

1 Specialized lysophosphatidic acid acyltransferases contribute to unusual fatty acid accumulation in exotic
2 *Euphorbiaceae* seed oils

3
4 Jay Shockey¹, Ida Lager², Sten Stymne², Hari Kiran Kotapati^{3,4^*}, Jennifer Sheffield³, Catherine Mason¹, and Philip D.

5 Bates^{3,4^*}

6 ¹United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New
7 Orleans, LA, USA, 70124

8 ²Department of Plant Breeding, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden

9 ³Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406

10 ⁴Institute of Biological Chemistry, Washington State University, Pullman, WA, USA, 99164

11 ^Current address

12

13 *correspondence: phil_bates@wsu.edu

14

15

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62 1

63

64

65

1
2
3
4 16 **Main conclusion**
5
6
7 17 *In vivo* and *in vitro* analyses of *Euphorbiaceae* species' triacylglycerol assembly enzymes substrate selectivity is
8
9 18 consistent with the co-evolution of seed-specific unusual fatty acid production, and suggests that many of these genes
10
11 19 will be useful for biotechnological production of designer oils.
12
13
14 20 **Abstract**
15
16
17 21 Many exotic *Euphorbiaceae* species, including tung tree (*Vernicia fordii*), castor bean (*Ricinus communis*), *Bernardia*
18
19 22 *pulchella*, and *Euphorbia lagascae*, accumulate unusual fatty acids in their seed oils, many of which have valuable
20
21 23 properties for the chemical industry. However, various adverse plant characteristics including low seed yields,
22
23 24 production of toxic compounds, limited growth range, and poor resistance to abiotic stresses have limited full
24
25 25 agronomic exploitation of these plants. Biotechnological production of these unusual fatty acids (UFA) in high
26
27 26 yielding non-food oil crops would provide new robust sources for these valuable bio-chemicals. Previous research has
28
29 27 shown that expression of the primary UFA biosynthetic gene alone is not enough for high-level accumulation in
30
31 28 transgenic seed oils; other genes must be included to drive selective UFA incorporation into oils. Here we use a series
32
33 29 of *in planta* molecular genetic studies and *in vitro* biochemical measurements to demonstrate that lysophosphatidic
34
35 30 acid acyltransferases from two *Euphorbiaceae* species have high selectivity for incorporation of their respective
36
37 31 unusual fatty acids into the phosphatidic acid intermediate of oil biosynthesis. These results are consistent with the
38
39 32 hypothesis that unusual fatty acid accumulation arose in part via co-evolution of multiple oil biosynthesis and
40
41 33 assembly enzymes that cooperate to enhance selective fatty acid incorporation into seed oils over that of the common
42
43 34 fatty acids found in membrane lipids.
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62 2
63
64
65

1
2
3
4 **35 Keywords**
5
6 **36 diacylglycerol acyltransferase**
7
8 **37 eleostearic acid**
9
10 **38 ricinoleic acid**
11
12 **39 lysophosphatidic acid acyltransferase**
13
14 **40 triacylglycerol**
15
16 **41**
17
18 **42**
19
20 **43 Abbreviations**
21
22 **44 DGAT diacylglycerol acyltransferase**
23
24 **45 ESA eleostearic acid**
25
26 **46 FADX tung tree fatty acid conjugase X**
27
28 **47 FAH castor fatty acid hydroxylase**
29
30 **48 FAME fatty acid methyl ester**
31
32 **49 FID flame ionization detection**
33
34 **50 GPAT glycerol-3-phosphate acyltransferase**
35
36 **51 HFA hydroxy fatty acids**
37
38 **52 HPLC high-performance liquid chromatography**
39
40 **53 GC gas chromatography**
41
42 **54 LPA lysophosphatidic acid**
43
44 **55 LPAT lysophosphatidic acid acyltransferase**
45
46 **56 PCR polymerase chain reaction**
47
48 **57 PDAT phospholipid:diacylglycerol acyltransferase**
49
50 **58 PDCT phosphatidylcholine:diacylglycerol cholinephosphotransferase**
51
52 **59 TLC thin layer chromatography**
53
54 **60 UFA unusual fatty acid**
55
56
57 **61**
58
59
60
61
62 **62**
63
64
65

1
2
3
4 **63 Introduction**
5
6 **64**
7
8 **65** Plant triacylglycerols (TAGs) are a major component of human and animal nutrition. Some plant oils are also useful
9
10 **66** in the production of various industrial feedstocks and specialized products, including inks, dyes, biodiesel, nylons and
11
12 **67** plastics. Most edible oil crops have been heavily domesticated, and produce oils containing a limited set of fatty acids
13
14 **68** that are compatible with cooking and digestion, but of limited utility in the industrial sector. A central goal of green
15
16 **69** chemistry is to produce industrially-useful fatty acids in microbes or agronomic oilseed crops. Surveys of naturally
17
18 **70** occurring exotic plant species going back decades have provided hundreds of examples of seed oils containing unusual
19
20 **71** fatty acids (UFAs) with useful chemical properties, including differing chain-lengths, numbers and positions of
21
22 **72** carbon-carbon double and triple bonds, and a wide assortment of side-chain functionalities (Gunstone et al. 2007).
23
24 **73** For our laboratories, key among these are fatty acids produced in the oils of tung tree (*Vernicia fordii*, Hemsl.) and
25
26 **74** castor bean (*Ricinus communis*), which contain ~80% α -eleostearate (ESA, a conjugated trienoic acid) and ~90%
27
28 **75** ricinoleate (HFA, a hydroxylated fatty acid), respectively. As of 2013-2014, approximately 645,000 tons of castor oil
29
30 **76** and ~93,000 tons of tung oil were produced world-wide (McKeon 2016; Shockley et al. 2016). Global production of
31
32 **77** these two oils is relatively small in relation to that of major commodity oils such as soybean or canola, but given the
33
34 **78** value of the specialized products that can be produced from them, there is still keen industrial interest to create safe,
35
36 **79** stable domestic sources of oils containing these functionalities at agronomic scale.
37
38
39 The seminal work from Somerville's laboratory (van de Loo et al. 1995) established that many novel fatty
40
41 **80** acids in exotic plant species are produced by diverged forms of *fatty acid desaturase-2* (*FAD2*), an otherwise common
42
43 **81** *FAD* found in all plants. Since that time, proof of concept studies describing the creation and characterization of
44
45 **82** *Arabidopsis* lines expressing other diverged *FAD2*-like genes, including tung tree linoleate conjugase *FADX* (Dyer et
46
47 **83** al. 2002; van Erp et al. 2015) or the castor oleate hydroxylase *FAH12* (Lu et al. 2006) have appeared. However, seed
48
49 **84** lipids in these lines contain only <20% ESA or HFA. An increasingly sophisticated suite of available biotechnological
50
51 **85** tools have been applied to the analysis of common and exotic oilseeds in recent years. As our collective understanding
52
53 **86** of the molecular details underlying the processes of fatty acid and triacylglycerol metabolism has gradually advanced,
54
55 **87** secondary studies have begun to examine the effects of stacking additional genes from the exotic host plants into
56
57 **88** transgenic lines bearing the primary biosynthetic genes. Co-expression of castor or tung diacylglycerol
58
59 **89** acyltransferases (DGATs) or phospholipid:diacylglycerol acyltransferases (PDATs, Dahlqvist et al., 2000), two
60
61
62 4
63
64
65

1
2
3
4 91 enzymes which catalyze terminal steps in the TAG biosynthetic pathway, resulted in significant increases in novel
5 fatty acid accumulation (Burgal et al. 2008; van Erp et al. 2011; van Erp et al. 2015), as did expression of
6 phosphatidylcholine:diacylglycerol cholinephosphotransferase (PDCT), an enzyme that affects TAG precursor pool
7 fatty acid composition via PC:DAG interconversion (Hu et al. 2012). These results and others (Kroon et al. 2006)
8 demonstrated that along with the diverged *FAD2s*, other genes in the exotic species have co-evolved to efficiently
9 utilize substrates containing the UFA.
10
11
12
13
14
15

16 97 The secondary studies represented progress, but still only resulted in a maximum of ~30% of the desired
17 product, which is far less than the levels found in native seeds. These results clearly show that much work remains to
18 be done to acquire the full complement of knowledge and genetic tools necessary to achieve predictable metabolic
19 engineering outcomes resulting in marketable new plant products. Our recent efforts have been dedicated to expanding
20 the molecular toolkit even further, with a particular focus on the enzymes that catalyze some of the 'intermediate'
21 steps in these pathways. We describe here the characterization of lysophosphatidic acid acyltransferase (*LPAT*, E.C.
22 2.3.1.51) genes from tung tree and castor. *LPAT* catalyzes the transfer of acyl groups from acyl-CoA to the *sn*-2
23 position of 1-acyl-*sn*-glycerol 3-phosphate (lysophosphatidic acid, LPA). In the ER membrane, the phosphatidic acid
24 (PA) product of the *LPAT* reaction acts as a precursor for phospholipid biosynthesis (via cytidine diphosphate
25 diacylglycerol or CDP-DAG) or undergoes dephosphorylation by phosphatidic acid phosphatase, yielding DAG,
26 which in turn serves as a substrate for the synthesis of membrane lipids such as phosphatidylcholine and
27 phosphatidylethanolamine, and TAG by way of DGAT or PDAT, reactions (Li-Beisson et al. 2013). As such, the
28 substrate specificities and other biochemical properties of the relevant *LPAT* isoforms could exert significant influence
29 over the final fatty acid composition of seed oils. Previous studies have shown that plants contain a large, complex
30 family of *LPAT* genes (Bourgis et al. 1999; Kim et al. 2005). The use of acyl-CoA selective *LPATs* from plants such
31 as coconut and *Cuphea sp.* to accumulate medium chain fatty acids (10-14 carbon chains) in TAG of transgenic plants
32 have demonstrated their value to plant oil engineering (Iskandarov et al. 2017; Kim et al. 2015; Knutzon et al. 1999).
33
34 114 Here we have focused on tung and castor *LPAT2* genes. Analysis of the effects of tung and castor *LPAT2* enzymes in
35 seed oil metabolism are investigated through expression in both yeast and plants. The relatively fluid degree of
36 functional importance of *LPAT2*, compared to other members of this gene family, is also discussed.
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

