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Abstract: The resilience of a system is generally defined in terms of its ability to withstand external perturbations, adapt, and rapidly recover.
This paper introduces a probabilistic formulation to predict the recovery process of a system given past recovery data and to estimate the
probability of reaching or exceeding a target value of functionality at any time. A Bayesian inference is used to capture the changes over time
of model parameters as recovery data become available during the work progress. The proposed formulation is general and can be applied to
continuous recovery processes such as those of economic or natural systems, as well as to discrete recovery processes typical of engineering
systems. As an illustration of the proposed formulation, two examples are provided. The paper models the recovery of a reinforced concrete
bridge following seismic damage, as well as the population relocation after the occurrence of a seismic event when no data on the duration of
the recovery are available a priori. DOI: 10.1061/AJRUA6.0001019. © 2019 American Society of Civil Engineers.
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Introduction

Civil infrastructure enable the conveyance of goods, services, and
resources to communities (Corotis 2009; Ellingwood et al. 2016;
Gardoni et al. 2016). Previous disasters have continued to show the
vulnerability of civil infrastructure to natural and anthropogenic
hazards and highlight the significance of risk mitigation and
management (Murphy and Gardoni 2006; Gardoni et al. 2016).
Buildings, bridges, and other structures and infrastructure may
experience extreme natural events such as floods, earthquakes,
and hurricanes, and anthropogenic hazards such as accidents and
terrorist attacks, which may lead to significant damage, making
infrastructure networks inoperative (Gardoni and LaFave 2016).
Previous disasters have highlighted the importance of being pre-
pared and able to recover in a short period (e.g., Bruneau et al.
2003; McAllister 2013; Caverzan and Solomos 2014).

The concept of resilience has gained relevance in the last
15 years as a desirable feature for communities (Bruneau et al.
2003; McAllister 2013; Caverzan and Solomos 2014; Ellingwood
et al. 2016; Guidotti et al. 2016, 2017; Sharma et al. 2018; Gardoni
2018). The relatively recent interest in resilience has resulted in
several definitions of the concept and several approaches to meas-
uring resilience across several application domains. In general,
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resilience is defined as the ability of systems to recover after a
disturbance to the predisturbance state or a new (improved) state
(e.g., Bruneau et al. 2003; Cimellaro et al. 2010a; Bocchini et al.
2012). The US Presidential Policy Directive 21 defines resilience
as the ability to prepare for and adapt to changing conditions and
withstand and recover rapidly from disruptions. Resilience in-
cludes the ability to withstand and recover from deliberate attacks,
accidents, or naturally occurring threats or incidents. (White
House 2013).

A review of the current state of the research can be found in
Koliou et al. (2018). Going beyond the engineering domain, Doorn
et al. (2018) explored how philosophical and social science consid-
erations can be incorporated into a multidisciplinary definition of
resilience to account for social justice. The choice of a defined re-
covery curve plays a key role in resilience analysis in terms of
quantifying the resilience of a system. A recovery curve describes
the behavior of a system as a function of time following the impact
of a hazard as the system recovers to achieve a desired state (of
functionality or of reliability.) In the absence of disrupting shocks
during the recovery phase, the recovery curve is, in general, a non-
decreasing and time-dependent function.

Different studies have attempted to model and define the
recovery curve of engineering systems subject to a hazard
(e.g., Cimellaro et al. 2010b; Deco et al. 2013; Titi et al. 2015).
Recovery curves are usually assumed based on qualitative attrib-
utes, such as the preparedness of the society, that influence the
recovery process. As such, they (1) are not based on the actual
physics of the recovery process, (2) do not account for the under-
lying uncertainties, and (3) are not able to incorporate additional
information as it becomes available (such as ongoing progress
of the work or increased resource availability, which affect the
recovery models and reduce the uncertainty involved.) As a result,
models of recovery typically only provide crude approximations,
and not accounting for the underlying uncertainties makes it impos-
sible to estimate the probability of reaching or exceeding a target
percentile of interest of the ultimate desired state (e.g., a target
value of functionality or reliability). To overcome these limitations,
Sharma et al. (2018) proposed a mathematical formulation for resil-
ience analysis that models recovery curves based on the actual
work plan of activities involved in the recovery process.
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Once a recovery curve is defined, there is a need to define a
metric or a set of metrics of recovery that distinctively characterize
the recovery curve. A typical resilience metric has been defined as
the integral of the recovery curve over a specified interval of time
(Bruneau and Reihnorn 2007; Cimellaro et al. 2010a; Bonstrom
and Corotis 2016). However, such metrics do not uniquely and
fully characterize a recovery curve. Sharma et al. (2018) defined a
set of resilience metrics in analogy with the moments of a ran-
dom variable to quantify the resilience of a system. Sharma et al.’s
(2018) metrics (1) are intuitive because of their analogy with the
moments of a random variable, and (2) define a complete set of
partial descriptors that uniquely and fully characterize a recovery
curve.

