
Vol.:(0123456789)

Computational Optimization and Applications
https://doi.org/10.1007/s10589-020-00208-9

1 3

Acceleration techniques for level bundle methods
in weakly smooth convex constrained optimization

Yunmei Chen1 · Xiaojing Ye2 · Wei Zhang1 

Received: 9 June 2017
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
We develop a unified level-bundle method, called accelerated constrained level-
bundle (ACLB) algorithm, for solving constrained convex optimization problems.
where the objective and constraint functions can be nonsmooth, weakly smooth,
and/or smooth. ACLB employs Nesterov’s accelerated gradient technique, and
hence retains the iteration complexity as that of existing bundle-type methods if the
objective or one of the constraint functions is nonsmooth. More importantly, ACLB
can significantly reduce iteration complexity when the objective and all constraints
are (weakly) smooth. In addition, if the objective contains a nonsmooth component
which can be written as a specific form of maximum, we show that the iteration
complexity of this component can be much lower than that for general nonsmooth
objective function. Numerical results demonstrate the effectiveness of the proposed
algorithm.

Keywords  Convex optimization · Acceleration · Bundle method · Functional
constrained optimization

 *	 Wei Zhang
	 weizhang657@ufl.edu

	 Yunmei Chen
	 yun@math.ufl.edu

	 Xiaojing Ye
	 xye@gsu.edu

1	 Department of Mathematics, University of Florida, Gainesville, FL 32611, USA
2	 Department of Mathematics and Statistics, George State University, Atlanta, GA 30303, USA

http://orcid.org/0000-0003-2577-9551
http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-020-00208-9&domain=pdf

	 Y. Chen et al.

1 3

1  Introduction

1.1 � Problem description

In this paper, we are interested in solving the constrained optimization problem
where the objective function F may contain either or both of f0 and f as follows:

Here X is a compact convex set in ℝdX , the functions f0, gi ∶ X → ℝ are proper,
closed, and convex functions, and there exist L0, Li > 0 and �0, �i ∈ [0, 1] such that

In (1), f is a special max-type (possibly nonsmooth) function:

where Y ⊆ ℝ
dY is a compact convex set, � ∶ Y → ℝ is a proper, closed convex func-

tion, and A ∶ ℝ
n → ℝ

m is a linear operator (such as a matrix). In (2)–(4), ‖ ⋅ ‖ is the
standard Euclidean norm, ⟨⋅, ⋅⟩ is the inner product of vectors in ℝn , and �(x) ∈ �f0(x)
and �i(x) ∈ �gi(x) are any (sub)gradient of f0 and gi at x, respectively. The conditions
given in (2) and (3) allow us to present our algorithm and convergence results in a
unified framework with f0 and gi ’s of any smoothness level �0, �gi ∈ [0, 1] . More
precisely, we know that f0 is nonsmooth if �0 = 0 , weakly smooth if �0 ∈ (0, 1) , and
smooth if �0 = 1 . Similar statements hold for the constraint functions gi’s. Therefore,
for example, if �0 = 0 but �i = 1 for all i = 1,… , nc , then we will be dealing with
problem (1) that has nonsmooth objective function F and smooth constraints gi , etc.
Moreover, if �0 = 1 (or f0 is not present), then we can show that the problem with a
nonsmooth max-type f given in (4) can be handled with a better iteration complexity
than that for treating f as a generic nonsmooth objective function.

The goal of this paper is develop an algorithm that solves the problem (1) uni-
formly for smooth, weakly smooth and nonsmooth f0 and gi , where the (whole or
part of) objective function F can be written as the structured, possibly nonsmooth
f as in (4). This type of problems has extensive real-world applications in signal/
image processing [2, 24], tensor decomposition [15, 26], overlapped group lasso
[10, 18], and graph regularization [25], etc. To cope with the special structure
of f, we consider a prox-function (also known as a distance generating function)
v ∶ Y → ℝ , which is strongly convex with modulus �v . Then the Bregman diver-
gence associated with this v is defined by

(1)min
x∈X

{F(x) ∶= f0(x) + f (x)}, s.t. gi(x) ≤ 0, ∀ i = 1,… , nc.

(2)f0(x̄) − f0(x) − ⟨𝜉(x), x̄ − x⟩ ≤ L0

1 + 𝜌0
‖x̄ − x‖1+𝜌0 , ∀ x, x̄ ∈ X,

(3)

gi(x̄) − gi(x) − ⟨𝜁i(x), x̄ − x⟩ ≤ Li

1 + 𝜌i
‖x̄ − x‖1+𝜌i , ∀ x, x̄ ∈ X, i = 1,… , nc.

(4)f (x) ∶= max
y∈Y

{⟨Ax, y⟩ − �(y)},

1 3

Acceleration techniques for level bundle methods in weakly…

where cv ∶= argminv∈Yv(y) . By employing Nesterov’s smoothing technique [22],
we can approximate f (⋅) by the smooth function f� defined as follows,

where � is called the smoothing parameter. It is shown in [22] that f�(x) is differenti-
able and has Lipschitz continuous gradient ∇f� with Lipschitz constant

where ‖A‖ is the operator norm of A. Moreover, the “closeness” of f�(⋅) to f (⋅)
depends linearly on the smoothing parameter � . More precisely,

where the “diameter” of Y under the Bregman distance indued by v is defined as

In this paper, we assume that (1) has at least one solution, and let x∗ denote any solu-
tion of (1) and F∗ ∶= F(x∗) be the optimal objective function value. We also assume
that there exist a first order oracle to compute f0(x) , f(x) and gi(x) , as well as some
�0(x) ∈ �f0(x) , �(x) ∈ �f (x) and �i(x) ∈ �gi(x) , for any given x ∈ X . Then our goal is,
for any prescribed tolerance 𝜖 > 0 , to find an �-solution x� to (1) such that

The functional constrained problem (1) is considered very challenging especially if
gi ’s are not simple and/or the projection onto the feasible set {x ∈ X ∶ gi(x) ≤ 0,∀ i}
is difficult to compute [1]. In recent years, we have witnessed a fast development
of level-bundle methods for solving (1), which employ historical information and
bundle management techniques in a sophisticated manner to achieve very promising
efficiency. For a series of important work on level-bundle methods, we refer to [8,
11, 13, 17, 27].

For notation simplicity, we demonstrate the proposed level-bundle meth-
ods with only one constraint g(x) ≤ 0 , as it is straightforward to rewrite our
results for multiple-constraint case: the changes are, for example, from the
improvement function h(x, L) ∶= max{f (x) − L, g(x)} with one constraint to
h(x, L) ∶= max{f (x) − L, g1(x),… , gnc (x)} for multiple constraints, etc. Note that
�g in the present work is interpreted as mini{�i} , which is only bottlenecked by the
least smooth constraint function among gi’s. This is in contrast to existing level-
bundle methods designed to work for nonsmooth constraint, where multiple con-
straints gi ≤ 0 for all i are reduced to a single constraint g(x) ∶= maxi{gi(x)} ≤ 0 .
As a consequence, g can be nonsmooth ( �g = 0 ) even if all gi ’s are smooth
( mini{�i} = 1 ). This artificial reduction from gi ’s to g does not make difference

(5)V(y) ∶= v(y) − v(cv) − ⟨∇v(cv), y − cv⟩,

(6)f�(x) ∶= max
y∈Y

{⟨Ax, y⟩ − �(y) − �V(y)},

(7)L� ∶= ‖A‖2∕(��v),

(8)f�(x) ≤ f (x) ≤ f�(x) + �Dv,Y , ∀x ∈ X,

(9)Dv,Y ∶= max
y,z∈Y

{v(y) − v(z) − ⟨∇v(z), y − z⟩}.

(10)F(x�) − F∗ ≤ � and gi(x�) ≤ �, ∀ i = 1,… , nc.

	 Y. Chen et al.

1 3

for these methods, but yields in a worse iteration complexity bound than that with
gi ’s treated separately in our method.