118 Materials and methods

1
2
3
4 119 **Gene identification**
5
6 120 Tung *DGAT2* and castor *DGAT2* were originally identified as previously described (Shockey et al. 2006; Burgal et al.
7
8 121 2008). Tung *LPAT2* (*VfLPAT2*) was identified from the developing tung seed cDNA libraries described in Pastor et
9
10 122 al. (2012), and submitted to Genbank (accession# MH823254). Partial cDNA sequences for *RcLPAT2* and *RcLPAT3A*
11
12 123 were originally identified by PCR from a developing castor seed cDNA library using degenerate primers, followed by
13
14 124 5' and 3' rapid amplification of cDNA ends (RACE) to identify the remaining gene fragments, as described previously
15
16 125 (Burgal et al. 2008), and have since been identified by Arroyo-Caro et al. (2013).
17
18 126
19
20 127 **Plant seed expression plasmid construction**
21
22 128 The ORFs for *VfLPAT2* and *RcLPAT2* was amplified by PCR (Phusion polymerase, New England Biolabs, Ipswich,
23
24 129 MA, USA), using primers that added *NotI* and *SacII* sites to the 5' and 3' ends, respectively. All plasmid construction
25
26 130 made use of the plant expression vector sets described in Shockey et al. (2015). Purified PCR products for *VfLPAT2*
27
28 131 were digested and ligated into either cloning vector pB49 (*At2S-3* promoter, *N*-terminal hemagglutinin (HA) epitope
29
30 132 tag) or pK37 (*Phaseolin* promoter, *N*-terminal myc epitope tag) to form shuttle plasmids pB206 and pB318,
31
32 133 respectively, promoter:gene:terminator cassettes for which in turn were added into either *FADX* binary plasmid pE29
33
34 134 or *FADX+VfDGAT2* binary plasmid pE259 (built from *FADX* binary plasmid pE116) (Shockey et al. 2015) to produce
35
36 135 finished binary plasmids pE188 and pE318. The ORF for *RcLPAT2* was cloned into cloning vector pB35 (beta-
37
38 136 conglycinin promoter, no epitope tag) to produce shuttle plasmid pB554. The *AscI* fragment representing the
39
40 137 promoter:gene:terminator cassette from B554 was ligated alone into binary vector pB110 (pE660) or into *RcDGAT2*
41
42 138 binary plasmids pE542 and pE565 to generate finished binary plasmids pE659 and pE658, respectively. Finally, castor
43
44 139 *GPAT9* (*RcGPAT9*, Genbank accession #EU391594) (Burgal et al. 2008) was cloned into cloning vector pK50
45
46 140 (*glycinin-1* promoter, no epitope tag) to generate shuttle plasmid pB544 then transferred to the *PacI* site of pE659 to
47
48 141 generate finished three-gene binary plasmid pE678. All shuttle plasmids were sequenced to confirm amplification
49
50 142 accuracy, and all binary plasmids were mapped with at least two combinations of restriction enzymes to confirm
51
52 143 overall structural integrity. The important details for each plasmid described here are summarized in Table 1, and
53
54 144 graphical representations of each are shown in Supplemental Figure S1.
55
56 145
57
58 146 **Plant growth and transformation**
59
60
61
62 6
63
64
65

1
2
3
4 147 ESA was produced in seeds of the *Arabidopsis fad3fae1* double mutant by overexpression of the tung tree fatty acid
5 conjugase *FADX* (Dyer et al. 2002; Smith et al. 2003; van Erp et al. 2015). The parental line producing hydroxy fatty
6 acids (HFA) for these studies is CL37 (Lu et al. 2006) which expresses the castor hydroxylase *FAH12*, producing ~17-
7 150 20% HFA of total seed lipids. Finished plant binary plasmids were transformed into *Agrobacterium tumefaciens*
8 151 strains GV3101 or C58-C1 by electroporation. Colonies were selected on solid media containing kanamycin and
9 gentamycin, grown in liquid culture and transformed into the appropriate *Arabidopsis* lines by floral dip (Clough and
10 152 Bent 1998).
11
12 153
13
14
15
16
17
18 154
19
20 155 **Screening independent transformant T₂ seeds by gas chromatography**
21
22
23 156 Many independent transformant lines were screened for seed fatty acid composition at the T₂ generation. Fatty acid
24 methyl esters (FAMEs) were prepared from *Arabidopsis* seeds containing HFA by incubation in 5% sulfuric acid in
25 methanol at 85-90 °C for 1-1.5 h in glass tubes sealed with Teflon®-lined caps, followed by quenching with saturated
26 sodium chloride solution and extraction into hexane, approximately as described by Li et al. (2006). FAMEs from
27 158 ESA-containing seeds were prepared using sodium methoxide at room temperature, as described previously (van Erp
28 et al. 2015). FAMEs were analyzed by gas chromatography (GC) on an Agilent Technologies (Santa Clara, CA, USA)
29 159 7890B gas chromatograph with flame ionization detection (FID) using split injection on a 60 m X 0.25 mm inner
30 160 diameter, 0.2 µm SP-2380 column (Supelco, Sigma-Aldrich, St. Louis, MO, USA). HFA were analyzed with a
31 161 temperature program of 215-250 °C at 5 °C/min, followed by 2 min hold at 250 °C. Samples containing ESA were
32 162 analyzed with a temperature program of 170-215 °C at 4 °C/min, followed by 6 min hold at 215 °C. One or two
33 163 individual lines that produced high levels of the respective unusual fatty acids in segregating T₂ seed samples, and
34 164 segregated at ~3:1 ratio for presence:absence of the appropriate selectable marker were chosen for further analysis.
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51 168
52
53 169 **HPLC, Regiochemistry, and GC analysis of HFA-containing TAG species**
54
55 170 Lipids were extracted as described by Hara and Radin (1978), with some modifications. In brief, 10 mg seed samples
56 were quenched in 1 ml 2-propanol at 87 °C for 10 min, ground with a polytron, and mixed with solvent to achieve a
57 final extract ratio of hexane/2-propanol/H₂O, 6:4:0.5 (v/v/v). The phases were separated by adding 3.5 ml of 6.6%
58 (w/v) aqueous sodium sulphate. The organic phase was collected and the aqueous phase was back-extracted with 3 ml
59
60
61
62
63
64
65

1
2
3
4 174 of hexane:2-propanol (7:2, v/v). Lipid extract was concentrated under N₂ gas and dissolved in toluene for separation
5
6 175 by high-performance liquid chromatography (HPLC), which was performed on a Thermo Fisher Ultimate 3000
7
8 176 equipped with: quaternary pump, temperature controlled auto sampler, temperature controlled column compartment,
9
10 177 variable wavelength detector, and fraction collector. HPLC analysis was based on previously described methods
11
12 178 (Kotapati and Bates 2018). In brief, lipid class separation was carried out on a YMC-Pack PVA-Sil column (250 X
13
14 179 4.6 mm, 5 µm particle size) at 35 °C in normal phase mode by UV detection at 210 nm. The sampler compartment
15
16 180 was maintained at 20 °C. Crude lipid (500-900 µg) dissolved in toluene was loaded onto the column in 15 µL. The
17
18 181 total run time was 30 min, and the column was equilibrated for 15 min prior to each injection. The method gradient
19
20 182 was set in such a manner that after all TAGs (hydroxy and non-hydroxy) were separated and collected, any polar lipids
21
22 183 present in the sample would be flushed from the column. Standards were used to determine retention times for time-
23
24 184 based fraction collection. Solvents (Fisher Scientific Optima Grade) used were: 2-propanol, hexanes, methanol, 2-
25
26 185 propanol/water/acetic acid (60/40/0.065, v/v/v). HPLC method gradient parameters and fraction collection parameters
27
28 186 are shown in Supplementary Tables S1 and S2, respectively. TAG fractions and polar lipid fractions were collected
29
30 187 and solvent removed under a stream of nitrogen, prior to FAME production with 2.5% sulfuric acid in methanol at 85
31
32 188 °C for 1 h. After addition of 0.2 ml hexane and 1.5 ml 0.9% KCl, the organic phase used directly for GC. FAMEs
33
34 189 were analyzed on a Shimadzu GC-2010 Plus with a FID, equipped with a Stabilwax® Crossbond® Carbowax®
35
36 190 Polyethylene Glycol column (30.0m long, 0.25mm ID, 0.25 µm film thickness). Samples were injected at a 1:10 split
37
38 191 ratio at 250 °C. The carrier gas was Helium at a constant linear velocity of 35cm/sec. The initial column temperature
39
40 192 was held at 175 °C for 2 min, increased 10 °C/min to 250 °C and held for 7 min. The FID was set to 255 °C. The
41
42 193 regiochemical analysis of 1-HFA-TAG was performed as in van Erp et al. (2011).
43
44 194
45
46 195
47
48 196 **Yeast expression plasmid construction, transformation, and microsome isolation**
49
50 197 The ORFs for *RcLPAT2*, *RcLPAT3A*, and *Arabidopsis LPAT2* were amplified as described above, using primers that
51
52 198 added *Nol*I and *Pac*I sites to the 5' and 3' ends, respectively. Purified PCR products were digested and ligated into
53
54 199 multiple cloning site 1 of the yeast expression vector pESC-URA (Agilent Technologies, Santa Clara, CA, USA).
55
56 200 Sequenced plasmids were transformed into the *Saccharomyces cerevisiae aleΔ* mutant (*Mata*, *his3Δ1*, *leu2Δ0*,
57
58 201 *met15Δ0*, *ura3Δ0*, *ale1::KANMX*) (Ståhl et al. 2008). The empty vector was included as a negative control. Colonies
59
60
61
62
63
64
65

1
2
3
4 202 were selected on solid synthetic uracil drop-out medium containing glucose, then grown overnight at 30°C in liquid
5
6 203 synthetic uracil drop-out medium containing 2% glucose. The yeast cells were then transferred to medium
7
8 204 supplemented with 2% galactose and grown until OD_{600nm} 3-4 to induce protein expression. Yeast microsomal
9
10 205 membranes were prepared as described in Lager et al. (2013).
11
12 206
13
14 207 **Substrates for enzyme assays**
15
16 208 [1-¹⁴C]Oleic acid was purchased from Perkin Elmer and [1-¹⁴C]ricinoleic acid was synthesized enzymatically from
17
18 209 [1-¹⁴C]oleate using microsomal preparations from developing castor bean according to the method described by Bafor
19
20 210 et al. (1991). *sn*-1-oleoyl-LPA was synthesized by chemical acylation of oleic acid to glycerol-3-phosphate by the
21
22 211 method described by Kanda et al. (1981). Ricinoleoyl-LPA was synthesized from di-ricinoleoyl-PC (a generous gift
23
24 212 from ENI/Metapontum Agrobios, Metaponto, Italy) as follows: 1.2 µmol di-ricinoleoyl-PC was dissolved in 200 µl
25
26 213 diethylether in a test tube with screw cap with a magnetic flea. One ml of 0.1M HEPES (4-(2-hydroxyethyl)-1-
27
28 214 piperazineethanesulfonic acid)/10 mM CaCl₂ pH 5.6 containing 400 units phospholipase D (from peanut, Sigma
29
30 215 Aldrich) was added and the tube was purged with nitrogen, then capped and stirred rapidly at 30 °C. Samples (10 µl)
31
32 216 were withdrawn at 1 h intervals and spotted on small (5 x 5 cm) thin layer chromatography (TLC) plates with PC as
33
34 217 a standard. The plates were developed in chloroform:methanol:acetic acid:water (CHCl₃:MeOH:HAc:H₂O,
35
36 218 85:15:10:3.5, v/v/v/v) and stained with iodine vapor. After 3 h incubation only phosphatidic acid (PA) was seen, with
37
38 219 no trace of PC. PA was then extracted into chloroform by adding 3.75 ml MeOH:CHCl₃(2:1), 1.25 ml CHCl₃ and 1
39
40 220 ml 0.15M HAc and the upper phase was washed once with 2.5 ml CHCl₃. The chloroform phases were combined in
41
42 221 a test tube with a spin magnet, the chloroform was evaporated with N₂ and the residue dissolved in 200 µl of ether.
43
44 222 One ml of 0.1 M Tris-HCl pH 8.9/10 mM CaCl₂, containing 400 units of phospholipase A₂ (PLA₂, from *Naja*
45
46 223 *mossambica*, Sigma Aldrich), was added to the ether. The tube was purged with nitrogen, capped and incubated under
47
48 224 stirring at 30 °C. Samples (10 µl) were withdrawn at ~12 h intervals and checked on TLC for the conversion of PA
49
50 225 into LPA. Four hundred additional units of PLA₂ were added at each check. After about 36 h, no PA remained and
51
52 226 the ether was evaporated under a stream of N₂ and 30 µl glacial acetic acid was added to the solution, which was then
53
54 227 extracted with 4 x 2 ml of hexane to remove the free fatty acids. After removal of residual hexane from the buffer
55
56 228 phase under nitrogen after the last extraction, the LPA was extracted with 3 x 2 ml of water-saturated *n*-butanol. The

