IF used
in classic robust estimation (we will briefly review IF in
Section III), quantifies the rate at which the attacker can
introduce estimation error through its attack.

From the defender’s perspective, the smaller AIF is, the
more robust the estimator is. In this paper, building on the
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characterization of AIF(TN ,x, p), we will characterize the
optimal estimator TN , among a certain class of estimators T ,
that minimizes AIF(TN ,x, p). In particular, we will investigate

min
TN∈T

AIF(TN ,x, p).

We will show that, for certain class of T , the optimal TN is
independent of x and p, which is a very desirable property.

Note that AIF(TN ,x, p) depends on the data realization
x. Based on the characterization of AIF for a given data
realization x of length N , we will then study the population
version of AIF where each entry of X = {X1, · · · , XN}
is i.i.d generated by Fθ. We will examine the behavior of
AIF(TN ,X, p) as N increases. Following the convention in
robust statistics, we will assume that there exists a functional
T such that

TN (X)→ T (Fθ) (3)

in probability as N →∞. We will see that for a large class of
estimators AIF(TN ,X, p) has a well-defined limit as N →∞.
We will use AIF(T, Fθ, p) to denote this limit when it exists.

Similarly, from the defense’s perspective, we would like to
design an estimator that is least sensitive to the adversarial
attack. Again, we will characterize the optimal estimator
T , among a certain class of estimators T , that minimizes
AIF(T, Fθ, p). That is, for a certain class of estimators T ,
we will solve

min
T∈T

AIF(T, Fθ, p). (4)

It will be clear in the sequel that the solution to the opti-
mization problem (4), even though is robust against adversarial
attacks, has poor performance in guarding against outliers.
This motivates us to design estimators that strike a desirable
tradeoff between these two robustness measures. In particular,
we will solve (4) with an additional constraint on IF. We will
need to use tools from calculus of variations for this purpose.

We note that in this paper, we focus on the scalar case (i.e.,
X and θ are scalers). The problem formulation and analysis
can be extended (with additional technical developments) to
the more general vector case (including joint location-scale
estimation and robust regression etc.). The corresponding
results are reported in [22].

III. BACKGROUND

In this section, we briefly review results from classic robust
estimator literature that are closely related to our study.

A. Influence Function (IF)

As mentioned above, in the classic robust estimation setup,
it is assumed that a fraction η of data points are outliers,
while the remainder of data points are generated from the
true distribution Fθ. For a given estimator T , the concept of
IF introduced by Hampel [13] is defined

IF(x, T, Fθ) = lim
η↓0

T ((1− η)Fθ + ηδx)− T (Fθ)

η
.

In this definition, δx is a distribution that puts mass 1 at point
x, T (Fθ), introduced in (3), is the obtained estimate when all

data points are generated i.i.d from Fθ, and T ((1−η)Fθ+ηδx)
is the obtained estimate when 1−η fraction of data points are
generated i.i.d from Fθ while η fraction of the data points are
at x. Hence, IF(x, T, Fθ) measures the influence of having
outliers at point x as η ↓ 0.

To measure the influence of the worst outliers, [13] then
further introduced the concept of gross-error sensitivity of T
by taking sup over the absolute value of IF(x, T, Fθ):

γ∗(T, Fθ) = sup
x
|IF(x, T, Fθ)|.

Intuitively speaking, γ∗(T, Fθ) can be viewed as the solu-
tion of our problem setup for the special case of p = 0.

The values of IF(x, T, Fθ) and γ∗(T, Fθ) have been char-
acterized for various class of estimators. Furthermore, under
certain conditions, optimal estimator T that minimizes these
quantities have been established. Some of these results will be
introduced in later sections. More details can be found in [2],
[3].

B. M -Estimator

In this paper, we will mainly focus on a class of commonly
used estimator in robust statistic: M -estimator [1], in which
one obtains an estimate TN (x) of θ by solving

N∑
n=1

ψ(xn, TN ) = 0. (5)

Here ψ(xn, θ) is a function of data xn and parameter θ to
be estimated. Different choices of ψ lead to different robust
estimators. For example, the most likely estimator (MLE)
can be obtained by setting ψ = −f ′θ/fθ. M -estimator can
also be defined as the solution of an optimization problem.
The formulation in (5) and the optimization formulation have
certain relationship, but they are not always equivalent. Please
refer to Chapter 2.3a of [3] for detailed discussion.

As the form of ψ determines TN , in the remainder of the
paper, we will use ψ and TN interchangeably. For example,
we will denote AIF(TN ,x, p) as AIF(ψ,x, p). Similarly, we
will denote IF(x, T, Fθ) as IF(x, ψ, Fθ).

It is typically assumed that ψ(x, θ) is continuous and almost
everywhere differentiable. This assumption is valid for all
ψ’s that are commonly used. It is also typically assume the
estimator is Fisher consistent [3]:

EFθ [ψ(X, θ)] = 0, (6)

in which EFθ means expectation under Fθ. Intuitively speak-
ing, this implies that the true parameter θ is the solution of the
M -estimator if there are increasingly more i.i.d. data points
generated from Fθ.

For M -estimator, IF(x, ψ, Fθ) was shown to be

IF(x, ψ, Fθ) =
ψ(x, T (Fθ))

−
∫

∂
∂θ [ψ(y, θ)]θ=T (Fθ)dFθ(y)

,

see (2.3.5) of [3].
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IV. THE FIXED SAMPLE CASE

In this section, we focus on analyzing AIF(ψ,x, p) for a
given dataset x. We will extend the study to the population
case and analyze AIF(ψ, Fθ, p) in Section V.

A. General ψ
We will first characterize AIF(ψ,x, p) for general ψ, and

will then specialize the results to specific problems in later
sections. For any given ψ that is continuous and almost
everywhere differentiable, we have the following theorem that
characterizes AIF(ψ,x, p).

Theorem 1. When p = 1,

AIF(ψ,x, 1) =

∣∣ ∂
∂x [ψ]x=xn∗ ,θ=TN

∣∣∣∣∣∣ 1
N

N∑
n=1

∂
∂θ [ψ]x=xn,θ=TN

∣∣∣∣ ,
where

n∗ = arg max
n

∣∣∣∣ ∂∂x [ψ]x=xn,θ=TN

∣∣∣∣ . (7)

For p > 1, we have

AIF(ψ,x, p) =

(
1
N

N∑
n=1

∣∣ ∂
∂x [ψ]x=xn,θ=TN

∣∣ p
p−1

) p−1
p

∣∣∣∣ 1
N

N∑
n=1

∂
∂θ [ψ]x=xn,θ=TN

∣∣∣∣ .

