

1 **Title:** A normal phase high performance liquid chromatography method for the separation of hydroxy and
2 non-hydroxy neutral lipid classes compatible with ultraviolet and in-line liquid scintillation detection of
3 radioisotopes

4 Hari Kiran Kotapati^{a,b}, Philip D. Bates^{a,b*}

5 ^aDepartment of Chemistry & Biochemistry, The University of Southern Mississippi
6 118 College Drive, Box # 5043, Hattiesburg, Mississippi-39406, USA

7 ^bCurrent address: Institute of Biological Chemistry, Clark Hall, Washington State University, Pullman,
8 WA 99164

9 *Correspondence: phil_bates@wsu.edu

10 **Abstract:** In this paper, we report a method for the separation of hydroxy fatty acid and non-hydroxy
11 fatty acid containing neutral lipid classes via normal phase HPLC with UV detection on a PVA-Sil
12 column. The hexane/isopropanol/methanol/water based method separates all the neutral lipids in 21 min,
13 and subsequently flushes through the polar lipids by 27 min such that prefractionation of neutral and polar
14 lipids are not required, and the column is re-equilibrated for the next run in 15 min, for a total run time of
15 45 min per sample. The separation was demonstrated at both 1.0 ml/min and 1.5 ml/min for added
16 applicability for fraction collection or inline analysis. Separation of various hydroxy fatty acid containing
17 lipids was demonstrated from three different plant species *Ricinus communis*, *Physaria fendleri*, and
18 engineered *Arabidopsis thaliana*. Additionally, we have combined this method with an inline liquid
19 scintillation counter for the separation and quantification of ¹⁴C labeled lipids obtained from *in vivo*
20 metabolic flux experiments conducted in the developing seeds of *Arabidopsis thaliana*.

21 **Keywords:** Hydroxy neutral lipids; PVA-Sil; Normal phase HPLC; Lipid class separation; Metabolic
22 flux analysis; Radio-HPLC; triacylglycerol; diacylglycerol; monoacylglycerol.

23 **Abbreviations:** Triacylglycerol (TAG), Diacylglycerol (DAG), Monoacylglycerol (MAG), Hydroxy
24 Fatty Acid Triacylglycerol (HFA TAG), Hydroxy Fatty Acid Diacylglycerol (HFA DAG), Hydroxy Fatty
25 Acid Monoacylglycerol (HFA MAG) Free Fatty Acid (FFA), Hydroxy Free Fatty Acid (HFFA),
26 Phosphatidylcholine (PC), disintegrations per minute (DPM), counts per minute (CPM).

27 **1. Introduction:** Lipids are some of the most energy dense compounds produced in nature.

28 Triacylglycerols (TAGs) that are the major component of plant seeds oils are used as food, bio-fuels,
29 and industrial chemicals. The various uses of plant oils are related to the fatty acid composition of
30 TAG. Most plants produce five common fatty acid structures (16-18 carbons long and 0-3 double
31 bonds), leading to many potential molecular species of TAG in the oil. For example, in the model plant
32 *Arabidopsis thaliana* 93 molecular species of TAGs have been identified [1]. Greater than 450 different
33 fatty acid structures have been characterized in nature, indicating 10s of millions of possible molecular
34 species of TAG could be produced [2, 3]. However, most plants that naturally produce these unusual
35 fatty acids only produce a few unique structures, and typically produce very small amounts or have
36 poor agronomic features that limits their use as crops. Therefore, it has been a goal of plant scientists to
37 produce novel crops with valuable TAG compositions through genetic engineering. Much progress
38 toward that goal has been made over the last 20 years, and has been extensively reviewed [4-12].

39
40 As plants are engineered to produce different fatty acid compositions, improved analytical methods are
41 needed to identify, quantify, and decipher the metabolism of the novel lipids. In particular, we are
42 interested in developing radio-isotopic labeling approaches that trace the precursor-product

57
58
59 43 relationships of fatty acid flux through lipid metabolism [13, 14]. This type of analysis requires
60 44 complete separation of each lipid class for quantification radiolabel incorporation into each step of the
61 45 pathway. Thin Layer Chromatography (TLC) and HPLC are commonly used separation techniques in
62 46 lipid analysis. Reverse phase HPLC of lipids leads to the separation molecular species within a lipid
63 47 class which can overlap with other lipid classes [15]. To achieve lipid class separation with the
64 48 molecular species of each class grouped together, normal phase HPLC or TLC is preferred. However,
65 49 normal phase separation of neutral lipid classes is sensitive to the polarity of fatty acids within each
66 50 molecular species.
67 51

68 52 The common fatty acids found in found in all plants (16-18 carbon, 0-3 double bonds) do not affect the
69 53 normal phase migration of molecular species within lipid classes. However, many plants produce
70 54 valuable unusual fatty acids that accumulate in seed oils that have additional polar functional groups
71 55 such as hydroxyls or epoxides that can effect normal phase molecular species migration [2]. For
72 56 example, ricinoleic acid ((9Z,12R)-12-Hydroxyoctadec-9-enoic acid), a hydroxylated fatty acid (HFA)
73 57 accumulates in seed oil of various species such as castor (*Ricinus communis*) [16]. Transgenic
74 58 production of HFA in different plants been used as a model to understand the engineering of various
75 59 unusual fatty acids into crop species [11, 17]. In plants producing HFA, neutral lipid classes will
76 60 separate into sub-groups of molecular species based on the number of HFA in each molecule. For
77 61 example, four groupings of TAG, three diacylglycerol groups, and two groups of monoacylglycerols
78 62 and free fatty acids. Currently, separation of HFA-containing neutral lipid classes by common reverse
79 63 phase methods used in lipidomics [18, 19], or normal phase HPLC or TLC systems leads to overlapping
80 64 sub-groups from different lipid classes [20, 21].
81 65

82 66 Our goal was to develop a normal phase HPLC method that would separate all the HFA-containing
83 67 neutral lipid classes and sub-groups in a single run for analysis by a continuous flow LSC detector, and
84 68 to wash through polar lipid classes, such that prior fractionation of neutral and polar lipids is not
85 69 needed. To limit the use of expensive radioactive standards during method development, we utilized a
86 70 UV detector with unlabeled standards to determine analyte retention times for identification. The choice
87 71 of a UV compatible solvent system was to develop a general method that could be used in a wide range
88 72 of laboratories as UV systems are inexpensive and almost ubiquitous with most laboratory HPLC
89 73 systems. There are several existing reports of the use of continuous flow detection in combination with
90 74 HPLC. However, the HPLC methods involve separation of molecular species via non-aqueous reverse
91 75 phase HPLC, and lead to some overlapping lipid classes [21, 25-28]. To the best of our knowledge there
92 76 are no published reports on the complete separation of hydroxy and non-hydroxy neutral lipid classes
93 77 by normal phase HPLC with UV detection on a PVA-Sil column, and its application in the continuous
94 78 flow LSC. Because most lipids do not contain a chromophore UV detection of lipids is solely
95 79 dependent on the presence of isolated double bonds in the lipid molecule at 200-210 nm [29]. As a
96 80 result, HPLC analysis with UV detection requires the use of a small subset of solvents which have low
97 81 absorbance at 210 nm. Organic solvents such as acetone, chloroform, toluene and ethyl acetate that are
98 82 widely used in the separation of lipids with detection by mass spectrometry (MS) or evaporative light
99 83 scatter detection (ELSD) have high absorbance at this wavelength [24, 29], and cannot be used with UV
100 84 detection. Recent reports of normal phase HPLC methods to separate some lipid classes have used
101 85 various stationary phases such as PVA-Sil [30-32], or monolithic silica [33]. These methods involve
102 86 either MS and or ELSD as detectors and the solvents are not suitable for UV detection. There are a few
103 87 reports for the normal phase lipid HPLC analysis using silica columns with UV detection at lower
104 88 wavelengths [34-37]. Although the normal phase methods reported previously provide decent
105
106
107
108
109
110
111
112

113
114
115 89 separations of several lipid classes, they do not provide any information on the lipid classes of our
116 90 interest involving hydroxylated fatty acid containing TAGs, DAGs, and MAGs.
117
118
119
120
121
122
123
124
125
126
127

91 Here we disclose a normal phase HPLC-UV method for class separation of ten lipid classes/sub-groups
92 including hydroxy and non-hydroxylated neutral lipids and the polar lipid phosphatidylcholine, and
93 extended its application to radio-isotopic metabolic labeling studies in transgenic plants. Additionally,
94 we apply the method to lipids from three different plant species, and demonstrate two method variations
95 that are beneficial for increasing separation between select lipids for assorted detection or fractionation
96 applications.
97

98 2. Materials and Methods:

100 **2.1 Lipid standards and solvents:** 1-2-dioleoyl-*sn*-glycerol (18:1 DAG) was purchased from Sigma
101 (USA) and 95% Soy PC standards were purchased from Avanti Polar Lipids (Alabaster, Al). The
102 neutral lipid mix standard purchased from Sigma (USA) includes the Triacylglycerol (TAG),
103 Diacylglycerol (DAG) and Monoacylglycerol (MAG) all composed of oleic acid ((9Z)-Octadec-9-enoic
104 acid). Hydroxy neutral lipid standards, 3-HFA TAG, 2-HFA TAG and 1-HFA TAG, were prepared
105 from castor oil by TLC [20]. HFA standards, 2-HFA DAG, 1-HFA DAG and 1-HFA MAG, were
106 prepared from the lipase digestion of the 3-HFA TAG and 2-HFA TAG standards isolated from castor
107 oil [20]. All solvents were submicron filtered HPLC or Optima grade purchased from Fisher Chemical.
108 Glacial acetic acid for HPLC was obtained from Fisher chemical (USA)). For radiolabeling assays, [1-
109 ¹⁴C]acetic acid (Sodium Salt), Specific Activity: 50.5mCi (1.868GBq)/mmol, 1mCi (37MBq) was
110 purchased from PerkinElmer (USA). Liquid scintillation fluid used for on-line radio detection in HPLC,
111 FlowLogic U, was purchased from LabLogic (USA).
112

