Unsupervised Learning of Depth and Ego-Motion
from Cylindrical Panoramic Video

Alisha Sharma
Laboratories for Computational Physics & Fluid Dynamics
Naval Research Laboratory
Washington, D.C. USA

Abstract—We introduce a convolutional neural network model
for unsupervised learning of depth and ego-motion from cylin-
drical panoramic video. Panoramic depth estimation is an im-
portant technology for applications such as virtual reality, 3d
modeling, and autonomous robotic navigation. In contrast to pre-
vious approaches for applying convolutional neural networks to
panoramic imagery, we use the cylindrical panoramic projection
which allows for the use of the traditional CNN layers such as
convolutional filters and max pooling without modification. Qur
evaluation of synthetic and real data shows that unsupervised
learning of depth and ego-motion on cylindrical panoramic im-
ages can produce high-quality depth maps and that an increased
field-of-view improves ego-motion estimation accuracy. We also
introduce Headcam, a novel dataset of panoramic video collected
from a helmet-mounted camera while biking in an urban setting.

Keywords-computer vision, structure-from-motion, unsuper-
vised learning, panoramic video

I. INTRODUCTION

Understanding the structure of a 3D scene is an important
problem in many fields, from autonomous vehicle navigation
to free-viewpoint rendering of virtual reality (VR) content. The
ability to automatically infer scene depth in panoramic video
would be especially useful for free-viewpoint rendering in a
VR headset [1], for example.

Given a color image, the scene depth is unknown and must
either be inferred from single-view or multi-view cues or
acquired with a different sensor. Single-image inference is
especially interesting since most consumer content is captured
from a single viewpoint without special hardware for depth
estimation such as time-of-flight ranging or structured light
sensors. Unfortunately, predicting 3D structure from a single
image is extremely challenging. The number of confounding
factors (e.g. varied texture, lighting, occlusions, and object
movement) makes it an ill-posed problem: a single image
could represent many possible 3D scenes.

Early attempts at estimating scene structure from motion
(also known as SfM) focused on directly analyzing factors
such as the geometry and flow of the image [2]-[4]. However,
these models were often fragile in the face of occlusions, ob-
ject motion, and other inconsistent, but real-world, conditions.
In the past several years, many exciting advances have been
made in estimating scene structure and ego-motion—motion
of the observer—using deep neural networks.
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Fig. 1: An example of predicting depth (bottom) from a single
panoramic input (top) using our proposed method. The depth
is color-coded so that brighter pixels are closer.

Early research relied on labeled data for training [5], [6].
Unfortunately, labeled 3D footage is expensive to create,
limiting the quantity and diversity of available training data.
This limitation has triggered a promising new area of research:
unsupervised SfTM models, which figure out scene attributes
such as depth and ego-motion without requiring labeled data.
In the past few years, several unsupervised models have
been proposed with comparable performance to the supervised
state-of-the-art [7]-[11], lowering the cost and expanding the
diversity of potential training datasets.

A. Panoramic Projection Models

While much progress has been made for pinhole perspective
images, researchers have only recently started to apply these
deep networks to panoramic input. There are many compelling
applications for computer vision with non-pinhole projection
images, such as robotic vision with omnidirectional cameras.

To process panoramic imagery in a convolutional neural
network (CNN), we need to choose a panoramic projection
model that maps spherical coordinates to image coordinates.
The three most common options are spherical or equirectangu-
lar projection, cube map projection, and cylindrical projection.

Spherical projection has the advantage of representing the
entire sphere in a rectangular image. The disadvantage is the
distortions at the poles caused by the projection (see Figure
2). Because of these distortions, properly processing spherical



panoramic input in a CNN requiring expensive modifications
to the model layers [12], [13].

Cube map projection also represents the entire sphere
and avoids distortions at the poles; however, it introduces
discontinuities between the faces of the cube. To use cube
maps as input to CNNs, we need to run the model on each
face separately and use a careful padding strategy and loss
functions to encourage agreement between the six outputs [14],
[15].

Cylindrical projection has been relatively less explored for
CNN input. Unlike the other projection models, cylindrical
projection is continuous and avoids increasing distortion to-
ward the poles (Figure 2). The trade-off is that the cylinder
cannot represent the entire sphere; the top and bottom are cut
off. Despite that small disadvantage, we argue that cylindrical
panoramas are ideal for use in CNNs they allow for standard
convolutional layers and only require a simple horizontal wrap
padding. Furthermore, in most applications, the top and bottom
areas are relatively unimportant (usually consisting of sky or
ceiling at the top and ground, vehicle, or camera mount at the
bottom).