Proof. Please see Appendix A for detailed proof.

In this theorem, we characterize the result for p ≥ 1. Ideally,
one would like to consider the case with p < 1, but this will
result in a non-convex optimization, which precludes us from
obtaining a closed form solution.

From Theorem 1, we can characterize the form of ψ that
leads to the smallest AIF, i.e., the most robust M -estimator
against adversarial attacks.

Corollary 1.

AIF(ψ,x, p) ≥

1
N

N∑
n=1

∣∣ ∂
∂x [ψ]x=xn,θ=TN

∣∣∣∣∣∣ 1
N

N∑
n=1

∂
∂θ [ψ]x=xn,θ=TN

∣∣∣∣ ,
and the equality holds when∣∣∣∣ ∂∂x [ψ]x=x1,θ=TN

∣∣∣∣ = · · · =
∣∣∣∣ ∂∂x [ψ]x=xN ,θ=TN

∣∣∣∣ .
Proof. For p > 1, it is easy to check that x(p−1)/p is a concave
function when x ≥ 0. Hence, using Jensen’s inequality, we
have (

1

N

N∑
n=1

∣∣∣∣ ∂∂x [ψ]x=xn,θ=TN

∣∣∣∣
p
p−1

) p−1
p

≥ 1

N

N∑
n=1

∣∣∣∣ ∂∂x [ψ]x=xn,θ=TN

∣∣∣∣ ,
and the equality holds when

∣∣ ∂
∂x [ψ]x=xn,θ=TN

∣∣ is a constant
with respect to n.

This corollary implies that, from defender’s perspective, we
should design ψ(x, θ) such that

∣∣ ∂
∂x [ψ]

∣∣ is constant in x. It is
also interesting that, this result holds for any value of p. And
hence we can design an estimator without knowledge about
which constraint the attacker is using.

B. Specific Estimators

To illustrate the results obtained above, we specialize results
to location estimators and scale estimators.

1) Location Estimator: For location estimator models,
Fθ(x) = F0(x − θ), and hence it is natural to use ψ(x, θ) =
ψ(x− θ), see [2], [3]. For this model, it is easy to check that

∂

∂x
[ψ]x=xn,θ=TN = ψ

′
(xn − TN ),

∂

∂θ
[ψ]x=xn,θ=TN = −ψ

′
(xn − TN ).

Plugging these two equations in the AIF expressions in The-
orem 1, for the case with p = 1, we have

AIF(ψ,x, 1) =

∣∣∣Nψ′(xn∗ − TN )
∣∣∣∣∣∣∣ N∑

n=1
ψ′(xn − TN )

∣∣∣∣ ≥ 1,

for which the equality holds when ψ
′
(xn − TN ) is a constant

with respect to n.
For the case with p > 1, we have

AIF(ψ,x, p) =

(
1
N

N∑
n=1

∣∣∣ψ′(xn − TN )
∣∣∣ p
p−1

) p−1
p

∣∣∣∣ 1
N

N∑
n=1

ψ′(xn − TN )

∣∣∣∣ (8)

(a)

≥

1
N

N∑
n=1

∣∣∣ψ′(xn − TN )
∣∣∣∣∣∣∣ 1

N

N∑
n=1

ψ′(xn − TN )

∣∣∣∣ ≥ 1,

in which (a) is due to Jensen’s inequality. Both inequalities
will hold if ψ

′
(xn − TN ) is a constant in n.

Example 1. Consider an estimator with ψ(xn−TN ) = xn−
TN . This estimator is simply the empirical sample mean. It is
easy to see that ψ

′
(x) is a constant in n, which implies that

this choice of ψ has AIF(ψ,x, p) = 1. It achieves the lower
bound established above, regardless of the value of x and
p. Hence, it is the most robust estimator against adversarial
attacks. However, as we will discuss in Section V, this choice
of ψ is not robust against outliers. In Section V, we will design
estimators that strike a desirable balance between robustness
against outliers and robustness against adversarial attacks.

Example 2. Consider the Huber estimator [1] with

ψ(xn − TN ) = min{b,max{xn − TN ,−b}},

parameterized by a parameter 0 < b < ∞. Using (8), it
is easy to check that AIF(ψ,x, p) =

√
1/β, in which β is

the proportion of points in x such that |xn − TN | < b. It is
clear that Huber estimator, while being more robust against
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outliers [2], is less robust against adversarial attacks than the
empirical mean estimator.

2) Scale Estimator: The scale model [2], [3] is given by
Fθ(x) = F1(x/θ), and it is typical to consider ψ(x, θ) =
ψ(x/θ). It is easy to check that for ψ with this form, we have

∂

∂x
[ψ]x=xn,θ=TN =

ψ
′
(xn/TN )

TN
,

∂

∂θ
[ψ]x=xn,θ=TN =

−xnψ
′
(xn/TN )

T 2
N

.

Using Theorem 1, for the case with p = 1, we obtain

AIF(ψ,x, 1) =

∣∣∣∣N ψ
′
(xn∗/TN )
TN

∣∣∣∣∣∣∣∣ N∑
n=1

−xnψ′ (xn/TN )
T 2
N

∣∣∣∣
=

∣∣∣ψ′(xn∗/TN )
∣∣∣∣∣∣∣ 1

N

N∑
n=1

xn/TNψ
′(xn/TN )

∣∣∣∣ , (9)

in which n∗ is defined in (7).
When p > 1, we have

AIF(ψ,x, p) =

(
1
N

N∑
n=1

∣∣∣∣ψ′ (xn/TN )
TN

∣∣∣∣
p
p−1

) p−1
p

∣∣∣∣ 1
N

N∑
n=1

−xnψ′ (xn/TN )
T 2
N

∣∣∣∣
=

(
1
N

N∑
n=1

∣∣∣ψ′(xn/TN )
∣∣∣ p
p−1

) p−1
p

∣∣∣∣ 1
N

N∑
n=1

xn/TNψ
′(xn/TN )

∣∣∣∣ . (10)

Example 3. Consider MLE for variance of zero-mean
Gaussian random variables, which corresponds to ψ(x) =
−x(φ

′
(x)/φ(x)) − 1 = x2 − 1. Here, φ(x) is the pdf of zero

mean variance one Gaussian random variable. For this choice
of ψ, we have TN = 1

N

∑N
n=1 x

2
n and ψ

′
(xn/TN ) = 2xn/TN .