113 **2.2 Preparation of ¹⁴C labelled lipids:** Continuous [¹⁴C]acetate metabolic labelling for 24 hrs within
114 developing seeds tissue of *Arabidopsis thaliana* as in [20]. Metabolism was stopped by quenching in 2-
115 Propanol at 85 °C for 10 min. Total lipids were extracted as in [20] The final lipid extract was stored in
toluene with 0.05% 3,5-*Di-tert*-4-butylhydroxytoluene (BHT) prior to HPLC analysis.
116

117 3. Instrumentation:

118 HPLC instrumentation setup comprises of Thermo Fisher Ultimate 3000 instrument equipped with: 1.
119 Quaternary pump system (Dionex Ultimate Pump - LPG3400SD), 2. Temperature controlled auto
120 sampler - Dionex WPS-3000TSL (Analytical), 3. Temperature controlled column compartment TCC-
121 3000SD, 4. Variable Wavelength Detector- Dionex VWD-3100, 5. Fraction Collector -Dionex AFC-
122 3000. Columns used for HPLC analysis are YMC-Pack PVA-Sil (250 X 4.6 mm, 5 µm particle size)
123 and Thermo Betasil Diol-100 (250 X 4.6 mm, 5 µm particle size). Each column is equipped with a
124 guard column (10 X 4.0 mm) containing the same stationary phase and similar particle size as that of
125 the column. The operating data system for the HPLC instrument is Chromeleon 7.2 SR4. Radio HPLC
126 detector used for the analysis of ¹⁴C samples is LabLogic β-RAM model 5, with an electronically
127 controlled front end splitter which diverts flow to the fraction collector. The β-RAM counting flow cell
128 equipped to the setup is 500 µL Liquid Cell, and the acquisition software for the Radio-HPLC analysis
is Laura 4.2.11.129.
129

130 4. Results and Discussion:

131 HPLC method optimization was performed using UV detection at 210 nm where isolated double bonds
132 in the lipids are detected. The analysis was performed on various mixtures of the lipid classes and the
133 individual lipid standards that were either purchased or prepared chemically/enzymatically from the
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

169
170
171 134 respective standards. The hydroxy fatty acid (HFA) containing lipid standards were isolated by TLC
172 135 from castor oil of which is composed of 3-HFA TAG, 2-HFA TAG and 1-HFA TAG where the
173 136 hydroxy fatty acid is ricinoleic acid ((9Z,12R)-12-Hydroxyoctadec-9-enoic acid). Each component of
174 137 the castor oil was identified and the assignments were made based on the retention times of individual
175 138 standards that were prepared by TLC of castor oil. For the normal phase HPLC method development,
176 139 we initially experimented with two columns Betasil Diol-100 and YMC-Pack PVA-Sil, and started with
177 140 general UV compatible solvent systems found in the literature [39]. After examining both stationary
178 141 phases, we have determined YMC-Pack PVA-Sil provides excellent separation of neutral lipid classes
179 142 containing hydroxy fatty acids (Fig. 1).
180 143
181

182 144 **4.1. Stationary phase and solvent screening:** Our initial method development was performed using
183 145 Betasil Diol-100 column utilizing a hexane-isopropanol system. Although Betasil diol-100 provided
184 146 decent separations for lipid classes with non-hydroxy fatty acids no significant separation between
185 147 DAG and 2-HFA TAG was observed. We tried various modifiers within the running solvent with the
186 148 Betasil Diol-100 to improve separation between DAG and 2-HFA TAG. For example, we included
187 149 methanol up to 5% of the mobile phase, or methanol containing acetone (up to 5%), or acetonitrile (up
188 150 to 5%) but they did not improve separation to our liking. Therefore, we turned our focus towards the
189 151 YMC-Pack PVA-Sil column. PVA-Sil is a silica based stationary phase with poly vinyl alcohol groups
190 152 chemically bonded to it. This column has been used for the separation of various polar and neutral lipid
191 153 classes using ELSD and MS detectors [32, 40-42], but to the best of our knowledge has not been
192 154 demonstrated with a UV compatible lipid separation method. Although PVA-Sil phase is said to have
193 155 similar separation properties as that of silica and diol [41], we demonstrate much better separations with
194 156 PVA-Sil over diol stationary phases for the hydroxy neutral lipid classes under the same separation
195 157 parameters (Table 1). Figure 1 illustrates the separation properties of Betasil Diol-100 (Fig. 1A) and
196 158 PVA-Sil column (Fig. 1B) in the analysis of a mixture of castor oil and 18:1 DAG. PVA-Sil column
197 159 seems to retain the analytes for longer periods compared to that of Betasil Diol-100. The separation
198 160 between 1,2-DAG (Peak 2) and 2-HFA-TAG (Peak 3) is about 2 minutes on PVA-Sil column (Fig.1B)
199 161 while the two peaks overlapped on Betasil Diol-100 (Fig. 1A).
200
201

202 162
203 163 **4.2. Optimized HPLC-UV method on PVA-Sil column:**

204 164 We have developed a twelve step linear gradient method that includes four isocratic hold points to
205 165 ensure complete class separation of the hydroxy and non-hydroxy lipids, and also proper mobile phase
206 166 switching between the gradients (Table 1). The solvents used in this method gave minimal background
207 167 at 210 nm across gradient time course. 0.065% Acetic acid was added to solvent D, mixture of (60/40)
208 168 2-propanol/water, however higher levels will lead to increased background. The mobile phase flow rate
209 169 was 1.5 mL/min, the column compartment was maintained at 35 °C, and the auto sampler at 20 °C. The
210 170 total run time for the optimized HPLC method is 45 minutes. This includes 15 minutes of column
211 171 equilibration prior to analysis, and 30 minutes of analysis time. To ensure proper equilibration of the
212 172 column, a blank run was performed in the beginning of each sequence prior to the sample analysis.
213

214 173 **4.3. HPLC-UV analysis of hydroxy and non-hydroxy neutral lipid classes:**

215 174 Using the developed method that involves a twelve step linear gradient with isocratic hold points,
216 175 operated by a quaternary gradient pump, we were able to completely separate nine neutral lipid classes
217 176 based on the number of hydroxy fatty acids in each TAG, DAG or MAG lipid class. The neutral lipid
218 177 classes that were separated on the PVA-Sil column include TAG, DAG (1,3 and 1,2 isomers), MAG, 1-
219
220
221
222
223
224

225
226
227 HFA TAG, 2-HFA TAG, 3-HFA TAG, 1-HFA DAG, 2-HFA DAG, 1-HFA MAG. Besides the neutral
228 lipid classes we were also able to elute phosphatidylcholine (PC, tR = 25.5 min) as a separate peak from
229 other polar lipids at a later time during the run (Supplementary information Figure S1). The individual
230 standards for the lipid classes were analyzed by HPLC to confirm the identity of the lipid classes in the
231 mixture based on the retention times (See Supplementary information Figures S2.a and S2.b for
232 individual standard retentions). The gradients for the method, solvents used and gradient slope are as
233 indicated in Table 1. Standards for each lipid class, and mixture of these standards were analyzed by the
234 current method. The injection solvent for the analysis of standards and their mixture is hexane/2-
235 propanol (60/40). For the standards and their mixtures 150-300 μ g of sample was loaded on to the
236 column in 25-40 μ L of injection solvent. We have also used toluene (up to 10 μ L) as injection solvent,
237 and the retention times of most of the lipid classes remained the same. TAG appeared to elute slightly
238 earlier with Toluene, and interestingly 1-HFA TAG appeared to elute later when toluene was used as
239 the injection solvent. Even after a slight change in the retention times of these standards with different
240 injection solvent, we did not observe them coeluting with other components in the mixture. The
241 separations between the lipid classes of interest were baseline and of at least 0.5 min. However non-
242 hydroxy free fatty acids appeared to co-elute with 1,3-DAG. 1,2-DAG is the biologically relevant form,
243 and 1,3-DAG is formed through acyl migration *in vitro* [43]. 2-HFA DAG and HFFA which are
244 difficult to separate by TLC [20] were completely separated (Figure 2).
245
246

247 Another aspect of the current method on PVA-Sil is that 2-HFA TAG elutes after 1,3 and 1,2-DAG
248 moieties whereas it elutes in between 1,3-DAG and 1,2-DAG on the TLC system that has been reported
249 which complicates analysis when significant 1,3-DAG is formed *in vitro* [20]. 2-HFA TAG elutes as
250 multiple combined peaks on the PVA-Sil column suggesting a possible partial molecular species
251 separation within the lipid class (Figure 2), and may be related to molecular species where the hydroxy
252 fatty acids are on the 1,2 vs 1,3 positions of the TAG backbone. The retention times for each of these
253 lipid classes from UV chromatogram are listed below in Table 2.
254

255 The method gradient in the current method is created in such a way that after the elution of all neutral
256 lipid classes, the mobile phase is adjusted to 10% water, 40% methanol and 50% 2-propanol to flush
257 any polar lipids which will remain and clog the column, and eliminates the need for a prefractionation
258 of lipid extracts into neutral and polar lipid fractions prior to HPLC. During the process of polar lipid
259 flush PC eluted as a pure component, and this was confirmed by TLC analysis of a collected fraction
260 (Supplementary information, Figure S3).
261

262 **4.4. Method application-Radio HPLC analysis:** The developed method for the separation of neutral
263 lipid classes has been applied to the analysis of radioactive lipid extracts from [^{14}C]acetate metabolic
264 labeling experiments conducted in developing seeds of *Arabidopsis thaliana*. Two different plant lines
265 of *A. thaliana* were used in the experiments. The first line is the wild-type (WT) Columbia-0 ecotype
266 which does not contain HFA, and the second line (RcPDAT1a) is a previously genetically engineered to
267 accumulate HFA-containing neutral lipids [44]. Continuous metabolic labeling with [^{14}C]acetate was
268 carried out according to [20]. For WT, developing seeds were incubated in [^{14}C]acetate media and
269 collected after 30 minutes. For the RcPDAT1a line, the seeds were continuously labeled for 21 hrs.
270