Despite the advantages of cylindrical projection, to our
knowledge, deep networks for depth prediction have not yet
been applied to cylindrical panoramic imagery. In this paper,
we address this gap by proposing and evaluating a novel
unsupervised learning approach that estimates depth and ego-
motion from cylindrical panoramas. We achieve this by mod-
ifying the architecture of Zhou et al. [8], with improvements
from later papers, to use cylindrical panoramic projection.

This work has three major contributions:

1) We present CylindricalSfMLearner, an unsupervised
model for estimating structure from motion given cylin-
drical panoramic input.

2) We evaluate our method on synthetic and real data to
validate our approach.

3) We provide a new dataset of panoramic street-level
videos suitable for unsupervised learning of depth and
ego-motion.

II. RELATED WORK AND BACKGROUND
A. Supervised Monocular Depth Prediction

Early research focused on detecting structure from stereo—
or multi-source—imagery. Stereo SfM is much more con-
strained than detecting structure from monocular—single-
source—input, but the stereo input requirement limits the
model’s flexibility. Eigen [5] proposed a different approach us-
ing deep neural networks. They presented a supervised model
for estimating depth maps from monocular input images. Their
model was composed of two stacks—one for coarse estimation
and one for fine estimation—and joined the two predictions.

B. Supervised to Unsupervised Models

While supervised models for single-image depth prediction
demonstrate excellent performance, collecting labeled footage
is very expensive, increasing training cost and limiting the size

Fig. 2: Comparison of convolutional filtering using equirect-
angular projection (left), cylindrical projection (middle), and
cube map projection (right). A square filter on the equirectan-
gular projection (bottom left) maps to differently sized areas
on the sphere (top left) [12]. In contrast, a square filter on
the cylindrical projection (bottom middle) always projects to
the same area on the cylinder (top middle). This property of
cylindrical panoramas allows us to apply convolutional neural
network layers to a cylindrical panorama without needing
to model position-dependent effects on the receptive field,
as in previous works [16]-[18]. Cube map projection (right)
introduces seams and discontinuities, necessitating the use
of multi-image inference and careful padding strategies [14],
[15].

and diversity of datasets. This limitation triggered some re-
searchers to turn towards unsupervised models. Godard et al.,
taking inspiration from previous stereo techniques, proposed
a model that was trained on unlabeled stereo footage. Their
trained model outperformed the previous supervised state-of-
the-art on urban scenes and performed reasonably well on
unrelated datasets [7].

Zhou et al. removed the constraint of needing stereo training
footage [8]. They proposed an unsupervised model composed
of jointly-trained depth and pose CNNs using a loss function
tied to novel view synthesis. They found that their unsuper-
vised model performed comparably to supervised models on
the known datasets and reasonably well when tested against a
completely unknown data set. Unfortunately, while the model
could be trained on monocular footage, it assumes a given
camera calibration, which prevents arbitrary footage from the
web from being used as training data.

In a concurrent study, Vijayanarasimhan et al. addressed
this shortcoming by explicitly modeling scene geometry [9].
Inspired by geometrically-constrained Simultaneous Local-
ization and Mapping (SLAM) models and Godard’s work
on left-right consistency, they proposed a model capable of
detecting both ego-motion and object motion—as well as
depth and object segmentation—from uncalibrated monocular
images. Building upon those previous works, Mahjourian et
al. proposed a completely unsupervised model with explicit
geometric scene modeling [10]. Their model introduced a new
3D loss function and added a new principled mask for handling
unexplainable input.



Depth Network

(a) The depth network consists of a seven-layer encoder followed by a seven-layer decoder with a
skip-layer architecture. The network returns the multi-scale disparity predictions, which can then

be converted to depth predictions.
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(b) The pose network consists of
a five-layer encoder followed by
two pose layers and returns the
pose as a six-element vector. The
explainability network adds a five-
layer decoder and returns the multi-
scale explainability mask.

Fig. 3: The SfMLearner model [8] consists of two jointly-trained CNN stacks. The left diagram shows the depth CNN, and

the right diagram shows the pose/explainability CNN.

C. Beyond Pinhole Projection

All of the models previously discussed take pinhole images
as input. However, pinhole images have a serious disad-
vantage: objects can move out of the field of view. Many
applications, such as robotic navigation or virtual reality,
benefit from the 360° field of view. Previous research tackled
this omnidirectional SfM problem using direct methods with
some success [19], but comparatively little research has been
done with 360° imagery and CNNs.