1.2 � Related work

In contrast to widely used gradient-descent methods and their numerous variants,
level-bundle methods are based on a very different approach to find an �-solution
by tightening the gap between the upper and lower bounds of the optimal value of
the objective function. The so-called cutting plane model plays an important role in
generating those bounds in level-bundle methods. For the convex programming (CP)
problem as follows,1

with given x1, x2,… , xk ∈ X , the cutting plane model is defined by

where a cutting plane 𝓁f (z, ⋅) of f at z is defined by

for some �(z) ∈ �f (z) . Therefore (12) bounds the objective function f (⋅) from
below due to the convexity of f. The classical level-bundle method proposed by
Lemaréchal, Nemirovskii and Nesterov [17] defined the basic framework of level-
bundle methods–given x1, x2,… , xk , the classical level-bundle method [17] per-
forms the following three steps in each iteration:

a.	 Set f k ∶= min{f (xi), 1 ≤ i ≤ k} and compute f
k
= minx∈X m

f

k
(x) as the upper and

lower bounds of f ∗
X
 , respectively.

b.	 Set the level lk = �f
k
+ (1 − �)f k for some � ∈ (0, 1).

c.	 Set Xk ∶= {x ∈ X ∶ m
f

k
(x) ≤ lk} and determine a new iterate by solving

We can see that the upper bounds {f k} and lower bounds {f
k
} on f ∗

X
 are monotoni-

cally decreasing and increasing, respectively, and the gaps between them are tight-
ened. If the termination condition is set to f k − f

k
≤ � where f k = f (xk) for some xk ,

then 0 ≤ f (xk) − f ∗
X
≤ f k − f

k
≤ � , which means that xk is an �-solution of (11).

In recent years, there have been increasing research interests in improving itera-
tion complexity of level-bundle type methods for solving smooth CPs inspired by the
development of accelerated gradient decent methods. In [16], Nesterov’s accelerated

(11)f ∗
X
∶= min

x∈X
f (x),

(12)m
f

k
(x) ∶= max{�f (xi, x), 1 ≤ i ≤ k},

(13)�f (z, x) ∶= f (z) + ⟨�(z), x − z⟩

(14)xk+1 = argminx∈Xk
‖x − xk‖2.

1  Within Sect. 1.2, we do not separate the objective function as in (1) and refer f to the entire objective
function of the optimization.

1 3

Acceleration techniques for level bundle methods in weakly…

multi-sequence scheme for smooth CPs [20, 23] and the smoothing technique [22] for
non-smooth CPs are employed to improve iteration complexity of level-bundle meth-
ods for unconstrained convex optimization problems where the objective functions are
(weakly) smooth or in an important class of saddle-point (SP) problems. In [4], the
performance of these acceleration methods are further improved by simplified schemes
and more efficient subproblem solvers. Moreover, these accelerated algorithms are
extended to unconstrained CP problems where X is unbounded. For more details about
the developments of level-bundle methods we refer to [7, 16, 17]. Recently, several
level-bundle methods with the incorporation of Nesterov’s multi-sequence scheme for
smooth CPs and a class of saddle point problems using inexact oracle are developed
[3]. The accuracy of the approximate solution and the convergence analysis for those
algorithms are also studied.

Level-bundle methods are also developed to solve functional constrained convex
optimization problem (1) where f and gi ’s can be nonsmooth [8, 11, 13, 17, 27].
The idea shared by these methods is to convert the constrained problem (1) to an
equivalent, unconstrained problem, for which the classical level-bundle method
described above can be applied with necessary modifications. For example, in [13,
27], restricted-memory variants [5, 12, 14] are employed in level-bundle method to
solve the following problem which is equivalent to (1):

We can see that x� is an �-solution to (15) if and only if f (x�) − f ∗ ≤ � and g(x�) ≤ � ,
i.e., x� is an �-solution to (1) in the sense of (10). However, the optimal value f ∗ is
unknown in practice and hence one cannot obtain the first-order information of h∗(x)
directly. To tackle this issue, a non-decreasing sequence {Lk} is generated such that
Lk ↑ f ∗ and used in place of f ∗ in (15) in each iteration k [13, 27]. Namely, h∗(x) in
(15) is replaced by

for some Lk ≤ f ∗ . Note that h(x, Lk) ≥ h∗(x) ≥ 0 for any x ∈ X . In addition, it is easy
to see that h∗(x∗) = 0 and therefore h∗(x) has a tight lower bound 0. If we define

then h̄k is the current best estimate of minx∈X h(x, Lk) . Therefore, the goal is to gener-
ate {xk} and {Lk} such that h̄k ↓ 0 [13, 27]. To this end, [13] computes

for given x1,… , xk , where mf

k
(x) and mg

k
(x) are the current cutting plane models of

f (⋅) and g(⋅) defined in (12), respectively. Then a level lk ∶= (1 − 𝛽)h̄k is set, where
h̄k is defined in (17), and the next iterate xk+1 is obtained by projecting xk to the level
set Xk ∶= {x ∈ X ∶ m

f

k
(x) − Lk ≤ lk,m

g

k
(x) ≤ 0} . This algorithm achieves the itera-

tion complexity of O(�−2 log �) . Different from [13], the constrained level-bundle
method in [27] generates the sequence {Lk} and iterates {xk} jointly without solv-
ing (18). Instead, it projects xk to the level set Xk–if no feasible solution xk+1 can

(15)min
x∈X

h∗(x), where h∗(x) ∶= max{f (x) − f ∗, g(x)}.

(16)h(x, Lk) ∶= max{f (x) − Lk, g(x)},

(17)h̄k ∶= min{h(xi, Lk) ∶ i = 1,… , k},

(18)Lk ∶= min{m
f

k
(x) ∶ m

g

k
(x) ≤ 0, x ∈ X},

	 Y. Chen et al.

1 3

be found, then it enlarges the level set by increasing Lk to Lk + lk , and repeats this
procedure until a new iterate xk+1 is found. In [8, 17], the constrained problem (1) is
reformulated to an equivalent min-max problem as follows using the duality theory:

Then, at each iteration k, the unknown f ∗ is replaced by its lower bound Lk in (18),
namely, h(x, �) is replaced by

and � and x are updated alternately in the just discussed algorithms. For fixed �k at
each iteration k, the classical level-bundle method is applied to hk(x, �k;Lk) . Similar
as the constrained level-bundle methods discussed above, h(x∗, �k, Lk) is bounded
below by 0 and above by h̄k ∶= min{h(xi, 𝛼k, Lk) ∶ i = 1,… , k} , which is therefore
the gap between the upper and lower bounds of minx∈X h(x, �k, Lk) Then a level set
Xk ∶= {x ∈ X ∶ �k(m

f

k
(x) − Lk) + (1 − �k)m

g

k
(x) ≤ lk} , where lk ∶= (1 − 𝛽)h̄k , is

built for h(x, �k;Lk) . With similar idea, the method in [11] further incorporates the
bundle aggregation technique and a filter strategy for evaluating candidate points
for solving minx∈X h(x, �k;Lk) . In [6], a bundle method is combined with the target
radius method to solve nonsmooth convex optimization where the constraint is on
the boundedness of a specific strongly convex function, achieving iteration complex-
ity O(�−2).

To obtain an �-solution to (1) with nomsmooth f (⋅) and g(⋅) , the algorithms in
[8, 13, 17] and [27] exhibit iteration complexities O(�−2 log(�)) and O(�−3) , respec-
tively. Moreover, [8, 9] and [27] further extend the constrained level-bundle meth-
ods in [17] and [13] to deal with inexact oracles, respectively.

1.3 � Contribution

Our main contribution of this work lies in the development of a unified level-bun-
dle method, called the accelerated constrained level bundle (ACLB), for solving the
constrained convex optimization problem (1). By employing Nesterov’s accelerated
gradient technique, we show that ACLB can maintain the same iteration complex-
ity as the existing level-bundle methods for nonsmooth problems, while signifi-
cantly improves the complexity if the objective and constraint functions are (weakly)
smooth. We also show that, if the objective function has a nonsmooth component
which can be written as a max-type function, the iteration complexity for this com-
ponent can be much lower than that as if we treat it as a generic nonsmooth function.
In summary, compared to existing level-bundle methods, the proposed algorithms
enjoy orders of lower iteration complexities when the objective and constraint func-
tions are (weakly) smooth. More specifically, ACLB attains the iteration complexity
O(�−3(1+�)∕(1+3�) + ‖A‖�−2) , where � = min{�i ∶ i = 0, 1,… , nc} is the least smooth
coefficient among the functions f0 and gi ’s in the problem (1). A comparison with
existing methods with respect to iteration complexity in two extreme cases is given
in Table 1.