271 **4.4.1. Method for radio detection:** To analyze both WT and RcPDAT1a extracts containing ^{14}C labelled
272 lipids, a common method was created for the detection with β -ram detector. We have used 1:2 eluant to
273 scintillant flow rate ratio for the continuous flow detection. The residence time in the counting cell for
274 this flow rate is 6.7 seconds. When the flow rate ratio was adjusted to 1:1 for eluant: scintillant, the
275 residence time went up to 10 seconds, and this resulted in radioactive peak overlap during the analysis.
276 The details of the method parameters for each sample in Radio-HPLC analysis are illustrated in Table
277
278
279
280

281
282
283 223 3. The ^{14}C activity for each sample was measured on a static liquid scintillation counter prior to
284 224 analysis, and known amount of total sample radioactivity was loaded for the HPLC analysis.
285

286 225 **4.4.2. Analysis of ^{14}C labelled wild-type *Arabidopsis thaliana* seeds:**

288 226 Figure 3 shows the ^{14}C and UV traces for the 30 min [^{14}C]acetate labeled seeds. The differences in each
289 227 trace reflect the differences in specific activity (DPM/mass) for each lipid class. TAG has high mass
290 228 (>90% of total lipid mass in the extract) and can be detected by the UV, but it has a low specific activity
291 229 as compared to the other lipids where the radioactivity can be detected but the low mass cannot. The
292 230 differences in specific activity at 30 min of labeling reflect both endogenous lipid pool size and the
293 231 pathway structure where TAG is an endpoint that is labeled slowly. Identification of each radioactive
294 232 peak was based on the retention times of the non-labeled standards from the UV chromatogram.
295

296 233 We have also performed time based fraction collection of the individual peaks followed by TLC -
297 234 phosphor imaging analysis to confirm the identities and purities of the individual peaks. (See
298 235 Supplementary information; Figure S 3 for TLC and Table S 1 for fraction collection method). The
299 236 peaks observed on the radio chromatogram correspond to TAG (Peak 1), DAG (Peak 2), and PC (Peak
300 237 4). The retentions of the peaks from Radio-HPLC analysis and HPLC-UV analysis are compared in the
301 238 Table 4.

302 239 **4.4.3. Analysis of ^{14}C labeled *Arabidopsis thaliana* *RcPDAT1a* seeds:** For injection purpose, sample
303 240 was dissolved in toluene. When sample was dissolved in hexane/2-propanol (60/40), and injected 1-
304 241 HFA TAG eluted as a broad peak from 8-10 minutes. Although there was no co-elution of the 1-HFA
305 242 TAG with other components during the run, we have decided to use the solvent that provided better
306 243 peak shape. When the analysis was performed on the sample, without a blank run, there was a peak
307 244 overlap between 1-HFA TAG and free fatty acids. The 21 hrs *RcPDAT1a* labeled seeds crude extract in
308 245 10 μL of injection solvent (Toluene) was analyzed by the developed Radio-HPLC method (Figure 4).

310 246 Each one of the components on the radio chromatogram were identified by the comparison of retention
311 247 times to the standards on HPLC-UV analysis. Also, time based fraction collection was performed
312 248 followed by TLC-phosphor imaging analysis of the individual components. TLC data confirmed the
313 249 identities and purities of the individual components (See Supplementary information; Figure S4 for
314 250 TLC and Table S2 for fraction collection method). The retention times of the components from the
315 251 Radio-HPLC of ^{14}C crude extract and the standards in HPLC-UV analysis are compared in Table 5.
316

317 252 **4.5 Variations of the General Method, Reproducibility, and Various Applications**

318 253 While we have extensively used the general method to analyze lipid extracts obtained from *A. thaliana*
319 254 seeds, slight modifications to this method were made as per our research needs. One of these modified
320 255 methods involve the separation of hydroxylated and non-hydroxylated lipid classes at a lower mobile
321 256 phase flow rate of 1 mL/min (Supplementary information; Table S3). This method however provided a
322 257 minimum baseline separation between DAG & 2-HFA TAG (Supplementary information; Figure S5),
323 258 and is not suitable for application to inline radio detection with a 500 μL counting cell, but it would be
324 259 valuable for use with other detectors such as MS or ELSD, and could be used for purification of lipid
325 260 classes with fraction collection. PVA-Sil stationary phase demonstrated excellent reproducibility with a
326 261 very slight change (<0.15 min) in TAG peak retention after 72 runs in the analysis of crude silique
327 262 extract of non-hydroxy fatty acid producing *A. thaliana* (Supplementary Information; Figure S6). Due
328 263 to the less complex nature of non-hydroxy fatty acid producing *A. thaliana*, in these runs, we were able
329 264 to shorten the analysis time to 18 minutes (Supplementary Information; Tables S4 and S5). We have
330 265 also applied slightly modified and extended method (39 minutes analysis time) to separate the ^{14}C
331
332

337
338
339 266 labeled HFA containing lipid classes from the natural HFA-accumulating species *Physaria fendleri*
340 267 (Supplementary Information Figure S7). In this method, the initial separation conditions for HFA
341 268 containing neutral lipids were similar to that of the original method but the polar lipid flush was
342 269 extended (Supplementary Information Tables S6 and S7).
343 270
344

345 271 **Conclusion:**

346
347 272 The unusual hydroxylated fatty acid, ricinoleic acid, has been found in lipids from at least 85 plant
348 273 species [45], and engineering of various valuable unusual fatty acids into high yielding crops has been a
349 274 key goal of plant lipid biotechnology [4-12]. To enhance analysis of HFA-containing lipids we have
350 275 developed a PVA-Sil based UV compatible, normal phase HPLC method for the separation of nine
351 276 different neutral lipid classes that include both hydroxy and non-hydroxy lipids, and a polar lipid class
352 277 phosphatidylcholine (PC) that is suitable for detection, fraction collection, or in-line liquid scintillation
353 278 counting as part of *in vivo* metabolic labeling experiments. We have demonstrated the functionality of
354 279 the general method and slight variations, with lipid separations from three HFA accumulation species,
355 280 *Ricinus communis*, *Physaria fendleri*, and engineered *Arabidopsis thaliana*. This method will be
356 281 valuable to characterize plant lipids, and to understand changes in plant metabolism due to unusual fatty
357 282 acid engineering.
358
359 283
360

361 284 **Supplementary Information:** Supplementary Information for this manuscript is available at
362 285

363
364 286 **Funding Disclosures:** This work was supported by the National Science Foundation (MCB #1613923),
365 287 and the United States Department of Agriculture (AFRI #2016-67013-24605).
366
367 288
368

369 289 **References:**

370 290 [1] M. Li, E. Baughman, M.R. Roth, X. Han, R. Welti, X. Wang, Quantitative profiling and pattern
371 291 analysis of triacylglycerol species in *Arabidopsis* seeds by electrospray ionization mass spectrometry, *The*
372 292 *Plant journal : for cell and molecular biology*, 77 (2014) 160-172.
373 293 [2] F.D. Gunstone, J.L. Harwood, A.J. Dijkstra, Editors, *The Lipid Handbook with CD-ROM*, Third
374 294 Edition, CRC Press LLC2007.
375 295 [3] R.C. Badami, K.B. Patil, Structure and occurrence of unusual fatty acids in minor seed oils, *Prog.*
376 296 *Lipid Res.*, 19 (1980) 119-153.
377 297 [4] E.B. Cahoon, J.M. Shockey, C.R. Dietrich, S.K. Gidda, R.T. Mullen, J.M. Dyer, Engineering oilseeds
378 298 for sustainable production of industrial and nutritional feedstocks: solving bottlenecks in fatty acid flux,
379 299 *Current Opinion in Plant Biology*, 10 (2007) 236-244.
380 300 [5] D.J. M., S. Sten, G.A. G., C.A. S., High-value oils from plants, *The Plant Journal*, 54 (2008) 640-655.
381 301 [6] J.A. Napier, I.A. Graham, Tailoring plant lipid composition: designer oilseeds come of age, *Curr.*
382 302 *Opin. Plant Biol.*, 13 (2010) 329-336.
383 303 [7] J.A. Napier, R.P. Haslam, F. Beaudoin, E.B. Cahoon, Understanding and manipulating plant lipid
384 304 composition: Metabolic engineering leads the way, *Current Opinion in Plant Biology*, 19 (2014) 68-75.
385 305 [8] H.R. P., R.L. Noemi, E. Peter, M. Maurice, S. Olga, N.J. A., The modification of plant oil
386 306 composition via metabolic engineering—better nutrition by design, *Plant biotechnology journal*, 11
387 307 (2013) 157-168.
388
389
390
391
392

[9] C.A. S., Y.J. Lindberg, G.A. G., S. Sten, H. Per, Replacing fossil oil with fresh oil – with what and for what?, *European Journal of Lipid Science and Technology*, 113 (2011) 812-831.

[10] V. Thomas, W.C. C., S. Sten, S.S. P., G.A. G., Metabolic engineering of plant oils and waxes for use as industrial feedstocks, *Plant biotechnology journal*, 11 (2013) 197-210.

[11] P.D. Bates, Understanding the control of acyl flux through the lipid metabolic network of plant oil biosynthesis, *Biochim. Biophys. Acta, Mol. Cell Biol. Lipids*, 1861 (2016) 1214-1225.

[12] J.A. Aznar-Moreno, T.P. Durrett, Review: Metabolic engineering of unusual lipids in the synthetic biology era, *Plant Sci. (Shannon, Irel.)*, 263 (2017) 126-131.