1
2
3
4 247 **Results**
5
6 248
7

8 249 **Evidence for a positive role for VfLPAT2 in ESA accumulation in transgenic *Arabidopsis***
9

10 250 The positive influence of tung DGAT2 or castor DGAT2 on their respective UFA levels in transgenic *Arabidopsis*
11
12 251 seeds has already been established (Burgal et al. 2008; van Erp et al. 2015). We sought to identify additional enzymes
13
14 252 that act upstream of the DGAT reaction to further enhance levels of the target fatty acids. We tested this idea first by
15
16 253 comparing the levels of ESA produced by plants expressing the tung conjugase *VfFADX* alone (Dyer et al. 2002), to
17
18 254 that found in lines containing *VfFADX* and *VfDGAT2*, and to lines containing *VfFADX*, *VfDGAT2*, and *VfLPAT2*
19
20 255 (Table 1). Multiple independent transgenic T₁ plants for each of the three constructs were grown to maturity, followed
21
22 256 by GC analysis of the segregating T₂ seed samples from each of the independent transformants (Fig. 1). *VfFADX*
23
24 257 alone produced just 4.7 weight % ESA on average, while *VfDGAT2* co-expression resulted in a slight increase in
25
26 258 average ESA levels to 5.6%. Inclusion of *VfLPAT2*, on the other hand, increased ESA levels significantly from the
27
28 259 base *VfFADX* line ($p = 0.0061$), with peak performing lines reaching nearly 13% ESA (Fig. 1).
29

30 260 The influence of *VfLPAT2* was assessed independently by comparing seed ESA levels produced from
31
32 261 transgenic lines expressing either *FADX* alone and one containing *FADX* and *VfLPAT2* (Table 1). The difference
33
34 262 between the mean ESA values between these two populations was highly significant (Fig. 2, unpaired student's t-test,
35
36 263 $p < 0.0001$). These two sets of data strongly indicated that tung *LPAT2* is a useful tool for engineering ESA production
37
38 264 in *Arabidopsis* seed lipids.
39

40 265 These results encouraged us to extend our analyses to castor *LPAT2*. Detailed biochemical analyses with
41
42 266 tung enzymes is hampered by the difficulty of preparing ESA-containing substrates, due to ESA's sensitivity to light,
43
44 267 high temperature, and acidic pH. On the other hand the hydroxylated fatty acids (HFA) produced by castor (a related
45
46 268 *Euphorbiaceae* species) are significantly easier to work with *in vitro*, due to its enhanced chemical stability relative
47
48 269 to ESA. Therefore, study of the castor enzymes allows us to combine both *in vitro* yeast and *in vivo* plant experiments
50
51 270 to better understand UFA selectivity.
52
53 271
54

55 272 **The effect of various *Ricinus communis* acyltransferases on the production of HFA-containing TAG species in**
56
57 273 **transgenic *Arabidopsis* seeds**

1
2
3
4 274 The starting point for HFA production in *Arabidopsis* is the previously characterized CL37 line that expresses the
5 castor fatty acid hydroxylase (*RcFAH12*) and produces two HFA, ricinoleic acid and densipolic acid, which together
6 accumulate to ~15-20% of fatty acids in CL37 seeds (Lu et al. 2006). We first compared the ability of castor
7 acyltransferase to influence seed lipid HFA levels in CL37 plants by expressing an empty vector, *RcDGAT2*, or co-
8 expressing *RcLPAT2* and *RcDGAT2* (Fig. 3a). The empty vector line was essentially the same as previous reports for
9 CL37, indicating that the vector has no effect on HFA accumulation. The positive role of *RcDGAT2* in transgenic
10 HFA accumulation has already been established (Burgal et al. 2008); and a new construction of *RcDGAT2* (containing
11 the strong, seed-specific *At2S-3* promoter and a *N*-terminal myc epitope fusion to the protein coding sequence) used
12 here generated very similar results, with a significant increase in total seed HFA levels compared to empty binary
13 vector controls in segregating T₂ seeds from multiple independent T₁ transformants (Fig. 3a). Importantly, expression
14 of *RcLPAT2* alone (Fig. 3b), or co-expression of *RcLPAT2* with *RcDGAT2* (Fig. 3a) in the CL37 background resulted
15 in additional significant increases in HFA levels. Interestingly, the co-expression of the three acyltransferase enzymes
16 of the Kennedy pathway (GPAT, LPAT, DGAT) from castor in CL37 did not further increase the segregating T₂ seed
17 HFA content (Fig. 3).
18
19

20 288 In oilseed research, whole seed FAME analysis correlates well to seed oil content (oils compose 90-95% of
21 total seed lipid) but it does include fatty acids found in other seed lipids, such as membrane lipids, diacylglycerols,
22 and, when using some types of catalysts (such as the sulfuric acid/methanol-based approach used for HFA FAME
23 synthesis in this study), free fatty acids as well. Therefore, to learn more about how the expression of these enzymes
24 specifically affected the fatty acid composition of TAG, we quantified how much HFA were found in purified TAG
25 and determined the relative ratios of TAG species containing different numbers of HFA per TAG molecule in each of
26 the transgenic lines. Fig. 4a quantifies the relative amount of the three HFA-containing TAG species (TAGs containing
27 1-, 2-, or 3-HFA per molecule, no stereochemical location specified) and 0-HFA-TAG in each transgenic line from
28 homozygous T₃ or T₄ seeds. The complete fatty acid composition of each TAG species is shown in Supplementary
29 Fig. S2, and for each TAG species the composition was similar between all transgenic lines. However, the relative
30 amount of each TAG species differed between the control CL37 and the new transgenic lines. When *RcLPAT2* alone
31 is co-expressed with the fatty acid hydroxylase in *Arabidopsis* seeds the amount of 0-HFA-TAG is significantly
32 reduced ($p = 0.0132$), concomitant with a significant increase in the level of 1-HFA-TAG ($p = 0.0449$), and an increase
33 in 2-HFA-TAG levels ($p = 0.0001$).
34
35

1
2
3
4 301 in total seed TAG HFA content from $20.2\% \pm 0.3\%$ to $27.4 \pm 3.7\%$ (Fig. 4b). This result suggests that the products
5
6 302 of the *RcLPAT2* reaction are selectively incorporated into TAG in *Arabidopsis* seeds.
7

8 303 Co-expression of *RcDGAT2* alone in the CL37 background also has a similar but more pronounced effect,
9
10 304 with the significant increase in total TAG HFA content (Fig. 4b) coming from a large reduction in 0-HFA-TAG ($p =$
11
12 305 0.0003), and increases in both 2-HFA-TAG ($p = 0.0312$) and 1-HFA-TAG ($p = 0.0993$). When the three main
13
14 306 acyltransferases of the Kennedy pathway from castor are co-expressed, the least amount of 0-HFA-TAG is observed
15
16 307 ($9.8\% \pm 5.2\%$) and the highest level of 1-HFA-TAG accumulates ($68.8\% \pm 3.9\%$), but 2-HFA-TAG is not significantly
17
18 308 different than expression of *RcDGAT2* alone (Fig. 4a). Total TAG HFA content in the homozygous
19
20 309 *RcGPAT9/LPAT2/DGAT2* line was $37.2 \pm 2.4\%$, which is almost double the $20.2 \pm 0.3\%$ observed in the CL37
21
22 310 background line (Fig. 4b). Interestingly, very little 3-HFA-TAG accumulated in these lines.
23
24 311
25
26 312 **Effect of *RcLPAT2* on total seed oil content**
27
28 313 Previously, we have demonstrated that production of HFA in line CL37 causes a reduction in seed lipid content from
29
30 314 35-40% of dry weight in wild-type *Arabidopsis* to approximately 20-25% of dry weight in CL37 (van Erp et al. 2011;
31
32 315 Bates et al. 2014; Adhikari et al. 2016; Karki and Bates 2018). Metabolic labeling studies have indicated that the
33
34 316 reduced seed oil content of CL37 is due to inefficient utilization of HFA by *Arabidopsis* enzymes, which induces the
35
36 317 down-regulation of acetyl-CoA carboxylase activity and thus total fatty acid synthesis (Bates et al. 2014; Bates and
37
38 318 Browse 2011). In addition, more efficient utilization of HFA by co-expression of castor enzymes for the last step in
39
40 319 TAG assembly (*RcDGAT2* or *RcPDAT1*) alleviates the reduced acetyl-coA carboxylase activity and increases oil
41
42 320 content (Bates et al. 2014). Here, the negative effect of HFA on seed oil accumulation in CL37 was almost completely
43
44 321 alleviated by the addition of *RcLPAT2* alone. The seed lipid content was significantly increased from $24.2 \pm 1.2\%$ dry
45
46 322 weight in CL37 to $34.2 \pm 1.8\%$ ($p = 0.0037$) (Fig. 5). The average seed lipid content of the *RcGPAT9/LPAT2/DGAT2*
47
48 323 line grown at the same time also increased from that of CL37 to $29.6 \pm 2.1\%$ ($p = 0.0675$) (Fig. 5). The overall
49
50 324 performance transgenic *Arabidopsis* lines for oil accumulation is sensitive to environmental conditions as
51
52 325 characterized before (Li et al. 2006; Karki and Bates 2018), and to the composition of the transgenes used; plant
53
54 326 growth under lower light intensities than described above, resulted in *RcDGAT2* transgenic seed TAG levels similar
55
56 327 to parental CL37, while lower light *RcLPAT2/DGAT2* seeds still did contain significantly more seed lipids than CL37
57
58 328 (Supplemental Fig. S3). These results, in conjunction with the increase in total seed HFA content (Fig. 3) and HFA-
59
60
61
62
63
64
65