(19)min
x∈X

max
0≤�≤1

h(x, �) where h(x, �) ∶= �(f (x) − f ∗) + (1 − �)g(x).

h(x, �, Lk) ∶= �(f (x) − Lk) + (1 − �)g(x),

1 3

Acceleration techniques for level bundle methods in weakly…

Given the improved iteration complexity of ACLB for (weakly) smooth problems,
however, we also point out a drawback of our methods: besides every call of the stand-
ard first order oracle, which computes both function values and (sub)gradients of f and
gi’s, our methods require an additional function evaluation of f and gi’s. In other words,
each iteration of our algorithms calls the zeroth order oracle and the first order ora-
cle, each once. This is in contrast to most existing level-bundle methods where each
iteration only calls the first order oracle once. Therefore, the actual per-iteration cost of
ACLB is higher (but no more than twice higher) than that of those existing level-bundle
methods. For certain problems, such as unit-commitment, Lagrangian relaxation, and
two-stage stochastic problems, a subgradient is a byproduct of the function evaluation
and hence the zeroth order and first order oracles are at the same cost. Meanwhile, there
are also many problems where function evaluations are computationally much less
expensive than (sub)gradient evaluations, for which the increase of our per-iteration
cost due to this additional zeroth order oracle is very minor. Moreover, the much low-
ered order of iteration complexity attained by our methods can well compensate such
minor increase of per-iteration cost. In addition, our algorithms requires memory space
for xl and xu besides x, but they are updated not recorded during iterations, which is
often a negligible issue in practice.

1.4 � Paper organization

The remainder of this paper is organized as follows. In Sect. 2, we present our
ACLB algorithm in details. In Sect. 3, we provide a comprehensive analysis of the
iteration complexity of ACLB. Numerical results of ACLB are presented in Sect. 4.
Section 5 concludes this paper.

2 � Accelerated constrained level‑bundle method

In this section, we provide a detailed description of our proposed accelerated level-
bundle (ACLB) method. To tackle the constraint, ACLB relies on the improvement
function h defined by

where L is a lower bound of the unknown optimal value F∗ , i.e., L ≤ F∗ . Note that
there is h(x, L) ≥ 0 for any x ∈ X . The goal of ACLB is thus to generate a sequence
of pairs of iterate and lower bound (xn, Ln) , such that the lower bounds Ln ↑ F∗ and

(20)h(x, L) ∶= max {F(x) − L, g(x)},

Table 1   Iteration complexity of the existing best and our ACLB method on two extreme cases � = 0 and
� = 1 . Note that � = min{�

i
∶ i = 0, 1,… , n

c
} for ACLB

Smoothness Existing ACLB

� = 0 O(�−2) [6], O(�−2 log �) [13] or O(�−3) [27] O(�−3)

� = 1 Same as above O(�−3∕2)

	 Y. Chen et al.

1 3

h(xn, Ln) ↓ 0 as n → ∞ . Therefore, at the heart of ACLB is a “gap reduction” proce-
dure GACLB . Let �, � ∈ (0, 1) be arbitrary and fixed, then given an input triple (x, L,Δ)
where Δ ∶= h(x, L) ≥ 0 is the gap, the gap reduction procedure GACLB can output
(x+, L+,Δ+) such that either the new lower bound L+ improves over L in the sense
that L+ = L + (1 − �)Δ ∈ (L,F∗) , or L+ = L but the new gap Δ+ is reduced in the
sense that Δ+ ∶= h(x+, L+) ≤ (1 − � + ��)Δ = qΔ where q ∶= 1 − � + �� ∈ (0, 1) .
The ACLB gap reduction procedure GACLB is given in Procedure 1.

Procedure 1 ACLB gap reduction procedure GACLB : (x+,L+,Δ+) = GACLB(x,L,Δ, �, �,Dv,Y)

1: (Initialization) Denote F�(x) ∶= f0(x) + f�(x) and
define h�(x) = max{F�(x) − L, g(x)} , where

� ∶= ��Δ∕(2Dv,Y). (21)

Set h0 = Δ , l = (1 − �)Δ , R0 = X , xu
0
= x0 = x ,

k = 1.
2: (Update the cutting plane model) Set

xl
k
= (1 − �k)x

u
k−1

+ �kxk−1, (22)

R
k
= {x ∈ Rk−1 ∶ �F�

(xl
k
, x) − L ≤ l, �g(x

l
k
, x) ≤ 0} (23)

3: (Update the iterate or lower bound of F∗ ) Solve xk
from

xk = argminz∈R
k

�
d(x, z) ∶=

1

2
‖z − x‖2

�
. (24)

If no solution, i.e., R
k
= ∅ , then terminate and

output x+ = xu
k−1

 , L+ = L + l , Δ+ = h(x+,L+).
4: (Update the upper bound) Set

x̃u
k
= (1 − 𝛼k)x

u
k−1

+ 𝛼kxk, (25)

xu
k
=

{
x̃u
k
, if h𝜂(x̃

u
k
,L) < h𝜂(x

u
k−1

,L),

xu
k−1

, otherwise,

(26)

and set hk = h(xu
k
,L) . If hk − l ≤ ��Δ , then termi-

nate and output x+ = xu
k
 , L+ = L , Δ+ = hk.

5: (Bundle management) Define Rk and choose Rk
satisfying R

k
⊆ Rk ⊆ Rk , where

Rk ∶= {z ∈ X ∶ ⟨xk − x, z − xk⟩ ≥ 0}. (27)

Set k = k + 1 and go to Step 2.

The key of the acceleration property of ACLB procedure 1 is due to the Nester-
ov’s acceleration technique. In this case, we need a sequence of combination param-
eters {𝛼k} ⊂ ℝ to satisfy the following properties: there exist c1, c2 > 0 such that

The following proposition provides two examples of such {�k}.

Proposition 1  The sequence {�k} generated by either way below satisfies (28) with
c1 = 1 and c2 = 2 :

(28)

𝛼1 = 1, 0 < 𝛼k ≤ 1,
c1

k
≤ 𝛼k ≤

c2

k
, and

1 − 𝛼k+1

𝛼2
k+1

≤
1

𝛼2
k

, ∀ k ≥ 1.

1 3

Acceleration techniques for level bundle methods in weakly…

a.	 �k =
2

k+1
 for k ≥ 1.

b.	 𝛼k > 0 is recursively defined by

Proof  Part (a) can be verified directly by checking �k =
2

k+1
 in (28).

For part (b), it is easy to show by induction that �k ∈ (0, 1] and 𝛼k+1 < 𝛼k for all
k ≥ 1 . Since (29) implies that 1

�k+1
−

1

�k
=

�k−�k+1

�k�k+1
=

�k

�k+�k+1
 , we can readily show that

1 >
1

𝛼k+1
−

1

𝛼k
≥ 1

2
 for all k ≥ 1 . Noting that �1 = 1 , we have 1

�k
= 1 +

∑k−1

i=1
(

1

�i+1
−

1

�i
) ,

which is bounded between 1 +
k−1

2
=

k+1

2
 and 1 + (k − 1) = k . Therefore

1

k
< 𝛼k ≤

2

k+1
<

2

k
 . 	� ◻

We now add a few remarks about GACLB (Procedure 1). Firstly, the linear
approximation of F�(⋅) instead of F(⋅) are used to define R

k
 if the max-type func-

tion f presents in the objective function of (1). However, the definition of h̄k and
the termination condition in Step 4 are still defined on the upper bound on h(x, L).
Secondly, the parameter � due to the presence of f is specified as a function of the
input Δ and the parameters � , � , and Dv,Y (or any user-chosen value greater than
Dv,Y ), and it is fixed within each GACLB and decreases in the input gap Δ . Thirdly,
the GACLB either terminates at Step 3 to increase L or at Step 4 to reduce Δ.

Our ACLB gap reduction procedure GACLB (Procedure 1) also employs bundle
management (Step 5), also known as bundle compression or restricted memory in
the literature, to maintain finite bundle size and hence ensure implementation fea-
sibility in practice. This is realized by the flexible choice of localizer Rk in Step 5:
one can discard some linear inequality constraints in R

k
 to obtain Rk , as long as

the latter still lies in the half space defined by Rk in (27). Note that, in addition
to the cost of first order oracles, bundle methods (including ACLB) also require
solving a quadratic program (QP) in each iteration which can be costly for prob-
lems with high dimensionality (large dX ). However, with small bundle size (e.g.,
5-10), one can instead solve the dual problem of QP with very low computational
cost [4].