Plugging these values into (9), we obtain

AIF(ψ,x, 1) = |x∗n|.

Using (10), we have

AIF(ψ,x, p) =

(
1

N

N∑
n=1

|xn|
p
p−1

) p−1
p

,

from which we know that when p = 2, AIF(ψ,x, 2) =
√
TN =√

1
N

∑N
n=1 x

2
n.

V. POPULATION CASE

With the results on the fixed dataset case, we now consider
the population version where Xn are i.i.d from Fθ, and analyze
the behavior of AIF as N →∞. Following the convention in
classic robust statistics literature, we will focus on the case in
which the estimator is Fisher consistent as defined in (6).

It has been shown in Theorem 2.4 of [2] that, under certain
mild regularity conditions, TN

a.s.→ θ. In the following, we will
need the following additional regularity conditions:

• ψ
′
(x) is continuous functions.

• There exist a function K(x) such that |ψ′(x)| ≤ K(x),
|xψ′1(x)| ≤ K(x), and EFθ [K(X)] <∞.

The conditions here are slightly stronger than those conditions
needed for the strong law of large numbers, as we will need
to use the uniform strong law of large numbers (see Theorem
16 (a) [23]). Under these regularity assumptions, using the
uniform strong law of large numbers, Slutsky Theorem (see
Chapter 6 of [23]) and the fact that TN

a.s.→ θ, as N →∞ we
have

1

N

N∑
n=1

∂

∂θ
[ψ]x=xn,θ=TN

a.s.→ EFθ
[
∂

∂θ
[ψ](X, θ)

]
. (11)

Furthermore, using Proposition 3 of [24], as N → ∞ in
Theorem 1, we have∣∣∣∣ ∂∂x [ψ]x=xn∗ ,θ=TN

∣∣∣∣ a.s.→ max
x

∣∣∣∣ ∂∂x [ψ](x, θ)

∣∣∣∣ . (12)

As the result,

AIF(ψ,x, 1) =

∣∣ ∂
∂x [ψ]x=xn∗ ,θ=TN

∣∣∣∣∣∣ 1
N

N∑
n=1

∂
∂θ [ψ]x=xn,θ=TN

∣∣∣∣
a.s.→

max
x

∣∣ ∂
∂x [ψ](x, θ)

∣∣∣∣EFθ [ ∂∂θ [ψ](X, θ)
]∣∣

:= AIF(ψ,Fθ, 1). (13)

For p > 1, we have

AIF(ψ,x, p) =

(
1
N

N∑
n=1

∣∣∣ ∂
∂xn

[ψ]x=xn,θ=TN

∣∣∣ p
p−1

) p−1
p

∣∣∣∣ 1
N

N∑
n=1

∂
∂θ [ψ]x=xn,θ=TN

∣∣∣∣
a.s.→

(
EFθ

[∣∣ ∂
∂x [ψ](X, θ)

∣∣ p
p−1

]) p−1
p∣∣EFθ [ ∂∂θ [ψ](X, θ)

]∣∣
:= AIF(ψ, Fθ, p). (14)

A. Location Estimator

We now specialize the results to the location model men-
tioned above. We will first characterize ψ that minimizes
AIF(ψ,Fθ, p). We will then discuss the tradeoff between the
robustness to outliers and robustness to adversarial attacks, and
will characterize the optimal ψ that achieves this tradeoff. In
the location estimator, we will assume ψ(x, θ) is monotonic
in θ, which will satisfy the regularity conditions established
in [2].

1) Minimizing AIF(ψ,Fθ, p): For p = 1, using (13), we
have

AIF(ψ, Fθ, 1) =
max
x

∣∣∣ψ′(x− θ)∣∣∣
|EFθ [ψ

′(X − θ)]|
.
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For p > 1, using (14), we obtain

AIF(ψ, Fθ, p) =

(
EFθ

[∣∣∣ψ′(X − θ)∣∣∣ p
p−1

]) p−1
p

|EFθ [ψ′(X − θ)]|
. (15)

In particular, for p = 2, we have

AIF(ψ, Fθ, 2) =

√
EFθ [ψ

′(X − θ)2]

(EFθ [ψ
′(X − θ)])2

.

From (15) and using Jensen’s equality, we have

AIF(ψ,Fθ, p) ≥ 1,

for which the equality holds when ψ
′
(x− θ) is constant in x.

2) Tradeoff between AIF (ψ, Fθ, p) and γ∗(ψ,Fθ): From
(2.3.12) of [3], we know that the influence function of the
location estimator specified by ψ is

IF(x, ψ, Fθ) =
ψ(x− θ)

EFθ [ψ
′(X − θ)]

,

and hence

γ∗(ψ, Fθ) = sup
x

∣∣∣∣ ψ(x− θ)
EFθ [ψ

′(X − θ)]

∣∣∣∣ .
As a result, if ψ

′
(X − θ) is a constant that minimizes

AIF(ψ, Fθ, p) as discussed in Section V-A1, then γ∗(ψ, Fθ)
might go to ∞, especially for those distributions with un-
bounded support. To achieve a desirable tradeoff between
robustness to outliers (i.e., γ∗(ψ, Fθ) is small) and robustness
to adversarial attacks (i.e., AIF(ψ, Fθ, p) is small), in the fol-
lowing, we characterize the optimal estimator that minimizes
AIF(ψ, Fθ, p) subject to a constraint on γ∗(ψ,Fθ).

min AIF(ψ,F, 2) (16)
s.t. γ∗(ψ, Fθ) ≤ ξ, (17)

EFθ [ψ(X − θ)] = 0, (18)

ψ
′
(x) ≥ 0,

in which constraint (17) implies that γ∗(ψ, Fθ) is upper-
bounded by a positive constant ξ, constraint (18) implies that
ψ is Fisher consistent, and the last constraint comes from the
condition that ψ is monotonic in θ.

For location estimator, fθ(x) = f0(x− θ), so all quantities
in (16) remain the same by assuming θ = 0 [3]. Hence, in the
following, we will solve this optimization problem assuming
θ = 0. Once the optimal form of ψ for θ = 0 is characterized,
we can obtain the estimate of θ by solving

∑N
n=1 ψ(x−TN ) =

0 for the general case when θ 6= 0.