Spherical input is particularly challenging for CNNs be-
cause spheres cannot be perfectly represented by a rectangu-
lar grid. In equirectangular projection, a common spherical
projection method, this results in significant distortion in the
polar regions of the image that propagate error through the
convolutional layers. The traditional solution to this has been
to use additional parameters and data augmentation to correct
the distortions [20], but recently, researchers have presented
several CNNs designed for direct spherical input. Several of
these approaches aim for full rotational invariance by using
signal processing techniques to model spherical convolutional
layers [12], [13], [21]. While this approach is effective, it is
also expensive; these models are severely limited in their input
data size, making them impractical for most problems.

As full rotational invariance is often not required, several
researchers have suggested a lighter-weight alternative: replac-
ing normal convolutional filters with distortion-aware filters
[16]-[18]. In this approach, the standard rectangular CNN
filter is replaced by a filter that samples points based on
the image distortion, correcting the polar distortion effects.

These models can be trained with one projection model and
tested with another, allowing them to utilize the large body of
pinhole datasets. There were several other approaches aside
from full rotational invariance and distortion-aware filters,
including graph CNNs [22], style transfer [23], and increased
filter sizes in the polar regions [24].

To avoid the distortions in the equirectangular projection,
Cheng et al. [14] and Wang et al. [11] use cube maps as input
to CNNs for saliency prediction and unsupervised depth and
ego-motion. They run a network on each cube face separately
and use padding and specialized loss functions to encourage
coherence between the outputs.

Cylindrical projection is another way of achieving 360°
views around a given axis. Unlike spherical panoramas, cylin-
drical panoramas do not capture the full 3D space. However,
they have a major benefit: they can be mapped exactly to
a single plane, removing the issues of polar distortion and
discontinuities. Despite this benefit, little research has been
done using deep networks with the cylindrical projection
model [25], [26]. Furthermore, while some spherical CNN
networks have made simplifications, including cropping of
the polar regions [16] and distortion-aware filters [16], to
the best of our knowledge, no previous work has applied a
cylindrical CNN to the structure-from-motion problem. Our
work introduces the first CNN model designed to predict depth
and pose from cylindrical panoramic input.

III. METHODS

In this work, we present an unsupervised convolutional
model that jointly estimates the depth map from a single



cylindrical panoramic image and ego-motion from a short
image sequence.

A. Model Architecture

Our architecture is based on that of Zhou et. al [8], an
unsupervised model designed to predict depth and ego-motion
in monocular pinhole images. The architecture, illustrated in
Figure 3, is a convolutional network consisting of two jointly-
trained stacks: (a) a depth network to estimate the depth map,
(b) a pose network/explainability mask to estimate the change
in the pose in image sequences and handle unexplainable
input. The depth network follows the DispNet [27] skip-
layer architecture, with seven contracting layers and seven
expanding layers, outputting a multi-scale depth prediction.
The pose network (PoseExpNet) consists of five contracting
convolutional layers and three pose layers, outputting the
predicted translation and rotation between the source and
target views. The explainability network consists of a final five
upconvolution layers and returns a multi-scale explainability
mask, which masks “unexplainable” motion.

Source Image

Predicted Target

Fig. 4: We use panoramic view synthesis as a supervisor:
the source panorama, depth, and pose transformation are used
to synthesize a target view, and the loss is computed as the
difference between the actual and synthesized views. As the
synthesized view improves, the depth and pose predictions
improve.

The learner uses view synthesis—the prediction of a tar-
get frame given source frames—as a self-supervisory signal
(Figure 4). The network takes one target frame and several
neighboring source frames as input. At each training step, the
joint DispNet and PoseExpNet stacks predict (a) the depth of
the target frame and (b) the pose of each source frame in the
target frame’s coordinate system. These predictions are then
applied to the source images to synthesize the target image
through projective inverse warping.

Let D be the predicted depth map for the target image. The
corresponding 3D point Xfa’fgel for pixel ¢, j in the target image

is found by unprojection according to the predicted depth value
at D%, N

Xijiger = unproject(i, j, D7) (D
This 3D point is then transformed into the source image’s
coordinate frame according to Psource the predicted pose of
the source image.

Xhee = transform(Pyource, Xigiper) 2)

Finally, the source image is sampled using bilinear interpola-
tion at the projection of Xgiirce.