Finally we are ready to present the ACLB method in Algorithm 1.

Algorithm 1 Accelerated constrained level bundle (ACLB) method
1: Set tolerance 𝜖 > 0 and �, � ∈ (0, 1) . If f is present in (1),

then also give prox-function v(⋅) in (5),
Dv,Y in (9) (or any number greater).

2: Choose an initial p0 ∈ X , compute
x0 ∈ argminx∈X{�F(p0, x) ∶ �g(p0, x) ≤ 0} . Set
L0 = �F(p0, x0),

Δ0 = max{F(x0) − L0, g(x0)} , and set n = 0.
3: If Δn ≤ � , terminate and output �-solution xn.
4: Compute (xn+1,Ln+1,Δn+1) = GACLB(xn,Ln,Δn, �, �,Dv,Y).
5: Set n = n + 1 and go to Step 3.

(29)�1 = 1, �2
k+1

= (1 − �k+1)�
2
k
, ∀ k ≥ 1,

	 Y. Chen et al.

1 3

3 � Convergence analysis

In this section, we establish the iteration complexities of the proposed ACLB
(Algorithm 1).

Lemma 2  Suppose that {xl
k
, xk, x̃

u
k
, xu

k
} are generated by GACLB (Procedure 1), and the

procedure does not terminate at the Kth iteration. Then the following estimate holds
for the input Δ:

where l = (1 − �)Δ and L� is the Lipschitz constant of ∇f�.

Proof  For any k ≥ 1 , we have

where the first inequality is due to (2), the first equality follows from the definitions
of xl

k
 in (22) and x̃u

k
 in (25), and the linearity of 𝓁F�

(xl
k
, ⋅) , the second inequality is

due to the convexity of F� , and the last follows from (23) and (24). Similarly, for
g(⋅) , we have

(30)
h�(x

u
k
) − l ≤ (1 − �k)(h�(x

u
k−1

) − l) +
�
1+�0
k

L0

1 + �0
‖xk − xk−1‖1+�0

+
�
1+�g

k
Lg

1 + �g
‖xk − xk−1‖1+�g +

�2
k
L�

2
‖xk − xk−1‖2,

F𝜂(x̃
u
k
) − L ≤ �F𝜂

(xl
k
, x̃u

k
) − L

+
L0

1 + 𝜌0
‖x̃u

k
− xl

k
‖1+𝜌0 + L𝜂

2
‖x̃u

k
− xl

k
‖2

= (1 − 𝛼k)�F𝜂
(xl

k
, xu

k−1
) + 𝛼k�F𝜂

(xl
k
, xk) − L

+
𝛼
1+𝜌

k
L0

1 + 𝜌0
‖xk − xk−1‖1+𝜌0 +

𝛼2
k
L𝜂

2
‖xk − xk−1‖2

≤ (1 − 𝛼k)(F𝜂(x
u
k−1

) − L) + 𝛼k(�F𝜂
(xl

k
, xk) − L) +

𝛼
1+𝜌

k
L0

1 + 𝜌0
‖xk − xk−1‖1+𝜌0

+
𝛼2
k
L𝜂

2
‖xk − xk−1‖2

≤ (1 − 𝛼k)(F𝜂(x
u
k−1

) − L) + 𝛼kl +
𝛼
1+𝜌

k
L0

1 + 𝜌0
‖xk − xk−1‖1+𝜌0

+
𝛼2
k
L𝜂

2
‖xk − xk−1‖2,

1 3

Acceleration techniques for level bundle methods in weakly…

where the last inequality is due to �g(x
l
k
, x) ≤ 0 < l . In view of (26), we have

h𝜂(x
u
k
) ≤ h𝜂(x̃

u
k
) = max{f (x̃u

k
) − L, g(x̃u

k
)} . Combining the two inequalities above, we

get

Subtracting l on both sides of the above estimate, we obtain (30). 	� ◻

The following lemma provides several important properties of the bundle man-
agement step in GACLB (Procedure 1).

Lemma 3  Let (x, L,Δ) be the input of GACLB (Procedure 1), and denote
El ∶= {x̄ ∈ X ∶ F(x̄) − L ≤ l, g(x̄) ≤ 0} where l = (1 − �)Δ , then the following state-
ments hold:

(a)	 R
k
⊆ Rk for all k ≥ 1.

(b)	 There is El ⊆ R
k
⊆ Rk ⊆ Rk for all k ≥ 1 . If El ≠ ∅ , then (24) has a unique solu-

tion.
(c)	 If R

k
= ∅ , then L + l < f ∗.

(d)	 If terminated in Step 4, then Δ+ ≤ qΔ where q ∶= 1 − � + ��.

Proof 

(a)	 If x in (24) satisfies x ∈ R
k
 , then due to the fact that xk is the projection of x onto

R
k
 in (24), we know xk = x , and ⟨xk − x, z − xk⟩ = 0 for all z ∈ X . Therefore

Rk = X and R
k
⊆ Rk . If x ∉ R

k
 , then due to the optimality condition of xk in (24),

we have ‖z − x‖2 ≥ ‖z − xk‖2 + ‖xk − x‖2 for all z ∈ R
k
 , from which we obtain

⟨xk − x, z − xk⟩ ≥ 0 , i.e., z ∈ Rk . Hence R
k
⊆ Rk.

(b)	 We prove the result by induction. Since R0 = X , there is El ⊆ R0 . Assume that
El ⊆ Rk−1 holds for some k ≥ 1 . Note that for any x ∈ El , we have
�F�

(xl
k
, x) − L ≤ F�(x) − L ≤ F(x) − L ≤ l and �g(x

l
k
, x) ≤ g(x) ≤ 0 in GACLB due

g(x̃u
k
) ≤ �g(x

l
k
, x̃u

k
) +

Lg

1 + 𝜌g
‖x̃u

k
− xl

k
‖1+𝜌g

≤ (1 − 𝛼k)�g(x
l
k
, xu

k−1
) + 𝛼k�g(x

l
k
, xk) +

𝛼
1+𝜌g

k
Lg

1 + 𝜌g
‖xk − xk−1‖1+𝜌g

≤ (1 − 𝛼k)g(x
u
k−1

) + 𝛼kl +
𝛼
1+𝜌g

k
Lg

1 + 𝜌g
‖xk − xk−1‖1+𝜌g ,

h�(x
u
k
) ≤ (1 − �k)max{F�(x

u
k−1

) − L, g(xu
k−1

)} + �kl +
�
1+�0
k

L0

1 + �0
‖xk − xk−1‖1+�0

+
�
1+�g

k
Lg

1 + �g
‖xk − xk−1‖1+�g +

�2
k
L�

2
‖xk − xk−1‖2.

	 Y. Chen et al.

1 3

to the convexity of f, f� , and g. By the definition of R
k
 in (23), and the induction

assumption El ⊆ Rk−1 , we have El ⊆ R
k
 . Due to R

k
⊆ Rk in Part (a) and the choice

of Rk such that R
k
⊆ Rk ⊆ Rk for any k ≥ 1 , we obtain El ⊆ Rk . Therefore we have

El ⊆ R
k
⊆ Rk ⊆ Rk by induction. Moreover, d(x) is strongly convex and R

k
 is

nonempty, hence (24) has a unique solution.
(c)	 If L + l ≥ F∗ , then for every solution x∗ to (1), there is F(x∗) − L = F∗ − L ≤ l

and g(x∗) ≤ 0 , and hence x∗ ∈ El , which contradicts to R
k
= ∅ . Therefore

L + l < F∗.
(d)	 The inequality Δ+ ≤ qΔ follows immediately due to the definition of l = (1 − �)Δ

and the termination condition hk − l ≤ ��Δ in Step 4.

	� ◻

Now we have the following bound for the iterates {xk} within each GACLB.