[13] P.D. Bates, S.R. Johnson, X. Cao, J. Li, J.-W. Nam, J.G. Jaworski, J.B. Ohlrogge, J. Browse, Fatty acid synthesis is inhibited by inefficient utilization of unusual fatty acids for glycerolipid assembly, *Proc. Natl. Acad. Sci. U. S. A.*, 111 (2014) 1204-1209.

[14] D.K. Allen, P.D. Bates, H. Tjellström, Tracking the metabolic pulse of plant lipid production with isotopic labeling and flux analyses: Past, present and future, *Progress in Lipid Research*, 58 (2015) 97-120.

[15] A. Fauland, H. Köfeler, M. Trötzmüller, A. Knopf, J. Hartler, A. Eberl, C. Chitraju, E. Lankmayr, F. Spener, A comprehensive method for lipid profiling by liquid chromatography-ion cyclotron resonance mass spectrometry, *Journal of Lipid Research*, 52 (2011) 2314-2322.

[16] L.J. Morris, The mechanism of ricinoleic acid biosynthesis in *Ricinuscommunis* seeds, *Biochemical and Biophysical Research Communications*, 29 (1967) 311-315.

[17] K.R. Lee, G.Q. Chen, H.U. Kim, Current progress towards the metabolic engineering of plant seed oil for hydroxy fatty acids production, *Plant cell reports*, 34 (2015) 603-615.

[18] T. Cajka, O. Fiehn, Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry, *Trends in analytical chemistry : TRAC*, 61 (2014) 192-206.

[19] T. Cajka, O. Fiehn, Toward Merging Untargeted and Targeted Methods in Mass Spectrometry-Based Metabolomics and Lipidomics, *Analytical Chemistry*, 88 (2016) 524-545.

[20] P.D. Bates, J. Browse, The pathway of triacylglycerol synthesis through phosphatidylcholine in *Arabidopsis* produces a bottleneck for the accumulation of unusual fatty acids in transgenic seeds, *The Plant Journal*, 68 (2011) 387-399.

[21] J.-T. Lin, G.Q. Chen, Identification of TAG and DAG and their FA Constituents in *Lesquerella (Physaria fendleri)* Oil by HPLC and MS, *J. Am. Oil Chem. Soc.*, 90 (2013) 1819-1829.

[22] W.W. Christie, G. Dobson, Thin-layer chromatography re-visited, *Lipid Technol.*, 11 (1999) 64-66.

[23] M. Holčapek, P. Jandera, J. Fischer, B. Prokeš, Analytical monitoring of the production of biodiesel by high-performance liquid chromatography with various detection methods, *Journal of Chromatography A*, 858 (1999) 13-31.

[24] W.W. Christie, Detectors for high-performance liquid chromatography of lipids with special reference to evaporative light-scattering detection, *Oily Press*, 1992, pp. 239-271.

[25] M. Kiffe, A. Jehle, R. Ruembeli, Combination of High-Performance Liquid Chromatography and Microplate Scintillation Counting for Crop and Animal Metabolism Studies: A Comparison with Classical On-Line and Thin-Layer Chromatography Radioactivity Detection, *Analytical Chemistry*, 75 (2003) 723-730.

[26] A.E. Nassar, Y. Parmentier, M. Martinet, D.Y. Lee, Liquid chromatography-accurate radioisotope counting and microplate scintillation counter technologies in drug metabolism studies, *Journal of chromatographic science*, 42 (2004) 348-353.

[27] J.-T. Lin, C.L. Woodruff, T.A. McKeon, Non-aqueous reversed-phase high-performance liquid chromatography of synthetic triacylglycerols and diacylglycerols, *Journal of Chromatography A*, 782 (1997) 41-48.

[28] W.C. Byrdwell, W.E. Neff, Analysis of hydroxy-containing seed oils using atmospheric pressure chemical ionization mass spectrometry, *J. Liq. Chromatogr. Relat. Technol.*, 21 (1998) 1485-1501.

[29] F.B. Jungalwala, J.E. Evans, R.H. McCluer, High-performance liquid chromatography of phosphatidylcholine and sphingomyelin with detection in the region of 200 nm, *Biochemical Journal*, 155 (1976) 55-60.

449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504

359 [30] W.W. Christie, S. Gill, J. Nordback, Y. Itabashi, S. Sanda, A.R. Slabas, New procedures for rapid
360 screening of leaf lipid components from *Arabidopsis*, *Phytochem. Anal.*, 9 (1998) 53-57.
361 [31] F.S. Deschamps, P. Chaminade, D. Ferrier, A. Baillet, Assessment of the retention properties of
362 poly(vinyl alcohol) stationary phase for lipid class profiling in liquid chromatography, *Journal of*
363 *Chromatography A*, 928 (2001) 127-137.
364 [32] J. Jones, S. Manning, M. Montoya, K. Keller, M. Poenie, Extraction of Algal Lipids and Their
365 Analysis by HPLC and Mass Spectrometry, *J. Am. Oil Chem. Soc.*, 89 (2012) 1371-1381.
366 [33] M. Graeve, D. Janssen, Improved separation and quantification of neutral and polar lipid classes by
367 HPLC-ELSD using a monolithic silica phase: Application to exceptional marine lipids, *Journal of*
368 *Chromatography B*, 877 (2009) 1815-1819.
369 [34] J.R. Yandrasitz, G. Berry, S. Segal, High-performance liquid chromatography of phospholipids with
370 UV detection: optimization of separations on silica, *Journal of Chromatography B: Biomedical Sciences*
371 and Applications, 225 (1981) 319-328.
372 [35] J.G. Hamilton, K. Comai, Separation of neutral lipids and free fatty acids by high-performance liquid
373 chromatography using low wavelength ultraviolet detection, *Journal of Lipid Research*, 25 (1984) 1142-
374 1148.
375 [36] T.L. Kaduce, K.C. Norton, A.A. Spector, A rapid, isocratic method for phospholipid separation by
376 high-performance liquid chromatography, *Journal of Lipid Research*, 24 (1983) 1398-1403.
377 [37] E.J. Lesnfsky, M.S.K. Stoll, P.E. Minkler, C.L. Hoppel, Separation and Quantitation of
378 Phospholipids and Lysophospholipids by High-Performance Liquid Chromatography, *Analytical*
379 *Biochemistry*, 285 (2000) 246-254.
380 [38] J.-T. Lin, J.M. Chen, L.P. Liao, T.A. McKeon, Molecular Species of Acylglycerols Incorporating
381 Radiolabeled Fatty Acids from Castor (*Ricinus communis L.*) Microsomal Incubations, *Journal of*
382 *Agricultural and Food Chemistry*, 50 (2002) 5077-5081.
383 [39] C. Silversand, C. Haux, Improved high-performance liquid chromatographic method for the
384 separation and quantification of lipid classes: application to fish lipids, *J Chromatogr B Biomed Sci Appl*,
385 703 (1997) 7-14.
386 [40] U. Sommer, H. Herscovitz, F.K. Welty, C.E. Costello, LC-MS-based method for the qualitative and
387 quantitative analysis of complex lipid mixtures, *Journal of Lipid Research*, 47 (2006) 804-814.
388 [41] J. Nordback, E. Lundberg, W.W. Christie, Separation of lipid classes from marine particulate
389 material by HPLC on a polyvinyl alcohol-bonded stationary phase using dual-channel evaporative light-
390 scattering detection, *Mar. Chem.*, 60 (1998) 165-175.
391 [42] C. Beermann, A. Green, M. Moebius, J.J. Schmitt, G. Boehm, Lipid class separation by HPLC
392 combined with GC FA analysis: Comparison of seed lipid compositions from different *Brassica napus L.*
393 varieties, *J. Am. Oil Chem. Soc.*, 80 (2003) 747-753.
394 [43] D.R. Kodali, A. Tercyak, D.A. Fahey, D.M. Small, Acyl migration in 1,2-dipalmitoyl-sn-glycerol,
395 *Chem. Phys. Lipids*, 52 (1990) 163-170.
396 [44] H. van Erp, P.D. Bates, J. Burgal, J. Shockey, J. Browse, Castor Phospholipid:Diacylglycerol
397 Acyltransferase Facilitates Efficient Metabolism of Hydroxy Fatty Acids in Transgenic *Arabidopsis*, *Plant*
398 *Physiology*, 155 (2011) 683.
399 [45] J. Ohlrogge, N. Thrower, C. Wilkerson, M. Baxter, W. Yang, K. McGlew, J. Liu, D. Higgin, B.
400 Matthaus, M. Zhang, X. Cheng, C. Li, V. Mhaske, B. Shorrosh, A.W. Tumaney, Plant FA database,
401 <https://plantfadb.org/>, DOI.