This paper contributes to the literature in resilience analysis. In
particular, this paper proposes a probabilistic formulation to predict
a recovery process of a system and then estimate the probability of
reaching or exceeding a target value of functionality (or reliability)
of the system at any given time as the system recovers. The pro-
posed formulation uses Sharma et al.’s (2018) resilience metrics
obtained from historical recovery data to predict possible recov-
ery processes along with their likelihood, as well as estimate the
probability of reaching or exceeding a desired level of recovery
by a desired time. The proposed formulation can be applied to
systems in different fields, i.e., economic, natural, and engineering
systems.

The proposed formulation first defines the joint probability
density function (PDF) of resilience metrics that captures the under-
lying uncertainties. Then, parametrized recovery curves are intro-
duced to model the time-varying recovery process, and the joint
PDF of model parameters is obtained as a function of the joint PDF
of the resilience metrics. The joint PDF of the model parameters
defines the variability in the possible recovery curves, which is used
to estimate the probability of reaching or exceeding a target value
of functionality by conducting a reliability analysis (Ditlevsen and
Madsen 1996; Gardoni 2017). A Bayesian inference is also pro-
posed to include possible information from the field while the work
for the recovery is in progress. Field data are used to update the
predicted recovery curve such that the recovery curve is updated to
reflect the advancement of the actual recovery in the field. Thanks
to the Bayesian updating, the uncertainties in the recovery process
diminish as more data become available.

The main benefits of the proposed formulation are that the
estimates of the recovery curve can be simply defined as a func-
tion of resilience metrics and the modeling can take advantage
of data collected both before and during the recovery process.
The proposed formulation is illustrated considering the recovery
of a typical reinforced concrete (RC) bridge following a seismic
damage, and a population relocation after the occurrence of a
seismic event when no data on the duration of the recovery are
available a priori.

The paper is organized into five sections. The next section gives
a brief review of the mathematical formulations for resilience
analysis. After that, we present the proposed probabilistic formu-
lation. The next section illustrates the proposed formulation con-
sidering the recovery of an example bridge following a seismic
damage. The last section uses the proposed approach considering
the population relocation after a seismic event.

Review of Mathematical Formulations for Resilience
Analysis

Resilience analysis of engineering systems plays a key role in
mitigation planning and allocation of resources in predisturbance
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and postdisruption scenarios (Ellingwood et al. 2016). Resilience

of a system is, in general, defined as its ability to maintain or

promptly resume a level of functionality or performance after a

disruption. What is promptly enough is usually defined based on

the owner’s, customers’ or, more generally, societal needs. A per-
formance measure (e.g., system functionality), typically indicated
as Q(t), can be used to describe the system state as a function of
time ¢ (Cimellaro et al. 2010a; Bocchini et al. 2012; Bonstrom and

Corotis 2016; Sharma et al. 2018). An external shock, such as a

natural or anthropogenic event, might reduce Q(t) instantaneously.

Such a reduction is typically a function of the intensity of the shock,

the system design specifications [which define the system robust-

ness at t = 0 (e.g., Gardoni et al. 2003; Bai et al. 2009)], and the
system state immediately before the shock [which reflects the
deterioration of a system over time and also defines the system ro-
bustness at time ¢ (e.g., Kumar and Gardoni 2014; Kumar et al.

2015; Jia and Gardoni 2018, 2019)]. After a shock, the recovery

process starts to restore the system functionality to a desired level,

which may be below, the same, or better than the predisruption

value (Ayyub 2014, 2015).

Resilience, independently from the field of application, con-
sists of four properties (Bruneau et al. 2003; Tierney and Bruneau
2007):

* robustness, namely the ability to withstand a given level of stress
or demand without suffering degradation or loss of function or,
if a degradation occurs, the residual level of Q(7);

» resourcefulness, interrelated to the ability to diagnose and prior-
itize issues and to initiate solutions by identifying and monitor-
ing all resources;

* redundancy, defined as the extent to which the system and other
elements satisfy and sustain functional requirements in the event
of disturbance; and

* rapidity, defined as the ability to recover in a timely manner to
limit losses and avoid future disruptions.

These four properties define the resilience of a system and
characterize the recovery process.

Recovery curves capture the changes in system functionality
over time and define how the system state improves to achieve a
desired value of functionality at the end of the recovery process.
Different studies have attempted to quantify the resilience of a sys-
tem based on the shape of the recovery curves. As a first attempt to
quantify the resilience of a system, Bruneau et al. (2003) proposed
to measure the resilience as the area underneath the recovery curve.
Chang and Shinozuka (2004) assessed resilience as the probability
that the time needed for the recovery due to a performance loss after
a disruption would be less than a predefined threshold. Garbin
(2007) outlined an approach to quantitatively measure the resil-
ience of a network as the percentage of links and nodes damaged
versus a network performance measure. Bruneau and Reinhorn
(2007) proposed metrics for measuring resiliency based on the
expected degradation in the quality of an infrastructure by quanti-
fying robustness, redundancy, resourcefulness, and rapidity to
recovery.