Lemma 4  Let {xk} be the iterates generated by GACLB before termination at some
iteration K, then

where the diameter DX of the compact set X is defined by

Proof  For all k > 1 , there is xk ∈ R
k
⊆ Rk−1 ⊆ Rk−1 , where the first inclusion is due

to the definition of xk in (24), the second due the definition of R
k
 in (23), and the last

due to the selection Rk ⊆ Rk in Step 5 of GACLB for all k. Furthermore, for any input
x in GACLB , we know d(x, z) = (1∕2) ⋅ ‖z − x‖2 is strongly convex in z with modulus
1. Therefore,

where the last inequality follows from xk ∈ Rk−1 as we showed earlier and the defini-
tion of Rk in (27). By taking the sum of both sides over k = 1, 2,… ,K , we obtain

which implies the bound (31). 	� ◻

Proposition 5  If {�k} in GACLB is chosen such that (28) holds, then the number of
iterations performed within each GACLB (Procedure 1) with input Δ does not exceed

(31)
K�
k=1

‖xk − xk−1‖2 ≤ D2
X
,

(32)DX ∶= max
x,y∈X

‖x − y‖.

d(x, xk) ≥ d(x, xk−1) + ⟨xk−1 − x, xk − xk−1⟩ + 1

2
‖xk − xk−1‖2 ≥ d(x, xk−1) +

1

2
‖xk − xk−1‖2,

1

2

K�
k=1

‖xk − xk−1‖2 ≤ d(x, xK) − d(x, x0) ≤ d(x, xK) =
1

2
‖xK − x‖2 ≤ 1

2
D2

X
,

1 3

Acceleration techniques for level bundle methods in weakly…

where C > 0 is the constant dependent on �0 , �g , DX , � and � only, and DX and Dv,Y
are defined in (32)and (9) respectively.

Proof  Suppose that GACLB does not terminate at the Kth iteration for some K > 0 .
Dividing both sides of (30) by �2

k
 , we obtain that

Noting that �k satisfies (28), and taking sum of k over 1,… ,K , on both sides of (34),
we have

By the Hölder’s inequality, (31) from Lemma 4, and 𝛼K > c1∕K for some c1 > 0 , we
obtain

where C > 0 is a constant depending only on � and c1 . By (36) with � substituted by
�0 and �g , and c1∕K < 𝛼K ≤ c2∕K , we deduce from (35) that

Then by (8) and (21), we can obtain

(33)
N inner
ACLB

(Δ) ∶= C

⎛
⎜⎜⎝
(
L0

Δ
)2∕(1+3�0) + (

Lg

Δ
)2∕(1+3�g) + (

‖A‖
Δ

�
Dv,Y

�v
)

⎞
⎟⎟⎠

=O

�
L0

Δ
)2∕(1+3�0)) +O((

Lg

Δ
)2∕(1+3�g)) +O((

‖A‖
Δ

)

�
,

(34)

h�(x
u
k
) − l

�2
k

≤
(1 − �k)(h�(x

u
k−1

) − l)

�2
k

+
�
�0−1

k
L0

1 + �0
‖xk − xk−1‖1+�0

+
�
�g−1

k
Lg

1 + �g
‖xk − xk−1‖1+�g +

L�

2
‖xk − xk−1‖2.

(35)

h�(x
u
K
) − l

�2
K

≤
L0

1 + �0

K�
k=1

�
�0−1

k
‖xk − xk−1‖1+�0 +

Lg

1 + �g

K�
k=1

�
�g−1

k
‖xk − xk−1‖1+�g

+
L�

2

K�
k=1

‖xk − xk−1‖2.

(36)
K�
k=1

�
�−1

k
‖xk − xk−1‖1+� ≤

K�
k=1

�−2
k

1−�

2 K�
k=1

‖xk − xk−1‖2
1+�

2

≤ C(K
3−3�

2)D
1+�

X
,

(37)h�(x
u
K
) − l ≤ CL0K

−
1+3�0

2 D
1+�0
X

+ LgK
−

1+3�g

2 D
1+�g

X
+

L�

2
K−2D2

X

h̄K − l = h(xu
K
) − l ≤ h𝜂(x

u
K
) − l + 𝜂Dv,Y

≤ CL0K
−

1+3𝜌0

2 D
1+𝜌0
X

+ LgK
−

1+3𝜌g

2 D
1+𝜌g

X
+

L𝜂

2
K−2D2

X
+

𝜃𝛽Δ

2
,

	 Y. Chen et al.

1 3

where we used (35) and � = ��Δ∕(2Dv,Y) in (21). In view of the termination condi-
tion in Step 4 of GACLB Procedure 1, we have h̄k − l > 𝜃𝛽Δ , therefore,

If the first term in the max in (38) is the largest among the three, then from
��Δ

2
≤ 3CL0K

−
1+3�0

2 D
1+�0
X

 , we have N inner
ACLB

(Δ) = C(
L0

Δ
)2∕(1+3�0) = O((

L0

Δ
)2∕(1+3�0)) .

Similar argument holds if the second term in the max in (38) is the largest. If the
third term in the max in (38) is the largest, then by the fact that
L� = ‖A‖2∕(��v) = 2‖A‖2Dv,Y∕(���vΔ) in (7), we have

N inner
ACLB

(Δ) = C
‖A‖
Δ

�
C

Dv,Y

�v
= O(

‖A‖
Δ
) . Therefore (33) holds. 	� ◻

Finally, we are ready to establish the iteration complexity of ACLB (Algo-
rithm 1). For ease of presentation, we call a gap reduction procedure GACLB (Proce-
dure 1) critical if GACLB terminates at Step 4, i.e., h̄k − l ≤ 𝛽𝜃Δ in GACLB ; otherwise
it is called non-critical, i.e., it terminates at Step 3 and the level set R

k
= ∅ in GACLB.

Theorem 6  For any given 𝜖 > 0 , if {�k} in every GACLB (Procedure 1) satisfies (28),
then the following statements hold for ACLB (Algorithm 1) to compute an �-solution
to problem (1):

(a)	 The total number of calls to GACLB in ACLB (Algorithm 1) does not exceed

where the constant V̂X independent of � is defined by

(b)	 The total number calls to the first order oracle in ACLB (Algorithm 1) does not
exceed

Proof 

(a)	 We can partition the set of iteration counters in the ACLB Algorithm 1 into
{i1,… , im̄} for non-critical calls of GACLB and {j1,… , jn̄} for critical calls of
GACLB , where N̄ = n̄ + m̄ is the total number of calls of GACLB in ACLB (Algo-
rithm 1).

	  Note that GACLB with input Δ will output Δ+ ≤ Δ . In addition, if GACLB with
input Δ is critical, we have Δ+ ≤ qΔ for q = 1 − � + �� ∈ (0, 1) . Therefore,

(38)��Δ

2
≤ 3Cmax L0K

−
1+3�0

2 D
1+�0
X

, LgK
−

1+3�g

2 D
1+�g

X
,
L�

2
K−2D2

X
.

(39)Nouter
ACLB

(𝜖) ∶= 1 +
F∗ − L0

(1 − 𝛽)𝜖
+ log 1

q

V̂X

𝜖
= O

1

𝜖
,

(40)V̂X ∶= max 2‖A‖
�

2Dv,Y∕𝜎v,
Lg

1 + 𝜌g
D

1+𝜌g

X
,

L0

1 + 𝜌0
D

1+𝜌0
X

.

(41)N total
ACLB

(�) ∶= N inner
ACLB

(�) ⋅ Nouter
ACLB

(�) ≤ O(L

2

1+3�0

0
�
−

3(1+�0)

1+3�0) +O(L

2

1+3�g

g �
−

3(1+�g)

1+3�g) +O(‖A‖�−2).