1
2
3
4 329 TAG accumulation (Fig. 4), suggests RcLPAT2 more efficiently incorporates HFA-containing substrates into TAG
5
6 330 precursors than does the endogenous *Arabidopsis* enzyme (AtLPAT2).
7
8 331
9

10 332 **Effect of RcLPAT2 on the regiochemical localization of HFA in TAG**
11

12 333 The LPAT reaction places an acyl group into the *sn*-2 position of G3P, to form PA. Unless further modified or removed
13
14 334 through acyl editing (Bates 2016), this fatty acid will end up predominantly at the *sn*-2 position of TAG in oilseeds.
15
16 335 Therefore, to determine the effect of RcLPAT2 on the localization of HFA within TAG we performed lipase-based
17
18 336 regiochemical analysis of the major TAG species (1-HFA-TAG) from parental CL37 and each of the lines co-
19
20 337 expressing the castor acyltransferases (Fig. 6). Previously, expression of *sn*-3-specific castor acyltransferases
21
22 338 (*RcDGAT2* or *RcPDAT1a*) in CL37 caused a shift in the 1-HFA-TAG regiochemistry, by reducing the amount of HFA
23
24 339 at *sn*-2 and increasing the amount at the *sn*-1/3 positions (van Erp et al. 2011). The current CL37 results were consistent
25
26 340 with previous measurements that indicated approximately 70% of the HFA in 1-HFA-TAG molecular species resides
27
28 341 at the *sn*-2 position (van Erp et al. 2011). The line expressing *RcLPAT2* in CL37 had essentially the same
29
30 342 regiochemical localization for HFA in the 1-HFA-TAG molecular species (Fig. 6). This result indicates that the
31
32 343 enhanced production of 1-HFA-TAG induced by *RcLPAT2* expression (Fig. 4, Fig. 5) predominantly accumulates
33
34 344 HFA at the *sn*-2 position, as expected. Each of the other lines which contain an *sn*-3 acyltransferase did cause a shift
35
36 345 in the regiochemistry from *sn*-2 to *sn*-1/3, as expected from previous results (van Erp et al. 2011). Interestingly, the
37
38 346 *RcGPAT9/LPAT2/DGAT2* line which contains both *sn*-1 and *sn*-3 acyltransferases had the most HFA in the *sn*-1/3
39
40 347 position.
41
42 348
43
44 349 **Comparison of AtLPAT2 and RcLPAT2 biochemical properties *in vitro***
45

46 350 To further confirm our *in vivo* results suggesting RcLPAT2 more efficiently utilizes HFA substrates than AtLPAT2
47
48 351 we compared the biochemical properties of these two enzymes *in vitro*. We first compared the enzymatic properties
49
50 352 of AtLPAT2 and RcLPAT2, using combinations of substrates that would be common in untransformed *Arabidopsis*,
51
52 353 as well as those that would be found in native castor plants and in HFA-producing CL37 *Arabidopsis*. Enzyme
53
54 354 activities were measured in microsomal fractions prepared from the yeast *ale1* Δ strain overexpressing the enzymes.
55
56 355 Although *ALE1* is responsible for the major microsomal LPAT activity in yeast, these microsomes still contain
57
58 356 substantial residual LPAT activity, likely catalyzed by the SLC1 enzyme (Jasieniecka-Gazarkiewicz et al. 2017). Both
59
60
61
62 14
63
64
65

1
2
3
4 357 AtLPAT2 and RcLPAT2 efficiently acylated 18:1-LPA with ricinoleoyl-CoA, whereas 18:1-CoA was hardly used
5
6 358 above background activity in the acylation of ricinoleoyl-LPA by AtLPAT2 and RcLPAT2 (Fig. 7). Ricinoleoyl-CoA
7
8 359 was efficiently acylated to ricinoleoyl-LPA by the castor enzyme whereas the AtLPAT2 did not exhibit any significant
9
10 360 activity with the same combination of substrates. As expected, the *Arabidopsis* enzyme was effective in acylating
11
12 361 18:1-CoA to 18:1-LPA while RcLPAT2, interestingly, had no significant activity with this substrate combination (Fig.
13
14 362 7), indicating that castor has another LPAT housekeeping isoform that is responsible for the synthesis of ‘normal’
15
16 363 non-hydroxylated DAG that can be used for membrane lipid synthesis. Together with our *in vivo* results, the enzyme
17
18 364 assays confirm that RcLPAT2 utilizes HFA-containing substrates more efficiently than does endogenous AtLPAT2.
19
20 365
21
22 366
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62 15
63
64
65

1
2
3
4 367 **Discussion**
5
6 368

8 369 Most of the fundamental acyltransferase enzymatic reactions required for membrane and storage glycerolipid
9 biosynthesis were determined more than 50 years ago (Lands 1960; Kennedy 1961). Understanding the biochemical
10 properties of each step, how these pathways are regulated, and how they are integrated into total cellular metabolism
11 required identification of the genes that encode the relevant enzymes and accessory proteins. Meaningful progress in
12 this respect began only about 20 years ago, with the identification of mutant *Arabidopsis* genomic loci linked to defects
13 in seed TAG biosynthesis (Katavic et al. 1995); later studies showed that these mutations were located in the
14 *Arabidopsis DGAT1* gene (Routaboul et al. 1999; Zou et al. 1999), the first of its kind to be discovered in plants, and
15 one of the first in nature.

24 377 While we, and many others, ultimately hope to learn general truths about the common bottlenecks and other
25 limitations that likely affect all oilseed engineering projects, our specific goal is to achieve high-level production of
26 UFA-containing oils (such as those from *Euphorbiaceae* species) in safe, sustainable, non-food oilseed crops. Our
27 collective interest in the biochemistry and molecular genetics of UFA biosynthesis dates back nearly 30 years (Bafor
28 et al. 1991). Basic proof-of-concept metabolic engineering studies in *Arabidopsis* were established by the creation of
29 strong castor *FAH*-expressing lines (Lu et al. 2006), followed by modest incremental successes in HFA elevation via
30 co-expression of important castor enzymes such as DGAT2, PDAT1A, or both (Burgal et al. 2008; van Erp et al.
31 381 2011). Here we focused on LPAT enzymes from two *Euphorbiaceae* species, tung and castor. *In planta* experiments
32 382 demonstrated that overexpressed VfLPAT2 and RcLPAT2 both have higher selectivity for UFA in transgenic seeds
33 383 than the endogenous *Arabidopsis* LPAT activities, leading to higher accumulation of the target fatty acids (Figs. 1, 2,
34 384 3). These results support the co-evolution of UFA synthesis and UFA-utilizing enzymes, and demonstrate the potential
35 385 utility of these genes in biotechnological applications. The ESA produced by tung and our transgenic *Arabidopsis* is
36 386 very labile under typical laboratory conditions, therefore all additional experiments further characterizing the effect
37 387 of *Euphorbiaceae* LPATs focused on the castor enzyme and relatively stable HFA.
38 390
391

55 392 **Toward the production of castor type oils**
56

57 393 Previous work (Arroyo-Caro et al. 2013; Chen et al. 2016), has also addressed the properties of RcLPAT2. Arroyo-
58 394 Caro et al. (2013) cloned four candidate *LPAT* genes from castor. Two genes, *RcLPAT2* and *RcLPATB*, were
60
61
62 16
63
64
65

1
2
3
4 395 expressed ubiquitously in castor organs and tissues, including in developing seeds. After expression in *lpat* mutant *E.*
5
6 396 *coli*, both enzymes also possessed significant levels of *in vitro* enzyme activity towards several combinations of
7 substrates, including those containing HFA in the acyl donor, acyl acceptor, or both (Arroyo-Caro et al. 2013). Chen
8 397 et al. (2016) expressed *RcLPAT2* in seeds of lesquerella (*Physaria fendlerii*), a desert crop plant that produces ~60%
9 398 HFA, primarily lesquerolic acid (20:1 13-OH) rather than the ricinoleic acid found in castor. *RcLPAT2* was an obvious
10 399 target for overexpression in lesquerella because HFA are largely excluded from the *sn*-2 position of TAG. Positional
11 400 analysis of *RcLPAT2*-transgenic lesquerella seed oil indicated that *RcLPAT2* was able to affect increases in *sn*-2 HFA,
12 401 but the overall seed HFA content remained essentially unchanged (Chen et al. 2016).
13
14 402
15
16 403
17
18 404
19
20 405
21
22 406
23
24 407
25
26 408
27
28 409
29
30 410
31
32 411
33
34 412
35
36 413
37
38 414
39
40 415
41
42 416
43
44 417
45
46 418
47
48 419
49
50 420
51
52 421
53
54 422
55
56
57
58
59
60
61
62
63
64
65

Here we functionally characterized *RcLPAT2* both *in vitro* and *in vivo* to assess its potential role in determining castor oil fatty acid composition. Biochemical analyses of yeast-expressed enzymes clearly demonstrated that AtLPAT2 (the endogenous LPAT isozyme that largely controls the *sn*-2 fatty acid composition of *A. thaliana* seed oil) is not well-suited for HFA metabolism, while *RcLPAT2* showed strong selectivity for both LPA and acyl-CoA substrates containing HFA (Fig. 7). We also show that *RcLPAT2* still retains this selectivity *in planta* in a transgenic system that has not evolved to accumulate HFA-containing TAGs. *RcLPAT2* overexpression clearly increases the HFA-TAG component of transgenic seed oil, unlike the results shown previously (Chen et al. 2016). In Fig. 3, *RcLPAT2* showed an additive effect when combined with *RcDGAT2*, leading to significant increases in total seed HFA levels compared to lines transformed with empty vector, or with *RcDGAT2* alone.