505
506
507 404 **Tables**
508
509
510
511 405
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539 406 **Table 1: Gradient for HPLC separation of hydroxy and non-hydroxy neutral lipids**

Time (min)	Flow (mL/min)	%A	%B	%C	%D	Gradient Curve
0.00	1.50	0.5	99.5	0.0	0.0	5
1.00	1.50	1.0	99.0	0.0	0.0	5
4.00	1.50	1.0	99.0	0.0	0.0	5
8.00	1.50	2.5	97.0	0.5	0.0	5
10.00	1.50	2.5	97.0	0.5	0.0	5
12.00	1.50	5.0	94.0	1.0	0.0	5
16.00	1.50	7.0	92.0	1.0	0.0	5
21.00	1.50	99.0	0.0	1.0	0.0	5
22.00	1.50	50.0	0.0	25.0	25.0	5
25.00	1.50	50.0	0.0	25.0	25.0	5
26.00	1.50	100	0.0	0.0	0.0	5
29.00	1.50	100	0.0	0.0	0.0	5
30.00	1.50	0.5	99.5	0.0	0.0	5

$\lambda_{\text{max}} = 210 \text{ nm};$
Equilibration time: 15 min; prior to the start of the run
Equilibration mobile phase flow: 1.5 mL/min;
Equilibration solvent: 0.5% A and 99.5% B
Solvent A = 2-Propanol; **Solvent B** = Hexanes; **Solvent C** = Methanol;
Solvent D = 2-Propanol/Water/Acetic acid (60/40/0.065)
Column compartment: 35 °C; **Sampler Temperature:** 20 °C

540
541
542 407 **Table 2: Retention times of individual neutral lipid classes and PC on PVA-Sil column**
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560

	Lipid Class	tR of standard on UV chromatogram (min)
Peak 1	TAG	3.43
Peak 2	1-HFA TAG	9.90
Peak 3	FFA	11.00
Peak 3	1,3-DAG	11.00
Peak 4	1,2-DAG	12.60
Peak 5	2-HFA TAG	14.64
Peak 6	HFFA	15.57
Peak 7	1-HFA DAG	16.08
Peak 8	3-HFA TAG	16.82
Peak 9	MAG	18.29
Peak 10	2-HFA DAG	19.52
Peak 11	1-HFA MAG	20.29
Peak 9*	PC	25.50

*For PC standard's chromatogram refer to Supplementary Information Figure S1

561
562
563 412
564
565 413
566
567 414
568 **Table 3:** Radio detection method parameters for the analysis of *Arabidopsis* seed extracts

	<i>At Wild Type</i>	<i>At RcPDAT1a</i>
Eluant Flow (mL/min)	1.500	1.500
Scintillant Flow (mL/min)	3.000	3.000
Residence time (Seconds)	6.7	6.7
Injection Solvent	2-PrOH/Hexanes (40/60)	Toluene
Injection volume (µL)	25	10
¹⁴C Activity loaded (DPM)	6612	10730

575
576
577
578 415
579
580 416
581 **Table 4:** Identities of ¹⁴C labeled lipid classes in *Arabidopsis thaliana* wild type seed extract

	Identity	¹⁴ C Count (CPM)	tR on radio chromatogram (min)	tR of standard on UV chromatogram (min)
Peak 1	TAG	2196	3.83	3.43
Peak 2	DAG	1683	12.13	12.60
Peak 3	Unidentified Polar Lipids	378	24.87	n/a
Peak 4	PC	1764	25.83	26.00

581
582
583
584
585
586
587 419
588
589
590
591 420
592 421
593 **Table 5:** Identities of ¹⁴C labeled lipid classes in *Arabidopsis thaliana* *RcPDAT1a* seed extract

	Identity	¹⁴ C Count (CPM)	tR on radio chromatogram (min)	tR of standard on UV chromatogram (min)
Peak 1	TAG	2502	4.08	3.43
Peak 2	1-HFA TAG	1080	10.10	9.90
Peak 3	FFA	1872	11.25	11.00
Peak 4	1,2-DAG	1116	12.83	12.60
Peak 5	2-HFA TAG	468	14.72	14.64
Peak 6	MAG	333	18.50	18.30
Peak 7	1-HFA MAG	459	19.67	20.30
Peak 9	PC	2007	25.15	26.00

617
618
619 427 **Figure Captions**
620

621 428 **Figure 1:** HPLC-UV traces of mixture of castor oil and 18:1 DAG on Betasil Diol-100 (A) and PVA-Sil
622 429 column (B). Identified peaks in **Figure 1** are: **1** – 1, 3-DAG + FFA; **2** – 1, 2-DAG; **3** – 2-HFA TAG; **4** –
623 430 3-HFA TAG.
624

625 431

626 432 **Figure 2:** UV trace of the mixture of hydroxy and non-hydroxy neutral lipid class standards. Identified
627 433 peaks in **Figure 2** are: **1** – TAG; **2** – 1-HFA TAG; **3** – FFA + 1, 3-DAG; **4** – 1, 2-DAG; **5** – 2-HFA TAG;
628 434 **6** – HFFA; **7** – 1-HFA DAG; **8** – 3-HFA TAG; **9** – MAG; **10** – 2-HFA DAG; **11** – 1-HFA MAG.
629

630 435

631

632 436 **Figure 3:** UV (Trace A) and Radio (Trace B) chromatograms of ^{14}C labelled *Arabidopsis thaliana* wild
633 437 type seed extract showing the sensitivity of radio detection. Trace B y-axis is in units of counts per minute
634 438 (CPM). Identified peaks in **Figure 3** are: **1** – TAG; **2** – DAG; **3** – Unidentified; **4** – PC.
635

636 439

637

638 440 **Figure 4:** UV (Trace A) and Radio (Trace B) chromatograms of ^{14}C labeled HFA producing *Arabidopsis*
639 441 *thaliana* *RcPDAT1a* seed extract showing the sensitivity of radio detection. Trace B y-axis is in units of
640 442 counts per minute (CPM). Identified peaks in **Figure 4** are: **1** – TAG; **2** – 1-HFA TAG; **3** – FFA; **4** – 1, 2-
641 443 DAG; **5** – 2-HFA TAG; **6** – MAG; **7** – 1-HFA MAG; **8** – Unidentified; **9** – PC.
642