I;;ﬁj = Sample(zsourcevprojeCt(Xsi(’)ﬂrce)) 3)

The learner then tries to minimize the photometric error
between the Zieer and Ly, the source image warped into the
target image’s coordinate frame. See Figure 6 for an illustra-
tion. The learner reduces the photometric error by improving
the depth and pose predictions [8], allowing the network to
learn scene structure from monocular images without labeled
depth maps.

For this model, we use a three-part objective function.
The main component is the photometric loss (Lpixe1), Which
minimizes the difference between synthesized views and the
target view. This is regularized by the smooth loss (Lsmooth)s
which minimizes the second derivatives with respect to the
depth and the optional explainability loss (Leyp), which makes
the model more resilient to anomalous input (e.g. moving
objects). If A; and A, represent the smooth and explainability
weights, the total loss can be written as follows:

L= Z ( Z »Cpixel + >\s£smooth + Z Ae£exp> (4)

scales sources sources
If 7 is an RGB image, D is the depth prediction, and & is

the explainability mask, the three loss components at pixel ¢, j
at each scale can be written as follows:

Lida = D% [Tyt = T 5)
,J
y §2Di | |§2DbI| 82D | | 62D
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Ly = Z softmax (£"7) @)

We also experimented with the image-aware depth smooth-
ness loss term introduced by Wang et al. [11]:
S (LA LN I L ik

O0x? Oxdy Oy?
The advantage of this smoothing term is that it reduces the
depth smoothing effect at image edges.

Two major modifications were required to allow for cylin-
drical input: 1) the view synthesis functions were modified
to account for cylindrical projection, and 2) the convolutional
layers, resampling functions, and loss were modified to pre-
serve horizontal wrapping.
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smooth ~
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Fig. 5: Pinhole projection model. The 3D world (on the world
coordinate system) is projected on a flat image plane; the
image plane is a focal length f away from the projective center
along the Z; axis (on the sensor coordinate system). The result
is a W x H rectangular image.

1) Camera Projection and Cylindrical Panoramas: The
view synthesis function introduced by Zhou et al. [8] works by
warping the source images onto the target image’s coordinate
frame using the predicted target inverse depth map and the
source image relative pose. To adapt this process to work with
cylindrical input, we modified the mapping functions between
the pixel, camera, and world coordinate frames.

Most structure-from-motion systems expect pinhole projec-
tion images as input. Pinhole projection images project a 3D
scene from the world coordinate system onto a flat image
plane; this process can be described by the focal length f,
principle point ¢, and the image height [/ and width W, as
shown in Figure 5.

In contrast, cylindrical projection projects the 3D world
onto a curved cylindrical surface, as seen in Figure 6. The
goal of this process is to take a 3D point in the world
coordinate system and project it onto a rectangular cylindrical
panorama. This requires projecting the 3D point onto the
cylindrical image surface and converting the image surface
into a Cartesian coordinate system.

The transformation between the sensor and pixel coordinate
systems can be described by the following equations. A 3D
point P = (x5, ys, 2s) in the sensor coordinate system projects
to a 2D point Q@ = (6, h) on the unit cylinder around the origin
according to the following formula:

[9} _ |arctan (i—) ©)

The inverse projection from the unit cylinder to a 3D point
in the sensor coordinate system is as follows:

T dsin @
ys | = dh (10)
Zg dcosf

where d is the depth of the point.

Sensor Coordinates World Coordinates

(XsYst) (wawzw)

projective
center

cylindrical
image surface

unit cylinder

|

unwrapped cylinder
o 0° [4 360°
h Image Coordinates
(h6)
H|

Fig. 6: Cylindrical projection model. In contrast with pinhole
projection, this projects an image onto a curved cylindrical
surface. The final result is a rectangular image with height A
and a width representing the full 360°.

For our experiments, we modified the Tensorflow implemen-
tation of SfMLearner by Zhou et al. [8] to use these cylindrical
un-projection and projection functions.

2) Horizontal Wrapping: In order to extend the model for
cylindrical panoramic images, we modified the convolutional
layers, smooth loss function, and 2D projection to account for
horizontal wrapping.

Unlike pinhole images, cylindrical images wrap horizon-
tally. For a convolutional layer to work with cylindrical input,
it must preserve this horizontal wrapping property, rather than
using zero-padding as is typical. Horizontal wrapping can be
done by padding the right side of the tensor with columns
from the left and vice-versa, as depicted in Figure 7.

We added wrap padding to all convolutions in the network
architecture. We also added wrap padding to the smooth
gradient loss computation and the bilinear sampler used for
view synthesis.