Theorem 2. The solution to the optimization problem (16) has
the following structure:

• ψ
′
(x) satisfies

ψ
′
(x) = (19){
ν∗ − ϑ∗2+(ϑ∗1−ϑ

∗
2)F0(x)

f0(x) , ν∗f0(x) > ϑ∗2 + (ϑ∗1 − ϑ∗2)F0(x);

0, otherwise,

in which the parameters ν∗, ϑ∗1 ≥ 0 and ϑ∗2 ≥ 0 are

parameters chosen to satisfy the following conditions

EF0
[ψ
′
(X)] = 1, (20)

ϑ∗1

(∫
ψ
′
(x)F0(x)dx− ξ

)
= 0, (21)

ϑ∗2

(
EF0

[∫ X

−∞
ψ
′
(t)dt

]
− ξ

)
= 0, (22)

along with
∫
ψ
′
(x)F0(x)dx ≤ ξ and

EF0

[∫X
−∞ ψ

′
(t)dt

]
≤ ξ.

• ψ(−∞) is set as −EF0

[∫X
−∞ ψ

′
(t)dt

]
.

Proof. Please see Appendix B for details.

The condition ν∗f0(x) > ϑ∗1F0(x) + ϑ∗2(1 − F0(x)) has a
natural interpretation. It will trim data points from the tails.
In particular, when x is left tail (i.e. F0 is small), 1−F0 will
be close to 1. On the other hand, when x is in the right tail
(i.e. 1− F0 is small), F0 will be close to 1. In these regions,
ψ
′

= 0 if the corresponding f0(x) is small. Figure 1 illustrates
the scenario for estimating the mean of Gaussian variables for
the case assuming ϑ∗1 > ϑ∗2. It is easy to check that, in this
example, if ν∗ > 2π(ϑ∗1 + ϑ∗2), there exist a and b such that
ψ
′
(x) = 0 when x < a or x > b. Correspondingly, ψ(x) is

given as

ψ(x) =


ξ x ≥ b

−ξ +
∫ x
a
ψ
′
(t)dt a < x < b

−ξ x < a
.

a b

Fig. 1. Gaussian mean example

B. Scale Estimator

We now specialize the results to the scale model where
Fθ(x) = F1(x/θ). For this model, it is natural to consider
ψ(x, θ) = ψ(x/θ) [2], [3]. Similar to the location model, we
will first characterize ψ that minimizes AIF(ψ, Fθ, p). We will
then discuss the tradeoff between the robustness to outliers
and robustness to adversarial attacks, and will characterize the
optimal ψ that achieves this tradeoff.
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For the case with p = 1, using (13), we obtain

AIF(ψ,x, 1) =

∣∣∣NTNψ′(xn∗/TN )
∣∣∣∣∣∣∣ N∑

n=1
xnψ

′(xn/TN )

∣∣∣∣
a.s.→

max
x

∣∣∣θψ′(x/θ)∣∣∣
|Eθ[Xψ′(X/θ)]|

:= AIF(ψ, Fθ, 1).

For p > 1, using (13), we have

AIF(ψ,x, p) =

(
1
N

N∑
n=1

∣∣∣ψ′(xn/TN )
∣∣∣ p
p−1

) p−1
p

∣∣∣∣ 1
N

N∑
n=1

xn/TNψ
′(xn/TN )

∣∣∣∣
a.s.→

(
Eθ
[∣∣∣ψ′(X/θ)∣∣∣ p

p−1

]) p−1
p

|Eθ [X/θψ′(X/θ)]|
:= AIF(ψ,Fθ, p).

Since in scale model Fθ(x) = F1(x/θ), we have fθ(x) =
f1

(
x
θ

)
1
θ , and hence

AIF(ψ, Fθ, p) =

(
EF1

[∣∣∣ψ′(X)
∣∣∣ p
p−1

]) p−1
p

|EF1 [Xψ′(X)]|
:= AIF(ψ, F1, p).

For p = 2, we have

AIF(ψ, F1, 2) =

(
EF1

[
ψ
′
(X)2

]) 1
2

|EF1
[Xψ′(X)]|

. (23)

1) Minimizing AIF (ψ,Fθ, p): In the following, among
Fisher consistent estimators, we aim to design ψ

′
that min-

imizes AIF(ψ, F1, 2).

Theorem 3. The optimal ψ that minimizes AIF(ψ, F1, 2) has
the following structure:

• For x in the range of f1(x), ψ
′

satisfies

ψ
′
(x) =

x

EF1 [X2]
.

• ψ(−∞) is chosen as

ψ(−∞) = −EF1

[∫ X

−∞
ψ
′
(t)dt

]
.

With this choice of ψ(x), the minimal value of AIF(ψ, F1, 2)
is 1/

√
EF1 [X2].

Proof. Please see Appendix C for details.

We note that for scale estimator ∂ψ
∂θ = −ψ′(x/θ)x/θ2,

hence for this particular choice of ψ
′

in Theorem 3, ∂ψ
∂θ =

−x2/(θ3EF1
[X2]), which means ψ(x, θ) is monotone in θ.

This ensures that the obtained ψ(x) satisfies the regularity
conditions [2] mentioned at the beginning of this section.

2) Tradeoff between AIF (ψ, Fθ, p) and γ∗(ψ, Fθ): Similar
to the location estimation case, we can also design ψ to
minimize AIF(ψ, Fθ, p) with a constraint on γ∗(ψ, Fθ). From

(2.3.17) of [3], we know that for scale estimators

IF(x, ψ, Fθ) =
ψ(x/θ)θ

EFθ [X/θψ
′(X/θ)]

.

To facilitate the analysis, we will focus on ψ that is monotonic.
Since in scale model, ψ(x, θ) = ψ(x/θ), we can simply focus
on the case of θ = 1. Hence, we will solve the following
optimization problem to strike a desirable tradeoff between
robustness against outliers and robustness against adversarial
attacks.

min
EF1

[
ψ
′
(X)2

]
(EF1 [Xψ′(X)])

2 , (24)

s.t. γ∗(ψ, F1) = sup
x

∣∣∣∣ ψ(x)

EF1 [Xψ′(X)]

∣∣∣∣ ≤ ξ, (25)

EF1
[ψ] = 0, (26)

ψ
′
(x) ≥ 0. (27)

Here, constraint (25) is a constraint on the outliers influ-
ence, (26) implies that ψ is Fisher consistent.