Although these contributions showed the importance of quan-
tifying resilience in an objective and formal way, the metrics they
define only provide partial information about the actual resilience
and might not be able to distinguish among different resilience
levels [as pointed out by Sharma et al. (2018)]. Uniquely and fully
characterizing the resilience of the system requires capturing all
of the relevant characteristics of the recovery curve. Consequently,
a single metric cannot represent a curve and capture all of its
attributes.

Sharma et al. (2018) showed that existing metrics are not able
to uniquely and fully characterize recovery curves with different
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shapes and might not be able to capture the difference in resilience
levels. To address this issue, they developed a complete set of
resilience metrics able to fully describe the recovery process and
capture the differences in the shapes of different recovery curves.
Sharma et al.’s (2018) resilience metrics are analogous to the par-
tial descriptors commonly adopted in probability and statistics
(e.g., mean, standard deviation, and higher moments of a random
variable.) The recovery curve Q(t), which Sharma et al. (2018)
called the cumulative resilience function (CRF) in analogy with
the cumulative distribution function (CDF) of a random variable,
represents the overall recovery process as a function of time. If the
CRF is a continuous and differentiable function of the time, it is
possible to describe the instantaneous rate of recovery as the resil-
ience density function (RDF) ¢, defined as the time derivative of
the CRF (in analogy with the definition of the PDF of a random
variable). If the CRF is not continuous and differentiable, it is pos-
sible to define a resilience mass function (RMF) that describes
the instantaneous change of the recovery occurring as a stepwise
function [in analogy with the probability mass function (PMF) of a
random variable].

Based on these definitions, Sharma et al. (2018) introduced a set
of resilience metrics to capture the specific characteristics of the
recovery process in analogy to the moments of random variables.
In analogy to the mean and standard deviation of a random vari-
ables, Sharma et al. (2018) defined the center of resilience p and the
resilience bandwidth y as two fundamental partial descriptors. The
definition of these metrics is general and can be systematically ex-
tended to higher order metrics to fully characterize any Q(r). The
metric p defines where the recovery curve is centered with respect
to the time of the initial shock. In addition, Sharma et al. (2018) also
introduced the resilience quantile p,,, which is the time instant
corresponding to the wth (0 £ w < 1) quantile of the CRF. Math-
ematically, the recovery quantile can be written p,, :== min{s € [0,
Tl:w<[0(1)/Q(Tg)]}, where Ty is the recovery time [i.e., the
time needed to reach a desired final level of Q(7)]. The metric
x gives the breath of the recovery process, where small values re-
present a situation in which a significant percentage of the recovery
process is completed over a short period concentrated around p. By
contrast, a large value of x captures a recovery process spread over
a prolonged period of time.

To further characterize the recovery curve, Sharma et al. (2018)
also introduced the skewness of the recovery, 1. If ¢ = 0, the re-
covery progress is symmetric about p (i.e., the recovery process has
the same pace before and after p.) If i) < 0, the process is slower
during the initial phases (i.e., in the interval [0, p]) and then it be-
comes faster over the next period (p, Tg], which is the most typical
case for recovery processes that include a lengthy planning phase
in the postdisruption period. If planning is done ahead of the dis-
ruptive event as a predisruption planning and preparation, then
1) > 0. In this case, the recovery progress picks up quickly, and
the relatively most time-consuming portion is the completion of the
repairs/reconstruction (i.e., faster in the interval [0, p] and slower in
the interval (p, Tg)).

Finally, to uniquely and fully characterize the recovery curve,
Sharma et al. (2018) also introduced higher-order partial descrip-
tors (in analogy with higher-order moments of a random variable).
However, in most cases, p and x are sufficient to characterize a
recovery process. Based on Sharma et al. (2018), the center of resil-
ience can be written

Likewise, the resilience bandwidth can be written

2 _Jo" (7 =p)q(r)dr
T e 2

Finally, as a generalization, the nth recovery moment can be
written

) . fOTR q(T)dT

= 3
Jo®a(r)dr v

Proposed Probabilistic Formulation

This section explains the proposed probabilistic formulation to
develop recovery curves accounting for the relevant uncertainties
and estimate the probability of reaching or exceeding a target level
of functionality at any time.

Work progress for civil structures and infrastructure typically
advances continuously, or near-continuously, over time (Klinger
and Susong 2006; Gardoni et al. 2007), whereas the system state
changes only at completion of a group of activities (Sharma et al.
2018). As aresult, the functionality of a system typically changes in
a stepwise fashion with discrete increments at the completion of
each group of activities. Besides civil structures and infrastructure,
or more generally, engineering systems, the recovery might be a
continuous function of time when dealing with the restoration of
natural systems, such as the recovery and resilience of tropical for-
ests (Cole et al. 2014; van Leeuwen 2008), or the Gross Domestic
Product (GDP) as a monetary measure of the market value of
all final goods and services produced in a period to quantify the
economic performance of a whole country or region. The proposed
methodology is general and allows to estimate processes described
either by discrete or continuous recovery curves.