643 444

644 445

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

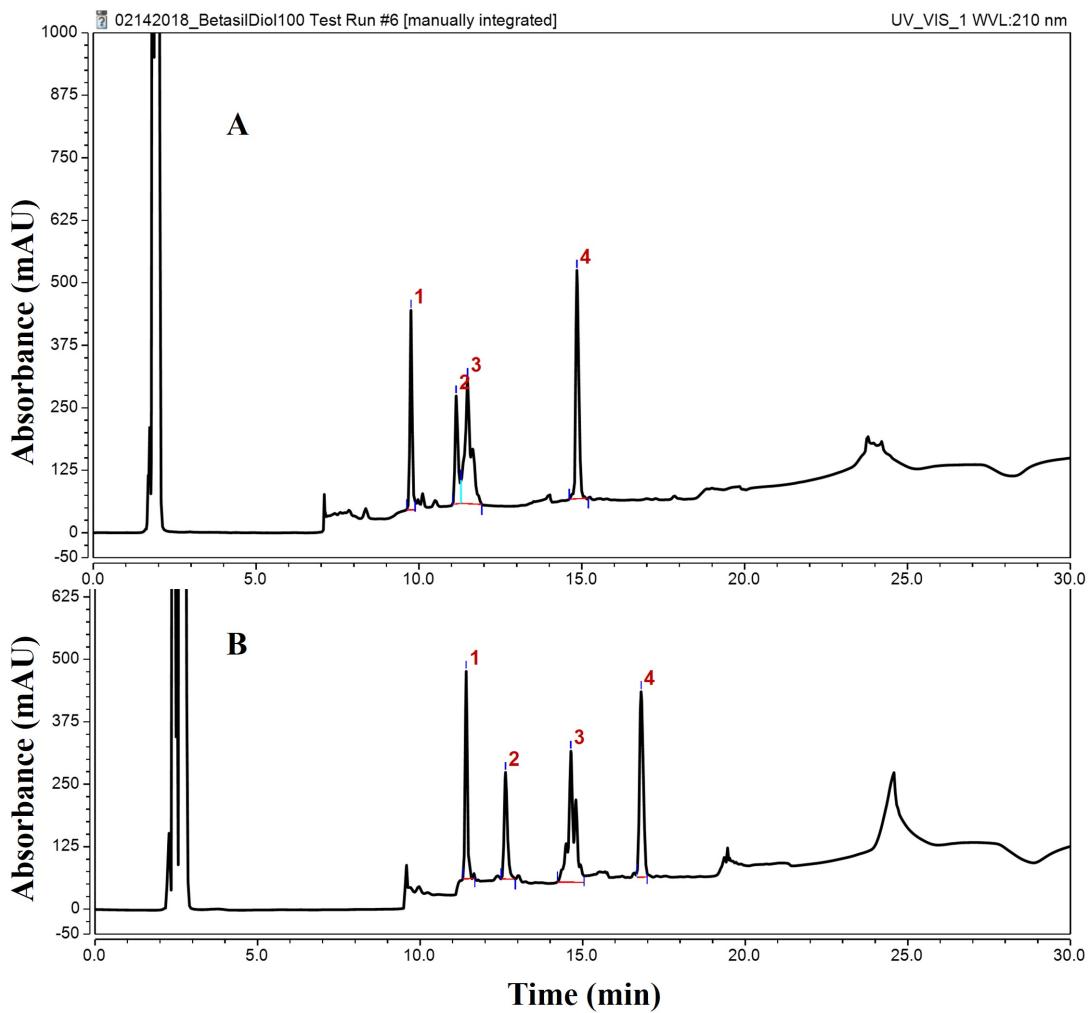
663

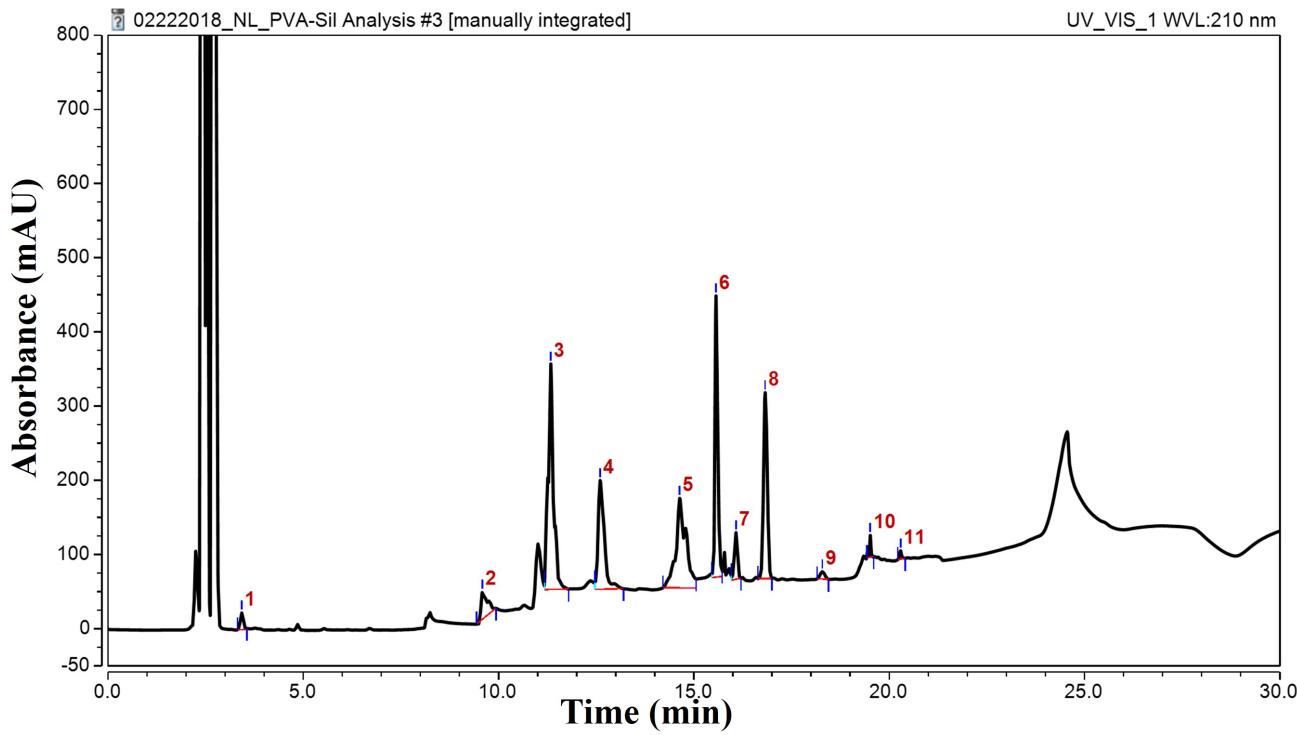
664

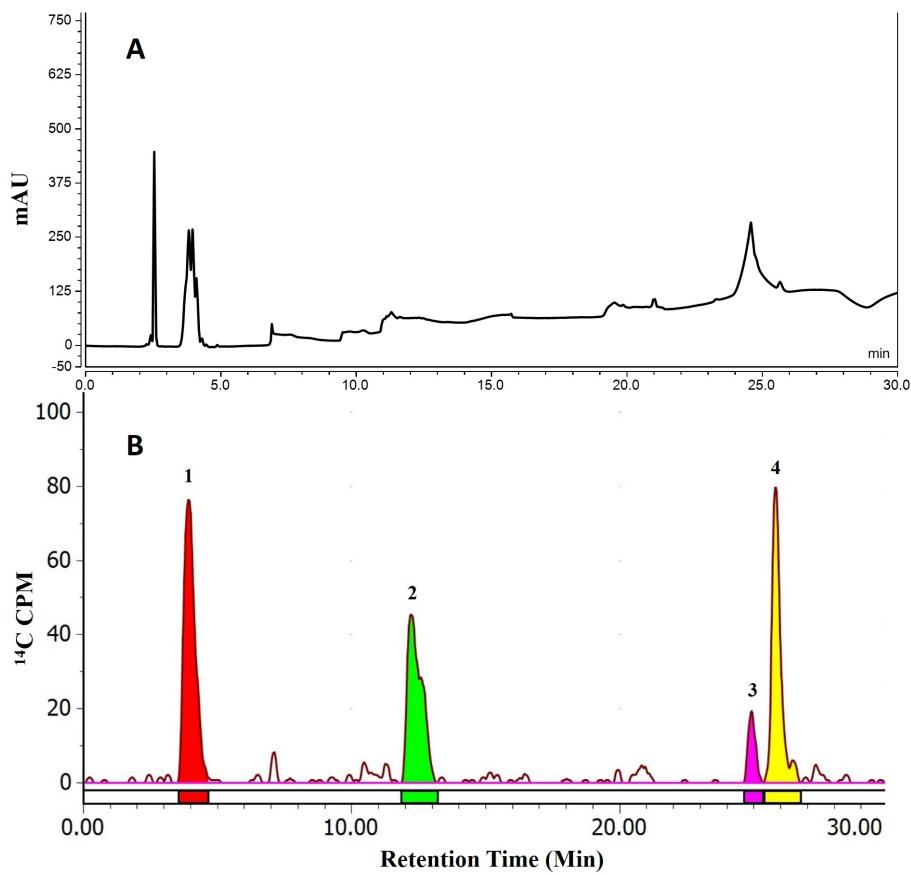
665

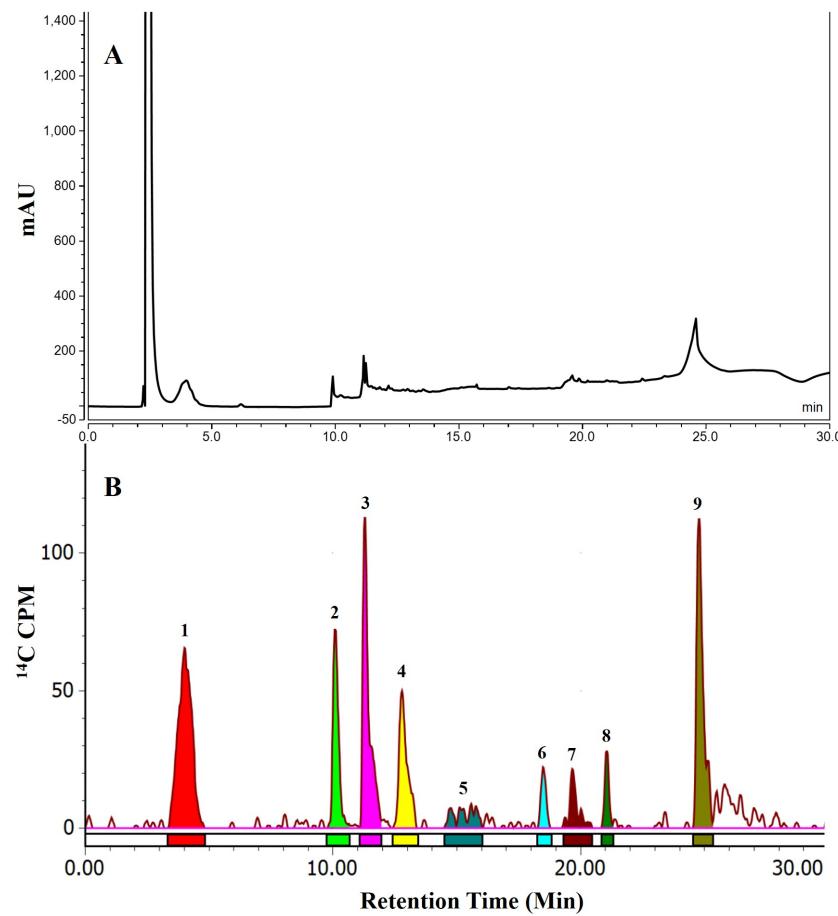
666

667


668

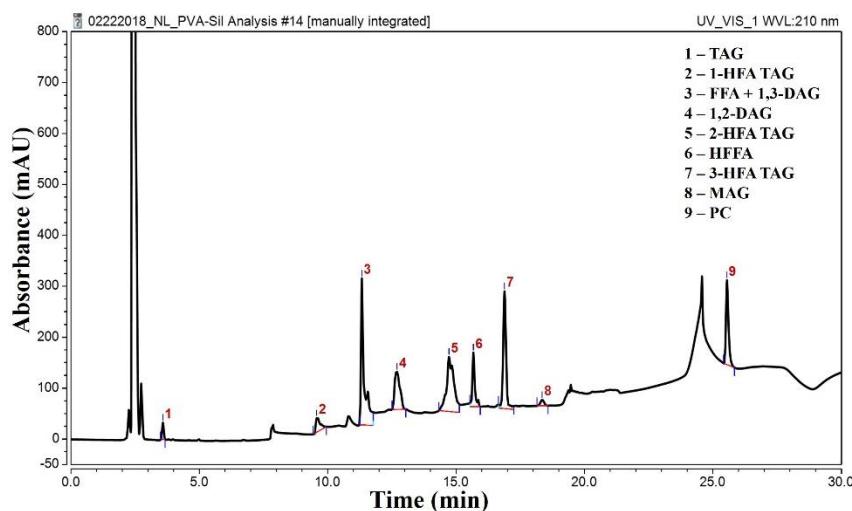

669


670

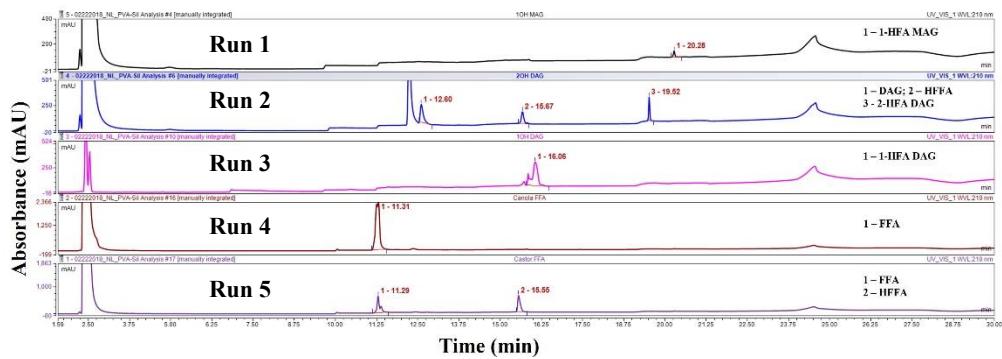

671

672

Supplementary Information


A normal phase high performance liquid chromatography method for the separation of hydroxy and non-hydroxy neutral lipid classes compatible with ultraviolet and in-line liquid scintillation detection of radioisotopes