Theorem 4. The solution to (24) has the following structure:

• ψ
′

has the following form

ψ
′
(x) = (28){
ν∗x− ϑ∗2+(ϑ∗1−ϑ

∗
2)F1(x)

f1(x) , ν∗xf1(x) > ϑ∗2 + (ϑ∗1 − ϑ∗2)F1(x);

0, otherwise,

in which ν∗, ϑ∗1 ≥ 0 and ϑ∗2 ≥ 0 are chosen to satisfy

EF1
[Xψ

′
(X)] = 1,

ϑ∗1

(∫ ∞
−∞

ψ
′
(x)F1(x)dx− ξ

)
= 0,

ϑ∗2

(
EF1

[∫ X

−∞
ψ
′
(t)dt

]
− ξ

)
= 0,

along with
∫∞
−∞ ψ

′
(x)F1(x)dx ≤ ξ and

EF1

[∫X
−∞ ψ

′
(t)dt

]
≤ ξ.

• ψ(−∞) is set to be −EF1

[∫X
−∞ ψ

′
(t)dt

]
.

Proof. The proof follows similar strategy as that of the proof
of Theorem 2 and 3. Details can be found in Appendix D.

Similar to the location estimator case, the condition
ν∗xf1(x) > ϑ∗1F1(x)+ϑ∗2(1−F1(x)) will limit the influences
of data points at the tails.

VI. EXTENSION: L-ESTIMATOR

In this section, we briefly discuss how to extend the analysis
above to other class of estimators. We will use L-estimator as
an example. L-estimator has the following form [2], [3]:

TN (x) =
N∑
n=1

anx(n),
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where x(1) ≤ · · · ≤ x(N) are the ordered sequence of x, and
an’s are coefficients. For example, for location estimator, a
natural choice of an is

an =

∫ n/N
(n−1)/N

h(t)dt∫ 1

0
h(t)dt

, (29)

for a given function h(t) such that
∫ 1

0
h(t)dt 6= 0. For example,

setting h(t) = δ(t− 1/2) leads to the median estimator.

We first look at the given sample scenario. Let x̃ = x+∆x,
and let x̃(1) ≤ · · · ≤ x̃(N) be the ordered sequence of x̃.
Hence,

TN (x + ∆x) =
N∑
n=1

anx̃(n). (30)

For general ∆x, the ordering of x+∆x may not necessarily
be the same as the ordering of x. For example, x̃(1) might
come from x(2), i.e., x̃(1) = x(2) + ∆(x(2)). This possibility
could make the following analysis messy. However, it is easy
to see that when η is sufficiently small (more specifically, when
N1/pη ≤ 1/2 min

xi 6=xj
|xi − xj |), the ordering of x + ∆x be the

same as x for all ∆x’s that satisfy the constraint (1). As the
result, for the purpose of charactering AIF (which involves
making η ↓ 0), we can limit (30) to the following form

TN (x + ∆x) =
N∑
n=1

an(x(n) + ∆(x(n))).

Hence

TN (x + ∆x)− TN (x) =

N∑
n=1

an∆x(n),

and (2) becomes

min −
N∑
n=1

an∆x(n),

s.t.
1

N
||∆x||pp ≤ ηp.

Using the exactly same approach as those in the proof of
Theorem 1, we have the following characterization. For p = 1,
let n∗ = arg max

n
|an|,

∆x∗(n∗) = sign {an∗}Nη,

and ∆x∗(n) = 0, ∀n 6= n∗. Hence,

AIF(TN ,x, 1) = N |an∗ | .

For p > 1, we have

∆x∗(n) =
|an|1/(p−1)(N)1/p

(
∑
|an|p/(p−1))1/p

sign(an)η.

Hence,

AIF(ψ,x, p) =
∑

an
|an|1/(p−1)(N)1/p

(
∑
|an|p/(p−1))1/p

sign(an)

=

N∑
n=1
|an|p/(p−1)

(
1
N

N∑
n=1
|an|p/(p−1)

)1/p
. (31)

When p = 2, this can be simplified to

AIF(TN ,x, 2) =

√
N

N∑
n=1

a2
n√

N∑
n=1

a2
n

=

√√√√N
N∑
n=1

a2
n. (32)

For example, for α-trimmed estimator [3] defined by

TαN (x) =
1

N − 2bαNc

N−bαNc∑
n=bαNc+1

x(n),

for a given parameter 0 < α < 1/2. For this α-trimmed
estimator, using (31), we obtain

AIF(TαN ,x, p) =
N1/p

(N − 2bαNc)1/p
.

If ans are chosen as (29), then (32) simplifies to

AIF(TN ,x, 2) =

√√√√√√√
1
N

N∑
n=1

(∫ n/N
(n−1)/N

h(t)dt
)2

(
1
N

∫ 1

0
h(t)dt

)2

≥

√√√√√√√
(

1
N

N∑
n=1

∫ n/N
(n−1)/N

h(t)dt
)2

(
1
N

∫ 1

0
h(t)dt

)2

≥ 1,

in which the first inequality is due to Jensen’s inequality, and
both inequalities become equality when an =

∫ n/N
(n−1)/N

h(t)dt
is a constant in n, i.e., an = 1/N and the estimator becomes
the empirical mean.

VII. NUMERICAL EXAMPLES

In this section, we provide numerical examples to illustrate
results obtained.

We consider location estimation and illustrate the optimal
estimator obtained in Theorem 2 for the case when f0 is
exponential random variable f0(x) = e−x, x ≥ 0, hence fθ is
shifted exponential random variable fθ = e−(x−θ), x ≥ θ and
the goal is to estimate θ. As the exponential random variable
has a unbounded support, choosing ψ

′
to be a constant, which

minimizes AIF, will lead to an infinite IF. Hence, we use
Theorem 2 to characterize the optimal ψ that minimizes AIF
while satisfying the condition that IF ≤ ξ.
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For this particular class of distribution, the condition
ν∗f0(x) > ϑ∗1F0(x) + ϑ∗2(1 − F0(x)) becomes 0 ≤ x < a
with the parameter a chosen as

e−a =
ϑ∗1

ν∗ + ϑ∗1 − ϑ∗2
. (33)

Hence we have

ψ
′
(x) =

{
ν∗ + ϑ∗1 − ϑ∗2 − ϑ∗1ex, 0 ≤ x < a;

0, otherwise,

for which the parameters ν∗, ϑ∗1, ϑ
∗
2 are chosen to satisfy the

conditions specified in Theorem 2. After tedious calculation,
conditions (20) - (22) can be simplified to

(ν∗ + ϑ∗1 − ϑ∗2)(1− e−a)− ϑ∗1a = 1,

ϑ∗1((ν∗ + ϑ∗1 − ϑ∗2)(a− 1 + e−a)− ϑ∗1(ea − 1) + aϑ∗1 − ξ) = 0,

ϑ∗2((ν∗ + ϑ∗1 − ϑ∗2)(1− e−a)− ϑ∗1a− ξ) = 0.