The proposed formulation has the following five steps:

1. Obtain the joint PDF of the Sharma et al.’s (2018) resilience
metrics.

2. Obtain the joint PDF of the model parameters of the recov-
ery curve.

3. Obtain point and predictive estimates of the recovery curve and
confidence bounds.

4. Estimate the probability of reaching or exceeding a target
percentile of interest of the ultimate desired state.

5. Update the model parameters as new data become available.

Obtaining the Joint PDF of the Resilience Metrics

The first step of the proposed formulation consists in collecting
historical recovery data for the system of interest, and with them,
obtaining estimates of the statistics (means, standard deviations,
and correlation coefficients) and marginal PDFs of Sharma et al.’s
(2018) resilience metrics (reviewed in the previous section). Based
on the obtained statistics and marginal PDFs, we can then construct
the joint PDF of the resilience metrics using a Nataf formulation
(Liu and Der Kiureghian 1986). Let fp(p), fx(X), up to fpm (p™)
be the marginal PDFs of Sharma et al.’s (2018) resilience metrics,
and let r;; be the estimated correlation coefficients between the ith
and jth resilience metric. Following the Nataf formulation, the joint
PDF of the resilience metrics is

(pf’l(z’R,) ( )
o(z1)p(z2)s - -+ o(zn)

fop) = fe(p)fx(x), - fpm (P("))

Tr

Tq(T)dT

= fOTRA (1) where z; = ®'[Fp (p;)]; ¢(-) = standard normal PDF; and
Jo" a(r)ar ©,(z,R") = n-dimensional standard normal PDF with correlation
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matrix R’. The elements r}; in the correlation matrix R’ are ob-
tained based on the correlation coefficients r;; through the integral

rij //(p( “)(() uj)f,,m(P(i))fp<f)(P<j))

<P2(Zis Zjs rij

(z)¢(z))

/ / <p< )(( jMj)ﬁpz(z,-,z_,-,r/j)dz,-dz_,- (5)

If historical recovery data for the system of interest are not avail-
able, one can choose a distribution that either reflect some degree of
judgement and experience, or a distribution with minimal informa-
tion (i.e., a noninformative distribution as usually done in Bayesian
inference) to reflect the fact that little or no information is avail-
able a priori. In addition, the Bayesian inference (discussed later
in “Updating the Model Parameters as New Data Become Avail-
able” section) can be used to update the state of knowledge every
time new knowledge becomes available (i.e., recovery data are
collected as the recovery unfolds) (Box and Tiao 1992).

(i) dpm

Obtaining the Joint PDF of the Model Parameters of
the Recovery Curve

The second step consists of introducing parametrized recovery
curves to describe the recovery process over time. In general, the
functional form of the selected parametrized recovery curve may
affect the time-varying recovery process of a general performance
measure. However, one can choose the parametrized recovery
curve based on engineering judgement and experience of the prob-
lem. In addition, one can use flexible functional forms, such that
the recovery curve can be updated as the actual recovery progresses
and data become available. Examples of parametrized recovery
curves have been given by Gardoni et al. (2007) and Ayyub (2015).
A parametrized CRF describes the time-varying recovery process
of a general performance measure in the following form:

T[Q(®,7)] = Q(0,7) + oe (6)
where T[] = transformation function; ® = (0,0); 6 = (6,
65, ...,0,) is a vector of unknown model parameters associated

with Q that needs to be estimated; and oe = additive model error
term of Q (additivity assumption), in which o is the standard
deviation of the model error, assumed not to depend on 7 (homo-
skedasticity assumption) and ¢ is a standard normal random
variable (normality assumption). The additivity, normality, and
homoskedasticity assumptions typically can be satisfied using an
appropriate variance-stabilizing transformation from the parame-
trized family of transformations introduced by Box and Cox
(1964).

The joint PDF of the unknown model parameters ® are then
defined based on the joint PDF of the resilience metrics (Hogg
et al. 2012; Ang and Tang 2006). Let the set (p, x, ... ,p(")) have

fo(61.0. ....0,) = {0

Eq. (11) represents the state of knowledge on the model parameters 6 = (6, ...

fe[kl(el,az, ...,9’1), ey

a jointly continuous distribution with PDF fp(p, X, ...,p")) on a
defined support set C. According to the definition of the resil-
ience metrics, the resilience metrics are a function of the model
parameters 6 = (0, ..., 0,) in the support set D, such that p =
kl(el, ...,gn), X = k2(91, ...,Gn), up to p(n) = k,,(@l, ...,0,,),
where the generic ith function k;(0,, ..., #6,) represents the expres-
sion of the ith resilience metric pm based on Eqgs. (1)-(3), after
introducing a parametrized recovery curve according to Eq. (6).
We first evaluate the n x n Jacobian given by

o)
20, 96, o8,
o ox Ox
J — 891 892 80,, (7)
ap<”) ap(”) ap<”)
|90, 06, " o0, |

Then, consider two subsets of the supports, named A and B,
respectively, where B denotes the mapping of A under a one-to-one
transformation. Due to the conservation of the probability, the event
{(p,X, ..., p") € A} is equivalent to the event {(6;,6,, ...,
0,) € B}. Therefore, one can write