Fig. 7: An example of a horizontally wrapping convolutional
layer. The wrapping is achieved by copying the left-most
columns to the right side and vice-versa.



Fig. 8: A comparison of different loss functions. The first and second columns represent second-order depth gradient loss at
different weights: Ay = 1.0 and A; = 2.0. The rightmost column shows an image-aware first-order gradient loss with a weight

Am = 0.2
Disparity (lower is better) Accuracy (higher is better)
Abs Rel | SqRel | RMSE | RMSE log [ 6 < 1.25 | 6 < 1.25% | 6 < 1.25%
Without wrapping 0.3016 | 2.5437 | 6.2202 0.3958 0.6689 0.8280 0.9011
With wrapping 0.2994 | 2.5149 | 6.0375 0.3870 0.6757 0.8358 0.9065

TABLE I. Depth accuracy results when training and testing our network architecture with and without horizontal wrapping.
The model trained with horizontal wrapping is better on all metrics.

IV. EXPERIMENTS

Several experiments were performed to evaluate the per-
formance of our proposed method. We performed an ablation
study on synthetic data, comparing the model with and without
horizontal wrapping. We also evaluated the accuracy of pose
estimation with different input fields of view. Finally, to
demonstrate the model’s effectiveness on real-world footage,
we trained and tested the network on a new panoramic video
dataset and qualitatively evaluated the results.

CylindricalSfMLearner ~ was  implemented in  the
open-source  machine  learning  library = Tensorflow
[28]. Our code is publicly available on GitHub at
https://github.com/jonathanventura/cylindricalsfmlearner.

A. Monocular Depth Estimation

While there are many standard datasets such as KITTI [29]
and CityScapes [30] that provide standard field-of-view video
with registered ground truth depth, we were unable to find
a similar dataset containing panoramic video and associated
ground truth with suitable characteristics. For this reason, we
performed a quantitative evaluation of our work on synthetic
data.

SYNTHIA-Seqs [31] is a synthetic dataset of driving data
designed to mimic the properties of popular front-view datasets
like KITTT [29] and CityScapes [30]. For this experiment,
we used sequences 02 and 05 (NYC-like city driving) in the
spring-, summer-, and fall-like conditions captured from the
left and right stereo cameras.

To prepare the data for training, we first stitched the four
perspective views into a single 360° cylindrical panorama.
Next, we identified static frames using the global pose ground

truth; these frames were excluded from the final formatted
dataset using the same technique as SfMLearner [8]. The
panoramas were then resized to 512 x 128 and concatenated
to form three-frame sequences. After processing, this dataset
contained 4,398 panoramic views. This was split into train,
test, and validation subsets comprised of approximately 80%,
10%, and 10% of the data, respectively.

We experimented with various settings of the smoothing
term and also alternative smoothing terms such as the image-
aware first-order gradient loss from Wang et al. [11]. A com-
parison is shown in Figure 8. We found that while increasing
the smoothness reduces the detail in the depth prediction,
it tended to increase the depth accuracy. For the remaining
experiments on Synthia, we chose a smoothness term of
As = 2.0 and A\, = 0 and trained all models for 60,000 steps.

We compared the model with and without horizontal wrap-
ping to determine whether the wrapping property is important
for prediction accuracy. We used a set of disparity and ac-
curacy metrics common in SfM research that each capture a
different aspect of the prediction error; for more details, please
refer to [5].

Table I shows the results of our experiment. The model
trained with horizontal wrapping in the convolutional layers
outperformed the model without wrapping on all metrics.

B. Pose Estimation

We hypothesized that one benefit of end-to-end training
of depth and ego-motion estimation with panoramic video
would be an improvement in pose accuracy. We reasoned
that the larger field-of-view (FOV) would provide more rays
constraining the camera pose and thus improve pose estimation
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Fig. 9: Depth predictions for the self-collected headcam dataset. Our cylindrical CNN model achieves highly detailed depth
predictions on panoramic input. The missing depth predictions at the bottom are due to the helmet being visible in the frame.

accuracy. To test this hypothesis we trained different models
on crops of the full cylindrical panorama to simulate cameras
of different FOVs. We did not use horizontal wrapping on the
cropped images.

We trained the models on data from Synthia sequences 02
and 05 and tested on unseen data from sequences 02, 04,
and 05. This split was selected due to the limited number
of visually similar Synthia sequences. Sequences 02 and 05
were partitioned randomly into training and testing sets, and
no frame seen during training as either source or target frame
was used in the testing set.