In Fig. 5 we demonstrate that *RcLPAT2* alleviates the HFA-induced reduced oil phenotype of CL37 (Bates et al. 2014), and almost doubles the seed oil amount by predominantly increasing 1-HFA-TAG (Fig. 4a) that contains HFA at the *sn*-2 position (Fig. 6). Previously, expression of *sn*-3-specific castor acyltransferases (*RcDGAT2* or *RcPDAT1a*) in CL37 caused a shift in the 1-HFA-TAG regiochemistry by reducing the amount of HFA at *sn*-2 and increasing the amount at the *sn*-1/3 positions (van Erp et al. 2011), and which we confirmed in our *RcDGAT2* line (Fig. 6). In addition, *RcLPAT2* expression in lesquerella (which naturally does not accumulate HFA at *sn*-2) increased the *sn*-2 HFA content in TAG (Chen et al. 2016). Therefore, it may have been expected that the proportion of HFA at the *sn*-2 position of 1-HFA-TAG would have increased in *RcLPAT2* transgenic lesquerella. However, this simple expectation does not fit with the potential multiple pathways in which 1-HFA-TAG is produced in *Arabidopsis*. Fig. 8 is a schematic of HFA-TAG assembly in transgenic *Arabidopsis* and demonstrates how *RcDGAT2*, but not *RcLPAT2*, leads to a shift in HFA regiochemistry. HFA are synthesized by *RcFAH12* at the *sn*-2 position of the ER

1
2
3
4 423 membrane lipid phosphatidylcholine (PC). The major pathway of TAG biosynthesis in *Arabidopsis* is through PC-
5 derived DAG (Bates 2016), therefore HFA synthesized at *sn*-2 PC can stay at the *sn*-2 position as PC is turned over
6 to produce the DAG substrate for TAG synthesis. This is the dominant mechanism at work in parental CL37 (Bates
7 and Browse 2011), and produces 1-HFA-TAG with 70% of the HFA at *sn*-2. For HFA to be utilized by *RcLPAT2* or
8 *RcDGAT2* the HFA are removed from PC and incorporated into the acyl-CoA pool by acyl editing mechanisms (Bates
9 2016, Bates and Browse 2012). If the HFA-CoA are utilized by *RcDGAT2*, this leads to a shift in regiochemistry from
10 the *sn*-2 position of PC, to the *sn*-3 position of TAG. However, if the HFA-CoA is utilized by *RcLPAT2*, it will re-
11 enter the *sn*-2 position of PA and can ultimately end up in *sn*-2 TAG by way of *de novo* DAG or PC-derived DAG.
12 Therefore, the similar proportions of *sn*-2 HFA found in the *RcLPAT2* alone line and CL37 are likely due to the
13 synthesis of the same product (1-HFA-TAG), but by two different pathways. Interestingly, the line containing all three
14 castor acyltransferases had the most 1-HFA-TAG (Fig. 4), and the most HFA located at the *sn*-1/3 position of 1-HFA-
15 TAG (Fig. 6). This result is likely due to the combined action of both *RcGPAT9* (*sn*-1-specific) and *RcDGAT2* (*sn*-
16 3-specific) acyltransferases contributing to production of predominantly 1-HFA-TAG.
17
18 431
19 432
20 433
21 434
22 435
23
24 436
25 437
26 438
27 439
28 440
29 441
30 442
31 443
32 444
33 445
34 446
35 447
36 448
37 449
38 450
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

In Figs 4a and 4b, we demonstrate that co-expression of the full suite of all three castor Kennedy pathway acyltransferases (*RcGPAT9*, *RcLPAT2*, and *RcDGAT2*) in CL37 nearly doubles the accumulation of seed TAG HFA, from approximately 17-20% in CL37 to approximately 35-39%. Interestingly, despite such increases in total HFA content, very little 3-HFA-TAG accumulated. Castor oil contains approximately 90% HFA, and 3-HFA-TAG makes up over 70% of total TAG species in castor seeds (Lin et al. 2003). There are two possibilities that may explain the limited accumulation of total HFA and 3-HFA-TAG in transgenic *Arabidopsis* based on our current understanding of the metabolic network of plant TAG biosynthesis (Fig. 8). First, differences may exist between the components and precise location of the TAG assembly pathways in castor and *Arabidopsis*. Current evidence indicates that castor uses a classical Kennedy pathway of sequential GPAT, LPAT, and PAP enzymatic activities to produce *de novo* synthesized diacylglycerols containing two HFA, which is used by castor DGATs to produce 3-HFA-TAG (Bafor et al. 1991). However, *Arabidopsis* utilizes a pathway where *de novo* DAG is first incorporated into the membrane lipid phosphatidylcholine (where the fatty acid composition can be remodeled by acyl editing) prior to conversion to a PC-derived DAG and subsequent incorporation into TAG by DGAT (Bates and Browse 2011; Bates et al. 2012; Bates 2016). Substrate competition and imperfect protein locations/interactions between the endogenous *Arabidopsis* TAG assembly enzymes and transgenic castor enzymes may produce a system that cannot achieve efficient, uninterrupted

1
2
3
4 451 flux of HFA-containing substrates into 3-HFA-TAG, even in the presence of all three introduced castor
5
6 452 acyltransferases. One possible solution may be to reduce competition from the endogenous TAG biosynthetic pathway
7
8 453 enzymes, which on a limited basis has been demonstrated to increase the accumulation of unusual fatty acids in
9
10 454 transgenic plants (van Erp et al. 2015; Bansal et al. 2018). Another possible solution would be to enhance HFA flux
11
12 455 through the same lipid metabolic network that *Arabidopsis* uses by enhancing TAG synthesis from PC-derived
13
14 456 substrates (Fig. 8). Again, on a limited basis this has been successfully demonstrated by increased HFA accumulation
15
16 457 in seeds co-expressing *RcFAH12* and *RcPDAT1a* (van Erp et al. 2011), or *RcPDCT* (Hu et al. 2012). The conversion
17
18 458 of *Arabidopsis* oil to castor-type oils may require a combination of these approaches.
19

20 459 Insufficient fatty acid hydroxylase activity may also explain the limited production of total HFA and 3-HFA-
21
22 460 TAG in CL37 plants that co-express various castor acyltransferases. Overexpression of *RcDGAT2* or *RcPDAT1A* in
23
24 461 parental CL37 increased HFA content from ~17-20% to approximately 25-30% (Burgal et al. 2008; van Erp et al.
25
26 462 2011), showing that considerable ‘headspace’ existed in parental CL37, in the absence of co-evolved castor TAG
27
28 463 biosynthetic enzymes. In the lines described in this study, containing two or all three of the castor Kennedy pathway
29
30 464 enzymes, it is highly likely that FAH activity has become a limiting factor. *RcGPAT9* has not yet been characterized
31
32 465 in detail, but biochemical analyses (Kroon et al. 2006; Burgal et al. 2008; and this study) suggest that *RcDGAT2* and
33
34 466 *RcLPAT2* have high selectivity for HFA-containing DAG and/or acyl-CoA substrates, with a certain degree of
35
36 467 promiscuity towards other substrates. Therefore, in the presence of limited FAH activity, the castor acyltransferases
37
38 468 could quickly deplete the HFA-CoA from developing seed metabolite pools, forcing the collective acyltransferase set
39
40 469 (containing both native and transgenic enzymes) in the TAG biosynthetic apparatus to use a mixture of HFA and non-
41
42 470 HFA substrates, resulting in production of a mixture of TAG species containing 0-3 HFA. The CL37 background was
43
44 471 selected without any additional HFA-selective acyltransferases included (Lu et al. 2006), and significant amounts of
45
46 472 HFA accumulated in membrane lipids (van Erp et al. 2011), which can be detrimental to cellular function (Millar et
47
48 473 al. 2000). Therefore, the initial selection of CL37 may have been unintentionally biased towards lines expressing
49
50 474 relatively low levels of FAH12 activity. The efficient transfer of UFA from membranes into TAG can limit their
51
52 475 adverse effects on membrane structure and function. Therefore, one mechanism to test the HFA limitation hypothesis
53
54 476 may be to express *RcFAH12* in lines previously transformed with HFA-selective acyltransferases. These activities,
55
56 477 such as *RcDGAT2* or *RcPDAT1A*, will help to establish neutral lipid metabolic sinks that can accommodate higher
57
58 478 levels of HFA TAG products produced from higher-expressing *RcFAH12* lines.
59

1
2
3
4 479 Previous studies of HFA production in transgenic *Arabidopsis* seeds (Kumar et al. 2006) indicated that castor
5 FAH inefficiently competes with endogenous fatty acid desaturases for reduced cytochrome b5 (cb5), an essential
6 cofactor for both desaturation and hydroxylation reactions. Wayne and Browse (2013) expressed various combinations
7 of castor *cb5* and *cytochrome b5 reductase (CBR)* genes in CL37, but did not observe increases in seed HFA levels.
8
9 480 However, as noted above, the HFA levels in seed lipids of CL37 (lacking other castor ‘sink’ enzymes such as
10 481 *RcDGAT2*), does not fully capitalize on the available metabolic headspace of FAH12, and thus may not have been
11 482 the ideal vehicle for testing *cb5/CBR* complementation. Integration of the two approaches described here may provide
12 483 an ideal blend of genetic components necessary for both production of high levels of HFA from *RcFAH12*, and
13 484 assembly of HFA-containing TAGs via overexpression of multiple Kennedy pathway and other ‘sink’ enzymes.
14 485
15 486
16 487
17 488 Overexpression of *RcLPAT2* in CL37 greatly increased total seed oil content (Fig. 5). Previously, it has been
18 489 demonstrated in multiple species that enhanced LPAT activity is associated with higher seed oil content (Zou et al.
19 490 1997; Taylor et al. 2002; Maisonneuve et al. 2010). Detailed biochemical studies indicated plant DGAT1 activity is
20 491 stimulated by PA, the product of the LPAT reaction (Caldo et al. 2018). Our result fits with these previous studies,
21 492 however this result was not initially expected. Our previous work has demonstrated that the CL37 seeds contain
22 493 approximately ~40-50% less oil, compared to wild-type, due to HFA-induced feedback regulation of fatty acid
23 494 synthesis (Bates et al. 2014). To increase seed oil content, overexpression of *RcLPAT2* would have to do more than
24 495 just activate endogenous DGAT activity, but also alleviate the down-regulation of fatty acid synthesis. Consistent with
25 496 our previous analyses, CL37 contained 24.2% oil, on a seed dry weight basis (Fig. 5). The near wild-type levels of
26 497 seed lipid when *RcLPAT2* is overexpressed alone (34.2±1.2%) indicates that *RcLPAT2* expression largely eliminates
27 498 the oil yield penalty created by FAH expression in CL37, likely by alleviating the HFA-induced feedback inhibition
28 499 directly by enhancing incorporation of HFA into PA (and TAG, thus reducing any possible toxic effects of HFA
29 500 intermediate buildup) and indirectly through synthesis of PA which upregulates endogenous DGAT activity (Caldo et
30 501 al. 2018).
31 502
32 503
33 504 **Endogenous *Arabidopsis* LPAT2 is a likely bottleneck to efficient HFA accumulation in CL37 plants**
34 505
35 506 There may be several reasons why CL37 *Arabidopsis* is limited to ~17-20% HFA in seed oil. One such reason is
36 507 substrate incompatibility for one or more of the Kennedy pathway isozymes present in developing seeds. To address
37 508 this point directly, we expressed *RcLPAT2* and *AtLPAT2* in yeast, and performed *in vitro* LPAT enzyme assays with
38 509
39 510
40 511
41 512
42 513
43 514
44 515
45 516
46 517
47 518
48 519
49 520
50 521
51 522
52 523
53 524
54 525
55 526
56 527
57 528
58 529
59 530
60 531
61 532
62 533
63 534
64 535
65 536