Hari Kiran Kotapati^{a,b}, Philip D. Bates^{a,b*}


^aDepartment of Chemistry & Biochemistry, The University of Southern Mississippi
118 College Drive, Box # 5043, Hattiesburg, Mississippi-39406, USA

^bInstitute of Biological Chemistry, Clark Hall, Washington State University, Pullman, WA 99164

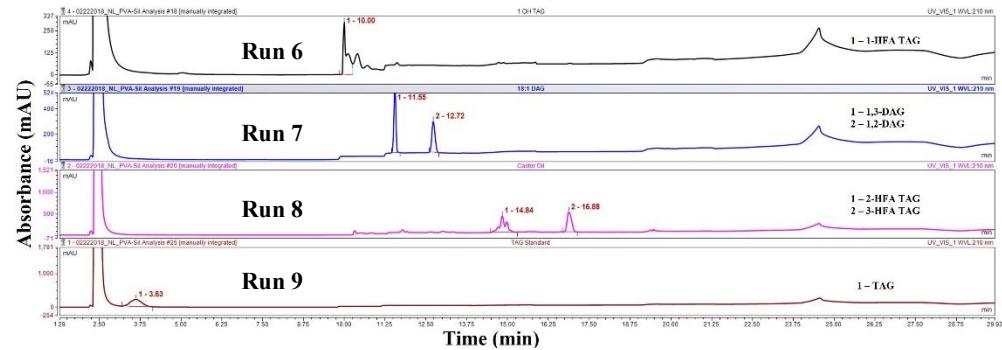

*Correspondence: phil_bates@wsu.edu

Figure S1: HPLC-UV method : UV trace of analysis of neutral lipid standards mixture and PC. Identities of individual standards are in the figure insert. For the method parameters see Table 1 in the article.

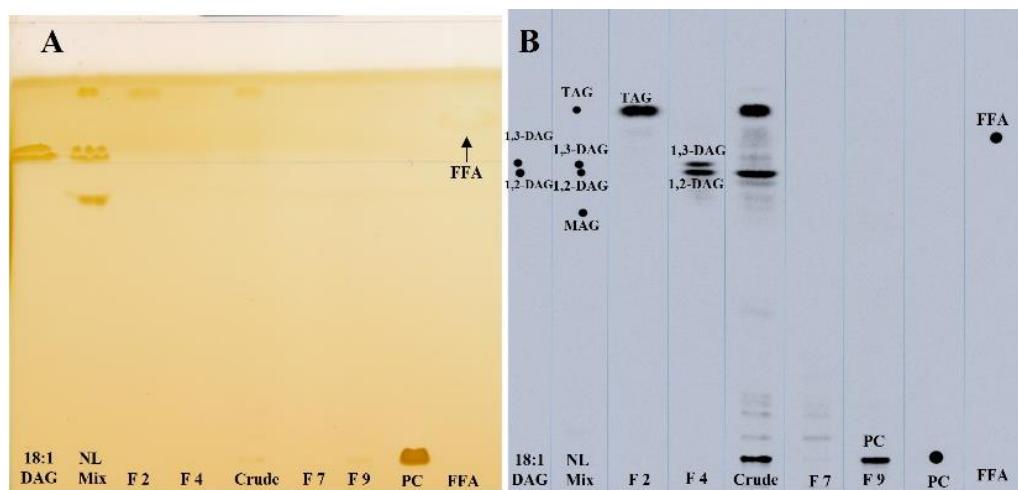

Figure S2.a: HPLC-UV chromatogram of individual neutral lipid standards; 1-HFA MAG (Run 1; $tR=20.28\text{min}$), 2-HFA DAG (Run 2; $tR=19.52\text{min}$), 1-HFA DAG (Run 3; $tR=16.06\text{min}$), FFA (Run 4; $tR=11.31\text{min}$), HFFA (Run 5; $tR=15.55\text{min}$)

Figure S2.b: HPLC-UV chromatogram of individual neutral lipid standards; 1-HFA TAG (Run 6; $tR=10.00\text{min}$), 1,3-DAG (Run 7; $tR=11.55\text{min}$), 1,2-DAG (Run 7; $tR=12.72\text{min}$), 2-HFA TAG (Run 8; $tR=14.84\text{min}$), 3-HFA TAG (Run 8; $tR=16.88\text{min}$), TAG (Run 9; $tR=3.63\text{min}$)

Table S1: Fraction collection parameters for ^{14}C labeled seed extract analysis of wild type *A.thaliana*

Fraction #	Start Collection (Min)	End Collection (Min)
1	0.5	2.5
2	2.9	5
3	5.1	8
4	11.7	13.3
5	14	16.5
6	20	23
7	24.4	25.3
8	25.35	25.5
9	25.55	26.7
10	27	28.5

Figure S3: HPLC-TLC; Iodine stain (A) and Phosphorimaging (B) analysis of ^{14}C lipid extract HPLC fractions of wild type *A.thaliana* (Col-0B)

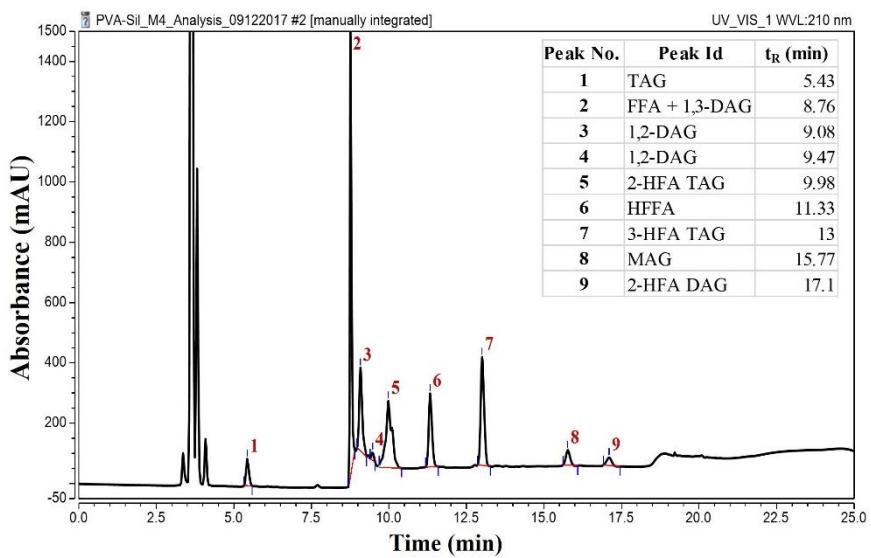
TLC: Dual development method.

Development 1: Chloroform/Methanol/Acetic acid/Water (75/25/4/4, v/v/v/v), 3/4th of plate.

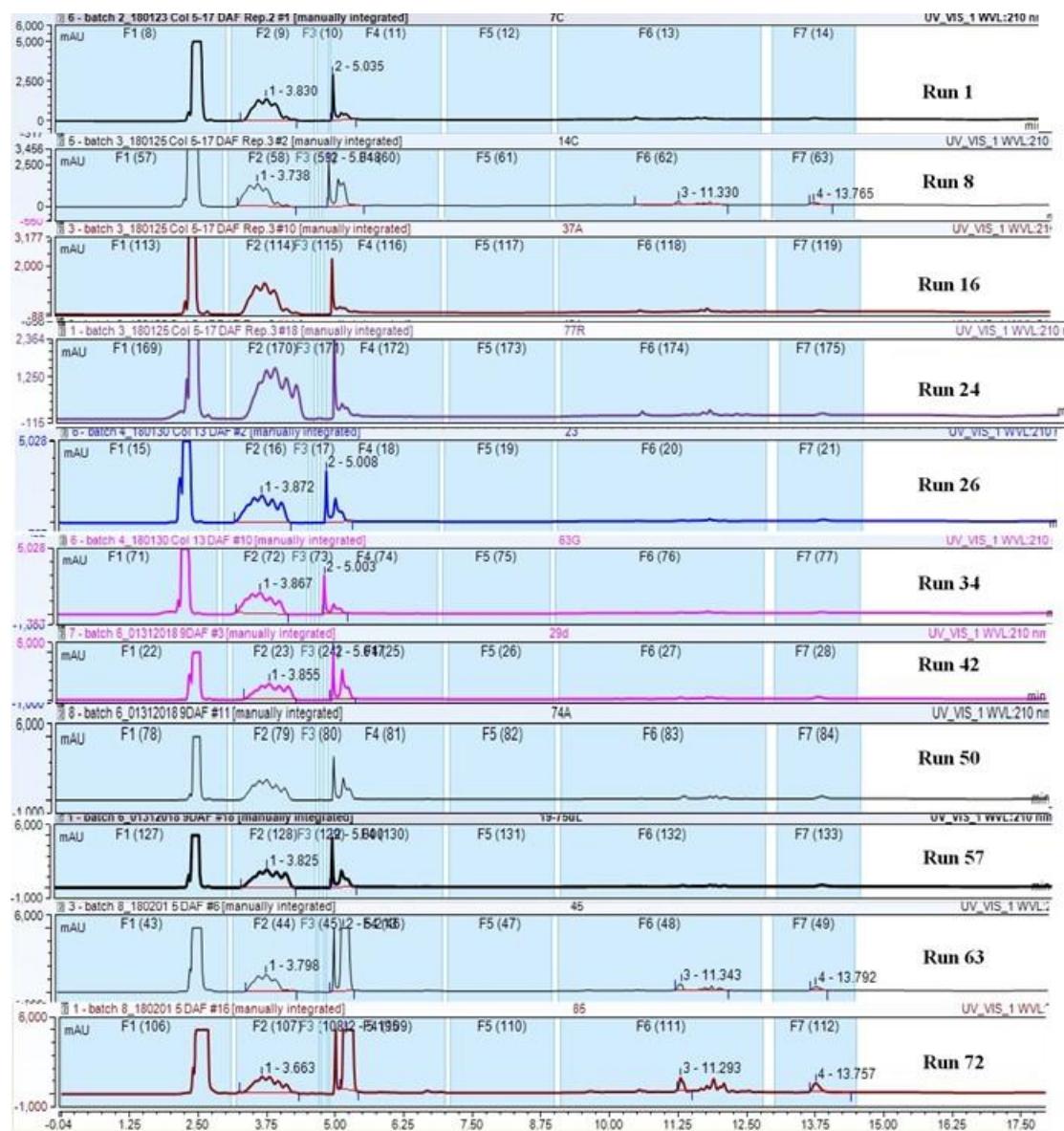
Development 2: Hexanes/Diethyl ether/Acetic acid, (70/30/1, V/V/V) to top of plate.