From here, we know that if ξ > 1, ϑ∗2 = 0, using this fact
along with (33), we have that the conditions are simplified to

ν∗ − aϑ∗1 = 1,

2aϑ∗1 + (a− 2)ν∗ = ξ,

ϑ∗2 = 0.

Using these, we can express ν∗ and ϑ∗1 in terms of a:

ν∗ =
ξ + 2

a
,

ϑ∗1 =
ξ + 2− a

a2
.

Finally, for any given ξ > 1, the value of a can be
determined by (33), which is simplified to

e−a =
ϑ∗1

ν∗ + ϑ∗1 − ϑ∗2
=

ξ + 2− a
(ξ + 1)a+ ξ + 2

. (34)

0 2 4 6 8 10
a

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 2. The solution of a

It is easy to check that, for any given ξ > 1, there is always
a unique positive solution to (34). For example, Figure 2

illustrates the solution for a when ξ = 3. In this figure, the
dotted curve is the right side of (34) and the solid curve is
the left side of (34). From the figure, we know that these two
curves have two intersections a = 0 and a = 4.8. With these
parameters, we know that

ψ
′
(x) =

{
1.0417− 0.0087ex, 0 ≤ x ≤ 4.8;

0, otherwise, (35)

hence the optimal ψ is

ψ
′
(x) =

{
ξ, x ≥ 4.8;

1.0417x− 0.0087(ex − 1)− 1, 0 ≤ x ≤ 4.8.

Figure 3 illustrates the obtained ψ(x) for the case with ξ =
3.

-1 0 1 2 3 4 5 6
x

-2

-1

0

1

2

3

(x
)

Fig. 3. ψ that minimizes AIF when IF ≤ 3.

Figure 4 illustrates the tradeoff curve between AIF and IF.
We obtain this curve by solving (34) and other parameters
using different values of ξ. As we can see from the curve,
as ξ increases, AIF decreases. Furthermore, the value of AIF
converges to 1, the lower bound established in Section V-A1.

VIII. CONCLUSION

Motivated by recent data analytics applications, we have
studied adversarial robustness of robust estimators. We have
introduced the concept of AIF to quantify an estimator’s
sensitivity to such adversarial attacks and have provided an ap-
proach to characterize AIF for given robust estimator. We have
further designed optimal estimators that minimize AIF. From
this characterization, we have identified a tradeoff between
AIF and IF, and have designed estimators that strike a desirable
tradeoff between these two quantities. We note that AIF only
captures the impact of vanishingly small corruptions. It is of
interest to investigate the impact of non-vanishing corruptions
and its connection with AIF in the future.
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1 1.5 2 2.5 3 3.5 4 4.5 5
IF

1

1.02

1.04

1.06

1.08

A
IF

Fig. 4. Tradeoff between AIF and IF of location estimator for exponential
random variables.

APPENDIX A
PROOF OF THEOREM 1

From (5), we know that TN and x satisfy
N∑
n=1

ψ(xn, TN ) = 0.

Hence, we have

∂

∂xn
TN =

− ∂
∂x [ψ]x=xn,θ=TN

N∑
n=1

∂
∂θ [ψ]x=xn,θ=TN

. (36)

Based on Taylor expansion, we have

TN (x + ∆x)− TN (x)

=
N∑
n=1

∆xn
∂

∂xn
TN + higher order terms.

When η is small, the adversary can solve the following
problem and obtain an o(η) optimal solution

min
∆x

−
N∑
n=1

∆xncn,

s.t. ||∆x||pp ≤ Nηp, (37)

in which

cn :=
∂

∂xn
TN .

For p = 1, this is a linear programing problem, whose
solution is simple. In particular, let n∗ = arg max

n
| ∂∂xnTN |,

which is the same as arg max
n

∣∣ ∂
∂x [ψ]x=xn,θ=TN

∣∣ due to (36),
it is easy to check that we have

∆x∗n∗ = sign
{

∂

∂xn∗
TN

}
Nη,

and ∆x∗n = 0, ∀n 6= n∗. Hence,

AIF(ψ,x, 1) = N

∣∣∣∣ ∂

∂xn∗
TN

∣∣∣∣ =

∣∣N ∂
∂x [ψ]x=xn∗ ,θ=TN

∣∣∣∣∣∣ N∑
n=1

∂
∂θ [ψ]x=xn,θ=TN

∣∣∣∣ .
For ∞ > p > 1, (37) is a convex optimization problem. To

solve this, we form Lagrange

L(∆x, λ) = −
N∑
n=1

∆xncn + λ
(
||∆x||pp −Nηp

)
.

The corresponding optimality conditions are:

−cn + λ∗psign(∆x∗n)|∆x∗n|p−1 = 0, ∀n (38)
λ∗ ≥ 0,

λ∗(||∆x∗||pp −Nηp) = 0.

From (38), we know that λ∗ 6= 0, hence

||∆x∗||pp = Nηp, (39)

and

sign(∆x∗n)|∆x∗n|p−1 =
cn
λ∗p

. (40)

From (40) and the fact that λ∗p is positive, we know
sign(∆x∗n) = sign(cn), and hence we have

|∆x∗n|p−1 =
|cn|
λ∗p

,

which can be simplified further to

∆x∗n =

(
|cn|
λ∗p

)1/(p−1)

sign(cn).

Combining these with (39), we obtain the value of λ∗:

λ∗ =
1

p


N∑
n=1
|cn|p/(p−1)

Nηp


(p−1)/p

.

As the result, we have

∆x∗n =
|cn|1/(p−1)(N)1/p

(
∑
|cn|p/(p−1))1/p

sign(cn)η.

Hence,

AIF(ψ,x, p) =
∑

cn
|cn|1/(p−1)(N)1/p

(
∑
|cn|p/(p−1))1/p

sign(cn)

=

N∑
n=1
|cn|p/(p−1)

(
1
N

∑
|cn|p/(p−1)

)1/p .
Using (36), we can further simplify the expression to

AIF(ψ,x, p) =

(
1
N

N∑
n=1

∣∣ ∂
∂x [ψ]x=xn,θ=TN

∣∣ p
p−1

) p−1
p

∣∣∣∣ 1
N

N∑
n=1

∂
∂θ [ψ]x=xn,θ=TN

∣∣∣∣ . (41)
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For p =∞, as N1/p p→∞→ 1, (37) can be written as

min
∆x

−
N∑
n=1

∆xncn,

s.t. ||∆x||∞ ≤ η. (42)

It is easy to see that the optimal ∆x∗n = ηsign{cn}. Hence,

AIF(ψ,x, p) =
N∑
n=1

|cn| =

N∑
n=1

∣∣ ∂
∂x [ψ]x=xn,θ=TN

∣∣∣∣∣∣ N∑
n=1

∂
∂θ [ψ]x=xn,θ=TN

∣∣∣∣ , (43)

which is the limit of (41) as p→∞.