P[(0.65.....0,) €B]=P[(p.x. ....p") € A]

:/ AfP(P,X, <. p"™)dpdx. ....dp™"

(8)

We change variables of integration by  writing

1 =hi(p.x. - p™), Oy =hy(p.x. ... p™), up to 6, =
h,(p. X, - ... p"™) such that

/ Afp(p,x, o pM)dpdy, ... dp™

:/ /Bfe[k1(91,92,...,On),k2(91,92,...,9,1), ceey

k(01,05 ....0,)]|3|d0,db,. ....d6, (9)

Therefore, for every set B € D, we can write

P[(6,.0,. ....0,) € B]
/ /f(, (01020 .. 0,).k2(01.0ns ... 0,). ...
k(01,05 ....0,)]|3|d0\d0,. . ... db, (10)

It can be concluded that the joint PDF of interest fg(6,,
92, . ,0,1) is

ky (01,05, ... 01|13 (01,6, ...

elsewhere

.0,) €D (1)

,0,). We can now derive the expected recovery curve and

the related uncertainties based on the distribution of the parameters in Eq. (6).
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Performance measure Q (7)

Time, 7

Fig. 1. Confidence bounds (90%) on the estimate of the recovery
curve.

Obtaining Point and Predictive Estimates of the
Recovery Curve and Confidence Bounds

Different estimates of the recovery curves can be obtained depend-
ing on how we treat the model parameters. Following Gardoni et al.
(2002), we can obtain point estimates or predictive estimates. A
point estimate of the recovery curve is obtained using a point es-
timate of © in place of @. In general, the mean value of ® or the
maximum likelihood estimate (MLE) @y g can be used. However,
the point estimate does not incorporate the epistemic (statistical)
uncertainties in the model parameters @. To incorporate these un-
certainties, we need to consider ® as a random variable. The pre-
dictive estimate of the recovery curve is then the expected value
of the recovery curve over the space of the model parameters,
i.e., as follows:

o) = / 0(0.7)/(©)d® (12)

This estimate incorporates the epistemic uncertainties in the
model parameters @. In addition, one can construct probability
bounds on the recovery curve using the PDF of the model param-
eters, as illustratively shown in Fig. 1.

Estimating the Probability of Reaching or Exceeding
a Target Percentile of Interest of the Ultimate
Desired State

Once Q(®, 7) is obtained, we can estimate the probability of reach-
ing or exceeding a target value of Q by reliability analysis
(Ditlevsen and Madsen 1996; Gardoni 2017). We can write a
limit-state function ¢(@®, 7) as

9(0.7) = 0(0,7) - Or (13)

where Q7 = level of performance desired to reach or exceed,
expressed as a percentile of the ultimate desired state, Q..
Mathematically, we can write the probability that the recovery
process is above Q7 at a time 7, H(@®, 1), as follows:
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H(®.7) = 1—P[g(®.7) <0] (14)

Fig. 2 shows a conceptual representation of Q(@®, 7) and corre-
sponding H (@, 7) over time. Following Gardoni et al. (2002), we
can construct a point estimate of H(7), a predictive estimate, as
well as confidence bounds as previously proposed for the recovery
curve. Hence, we can define the point estimate of the probability
that the recovery process is above Q7 at a time 7 using a point
estimate of © in place of ©, whereas the predictive estimate
H (7) is defined taking the expected value of the quantity of interest
over the space of the model parameters, in the same way as pre-
viously shown for the recovery curve. Furthermore, we obtain con-
fidence bounds on the estimate in Eq. (14). We can define the
reliability index as

B(O.7) = &' [H(O.7)] (15)

where ®~!(-) = inverse of the standard normal CDF. Following
Gardoni et al. (2002), the variance of 3(0, 7) can be estimated as

o3(1) ~ VeB(1)Zee Ves(1)" (16)

where Vg3(7) is the gradient of 5(@,7) evaluated at the mean
value; and Zgg is the estimated covariance matrix. The gradient
vector V3(7) is obtained by performing a first-order reliability
method (FORM) analysis (Ditlevsen and Madsen 1996). Therefore,
we obtain:

{@[=B(r) = 05(n)]. B[-B(7) + 05(7)]} (17)

as one standard deviation bounds, where (3(7) = & ![H(T)].
The bounds represent approximately 15% and 85% probability
levels.