1 3

Acceleration techniques for level bundle methods in weakly…

one can easily see that the number of critical GACLB ’s in Algorithm 1 is finite:
we have Δjm+1

≤ qΔjm
 for all m = 1,… , m̄ − 1 , and Δjm̄

≤ 𝜖 < Δjm̄−1
 due to the

termination condition in Step 3 of ACLB (Algorithm 1). Therefore, we have
𝜖 < Δjm̄−1

≤ qm̄−2Δj1
≤ qm̄−2Δ0 , which implies that

 Now we only need to show that Δ0 ≤ V̂X to finalize the role of (42) in (39),
where Δ0 = max{F(x0) − L0, g(x0)} . From (2) and (3), we have

 where we used the fact Li1 = L0 = �f (p0, x0) to obtain the equality in (43), and
�g(p0, x0) ≤ 0 in (44) due to the way we compute x0 in Step 2 of ACLB (Algo-
rithm 1). Moreover, we have from Lemma 8 in [16] that

 Combining (43), (44) and (45), we obtain Δ0 ≤ V̂X , where V̂X is defined in
(40). Therefore, we have

 For each non-critical GACLB with input L, the output L+ satisfies
L+ − L = l = (1 − �)Δ . Since input Δn > 𝜖 for all n before ACLB Algorithm
terminates, we know that L+ − L ≥ (1 − �)� . Therefore, the number of non-
critical GACLB ’s in ACLB (Algorithm 1) is bounded by

 Combining (46) and (47) we obtain that the total number of calls of GACLB in
ACLB Algorithm is bounded by Nouter

ACLB
(�) ∶= Nouter-c

ACLB
(�) + Nouter-nc

ACLB
(�) , as given

in (39).
(b)	 Now we have known that the number of calls to GACLB in ACLB (Algorithm 1)

is bounded above by Nouter
ACLB

(�) in (39). On the other hand, the number of calls to
the first order oracle in each GACLB (Procedure 1) in the nth iteration of ACLB
(Algorithm 1) is bounded by N inner

ACLB
(Δn) given in (33). Hence, the total number

of iterations (calls to the first order oracles of f0 , f and g) is bounded above by

(42)m̄ < log 1

q

Δ0

𝜖
=∶ Nouter-c

ACLB
(𝜖) = O(log 𝜖).

(43)
F(x0) − L0 = F(x0) − �F(p0, x0) ≤

L0

1 + �0
‖x0 − p0‖1+�0 + f (x0) − �f (p0, x0)

≤
L0

1 + �0
D

1+�0
X

+ f (x0) − �f (p0, x0),

(44)g(x0) ≤ �g(p0, x0) +
Lg

1 + �g
‖x0 − p0‖1+�g ≤

Lg

1 + �g
D

1+�g

X
,

(45)f (x0) − �f (p0, x0) ≤ 2‖A‖
�

2Dv,Y∕�v.

(46)Nouter-c
ACLB

(𝜖) = m̄ < log 1

q

V̂X

𝜖
= O(log 𝜖).

(47)Nouter-nc
ACLB

(�) ∶=
F∗ − L0

(1 − �)�
+ 1 = O

1

�
.

	 Y. Chen et al.

1 3

 where we used the facts that Δn > 𝜖 for all n and N inner
ACLB

(Δ) is non-decreasing
in Δ in the first inequality. Applying (33) and (39) to (48) yields the bound in
(41).

	� ◻

This theorem provides the iteration complexity bound for each function in the objec-
tive functional and constraint. Hence we can have iteration complexity bound for the
(1) in various cases.

4 � Numerical experiment

In this section, we conduct a series of numerical experiments on synthesized con-
strained optimization problems. In the first part of our experiments, we evaluate the
performance of the proposed ACLB algorithm on a smooth constrained optimization
problem, i.e., both of the objective function and constraint function are smooth. We
demonstrate the improved convergence rate of ACLB by comparing to a state-of-the-
art constrained level-bundle (CLB) method [27] for such smooth constrained problems.
In the second part of our experiments, we compare the proposed ACLB on nonsmooth
but structured constrained problems, where we implement our method as if the prob-
lem is a generic nonsmooth problem (labeled as ACLB) and utilizing the smoothing
technique (labeled as ACLB-S). More specifically, the objective function in the latter
problem is nonsmooth but can be written as a max-type function using Fenchel duality.
We construct a special type of problems under this case, and show that ACLB-S may
outperform ACLB by making use of the max-type structure of objective function.

The performance of all comparison algorithms is evaluated using the progresses of
improvement function hk and estimated lower bound Lk where k is the iteration coun-
ter (number of calls of the first-order oracle) averaged over 10 random instances. The
improvement function hk should monotonically decrease to 0, and the estimated lower
bound Lk should increase to f ∗ although it is often unknown. Therefore, the algorithm
with faster decay (increase) of hk ( Lk respectively) is considered more efficient. All the
experiments are implemented and tested in MATLAB R2018a on a Windows desktop
with 3.70GHz CPU and 16GB of memory.

4.1 � Smooth constrained optimization

We consider the following constrained optimization problem:

where x ∈ X ≜ {x ∈ ℝ
n ∶ ‖x‖∞ ≤ 1} , A and C are given matrices, b, d are given

vectors of compatible dimensions, and e > 0 is a given error tolerance. In our
experiments, we set both A and C as m-by-n Gaussian random matrices, where

(48)
N∑
n=1

N inner
ACLB

(Δn) ≤ Nouter
ACLB

(�) ⋅ N inner
ACLB

(�) = N total
ACLB

(�),

(49)min
x∈X

1

2
‖Ax − b‖2, subject to

1

2
‖Cx − d‖2 ≤ e,

1 3

Acceleration techniques for level bundle methods in weakly…

n is the dimension of the unknown x, and b, d ∈ ℝ
m , for two different pairs of

(m, n) as (50, 100) and (200, 500). More specifically, for each pair of (m, n), we
first generate a reference x̄ ∈ ℝ

n using MATLAB randn function and normal-
ize it by x̄ ← x̄∕‖x̄‖ , and then generate two random matrices A,C ∈ ℝ

m×n , and set
b = Ax , d = Cx , and e = 10 . Namely, F(x) = f0(x) =

1

2
‖Ax − b‖2 and one constraint

g(x) =
1

2
‖Cx − d‖2 − e in (1). In this case, we know x̄ is an optimal solution, and

the optimal objective function value is f ∗ = 0 . Therefore, a convergent level bun-
dle method applied to (49) should generate {xk} such that hk ↓ 0 and Lk ↑ F∗ = 0
as k → ∞ . For comparison, we apply CLB (Algorithm 1 in [27]) and the proposed
ACLB algorithm to solve (49). We set � = 0.6 for CLB and � = � = 0.6 for ACLB,
and tried the initial lower bound of F∗ as L0 = −1 and −1000 (denoted by f 0

low
 in

CLB [27]), and total bundle size (nb) for both objective and constraint functions to
10 and 60 (i.e., 5 and 30 for each of f and g). The initial x0 is set to 0, and � = 10−6 in
the termination condition (same for all experiments in this section). We also set the
same maximum number 800 of calls to the first order oracle in all methods. We use
the MATLAB builtin QP solver quadprog to solve the subproblems in both algo-
rithms. For m = 50 and n = 100 , we generate 10 random instances, and show the
average of hk and Lk versus iteration number with initial lower bound L0 = −1 (left
two plots) in and L0 = −1000 (right two plots) in the top row of Fig. 1. Due to the
data generation above, the true F∗ = 0 in all cases. The results of the same experi-
ment with problem size m = 200 and n = 500 are shown in the bottom row of Fig. 1.
In Table 2, we also show the mean and standard deviation (in parentheses) of Lk , hk ,
and CPU time (in seconds) after k = 800 iterations over the 10 random instances in
the following order from top to bottom: L0 = −1 (first table) and L0 = −1000 (sec-
ond table) with problem size n = 100 , and L0 = −1 (third table) and L0 = −1000
(fourth table) with problem size n = 500 . As we can see, ACLB can significantly
improve the convergence for the smooth constrained problem (49).