APPENDIX B
PROOF OF THEOREM 2

As ψ
′
(x) ≥ 0, we have EF0 [ψ

′
(X)] > 0, and sup

x
|ψ(x)| is

either ψ(∞) or −ψ(−∞). Hence for p = 2, the optimization
problem (16) is equivalent to

min
EF0

[ψ
′
(X)2]

(EF0
[ψ′(X)])2

s.t.
ψ(−∞) +

∫∞
−∞ ψ

′
(x)dx

EF0
[ψ′(X)]

≤ ξ,

−ψ(−∞)

EF0
[ψ′(X)]

≤ ξ,

ψ(−∞) + EF0

[∫ X

−∞
ψ
′
(t)dt

]
= 0,

ψ
′
≥ 0.

As the objective function does not involve ψ(−∞), we can
first solve

min
EF0

[ψ
′
(X)2]

(EF0
[ψ′(X)])2

,

s.t.
−EF0

[∫X
−∞ ψ

′
(t)dt

]
+
∫∞
−∞ ψ

′
(x)dx

EF0 [ψ′(X)]
≤ ξ,

EF0

[∫X
−∞ ψ

′
(t)dt

]
EF0

[ψ′(X)]
≤ ξ,

ψ
′
(x) ≥ 0.

After obtaining the solution, we can simply set ψ(−∞) =

−EF0

[∫X
−∞ ψ

′
(t)dt

]
to make ψ Fisher consistent.

To simplify the notation, in the remainder of the proof, we
will use g(x) to denote ψ

′
(x). We now further simplify the

optimization problem. First, we have

EF0

[∫ X

−∞
g(t)dt

]
=

∫ ∞
−∞

f0(x)

[∫ x

−∞
g(t)dt

]
dx

=

∫ ∞
−∞

g(t)

[∫ ∞
t

f0(x)dx
]

dt

=

∫ ∞
−∞

g(t) [1− F0(t)] dt. (44)

Coupled with the fact that g(x) ≥ 0 and f0(x) ≥ 0, the
optimization above is equivalent to

min

∫∞
−∞ g2(x)f0(x)dx(∫∞
−∞ g(x)f0(x)dx

)2 ,

s.t.
∫ ∞
−∞

g(x)F0(x)dx ≤ ξ
∫ ∞
−∞

g(x)f0(x)dx,∫ ∞
−∞

g(x) [1− F0(x)] dx ≤ ξ
∫ ∞
−∞

g(x)f0(x)dx,

g(x) ≥ 0.

It is clear that the optimization problem is scale invariant
in the sense that if g∗(x) is a solution to this problem, then
for any positive constant c, cg∗(x) is also a solution to this
problem. As a result, without loss of generality, we can assume∫∞
−∞ g(x)f0(x)dx = 1. Using this, we can further simplify the

optimization problem to

min
1

2

∫ ∞
−∞

g2(x)f0(x)dx,

s.t.
∫ ∞
−∞

g(x)f0(x)dx = 1,∫ ∞
−∞

g(x)F0(x)dx ≤ ξ,∫ ∞
−∞

g(x) [1− F0(x)] dx ≤ ξ,

g(x) ≥ 0.

To solve this convex functional minimization problem, we
first form the Lagrangian function

L =
1

2

∫ ∞
−∞

g2(x)f0(x)dx+ ν

(
−
∫ ∞
−∞

g(x)f0(x)dx+ 1

)
−λ(x)g(x) + ϑ1

(∫ ∞
−∞

g(x)F0(x)dx− ξ
)

+ϑ2

(∫ ∞
−∞

g(x) [1− F0(x)] dx− ξ
)
.

Let H = 1
2g

2(x)f0(x) − νg(x)f0(x) + ϑ1g(x)F0(x) +

ϑ2g(x)(1 − F0(x)) − λ(x)g(x). As no derivative g
′
(x) is

involved in H , the optimality condition Euler-Lagrange equa-
tion [15]

∂H

∂g
− d

dx

(
∂H

∂g′

)
= 0

simplifies to

g∗(x)f0(x)− ν∗f0(x) + ϑ∗2 + (ϑ∗1 − ϑ∗2)F0(x)− λ∗(x) = 0, (45)

in which the parameters ϑ∗1 ≥ 0, ϑ∗2 ≥ 0, λ∗(x) ≥ 0
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satisfy [14] ∫ ∞
−∞

g∗(x)f0(x)dx = 1,

ϑ∗1

(∫ ∞
−∞

g∗(x)F0(x)dx− ξ
)

= 0,

ϑ∗2

(∫ ∞
−∞

g∗(x) [1− F0(x)] dx− ξ
)

= 0,

λ∗(x)g(x) ≥ 0. (46)

From (45), for x in the range of f0(x), we have

g∗(x) =
λ∗(x) + ν∗f0(x)− ϑ∗2 − (ϑ∗1 − ϑ∗2)F0(x)

f0(x)
.

Combining this with the condition (46), we know that if
ν∗f0(x) − ϑ∗2 − (ϑ∗1 − ϑ∗2)F0(x) > 0, then λ∗(x) = 0. On
the other hand, if ν∗f0(x) − ϑ∗2 − (ϑ∗1 − ϑ∗2)F0(x) < 0, then
g∗(x) = 0. As a result, we have

g∗(x) ={
ν∗ − ϑ∗2+(ϑ∗1−ϑ

∗
2)F0(x)

f0(x) , ν∗f0(x) > ϑ∗2 + (ϑ∗1 − ϑ∗2)F0(x);

0, otherwise,

which completes the proof.