1
2
3
4 507 different combinations of hydroxylated and ‘normal’ (non-hydroxylated) acyl-CoA and LPA substrates. AtLPAT2
5 and RcLPAT2 differed radically in their respective substrate specificities. Whereas the *Arabidopsis* enzyme could not
6 acylate ricinoleoyl-CoA to ricinoleoyl-LPA, the RcLPAT2 readily utilized this combination of substrates. These data
7 corroborate well with the data from Bates and Browse (2011) showing that, in *in-vivo* labelling experiments, no di-
8 ricinoleoyl DAG but only DAG with no or one ricinoleoyl groups were produced in *Arabidopsis* seeds expressing
9 castor FAH. More unexpectedly, the RcLPAT2 showed very little, if any, ability to produce di-18:1-PA and *sn*-1-
10 ricinoleoyl-*sn*-2-18:1-PA, whereas both enzymes produced similar levels of *sn*-1-18:1-*sn*-2-ricinoleoyl-PA. This
11 indicates that RcLPAT2 can only produce di-ricinoleoyl PA when ricinoleoyl-LPA is a substrate and it likely does not
12 produce meaningful amounts of di-18:1-PA. Given that castor oil is made up of 70 mole% triricinolein, and 90% HFA
13 in total, ricinoleoyl-LPA is likely the major LPA molecular species produced in developing castor seeds. Thus, the
14 particular specificity of RcLPAT2 will ensure that this substrate is efficiently channeled into di-ricinoleoyl PA, and
15 ultimately di-ricinoleoyl DAG, the preferred substrate for RcDGAT2 (Kroon et al. 2006; Burgal et al. 2008). The
16 substrate specificity of RcLPAT2 strongly suggests that it plays a significant role in triricinolein biosynthesis in
17 developing castor seeds, and also makes it a useful tool for production of transgenic HFA as well.

18
19 521 At the same time, our results suggest that RcLPAT2 will not compete with other housekeeping LPAT
20 activities that produce di-oleoyl-PA (and likely other non-HFA PA species) that are necessary for membrane lipid
21 synthesis. *RcLPAT3A* is a closely related ortholog of *RcLPAT2* (Körbes et al. 2016), but when cloned and expressed
22 in our yeast system was inactive against all four combinations of oleoyl- and ricinoleoyl-CoAs/LPAs described above
23 (data not shown). *RcLPAT3A* is preferentially expressed in male parts of castor flowers, and may therefore have
24 evolved specificity for substrates unique to floral lipid metabolism. Therefore, the most likely candidate for the
25 housekeeping role is *RcLPATB*, a member of a separate clade of LPAT enzymes of a more ancient origin than LPAT2
26 and the other members of that subfamily (Körbes et al. 2016). *RcLPATB* is ubiquitously expressed in castor organs,
27 including developing seeds (Arroyo-Caro et al. 2013). *RcLPATB* possesses very broad substrate range, effectively
28 utilizing acyl-CoAs containing medium-chain saturated fatty acids (C12:0, C14:0), long-chain monounsaturates, and
29 ricinoleic acid. Arroyo-Caro et al. (2013) state that these unusual substrate specificities argue against *RcLPATB*
30 involvement in delivering PA species for membrane lipid synthesis. We have not assayed *RcLPATB* here, and it
31 should be noted that some parts of the *RcLPAT2* substrate specificity data presented by these authors contrasts sharply
32 with what is reported here by us. In their assays, as in ours, ricinoleoyl-CoA was efficiently acylated to ricinoleoyl-
33
34

1
2
3
4 535 LPA by the castor enzyme. However, they also reported that RcLPAT2 efficiently acylated 18:1-CoA to both 18:1-
5
6 536 LPA and ricinoleoyl-LPA; our assays showed no or little activity over background with these substrate combinations.
7
8 537 We cannot offer any obvious explanation for these discrepancies but note that that their enzyme assays utilized
9 membranes from *E. coli* expressing the enzymes whereas we used yeast membranes. Their substrate and enzyme
10 538 concentrations differed from ours and their assays were done with an indirect spectrophotometric method whereas
11
12 539 ours were based on direct measurement of the radioactive PA products. Regardless of these discrepancies, our data
13
14 540 clearly shows that, when using the same assay conditions for both AtLPAT2 and RcLPAT2, the two enzymes showed
15
16 541 radically different substrate specificities that support a specialized role for RcLPAT2 in di-ricinoleoyl PA production
17
18 542 while the *Arabidopsis* enzyme lacks this capacity. We also feel that the broad substrate specificity of RcLPATB does
19
20 543 not rule it out from providing the ‘housekeeping’ LPAT activity necessary for membrane lipid synthesis in *R.*
21
22 544 *communis*. It displays significant activity towards substrate combinations that would produce fatty acid profiles typical
23
24 545 of most plant ER phospholipids (Arroyo-Caro et al. 2013), which we did not observe for RcLPAT2 in our experiments
25
26 546 (Fig. 6). Future studies will be focused on clarifying this question.

30 548 In summary, we have presented results from a series of experiments that address the potential role of
31
32 549 RcLPAT2 in the selective biosynthesis of PA containing HFA, and the contribution that this enzyme activity makes
33 towards increasing total seed oil levels and HFA production specifically in transgenic *Arabidopsis* seeds. Both tung
34
35 550 and castor LPATs had a positive effect on UFA accumulation in transgenic *Arabidopsis* when co-expressed with their
36
37 551 respective UFA synthesis enzymes, suggesting a similar co-evolution of UFA synthesis with oil assembly enzymes to
38
39 552 enhance selective fatty acid incorporation into seed oils, over that of the common fatty acids found in membrane lipids.
40
41 553 Together these data support inclusion of LPAT2 enzymes from *Euphorbiaceae* species in future oilseed metabolic
42
43 554 engineering strategies to produce high levels of UFA containing oils in sustainable agronomic crops.
44
45 555
46
47 556
48
49
50
51 557 **Author contribution statement**

52
53 558 JS, IL, SS, and PDB conceived and designed research. HKK contributed new resources and analytical tools. JS, IL,
54
55 559 SS and PB wrote the manuscript. All authors conducted experiments and analyzed data, and read and approved the
56
57 560 manuscript.

1
2
3
4 561
5
6
7 562 **Acknowledgments**
8
9
10 563 The authors would like to thank Ms. Tien Thuy Vuong for technical assistance. This work was supported by the U.S.
11
12 564 Department of Agriculture, Agricultural Research Service Current Research Information System project number
13
14 565 6054-41000-102-00D (to JS and CM) and the National Science Foundation (Division of Molecular and Cellular
15
16 566 Bioscience, award #1613923, to PDB and JS).
17
18
19 567
20
21
22 568 **Footnotes**
23
24
25 569 Mention of trade names or commercial products in this publication is solely for the purpose of providing specific
26
27 570 information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an
28
29 571 equal opportunity provider and employer.
30
31 572
32
33 573
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62 23
63
64
65

1
2
3
4 574 **Figure Legends**
5
6 575 **Fig. 1** Comparison of α -eleostearic acid (ESA) production in T_2 populations of DsRed fluorescent transgenic
7
8 576 *Arabidopsis fad3fae1* double mutant plants expressing tung *FADX* alone *FADX* and *VfDGAT2* or *FADX*, *VfDGAT2*,
9
10 577 and *VfLPAT2*. Each data point represents the relative quantity of ESA present in the segregating T_2 seeds derived
11
12 578 from a different independent transgenic event. The mean and SEM are shown for each population of samples.
13
14 579 Significant differences ($p < 0.05$, unpaired student's t test) from the base *VfFADX* line are marked with an asterisk.
15
16 580
17
18 581 **Fig. 2** Comparison of ESA production in T_2 populations of basta herbicide-resistant transgenic *Arabidopsis fad3fae1*
19
20 582 double mutant plants expressing tung *FADX* alone, or *FADX* and *VfLPAT2*. Each data point represents the relative
21
22 583 quantity of ESA present in the segregating T_2 seeds derived from a different independent transgenic event. The mean
23
24 584 and SEM are shown for each population of samples. Significant differences ($p < 0.05$, unpaired student's t test) from
25
26 585 the base *VfFADX* line are marked with an asterisk.
27
28 586
29
30 587 **Fig. 3** Comparison of hydroxy fatty acid (HFA) production in T_2 populations of *Arabidopsis* CL37 plants
31
32 588 retransformed with either empty binary vector or, *RcDGAT2*, or *RcDGAT2* and *RcLPAT2*, or *RcGPAT9* and *RcLPAT2*
33
34 589 and *RcDGAT2*. (a) DsRed selection lines. (b) basta herbicide-resistant selection lines. Each data point represents the
35
36 590 relative quantity of HFA present in the segregating T_2 seeds derived from a different independent transgenic event.
37
38 591 The mean and SEM are shown for each population of samples. Different letters above each line indicate significant
39
40 592 differences ($p < 0.05$), unpaired student's t test).
41
42 593
43
44 594 **Fig. 4** Analysis of accumulation of HFA-containing TAGs. (a) relative proportions of different HFA-containing TAG
45
46 595 classes in various transgenic lines. (b) total TAG HFA content from the sum of each TAG species. Seeds analyzed
47
48 596 from *RcDGAT2* and *RcLPAT2/DGAT2* were homozygous T_3 , and *RcLPAT2* and *RcGPAT9/LPAT2/DGAT2* were
49
50 597 homozygous T_4 . Data represents the mean and standard error of lipids extracted from 2-4 individual plants. Statistical
51
52 598 analysis was performed with a 2-way ANOVA in (a) and a 1-way ANOVA in (b). Significant differences ($p < 0.05$)
53
54 599 from the control CL37 line are marked with an asterisk.
55
56
57 600
58
59
60
61
62 24
63
64
65