Updating the Model Parameters as New Data Become
Available

Finally, Bayesian inference can be used to update the model param-
eters ® combining existing information with new information as
it might become available during the actual recovery process
(Gardoni et al. 2007). Steps 3 and 4 can then be repeated to obtain

Qr

Performance measure Q (1)

v

Time, 7

Fig. 2. Conceptual representation of probability of reaching or exceed-
ing a target value of functionality at any time.

ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.

ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng., 2019, 5(4): 04019013



Downloaded from ascelibrary.org by University of Illinois At Urbana on 09/02/20. Copyright ASCE. For personal use only; all rights reserved.

updated recovery curves and updated probabilities of reaching or
exceeding a desired level Q7. Mathematically, the posterior distri-
bution f'/(0®) that includes the updated status of knowledge about
O can be written (Box and Tiao 1992)

["(01Q) = £L(8]Q)f'(©) (18)

where L(0®|Q) = likelihood function that contains the objective in-
formation on @ in a set of observations; f'(@) = prior distribution
reflecting the state of knowledge about ® prior to obtaining the
observations Q = (Qy, ..., 0,); and £ = [[L(0©]Q)f(©)dO]!
is a normalizing factor.

The prior distribution includes the status of knowledge based on
previous experiences, engineering judgments, and/or prior data.
The likelihood function is proportional to the conditional probabil-
ity of observing the recorded data Q = (Qy, ..., Q,,) for given
values of the parameters ©. In general, the likelihood function per-
mits inclusion of lower, upper, and equality data (Gardoni et al.
2002). A lower-bound datum is defined as an observation of Q that
is larger than a certain value Q; at time 7, an upper-bound datum is
defined as an observation that is smaller than a certain value Q; at
time 7, and an equality datum is defined as the value of Q recorded
at time 7. Following Gardoni et al. (2002), the likelihood function
can be written

L®.0) o ] Plosi=0,—0(0.7)]
equality
data
x I
lower-bound
data
< ]I
upper-bound
data

Ploe; > Q; — Q(0.7)]

Plos;<Q;—0Q(0.7)]  (19)

Based on the normality assumption, we can then write

o 1 o220

equality
data

L)

lower-bound
data

L) e

upper-bound
data

where ¢(-) = standard normal PDF; and ®(-) = standard nor-
mal CDF.

Egs. (18)—(20) can be used every time additional information is
available to update the model parameters. For instance, when a set
of samples Q; is available, one can write

["(01Q) x L(0|Q,)'(®) (1)

Then, suppose another set of samples Q, is available, and this
is independent from the previous one. Then, the posterior PDF
evaluated in Eq. (21) can be updated such that

© ASCE

04019013-6

11(01Q1.Q,) x L(©]Q)L(©]Q,)f'(©) o L(B]Q,)f"(8]Q))
(22)

Generally, if n independent sets of observations are available,
we can write

f(kJrl)(@lQh "'»Qk)
« L(OQ)fN(O[Q;, ....Qy)  k=2,....n (23)

Field measurements can often be inexact and include measure-
ment errors (Gardoni et al. 2002; Murphy et al. 2011). Following
Gardoni et al. (2002), measurement errors can be incorporated in
the updating process. To incorporate the measurements errors in the
updating process, assume that Q; = 0; + eg, is the true value of
the ith observation, where Q; represents the measured value and e,
is the measurement error. Further assume that ey, has zero mean,
which reflects that the measurements have been corrected from any
systematic errors, and variance 57, which represents the uncertain-
ties inherent in the measurements. For the equality data, Q; +
eg, = Q(0.7) + 0c;. For the lower-bound data, Q,- +ep, <
Q(0,7) + oe;. For the upper-bound data, Q; +eo > Q(0,7) +
oe;. Therefore, the conditions for the three type of data can be,
respectively, written o¢; — ey, = Qi —-Q(0,7), og; — ep, > Qi -
Q(0,7),and o¢; — e, < Q; — Q(0, 7). The left-hand sides of these
expressions are a normal random variable with zero mean and vari-
ance 6%(0,0) = 0> + s?. Hence, in presence of measurement
errors, the likelihood function is

1 -Qi —0(0.7)
L(8.0) H {&(0, o) 7 L 6(8.0) } }
equality
data
I Qi - Q(ﬂ, T)} }
« Q| —=—F=
lowegound{ 5(8.9)
data
[0; —0(0, T)] }
« H {@ B — (24)
upper-bound 5(6.0)
data

Example 1: Recovery Curves for an Example Bridge

This section presents the proposed formulation considering the
recovery process of a typical RC bridge subject to seismic excita-
tions. The first example demonstrates the application of the formu-
lation in a realistic case related to civil structures in support of risk
and resilience analysis.