Table S2: Fraction collection parameters for ^{14}C labeled seed extract analysis of HFA producing *A.thaliana* (*RcPDAT1a*)

Fraction #	Start Collection (Min)	End Collection (Min)
1	1.5	2.9
2	3	5
3	5.2	9.2
4	9.6	10.6
5	10.75	10.95
6	11	12.1
7	12.3	12.4
8	12.5	13.6
9	13.8	14.3
10	14.5	16.5
11	16.65	18
12	18.2	19
13	19.15	19.3
14	19.5	20.65
15	20.75	21.75
16	22	24
17	24.3	25.4
18	25.6	27.5


Figure S4 : HPLC-TLC; Iodine stain (A) and Phosphorimaging (B) analysis of ^{14}C lipid extract HPLC fractions of HFA producing transgenic *A.thaliana* (*RcPDAT1a*)

*TLC protocol adapted from[1]


Table S3: HPLC-UV 1mL/min method; analysis of neutral lipid standards mixture on PVA-Sil column

Time (min)	Flow Rate (mL/min)	%A	%B	Gradient Curve
0.00	1.00	1.5	98.5	5
10.00	1.00	10.0	90.0	5
14.00	1.00	10.0	90.0	5
17.00	1.00	100	0.0	5
20.00	1.00	100	0.0	5
22.00	1.00	1.5	98.5	5
25.00	1.00	1.5	98.5	5

$\lambda_{\text{max}} = 210 \text{ nm}$
Solvent A: 2-Propanol; **Solvent B:** Hexanes
Column Oven Temperature: 35 °C
Sampler Temperature: 20 °C
Equilibration Time: 10 min; prior to start of each run
Equilibration Solvent: 1.5%A : 98.5%B

Figure S5: UV trace of neutral lipid standards mixture using method at 1mL/min mobile phase flow on PVA-Sil column. Identified Peaks and retention times are listed in the figure insert. HPLC method details are in Table S3 above.

Figure S6: HPLC-UV traces of crude silique extract of *A. thaliana* containing non-hydroxy neutral lipids. Lipid classes identified are TAG (Peak 1, Fraction 2, $tR=3.75\text{min}$), and PC (Peak 4, Fraction 7, $tR=13.76\text{min}$)

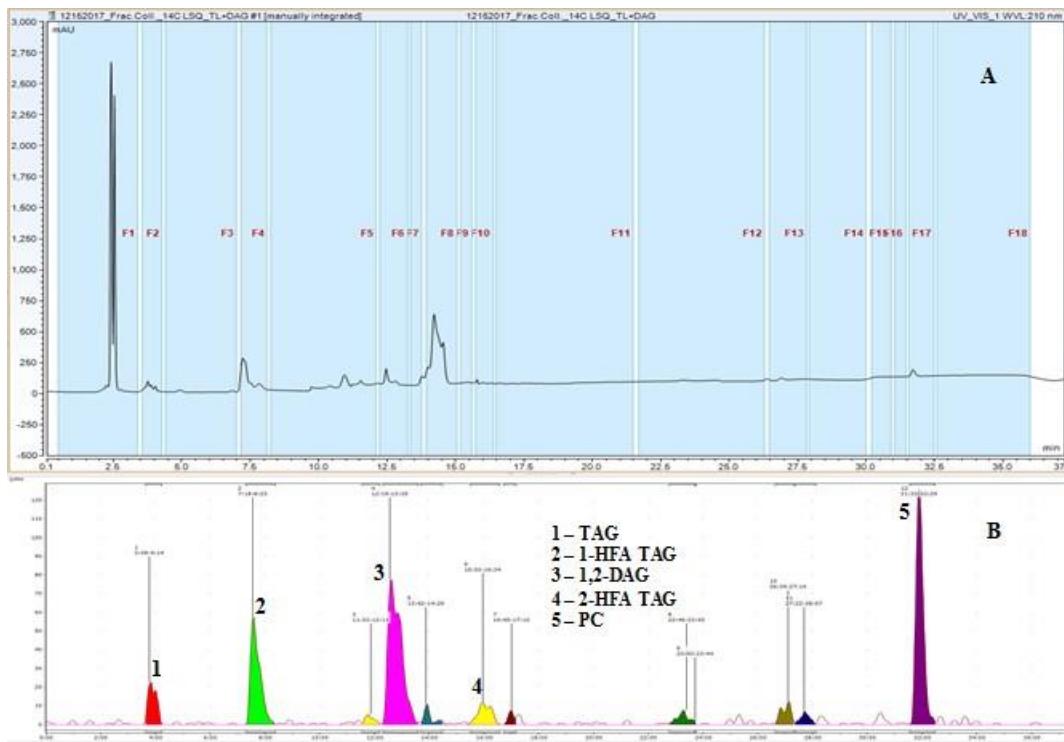
Table S4: Method gradient for HPLC analysis of crude silique extract of non-HFA producing *A.thaliana*

Time (min)	Flow Rate (mL/min)	%A	%B	%C	%D	Gradient Curve
0.00	1.50	0.5	99.5	0	0	5
6.00	1.50	8.0	92.0	0	0	2
7.00	1.50	20.0	78.0	1.0	1.0	5
9.00	1.50	61.0	15.0	12.0	12.0	7
11.00	1.50	50.0	0.0	25.0	25.0	5
13.00	1.50	50.0	0.0	25.0	25.0	5
14.00	1.50	100	0.0	0	0	5
17.00	1.50	100	0.0	0	0	5
18.00	1.50	0.5	99.5	0	0	2

$\lambda_{\text{max}} = 210 \text{ nm}$
Solvent A: 2-Propanol; **Solvent B:** Hexanes; **Solvent C:** Methanol;
Solvent D: 2-Propanol/Water/Acetic Acid (60/40/0.065)
Column Oven Temperature: 35 °C
Sampler Temperature: 20 °C
Equilibration Time: 12 min; prior to start of each run
Equilibration Solvent: 0.5%A : 99.5%B

Table S5: HPLC-fraction Collection parameters of crude silique extract in non-HFA producing *A.thaliana*

Fraction #	Start Collection (Min)	End Collection (Min)	Lipid class in the corresponding fraction
1	0	3.10	-
2	3.20	4.70	TAG
3	4.75	4.85	-
4	4.90	7.00	-
5	7.10	9.00	-
6	9.10	12.80	-
7	13.00	14.50	PC


Table S6: HPLC method parameters for the analysis of ^{14}C labeled *Physaria fendleri* seed extract

Time (min)	Flow Rate (mL/min)	%A	%B	%C	%D	Gradient Curve
0.00	1.50	0.5	99.5	0.0	0.0	5
1.00	1.50	1.0	99.0	0.0	0.0	5
4.00	1.50	1.0	99.0	0.0	0.0	5
8.00	1.50	2.5	97.0	0.5	0.0	5
10.00	1.50	2.5	97.0	0.5	0.0	5
12.00	1.50	5.0	94.0	1.0	0.0	5
16.00	1.50	9.0	90.0	1.0	0.0	5
24.00	1.50	66.0	20.0	7.0	7.0	7
27.00	1.50	66.0	20.0	7.0	7.0	7
31.00	1.50	50.0	0.0	25.0	25.0	2
33.00	1.50	50.0	0.0	25.0	25.0	5
34.00	1.50	100	0.0	0.0	0.0	5
38.00	1.50	100	0.0	0.0	0.0	5
39.00	1.50	0.5	99.5	0.0	0.0	5

$\lambda_{\text{max}} = 210 \text{ nm}$
Solvent A: 2-Propanol; **Solvent B:** Hexanes; **Solvent C:** Methanol;
Solvent D: 2-Propanol/Water/Acetic Acid (60/40/0.065)
Column Oven Temperature: 35 °C
Sampler Temperature: 20 °C
Equilibration Time: 15 min; prior to start of each run
Equilibration Solvent: 0.5%A: 99.5%B

Table S7: Fraction collection parameters for ^{14}C labeled seed extracts of *Physaria fendleri*

Fraction #	Start Collection (Min)	End Collection (Min)
1	0.5	3.40
2	3.55	4.28
3	4.40	7.00
4	7.17	8.12
5	8.25	12.10
6	12.22	13.25
7	13.36	13.78
8	13.92	15.05
9	15.20	15.60
10	15.75	16.37
11	16.50	21.50
12	21.70	26.30
13	26.45	27.82
14	27.93	30.00
15	30.02	30.93
16	31.05	31.45
17	31.57	32.48
18	32.60	36.0

Figure S7: HPLC-UV (A) and Radio (B) traces of ^{14}C labeled seed extract of *Physaria findleri*. Lipid classes on radio chromatogram (Trace B) are TAG (Peak1; $t\text{R}=3.7\text{min}$), 1-HFA TAG(Peak2; $t\text{R}=7.75\text{min}$), 1,2-DAG (Peak3; $t\text{R}=12.5\text{min}$), 2-HFA TAG (Peak 4; $t\text{R}=15.5\text{min}$), PC (Peak5; $t\text{R}=31.75\text{min}$)

Reference:

[1] P.D. Bates, J. Browse, The pathway of triacylglycerol synthesis through phosphatidylcholine in *Arabidopsis* produces a bottleneck for the accumulation of unusual fatty acids in transgenic seeds, *The Plant Journal*, 68 (2011) 387-399.