APPENDIX C
PROOF OF THEOREM 3

First of all, minimizing (23) is same as solving

min
EF1

[
ψ
′
(X)2

]
(EF1 [Xψ′(X)])

2 , (47)

s.t. EF1 [ψ(X)] = ψ(−∞) + EF1

[∫ X

−∞
ψ
′
(t)dt

]
= 0,(48)

in which the condition EF1
[ψ(X)] = 0 ensures that the

estimator is Fisher consistent.
As ψ(−∞) does not appear in the objective function, we

can solve (47) without the constraint (48) first. After that, we
can simply set

ψ(−∞) = −EF1

[∫ X

−∞
ψ
′
(t)dt

]
so that the constraint (48) will be satisfied. Furthermore,
similar to the proof of Theorem 2, to simplify the notation, we
will use g(x) to denote ψ

′
(x). It is clear from (47) that the cost

function is scale-invariant. Hence, without loss of generality,
we can assume (EF1

[Xg(X)])
2

= 1, for which we can further
focus on EF1

[Xg(X)] = 1. Combining all these together, the
optimization problem can be converted to

min
1

2

∫ ∞
−∞

g2(x)f1(x)dx,

s.t.
∫ ∞
−∞

xg(x)f1(x)dx = 1.

For this convex calculus of variations problem, we form
Lagrange function

L =

∫ ∞
−∞

1

2
g2(x)f1(x)dx+ ν

(
−
∫ ∞
−∞

xg(x)f1(x)dx− 1

)
.

The corresponding Euler-Lagrange equation can be simplified
to

g∗(x)f1(x)− ν∗xf1(x) = 0, (49)

and the optimal value of ν∗ is selected to satisfy the condition∫ ∞
−∞

xg∗(x)f1(x)dx = 1. (50)

From (49), we know that in the range of X where f1(x) > 0,
g∗(x) = ν∗x. Plugging this into (50), we obtain

ν∗ =
1∫∞

−∞ x2f1(x)dx
.

As the result, for x in the range of f1(x), the optimal g∗(x)
is

g∗(x) =
x

EF1 [X2]
,

and ψ(−∞) = −EF1

[∫X
−∞ g(t)dt

]
.

APPENDIX D
PROOF OF THEOREM 4

Following the same strategy as those in the proof of
Theorem 2, we can first solve the following problem

min
EF1

[
ψ
′
(X)2

]
(EF1 [Xψ′(X)])

2 ,

s.t. −EF1

[∫ X

−∞
ψ
′
(t)dt

]
+

∫ ∞
−∞

ψ
′
(t)dt

≤ ξ
∣∣∣EF1

[Xψ
′
(X)]

∣∣∣ ,
EF1

[∫ X

−∞
ψ
′
(t)dt

]
≤ ξ

∣∣∣EF1 [Xψ
′
(X)]

∣∣∣ ,
ψ
′
(x) ≥ 0,

and then set ψ(−∞) = −EF1

[∫X
−∞ ψ

′
(t)dt

]
to satisfy the

Fisher consistent constraint (26).

Now, we consider two different cases depending on whether
EF1

[Xψ
′
(X)] is positive or negative. In the following, to

simplify notation, we will use g(x) to denote ψ
′
(x).

We will solve the case with EF1 [Xg(X)] > 0 in detail. The
case EF1

[Xg(X)] < 0 can be solved in the similar manner.
With EF1

[Xg(X)] > 0, the optimization problem is same as



13

min
EF1

[
g2(X)

]
(EF1

[Xg(X)])
2 ,

s.t. −EF1

[∫ X

−∞
g(t)dt

]
+

∫ ∞
−∞

g(t)dt ≤ ξEF1
[Xg(X)],

EF1

[∫ X

−∞
g(t)dt

]
≤ ξEF1

[Xg(X)],

g(x) ≥ 0.

Similar to the optimization problems in Theorem 2 and 3,
the optimization problem is scale-invariant, and hence without
loss of generality, we can focus on EF1

[Xg(X)] = 1.
Furthermore, similar to (44), we have EF1

[∫X
−∞ g(t)dt

]
=∫∞

−∞ g(t) [1− F1(t)] dt. The problem is then converted to

min

∫ ∞
−∞

g2(x)f1(x)dx,

s.t.
∫ ∞
−∞

xg(x)f1(x)dx = 1,∫ ∞
−∞

g(x)F1(x)dx ≤ ξ,∫ ∞
−∞

g(x)[1− F1(x)]dx ≤ ξ,

g(x) ≥ 0.

To solve this convex functional minimization problem, we
first form the Lagrangian function

L =
1

2

∫ ∞
−∞

g2(x)f1(x)dx+ ν

(
−
∫ ∞
−∞

xg(x)f1(x)dx+ 1

)
−λ(x)g(x) + ϑ1

(∫ ∞
−∞

g(x)F1(x)dx− ξ
)

+ϑ2

(∫ ∞
−∞

g(x) [1− F1(x)] dx− ξ
)
.

Let F = 1
2g

2(x)f1(x) − νxg(x)f1(x) + ϑ1g(x)F1(x) +

ϑ2g(x)(1 − F1(x)) − λ(x)g(x). As no derivative g
′
(x) is

involved in F , the Euler-Lagrange equation

∂F

∂g
− d

dx

(
∂F

∂g′

)
= 0

simplifies to

g∗(x)f1(x)− ν∗xf1(x) + ϑ∗2 + (ϑ∗1 − ϑ∗2)F1(x)− λ∗(x)

= 0, (51)

in which the parameters ϑ∗1 ≥ 0, ϑ∗2 ≥ 0, λ∗(x) ≥ 0 satisfy∫ ∞
−∞

xg∗(x)f1(x)dx = 1,

ϑ∗1

(∫ ∞
−∞

g∗(x)F1(x)dx− ξ
)

= 0,

ϑ∗2

(∫ ∞
−∞

g∗(x) [1− F1(x)] dx− ξ
)

= 0,

λ∗(x)g∗(x) ≥ 0. (52)

From (51), for those x with f1(x) > 0, we have

g∗(x) =
λ∗(x) + ν∗xf1(x)− ϑ∗2 − (ϑ∗1 − ϑ∗2)F1(x)

f1(x)
.

Combining this with the condition (52), we know that if
ν∗xf1(x) − ϑ∗2 − (ϑ∗1 − ϑ∗2)F1(x) > 0, then λ∗(x) = 0. On
the other hand, if ν∗f1(x) − ϑ∗2 − (ϑ∗1 − ϑ∗2)F1(x) < 0, then
g∗(x) = 0. As the result, we have

g∗(x) ={
ν∗x− ϑ∗2+(ϑ∗1−ϑ

∗
2)F1(x)

f1(x) , ν∗xf1(x) > ϑ∗2 + (ϑ∗1 − ϑ∗2)F1(x);

0, otherwise.
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