It was previously discussed that for civil structures, the work
progress is a continuous, or near-continuous, function, whereas a
discrete function describes the performance indicators (e.g., func-
tionality) with jumps when a group of activities is completed. This
section illustrates the proposed formulation applied to a RC bridge.
Fig. 3 shows the configuration of the considered (single-column,
single-bent) testbed bridge from Kumar and Gardoni (2014) and
Jia et al. (2017). Following the proposed formulation, we obtain
the estimates of the first two resilience metrics to describe the re-
covery process of the selected engineering system. Fig. 4 shows the
pair (p, x) used in this example and their correlation. Based on the
data in Fig. 4, we assume that both p and y follow a lognormal
distribution, whose parameters are listed in Table 1.
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Fig. 3. Considered RC bridge. (Adapted from Jia et al. 2017.)
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Fig. 4. Correlation between the adopted resilience metrics.

Table 1. Distribution parameters of the resilience metrics

Resilience metric A I3
p —0.94 0.22
X 1.14 0.20

Then, based on the estimated coefficient of correlation and the
marginal PDFs, we can construct the joint PDF of the resilience
metrics as described in “Obtaining the Joint PDF of the Resilience
Metrics” section. Next, we introduce a parametrized recovery curve
to describe the changes of a selected performance measure over
time. The performance indicator considered in this example is
the reliability index (3. Moreover, in this example, we assume that
there is only one recovery step that restores the reliability of the
bridge, as described in Sharma et al. (2018). Consequently, we
consider the recovery curve in the following form:

0,(0.7) = { Tl 25)

Qoo 7_292
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Fig. 5. RMF of the adopted parametrized recovery curve.

where 6; = residual reliability index after the occurrence of the
hazard but before the completion of the recovery; and 6, = time at
which the reliability index reaches the ultimate desired value Q..
To model the reliability, reliability-based resilience metrics coming
from previous analyses are considered. Thus, there is no need to
model the occurrence of the earthquake mainshock-aftershocks se-
quence and their impact on structural properties because the resil-
ience metrics capture all such information. Based on the definition
of the resilience metrics in Egs. (1) and (2), the parameters #; and 6,
can be written as a function of the resilience metrics. Specifically,
Fig. 5 shows the RMF of the adopted parametrized curve. Follow-
ing the proposed methodology, we compute the joint PDF of the
model parameters and the corresponding expected recovery process
in terms of the reliability index /3. The number of resilience metrics
needed in order to adopt the formulation is at least equal to the
number of the model parameters of the selected parametrized re-
covery curve. Therefore, considering the possibility of having a
drop in the functionality during the recovery process due to after-
shocks would require implying higher-resilience metrics. Next, we
estimate the probability of reaching or exceeding a target value of
functionality at any time setting, for instance, Q7 = 3.5.

Initial Estimate of the Recovery Curve and
Corresponding Probability of Exceeding the
Target Value of Functionality

As previously discussed, this example assumes that there is only
one recovery step that restores the reliability of the bridge. Never-
theless, we can also estimate the behavior of the system toward the
desired value of the functionality at the end of the recovery in terms
of the mean value of the different probable recovery curves. Fig. 6
shows the expected changes of the instantaneous reliability index
over time. Adopting the reliability-based definitions for the damage
state proposed in Sharma et al. (2018), the initial damage level is
moderate.

Fig. 7 shows the probability of exceeding the target value of Q7.
The figure also presents the confidence band due to the statistical
uncertainty in @. Based on the expected initial value of the reliabil-
ity index, we can observe that the probability of exceeding the
target value of functionality, Q7 = 3.5, at time 7 = 25 days, is
equal to 0.5. The observed result matches the results provided by
Sharma et al. (2018), where the expected value of the time to
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Fig. 6. Mean value and corresponding 95% confidence band of the
recovery curve.
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Fig. 7. Probability of exceeding the selected value of Q7 = 3.5.

recover is approximately 26 days when the initial damage level is
moderate.

Updated Estimate of the Recovery Curve and
Corresponding Probability of Exceeding the
Target Value of Functionality

‘We assume that after the occurrence of the hazard, we collect data
on the state of damage for the first 10 days, and then we update the
model parameters. In the presented example, it is assumed that in-
spection data are collected after the occurrence of the hazard. Spe-
cifically, we assume that a qualitative description of the damage
state indicates moderate damage following the definition in Ap-
plied Technology Council (ATC)-38 (ATC 2000) and Bai et al.
(2009), i.e., “repairable structural damage has occurred. The
existing elements can be repaired in place, without substantial dem-
olition or replacement of elements.”

Then, the qualitative definition of the damage state is mapped
into a reliability-based definition in terms of the corresponding
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Fig. 8. Mean value and corresponding 95% confidence band of the
recovery curve after updating the model parameters.
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Fig. 9. Probability of exceeding the selected value of Q7 = 3.5 after
updating the model parameters.

reliability index g (i.e., 1.5 <3 <2.5) following Sharma et al.
(2018). As a result, we obtain the new expected changes in the
reliability index and corresponding time-varying probability of ex-
ceeding the same target value of functionality, as shown in Figs. 8
and 9. Fig. 8 shows the expected changes of the reliability index
over time after updating the model parameters based on the ob-
served data. First, we can observe that the recovery process follows
the observed data in terms of its mean; then, the Bayesian inference
also reduces the relevant uncertainties. The probability of exceed-
ing the target value of functionality reflects both the effects of the
Bayesian inference.