Table II reports the mean average trajectory error (ATE)
[3] achieved by each model on Synthia sequences 02, 04, and
05. Sequence 04 is visually dissimilar from the training data,
which explains why the ATE is higher on sequence 04. In
general, the higher FOV models have lower ATE.

Seq. | FOV (deg) | Wrap || ATE Mean | ATE Std. Dev.
02 360 | Yes 0.0139 0.0210
02 360 | No 0.0143 0.0211
02 270 | No 0.0150 0.0230
02 180 | No 0.0203 0.0296
02 100 | No 0.0324 0.0498
05 360 | Yes 0.0138 0.0195
05 360 | No 0.0132 0.0189
05 270 | No 0.0131 0.0191
05 180 | No 0.0167 0.0224
05 100 | No 0.0258 0.0383
04 360 | Yes 0.0342 0.0351
04 360 | No 0.0345 0.0322
04 270 | No 0.0355 0.0348
04 180 | No 0.0384 0.0372
04 100 | No 0.0371 0.0359

TABLE II: Evaluation of the effect of input field-of-view on
average trajectory error (ATE). In general, a wider field-of-
view leads to higher pose accuracy (lower mean ATE). The
training data contained images from Sequences 02 and 05 but
not Sequence 04.

C. Real data: Headcam Dataset

While the SYNTHIA-Seqs dataset allowed us to explore the
effect of cylindrical projection and increasing field of views,
its major limitation is that it is synthetic. In order to determine
if cylindrical projection is successful with real-world input, we
trained and evaluated a model on our own panoramic dataset.

We assembled a panoramic video dataset which we call
Headcam. It was collected by affixing a consumer-grade

panoramic camera, the 2016 Samsung Gear 360, to a bicycle
helmet and biking around neighborhoods in Northern Virginia.
This dataset includes about two hours of footage collected over
three days and has been released publicly on Zenodo under a
Creative Commons Attribution license [32].

This footage was first stitched into equirectangular
panoramic video using the Samsung Gear 360 software. It
was then broken into frames at 5fps, warped into a cylindrical
projection model, resized to 512 x 128, and formatted into
three-frame sequences. The final formatted dataset contains
27,538 frames. Training was conducted on 90% of the data,
and qualitative testing was done on the remaining 10%.

This model was trained with the same configuration as
above except for the smooth loss term. This model was trained
using image-aware smooth loss (A, = 0.2) [11] as opposed to
the second-order gradient loss. This change helped to improve
the definition of predicted object shapes such as trees and cars.

Predictions on the test set can be seen in Figure 9. Qualita-
tively, the model generates visually reasonable predictions with
well-defined object boundaries. However, the model makes
several common errors. Most notably, due to its constant
presence frame-to-frame, the model predicts that the helmet
at the bottom of the image has a large depth. Future work
might explore ways to mitigate this through masking or other
techniques. We also noticed occasional holes in the depth
prediction in the road, similar to the predictions on Synthia
when using a low smoothing term.

V. CONCLUSION

We introduce the first unsupervised model for learning
depth and ego-motion directly from panoramic video input. In
contrast to previous work, we use the cylindrical panoramic
projection which allows for direct application of existing
convolutional neural network models to panoramic input with
little modification. Our evaluation on synthetic and real data
shows that learning from cylindrical panoramic input is as
effective as pinhole projection input in producing accurate and
detailed depth predictions.

We also contribute a novel dataset of real panoramic video
suitable for unsupervised learning of depth and ego-motion.
The dataset was captured on city streets from a helmet-
mounted camera while riding a bicycle and thus contains a
variety of motions, moving objects, and other challenging
conditions, making it a difficult and interesting dataset for
future research on learning panoramic structure-from-motion.



While cylindrical projection makes the application of con-
volutional neural networks to panoramic input simple, this
representation has some limitations. First, the top and bottom
of the complete spherical field-of-view are not included in
the cylindrical representation; however, in most applications,
these regions are not important. Second, our model does not
achieve full rotation invariance like, for example, the Spherical
CNN model of Cohen et al. [12]. Our cylindrical CNN model
is invariant to rotation about the vertical axis (yaw) but not
rotation about the other two axes (pitch and roll). However,
pitch and roll rotations of the camera are relatively rare in
street-level driving tasks as evaluated in this paper.

Future work could also include a comparison of our cylin-
drical model against the various spherical CNN and cube map
CNN models that have been proposed, and experimenting with
other state-of-the-art depth prediction architectures [33], [34]
adapted for cylindrical panoramic input.
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