0 200 400 600 800
iteration

10-5

100

h

 CLB (nb=10)
ACLB (nb=10)
 CLB (nb=60)
ACLB (nb=60)

0 200 400 600 800
iteration

-100

-10-2

-10-4

-10-6

-10-8

L

 CLB (nb=10)
ACLB (nb=10)
 CLB (nb=60)
ACLB (nb=60)

0 200 400 600 800
iteration

10-5

100

105

h

 CLB (nb=10)
ACLB (nb=10)
 CLB (nb=60)
ACLB (nb=60)

0 200 400 600 800
iteration

-105

-100

-10-5

-10-10

L

 CLB (nb=10)
ACLB (nb=10)
 CLB (nb=60)
ACLB (nb=60)

0 200 400 600 800
iteration

10-5

100

h

 CLB (nb=10)
ACLB (nb=10)
 CLB (nb=60)
ACLB (nb=60)

0 200 400 600 800
iteration

-100

-10-2

-10-4

-10-6

L

 CLB (nb=10)
ACLB (nb=10)
 CLB (nb=60)
ACLB (nb=60)

0 200 400 600 800
iteration

10-5

100

105

h

 CLB (nb=10)
ACLB (nb=10)
 CLB (nb=60)
ACLB (nb=60)

0 200 400 600 800
iteration

-105

-100

-10-5

-10-10

L

 CLB (nb=10)
ACLB (nb=10)
 CLB (nb=60)
ACLB (nb=60)

Fig. 1   Average of improvement function h and the corresponding lower bound L over 10 instances ver-
sus iteration with initial L

0
= −1 (left two columns) and initial L

0
= −1000 (right two columns) for the

smooth constrained problem (49) with problem sizes n = 100 (top row) and n = 500 (bottom row)

	 Y. Chen et al.

1 3

4.2 � Structured nonsmooth constrained optimization

We proposed to leverage the special structure of certain nonsmooth constrained
problem with improved convergence rate in ACLB, which we call ACLB-S. To
demonstrate the improvement gained by ACLB-S, we consider the following nons-
mooth constrained problem:

where again X ≜ {x ∈ ℝ
n ∶ ‖x‖∞ ≤ 1} , A and C are given matrices, b, d are

given vectors of compatible dimensions, and e > 0 is a given error tolerance.
Therefore, the objective function is F(x) = f (x) = maxy∈Y⟨Ax, y⟩ − �(y) where
Y = {y ∈ ℝ

m ∶ ‖y‖∞ ≤ 1} and �(y) = ⟨b, y⟩ . We apply both ACLB (as if the objec-
tive function is a generic nonsmooth function F(x) = f0(x) = ‖Ax − b‖1 ) and ACLB-
S to the problem (50). For this test, both A and C are 2062 × 2062 matrices, where
A is from the worst-case QP instance for first-order methods generated by Nemi-
rovski (see the construction scheme in [19, 21]) and C is a randomly generated using

(50)min
x∈X

{‖Ax − b‖1 = max‖y‖∞≤1
⟨Ax − b, y⟩}, subject to

1

2
‖Cx − d‖2 ≤ e,

Table 2   Comparison of CLB and ACLB on the smooth constrained problem (49) with different bundle
size (nb)

The values of lower bound L, improvement function h, and the CPU time (in seconds) after 800 iterations
using initial L

0
= −1 (first table) and L

0
= −1000 (second table) with problem size n = 100 , and initial

L
0
= −1 (third table) and L

0
= −1000 (last table) with problem size n = 500

L h Time

L0 = −1, n = 100

CLB (nb = 10) −8.25e−5 (2.20e−4) 1.05e−4 (2.31e−4) 2.01e+0 (5.25e−2)
ACLB (nb = 10) −5.78e−8 (8.18e−8) 7.48e−8 (1.01e−7) 4.23e+0 (2.53e−2)
CLB (nb = 60) −1.53e−4 (1.53e−4) 2.38e−4 (2.29e−4) 5.14e+0 (3.82e−1)
ACLB (nb = 60) −3.34e−8 (3.60e−8) 3.57e−8 (3.80e−8) 7.80e+0 (1.90e−1)
L0 = −1000, n = 100

CLB (nb = 10) −1.93e+0 (6.71e−1) 2.07e+0 (7.31e−1) 1.79e+0 (3.84e−2)
ACLB (nb = 10) −4.19e−7 (8.21e−7) 5.18e−7 (9.93e−7) 4.39e+0 (1.94e−2)
CLB (nb = 60) −6.53e−3 (5.39e−3) 1.32e−2 (1.18e−2) 5.30e+0 (1.98e−1)
ACLB (nb = 60) −9.17e−8 (1.26e−7) 9.95e−8 (1.30e−7) 8.12e+0 (1.82e−1)
L0 = −1, n = 500

CLB (nb = 10) −7.70e−6 (4.73e−6) 1.22e−5 (8.82e−6) 2.58e+1 (1.35e+0)
ACLB (nb = 10) −1.08e−6 (9.66e−7) 1.44e−6 (1.48e−6) 2.19e+1 (3.79e−1)
CLB (nb = 60) −5.59e−4 (1.13e−3) 6.74e−4 (1.24e−3) 4.16e+1 (2.80e+0)
ACLB (nb = 60) −2.93e−6 (3.89e−6) 2.98e−6 (3.92e−6) 4.19e+1 (2.17e+0)
L0 = −1000, n = 500

CLB (nb = 10) -1.50e+1 (3.30e+0) 1.92e+1 (9.84e+0) 2.16e+1 (1.16e+0)
ACLB (nb = 10) −2.94e−6 (2.64e−6) 3.36e−6 (2.94e−6) 2.35e+1 (3.32e−1)
CLB (nb = 60) −2.30e+0 (1.54e+0) 3.23e+0 (1.80e+0) 4.35e+1 (2.99e+0)
ACLB (nb = 60) −2.16e−6 (3.18e-6) 2.37e-6 (3.44e-6) 4.54e+1 (1.40e+0)

1 3

Acceleration techniques for level bundle methods in weakly…

MATLAB builtin function randn. Then we set b = Ax, d = Cx, e = 10−3 , and the
initial lower bound of f ∗ to L0 = −1 and L0 = −1000 for testing. For L0 = −1 , we
set � = 0.8 for both ACLB and ACLB-S, and � = 0.5 for ACLB and 0.4 for ACLB-
S. For L0 = −1000 , we set � = � = 0.6 for ACLB, and � = 0.7, � = 0.4 for ACLB-S.
The total bundle size for both objective and constraint functions to 10. For ACLB-S,
we use a sufficiently large estimate 1000 for Dv,Y and compute the corresponding �
(same below). We also applied CLB Algorithm 1 in [27] with � = 0.6 to this prob-
lem with the same bundle management setting. These parameter settings seem to
yield optimal performance of the comparison algorithms among those we tested. We
also set the same maximum number 600 of calls to the first order oracle in all meth-
ods. We use the MATLAB builtin QP solver quadprog to solve the subproblems
in all three algorithms. We again generate 10 random instances. The average of hk
and Lk versus iteration number with initial L0 = −1 (left two plots) and L0 = −1000
(right two plots) are given in Fig. 2. In Table 3, we also show the mean and standard
deviation (in parentheses) of Lk , hk , and CPU time (in seconds) after k = 600 itera-
tions with initial L0 = −1 (top table) and L0 = −1000 (bottom table). From these
results, we can see ACLB and ACLB-S have similar efficiency for this problem, and
both outperform CLB significantly.

0 200 400 600
iteration

10-4

10-2

100

102

104
h

CLB
ACLB
ACLB-S

0 200 400 600
iteration

-100

-10-1

-10-2

-10-3

-10-4

L

CLB
ACLB
ACLB-S

0 200 400 600
iteration

10-4

10-2

100

102

104

h

CLB
ACLB
ACLB-S

0 200 400 600
iteration

-104

-102

-100

-10-2

-10-4

L

CLB
ACLB
ACLB-S

Fig. 2   Average of improvement function h and the corresponding lower bound L over 10 instances for
the bundle size 10 versus iteration with initial L

0
= −1 (left two plots) and initial L

0
= −1000 (right two

plots) for the structured nonsmooth constrained problem (50) of size n = 2062

Table 3   Comparison of CLB, ACLB, and ACLB-S on the structured nonsmooth constrained problem
(50) of size n = 2062

The values of lower bound L, improvement function h, and the CPU time (in seconds) after 600 iterations
using initial L

0
= −1 (top) and L

0
= −1000 (bottom). Bundle size is 10 for all methods

L h Time

L0 = −1, n = 2062

 CLB −2.22e−3 (4.31e−4) 5.81e−3 (7.21e−4) 3.97e+2 (2.55e+1)
 ACLB −3.60e−4 (4.93e−4) 7.33e−4 (5.04e−4) 3.18e+2 (8.50e+0)
 ACLB-S −4.02e−4 (3.01e−4) 6.48e−4 (2.84e−4) 3.16e+2 (3.03e+0)
L0 = −1000, n = 2062

 CLB −8.18e−3 (4.29e−3) 3.10e−2 (2.79e−2) 4.25e+2 (2.76e+1)
 ACLB −5.72e−4 (3.12e−4) 9.33e−4 (3.39e−4) 3.43e+2 (1.74e+1)
 ACLB-S −2.71e−4 (1.66e−4) 5.52e−4 (1.53e−4) 3.19e+2 (9.40e+0)

	 Y. Chen et al.

1 3

We further consider the problem (50) of where A and C are both 2062 × 4124 ,
and X = {x ∈ ℝ

n ∶ ‖x‖ ≤ 1} . In this case, the MATLAB builtin QP solver becomes
much slower as the dimension of x is n = 4124 . However, at the small bundle size
10, we can still solve the dual problem efficiently as in [4] as the set X is a ball in ℝn .
By employing this solver, we apply ACLB and ACLB-S to problem (50) with initial
L0 as −1 and −1000 . In both cases, we set � = � = 0.5 for both ACLB and ACLB-S,
apply them to 10 randomly generated cases of (50), and compare their performance.
We also set the same maximum number 800 of calls to the first order oracle in these
methods. The average of hk and Lk versus iteration number with initial L0 = −1 (left
two plots) and L0 = −1000 (right two plots) are given in Fig. 3. In Table 4, we also
show the mean and standard deviation (in parentheses) of Lk , hk , and CPU time (in
seconds) after k = 800 iterations with initial L0 = −1 (top table) and L0 = −1000
(bottom table). From these results with larger problem size, we can see ACLB-S
outperforms ACLB by making use of the max-type structure of the objective func-
tion for improved theoretical and practical convergence rate.