Example 2: Population Relocation after a Seismic
Event

The second example shows the application of the formulation
in a scenario where historical recovery data are not available.

ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.

ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng., 2019, 5(4): 04019013



Downloaded from ascelibrary.org by University of Illinois At Urbana on 09/02/20. Copyright ASCE. For personal use only; all rights reserved.

0 50 100 150 200 250 300 350
(a) Time, [day]

Fitted !

0.2r values(

1
1
01} |
1
1
1

0 50 100 150 200 250 300 350
(b) Time,r [day]

Fig. 10. Mean value and corresponding 95% confidence band of the population dislocation recovery curve: (a) before and (b) after updating the

model parameters.

This example considers the population relocation of the city of
Seaside, Oregon, after the occurrence of an earthquake originated
from the Cascadia Subduction Zone. The example considers a seis-
mic event of magnitude My, = 7.0 located 25 km southwest of the
city. Because no data are available, we consider a noninformative
PDF of the first resilience metric p in the form fp(p) = 1/p, p > 0,
which reflects the fact that little is known a priori. We consider a
parametrized S-shape recovery curve proposed by Gardoni et al.
(2007) in the following form:

0:(0.7) = 1 — Qg + (Qu — QR)<9—TI>2{3—2(9—71)} <6,
(26)

where Qp = percentage of population dislocation at time f7y+
(i.e., after the occurrence of the seismic event); Q., = percentage
of the population that relocates at the end of the recovery; and
f, = time at which the recover ends.

Ground-motion prediction equations (Boore and Atkinson
2008) are used to obtain maps of the seismic intensity measure at
the residential building location. Next, we perform a building dam-
age analysis using different fragility functions [e.g., Hazards U.S.
Multi-Hazard (HAZUS-MH) (FEMA 2015) and Steelman et al.
2007]. Then, we estimate the initial percentage of population dis-
location due to structural damage using a logistic regression model
(Lin 2009). For the purpose of this example, we assume that the
entire population returns to their homes at the end of the recovery
(i.e., Oy = 100%).

Based on the definition of the resilience metric in Eq. (1), the
parameter 6, can be written as a function of the resilience metric p.
Therefore, we obtain the PDF f, (6,) according to Eq. (11), as well
as the corresponding estimate of Q, over time [Fig. 10(a)] More
generally, O, could also be taken as a parameter (i.e., Q,, =
0,). In this case, the joint PDF fg(6,,6,) is again obtained using
Eq. (11) given p and y.

After the occurrence of the seismic event, recovery activities
start to retrieve structures and infrastructure functionality; thereby
we can observe the population returning to their homes. For the
purpose of this example, data on the population relocation are as-
sumed to be available at given time-steps. The relocation data at
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different times can be used to obtain the corresponding values of
0, [dots in Fig. 10(b)]. Using these values of Q,, we obtain the new
expected value of Q5 as a function of time, as shown in Fig. 10(b).
In particular, the uncertainties in the initial estimate in Fig. 10(a)
reflect the fact that little is known in terms of the duration of the
recovery. In Fig. 10(b), the confidence band is significantly smaller
around the mean line, indicating that the values of O, used to update
the mean prediction also reduce the prediction uncertainty.

Finally, Fig. 11 shows the probability that the population dis-
location is higher than 25% of the total population (i.e., Q7 =
0.25) before and after we update the recovery curve, including
the confidence band due to the statistical uncertainty in @. Further-
more, the information used to update the model parameter can
also adjust the prediction in terms of the probability of exceeding
a target level of functionality, as well as reduce the prediction
uncertainty.

Conclusions

The paper proposed a formulation to (1) predict the recovery curves
that define the recovery of engineering systems subject to a hazard,
and (2) estimate the probability of reaching or exceeding a target
value of a selected performance indicator at any given time. The
formulation uses the resilience metrics defined in Sharma et al.
(2018), which quantify the resilience of systems and form a com-
plete set of partial descriptors that characterize the recovery curve
of the system of interest. To evaluate the recovery process of an
engineering system, this paper proposed to use the PDF of the resil-
ience metrics, defined based on historical data, to obtain the PDF of
the model parameters that define the recovery curve. The proposed
formulation incorporates the Bayesian inference to update the es-
timates of the unknown parameters when additional information is
available. The paper illustrated the implementation of the proposed
formulation by predicting the recovery of a single-column, single-
bent RC bridge subject to seismic damage, as well as the popu-
lation relocation after the occurrence of a seismic event when no
data on the duration of the recovery are available a priori. The pro-
posed formulation is general and suited to applications such as risk
analysis and mitigation, and resilience-based design.
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