1
2
3
4 601 **Fig. 5** Total seed fatty acid content in HFA-producing *Arabidopsis* seeds. Lines are the parental CL37 and those co-
5 expressing either *RcLPAT2*, or *RcLPAT2* and *RcDGAT2*. Seeds are homozygous T₄ seed. Data represents the mean
6 and standard error, *n* = 4 individual plants. Growth conditions: 23 °C, 16 hr white light/ 8 hr dark, ~150 μmole photons
7
8 603 and standard error, *n* = 4 individual plants. Growth conditions: 23 °C, 16 hr white light/ 8 hr dark, ~150 μmole photons
9
10 604 m² s⁻¹.
11
12 605
13
14 606 **Fig. 6** Regiochemical analysis of 1-HFA-TAG. 1-HFA-TAG from lipid extracts in Fig. 4 was collected from the
15 parental CL37 line and T₄ seed in each new transgenic line. Data represents the mean and standard error, *n* = 3-4
16
17 607 individual plants. Significant differences (*p* < 0.05) from the control CL37 line are marked with an asterisk (unpaired
18
19 608 Student's t-test). The α indicates that the *RcGPAT9/LPAT2/DGAT2* line is significantly different than all other lines.
20
21 609
22
23 610
24
25 611 **Fig. 7** Biochemical analysis of *Arabidopsis* and castor LPAT enzymes. The ORFs for *AtLPAT2*, *RcLPAT2*, and
26
27 612 *RcLPAT3A* were cloned in a yeast expression vector, and enzyme production was induced in an *ale1* mutant of *S.*
28
29 613 *cerevisiae*. Enzyme activity was measured as described in the text. *RcLPAT3A* was inactive with all four of the
30
31 614 substrate combinations tested (data not shown). Means and standard deviations are shown for triplicate assays for each
32
33 615 substrate combination. Significant differences (*p* < 0.05) from the control empty vector are marked with an asterisk
34
35 616 (unpaired Student's t-test).
36
37 617
38
39 618 **Fig. 8** Proposed pathway of *RcLPAT2* contribution to HFA-TAG synthesis in transgenic *Arabidopsis*. Dotted lines
40
41 619 indicate acyl transfer reactions, solid lines indicate glycerolipid flux. Relevant castor enzymes that have been used to
42
43 620 make transgenic plants are underlined. Castor enzymes used in this study are in red. Abbreviations: G3P, glycerol-3-
44
45 621 phosphate; GPAT, glycerol-3-phosphate acyltransferase; LPA, lysophosphatidic acid; PA, phosphatidic acid; DAG,
46
47 622 diacylglycerol; PC, phosphatidylcholine; PDAT, phospholipid:diacylglycerol acyltransferase; PDCT,
48
49 623 phosphatidylcholine:diacylglycerol cholinephosphotransferase; LPC, lyso-phosphatidylcholine; TAG,
50
51 624 triacylglycerol; HFA, hydroxy fatty acid.
52
53 625
54
55
56
57
58
59
60
61
62 25
63
64
65

1
2
3
4 626 **References**
5
6 627
7
8 628 Adhikari N, Bates PD, Browse J (2016) WRINKLED1 rescues feedback inhibition of fatty acid synthesis in
9 hydroxylase-expressing seeds of *Arabidopsis*. *Plant Physiol* 171:179-191
10
11 629
12 630 Arroyo-Caro JM, Chileh T, Kazachkov M, Zou J, Alonso DL, García-Maroto F (2013) The multigene family of
13 lysophosphatidate acyltransferase (LPAT)-related enzymes in *Ricinus communis*: cloning and molecular
14 characterization of two *LPAT* genes that are expressed in castor seeds. *Plant Sci* 199-200:29-40
15
16 632
17
18 633 Bafor M, Smith MA, Jonsson L, Stobart K, Stymne S (1991) Ricinoleic acid biosynthesis and triacylglycerol assembly
19 in microsomal preparations from developing castor-bean (*Ricinus communis*) endosperm. *Biochem J*
20
21 634 280:507-514
22
23 635
24
25 636 Bansal S, Kim HJ, Na G, Hamilton ME, Cahoon EB, Lu C, Durrett TP (2018) Towards the synthetic design of
26 camelina oil enriched in tailored acetyl-triacylglycerols with medium-chain fatty acids. *J Exp Bot* 69:4395-
27
28 637 4402
29
30 638
31 639 Bates PD (2016) Understanding the control of acyl flux through the lipid metabolic network of plant oil biosynthesis.
32
33 640 *Biochim Biophys Acta - Mol Cell Biol Lipids* 1861:1214-1225
34
35 641 Bates PD, Browse J (2011) The pathway of triacylglycerol synthesis through phosphatidylcholine in *Arabidopsis*
36 produces a bottleneck for the accumulation of unusual fatty acids in transgenic seeds. *Plant J* 68:387-399
37
38 642
39 643 Bates PD, Browse J (2012) The significance of different diacylglycerol synthesis pathways on plant oil composition
40 and bioengineering. *Front Plant Sci* 3:147
41
42 644
43 645 Bates PD, Fatihi A, Snapp AR, Carlsson AS, Browse J, Lu C (2012) Acyl editing and headgroup exchange are the
44 major mechanisms that direct polyunsaturated fatty acid flux into triacylglycerols. *Plant Physiol* 160:1530-
45
46 646 1539
47
48 647
49 648 Bates PD, Johnson SR, Cao X, Li J, Nam J-W, Jaworski JG, Ohlrogge JB, Browse J (2014) Fatty acid synthesis is
50 inhibited by inefficient utilization of unusual fatty acids for glycerolipid assembly. *Proc Nat Acad Sci USA*
51
52 649 111:1204-1209
53
54 650
55 651 Bourgis F, Kader J -C, Barret P, Renard M, Robinson D, Robinson C, Delseney M, Roscoe TJ (1999) A plastidial
56
57 652 lysophosphatidic acid acyltransferase from oilseed rape. *Plant Physiol* 120:913-921
58
59
60
61
62 26
63
64
65

1
2
3
4 653 Burgal J, Shockey J, Lu CF, Dyer J, Larson T, Graham I, Browse J (2008) Metabolic engineering of hydroxy fatty
5 acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil. *Plant Biotech*
6 654 J 6:819-831
7
8 655 J 6:819-831
9
10 656 Caldo KMP, Shen W, Xu Y, Hanley-Bowdoin L, Chen G, Weselake RJ, Lemieux MJ (2018) Diacylglycerol
11 acyltransferase 1 is activated by phosphatidate and inhibited by SnRK1-catalyzed phosphorylation. *Plant J*
12 657 Chen GQ, Van Erp H, Martin-Moreno J, Johnson K, Morales E, Eastmond PJ, Lin J-T (2016) Expression of castor
13 LPAT2 enhances ricinoleic acid content at the *sn*-2 position of triacylglycerols in *lesquerella* seed. *Intern J*
14 658 Mol Sci 17:507
15
16 659 Chen GQ, Van Erp H, Martin-Moreno J, Johnson K, Morales E, Eastmond PJ, Lin J-T (2016) Expression of castor
17 LPAT2 enhances ricinoleic acid content at the *sn*-2 position of triacylglycerols in *lesquerella* seed. *Intern J*
18 660 Mol Sci 17:507
19
20 661 Clough SJ, Bent AF (1998) Floral dip: a simplified method for *Agrobacterium*-mediated transformation of
21 *Arabidopsis thaliana*. *Plant J* 16:735-743
22
23 662 Dyer JM, Chapital DC, Kuan J-C, Mullen RT, Turner C, McKeon TA, Pepperman AB (2002) Molecular analysis of
24 a bifunctional fatty acid conjugase/desaturase from tung. Implications for the evolution of plant fatty acid
25 diversity. *Plant Physiol* 130:2027-2038
26
27 663 Gunstone FD, Harwood JL, Dijkstra AJ (2007) The lipid handbook with CD-ROM. CRC Press.
28
29 664 Hara A, Radin NS (1978) Lipid extraction of tissues with a low-toxicity solvent. *Anal Biochem* 90:420-426
30
31 665 Hu Z, Ren Z, Lu C (2012) The phosphatidylcholine diacylglycerol cholinephosphotransferase is required for efficient
32 hydroxy fatty acid accumulation in transgenic *Arabidopsis*. *Plant Physiol* 158:1944-1954
33
34 666 Iskandarov U, Silva JE, Kim HJ, Andersson M, Cahoon RE, Mockaitis K, Cahoon EB (2017) A specialized
35 diacylglycerol acyltransferase contributes to the extreme medium-chain fatty acid content of *Cuphea* seed
36 oil. *Plant Physiol* 174:97-109
37
38 667 Jasieniecka-Gazarkiewicz K, Lager I, Carlsson AS, Gutbrod K, Peisker H, Dörmann P, Stymne S, Banaś A. (2017)
39
40 668 Acyl-CoA:lysophosphatidylethanolamine acyltransferase activity regulates growth of *Arabidopsis*. *Plant*
41
42 669 *Physiol* 174:986-998
43
44 670 Kanda P, Wells MA (1981) Facile acylation of glycerophosphocholine catalyzed by trifluoroacetic-anhydride. *J Lipid*
45
46 671 *Res* 22:877-879
47
48 672 Karki N, Bates PD (2018) The effect of light conditions on interpreting oil composition engineering in *Arabidopsis*
49
50 673 seeds. *Plant Direct* 2:e00067
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 680 Katavic V, Reed DW, Taylor DC, Giblin EM, Barton DL, Zou J, Mackenzie SL, Covello PS, Kunst L (1995)
5
6 681 Alteration of seed fatty acid composition by an ethyl methanesulfonate-induced mutation in *Arabidopsis*
7
8 682 *thaliana* affecting diacylglycerol acyltransferase activity. Plant Physiol 108:399-409
9
10 683 Kennedy EP (1961) Biosynthesis of complex lipids. Fed Proc 20:934-940
11
12 684 Kim HJ, Silva JE, Iskandarov U, Andersson M, Cahoon RE, Mockaitis K, Cahoon EB (2015) Structurally divergent
13
14 685 lysophosphatidic acid acyltransferases with high selectivity for saturated medium chain fatty acids from
15
16 686 *Cuphea* seeds. Plant J 84:1021-1033
17
18 687 Kim HU, Li Y, Huang AH (2005) Ubiquitous and endoplasmic reticulum-located lysophosphatidyl acyltransferase,
19
20 688 LPAT2, is essential for female but not male gametophyte development in *Arabidopsis thaliana*. Plant Cell,
21
22 689 17:1073-1089
23
24 690 Knutzon DS, Hayes TR, Wyrick A, Xiong H, Maelor Davies H, Voelker TA (1999) Lysophosphatidic acid
25
26 691 acyltransferase from coconut endosperm mediates the insertion of laurate at the *sn*-2 position of
27
28 692 triacylglycerols in lauric rapeseed oil and can increase total laurate levels. Plant Physiol 120:739-746
29
30 693 Körbes AP, Kulcheski FR, Margis R, Margis-Pinheiro M, Turchetto-Zolet AC (2016) Molecular evolution of the
31
32 694 lysophosphatidic acid acyltransferase (LPAAT) gene family. Mol Phylogenetic Evol 96:55-69
33
34 695 Kotapati HK, Bates PD (2018) A normal phase high performance liquid chromatography method for the separation
35
36 696 of hydroxy and non-hydroxy neutral lipid classes compatible with ultraviolet and in-line liquid scintillation
37
38 697 detection of radioisotopes. J Chromat B 1102-1103:52-59
39
40 698 Kroon JT, Wei W, Simon WJ, Slabas AR. Identification and functional expression of a type 2 acyl-CoA:diacylglycerol
41
42 699 acyltransferase (DGAT2) in developing castor bean seeds which has high homology to the major triglyceride
43
44 700 biosynthetic enzyme of fungi and animals. Phytochem 67:2541-2549
45
46 701 Kumar R, Wallis JG, Skidmore C, Browse J. (2006) A mutation in *Arabidopsis* cytochrome b5 reductase identified
47
48 702 by high-throughput screening differentially affects hydroxylation and desaturation. Plant J 48:920-932
49
50 703 Lager I, Yilmaz JL, Zhou XR, Jasieniecka K, Kazachkov M, Wang P, Zou J, Weselake R, Smith MA, Bayon S, Dyer
51
52 704 JM, Shockley JM, Heinz E, Green A, Banas A, Stymne S (2013) Plant acyl-CoA:lysophosphatidylcholine
53
54 705 acyltransferases (LPCATs) have different specificities in their forward and reverse reactions. J Biol Chem
55
56 706 288:36902-36914
57
58
59
60
61
62 28
63
64
65