5 � Concluding remarks

In this paper, we presented an accelerated level bound method, called ACLB, to
uniformly solve smooth, weakly smooth and nonsmooth convex constrained opti-
mization problems. We provided convergence analysis of the proposed method. The

0 200 400 600 800
iteration

100

102

h

ACLB
ACLB-S

0 200 400 600 800
iteration

-1
-0.8

-0.6

-0.4

-0.2

L

ACLB
ACLB-S

0 200 400 600 800
iteration

100

102

104

h

ACLB
ACLB-S

0 200 400 600 800
iteration

-103

-102

-101

-100

-10-1

L

ACLB
ACLB-S

Fig. 3   Average of improvement function h and the corresponding lower bound L over 10 instances for
the bundle size 10 versus iteration with initial L

0
= −1 (left two plots) and initial L

0
= −1000 (right two

plots) for the structured nonsmooth constrained problem (50) of size n = 4124

Table 4   Comparison of ACLB and ACLB-S on the structured nonsmooth constrained problem (50) of
size n = 4124

The values of lower bound L, improvement function h, and the CPU time (in seconds) after 800 iterations
using initial L

0
= −1 (top) and L

0
= −1000 (bottom). Bundle size is 10 for all methods

L h Time

L0 = −1, n = 4124

ACLB −2.00e−1 (1.33e−1) 2.45e−1 (1.36e−1) 1.05e+2 (2.98e+0)
ACLB-S −1.25e−1 (5.61e−2) 1.35e−1 (5.58e−2) 9.85e+1 (2.75e+0)
L0 = −1000, n = 4124

ACLB −2.49e−1 (1.68e−1) 3.00e−1 (1.79e−1) 1.05e+2 (4.85e+0)
ACLB-S −1.15e-1 (3.12e−2) 1.23e−1 (3.13e−2) 9.92e+1 (3.21e+0)

1 3

Acceleration techniques for level bundle methods in weakly…

iteration complexity bound of ACLB is obtained via the estimations for the total
number of calls to the gap reduction procedure and the numbers of iterations per-
formed within the critical and non-critical gap reduction procedures. To the best of
our knowledge, this is the first time in the literature to establish the iteration com-
plexity bounds for accelerated level-bundle methods to solve the constrained opti-
mization problem, where either the objective function or constraint is smooth or
weakly smooth. We provided numerical results to demonstrate the improved effi-
ciency of ACLB in practice.

Acknowledgements  This research was partially supported by NSF grants DMS-1319050, DMS-
1620342, DMS-1719932, CMMI-1745382, DMS-1818886 and DMS-1925263.

References

	 1.	 Bertsekas, D.P.: Nonlinear Programming. Athena Scientific Belmont (1999)
	 2.	 Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications

to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)
	 3.	 Chen, Y., Zhang, W.: Accelerated bundle level methods with inexact oracle. Sci. Sin. Math. 47(10),

1119–1142 (2017). (in Chinese)
	 4.	 Chen, Y., Lan, G., Ouyang, Y., Zhang, W.: Fast bundle-level methods for unconstrained and ball-

constrained convex optimization. Comput. Optim. Appl. 73(1), 159–199 (2019)
	 5.	 Cruz, J.Y.B., de Oliveira, W.: Level bundle-like algorithms for convex optimization. J. Global

Optim. 59(4), 787–809 (2014)
	 6.	 de Oliveira, W.: Target radius methods for nonsmooth convex optimization. Oper. Res. Lett. 45(6),

659–664 (2017)
	 7.	 de Oliveira, W., Sagastizábal, C.: Bundle methods in the XXIst century: a bird’s-eye view. Pesqui.

Oper. 34(3), 647–670 (2014)
	 8.	 Fábián, C.I.: Bundle-type methods for inexact data. CEJOR 8(1), 35–55 (2000)
	 9.	 Fábián, C.I., Wolf, C., Koberstein, A., Suhl, L.: Risk-averse optimization in two-stage stochastic

models: computational aspects and a study. SIAM J. Optim. 25(1), 28–52 (2015)
	10.	 Jacob, L., Obozinski, G., Vert, J.-P.: Group lasso with overlap and graph lasso. In: Proceedings of

the 26th Annual International Conference on Machine Learning, pp. 433–440. ACM (2009)
	11.	 Karas, E., Ribeiro, A., Sagastizábal, C., Solodov, M.: A bundle-filter method for nonsmooth convex

constrained optimization. Math. Program. 116(1), 297–320 (2009)
	12.	 Kiwiel, K.C.: Proximity control in bundle methods for convex nondifferentiable minimization.

Math. Program. 46(1), 105–122 (1990)
	13.	 Kiwiel, K.C.: Proximal level bundle methods for convex nondifferentiable optimization, saddle-

point problems and variational inequalities. Math. Program. 69(1), 89–109 (1995)
	14.	 Kiwiel, K.C.: Methods of Descent for Nondifferentiable Optimization, vol. 1133. Springer, Berlin

(2006)
	15.	 Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500

(2009)
	16.	 Lan, G.: Bundle-level type methods uniformly optimal for smooth and nonsmooth convex optimiza-

tion. Math. Program. 149(1–2), 1–45 (2015)
	17.	 Lemaréchal, C., Nemirovskii, A., Nesterov, Y.: New variants of bundle methods. Math. Program.

69(1), 111–147 (1995)
	18.	 Mairal, J., Jenatton, R., Obozinski, G., Bach, F.: Convex and network flow optimization for struc-

tured sparsity. J. Mach. Learn. Res. 12(Sep), 2681–2720 (2011)
	19.	 Nemirovsky, A., Yudin, D., Dawson, E.: Problem Complexity and Method Efficiency in Optimiza-

tion. Wiley, London (1983)
	20.	 Nesterov, Y.: A method for unconstrained convex minimization problem with the rate of conver-

gence o (1/k2 ). Dokl. SSSR 269, 543–547 (1983)

	 Y. Chen et al.

1 3

	21.	 Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course, vol. 87. Springer,
Berlin (2004)

	22.	 Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. 103(1), 127–152
(2005)

	23.	 Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course, vol. 87. Springer,
Berlin (2013)

	24.	 Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica
D 60(1), 259–268 (1992)

	25.	 Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., Knight, K.: Sparsity and smoothness via the fused
lasso. J. R. Stat. Soc.: Ser. B (Statistical Methodology) 67(1), 91–108 (2005)

	26.	 Tomioka, R., Suzuki, T., Hayashi, K., Kashima, H.: Statistical performance of convex tensor decom-
position. In: Advances in Neural Information Processing Systems, pp. 972–980 (2011)

	27.	 van Ackooij, W.: Level bundle methods for constrained convex optimization with various oracles.
Comput. Optim. Appl. 57(3), 555–597 (2014)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Acceleration techniques for level bundle methods in weakly smooth convex constrained optimization
	Abstract
	1 Introduction
	1.1 Problem description
	1.2 Related work
	1.3 Contribution
	1.4 Paper organization

	2 Accelerated constrained level-bundle method
	3 Convergence analysis
	4 Numerical experiment
	4.1 Smooth constrained optimization
	4.2 Structured nonsmooth constrained optimization

	5 Concluding remarks
	Acknowledgements
	References