1
2
3
4 707 Lands WEM (1960) Metabolism of glycerolipids. II The enzymatic acylation of lysolecithin. *J Biol Chem* 235:2233-
5
6 708 2237
7
8 709 Li Y, Beisson F, Pollard M, Ohlrogge J (2006) Oil content of *Arabidopsis* seeds: the influence of seed anatomy, light
9 and plant-to-plant variation. *Phytochem* 67:904-915
10
11 710 Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, Debono A, Durrett TP,
12
13 711 Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I,
14
15 712 Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J (2013) Acyl-lipid
16
17 713 metabolism. *The Arabidopsis book / American Society of Plant Biologists* 11:e0161.
18
19 714
20 715 Lin JT, Turner C, Liao LP, McKeon TA (2003) Identification and quantification of the molecular species of
21
22 716 acylglycerols in castor oil by HPLC using ELSD. *Journal of Liquid Chromatography & Related Technologies*
23
24 717 26:773-780
25
26 718 Lu CF, Fulda M, Wallis JG, Browse J (2006) A high-throughput screen for genes from castor that boost hydroxy fatty
27
28 719 acid accumulation in seed oils of transgenic *Arabidopsis*. *Plant J* 45:847-856
29
30 720 Maisonneuve S, Bessoule JJ, Lessire R, Delseney M, Roscoe TJ (2010) Expression of rapeseed microsomal
31
32 721 lysophosphatidic acid acyltransferase isozymes enhances seed oil content in *Arabidopsis*. *Plant Physiol*
33
34 722 152:670-684
35
36 723 McKeon TA (2016). Castor (*Ricinus communis*, L.). In: McKeon TA, Hayes DG, Hildebrand DF, Weselake RJ (eds)
37
38 724 Industrial Oil Crops, 1st edn. AOCS Press, Elsevier, San Diego, CA, USA. pp 75-112
39
40 725 Millar AA, Smith MA, Kunst L (2000) All fatty acids are not equal: discrimination in plant membrane lipids. *Trends*
41
42 726 *Plant Sci* 5:95-101
43
44 727 Pastor S, Sethumadhavan K, Ullah AH, Gidda S, Cao H, Mason C, Chapital C, Scheffler B, Mullen R, Dyer J, Shockey
45
46 728 J (2013) Molecular properties of the class III subfamily of acyl-coenzyme A binding proteins from tung tree
47
48 729 (*Vernicia fordii*). *Plant Sci* 203-204:79-88
49
50 730 Routaboul JM, Benning C, Bechtold N, Caboche M, Lepiniec L (1999) The TAG1 locus of *Arabidopsis* encodes for
51
52 731 a diacylglycerol acyltransferase. *Plant Physiol Biochem* 37:831-840
53
54 732 Shockey J, Mason C, Gilbert M, Cao H, Li X, Cahoon E, Dyer J (2015) Development and analysis of a highly flexible
55
56 733 multi-gene expression system for metabolic engineering in *Arabidopsis* seeds and other plant tissues. *Plant*
57
58 734 *Mol Biol* 89:113-26
59
60
61
62 29
63
64
65

1
2
3
4 735 Shockey J, Rinehart T, Chen Y, Wang Y, Zhihyong Z, Lisong H (2016). Tung (*Vernicia fordii* and *Vernicia montana*).
5
6 736 In: McKeon TA, Hayes DG, Hildebrand DF, Weselake RJ (eds) Industrial Oil Crops, 1st edn. AOCS Press,
7
8 737 Elsevier, San Diego, CA, USA. pp 243-274
9
10 738 Shockey JM, Gidda SK, Chapital DC, Kuan JC, Dhanoa PK, Bland JM, Rothstein SJ, Mullen RT, Dyer JM (2006)
11
12 739 Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized
13
14 740 to different subdomains of the endoplasmic reticulum. *Plant Cell* 18:2294-2313
15
16 741 Smith MA, Moon H, Chowrira G, Kunst L (2003) Heterologous expression of a fatty acid hydroxylase gene in
17
18 742 developing seeds of *Arabidopsis thaliana*. *Planta* 217:507-516
19
20 743 Ståhl U, Stålberg K, Stymne S, Ronne H (2008) A family of eukaryotic lysophospholipid acyltransferases with broad
21
22 744 specificity. *FEBS Lett* 582:305-309
23
24 745 Taylor DC, Katainic V, Zou J, MacKenzie SL, Keller WA, An J, Friesen W, Barton DL, Pedersen KK, Giblin EM
25
26 746 (2002) Field testing of transgenic rapeseed cv. Hero transformed with a yeast *sn*-2 acyltransferase results in
27
28 747 increased oil content, erucic acid content and seed yield. *Molecular Breeding* 8:317-322
29
30 748 van de Loo FJ, Broun P, Turner S, Somerville C (1995) An oleate 12-hydroxylase from *Ricinus communis* L. is a fatty
31
32 749 acyl desaturase homolog. *Proc Natl Acad Sci USA* 92:6743-6747
33
34 750 van Erp H, Bates PD, Burgal J, Shockey J, Browne J (2011) Castor phospholipid:diacylglycerol acyltransferase
35
36 751 facilitates efficient metabolism of hydroxy fatty acids in transgenic *Arabidopsis*. *Plant Physiol* 155:683-693
37
38 752 van Erp H, Shockey J, Zhang M, Adhikari ND, Browne J (2015) Reducing isozyme competition increases target fatty
39
40 753 acid accumulation in seed triacylglycerols of transgenic *Arabidopsis*. *Plant Physiol* 168:36-46
41
42 754 Wayne LL, Browne J (2013) Homologous electron transport components fail to increase fatty acid hydroxylation in
43
44 755 transgenic *Arabidopsis thaliana*. *F1000Res* 2:203
45
46 756 Zou J, Katainic V, Giblin EM, Barton DL, MacKenzie SL, Keller WA, Hu X, Taylor DC (1997) Modification of seed
47
48 757 oil content and acyl composition in the *Brassicaceae* by expression of a yeast *sn*-2 acyltransferase gene. *The*
49
50 758 *Plant Cell* 9:909-923
51
52 759 Zou J, Wei Y, Jako C, Kumar A, Selvaraj G, Taylor DC (1999) The *Arabidopsis thaliana* TAG1 mutant has a mutation
53
54 760 in a diacylglycerol acyltransferase gene. *Plant J* 19:645-653
55
56
57 761
58
59
60
61
62 30
63
64
65

Figure 1

Weight % eleostearic acid

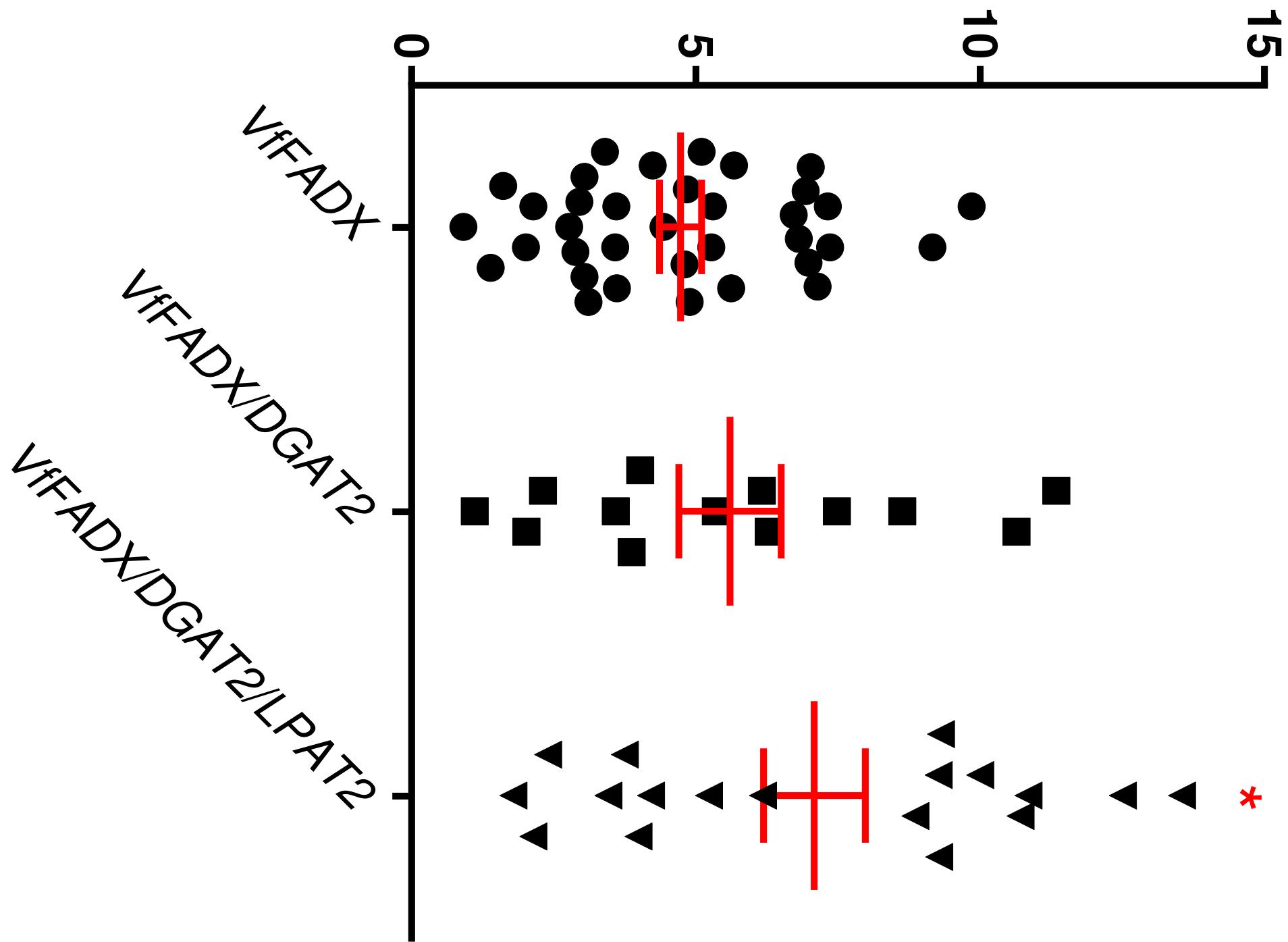


Figure 2

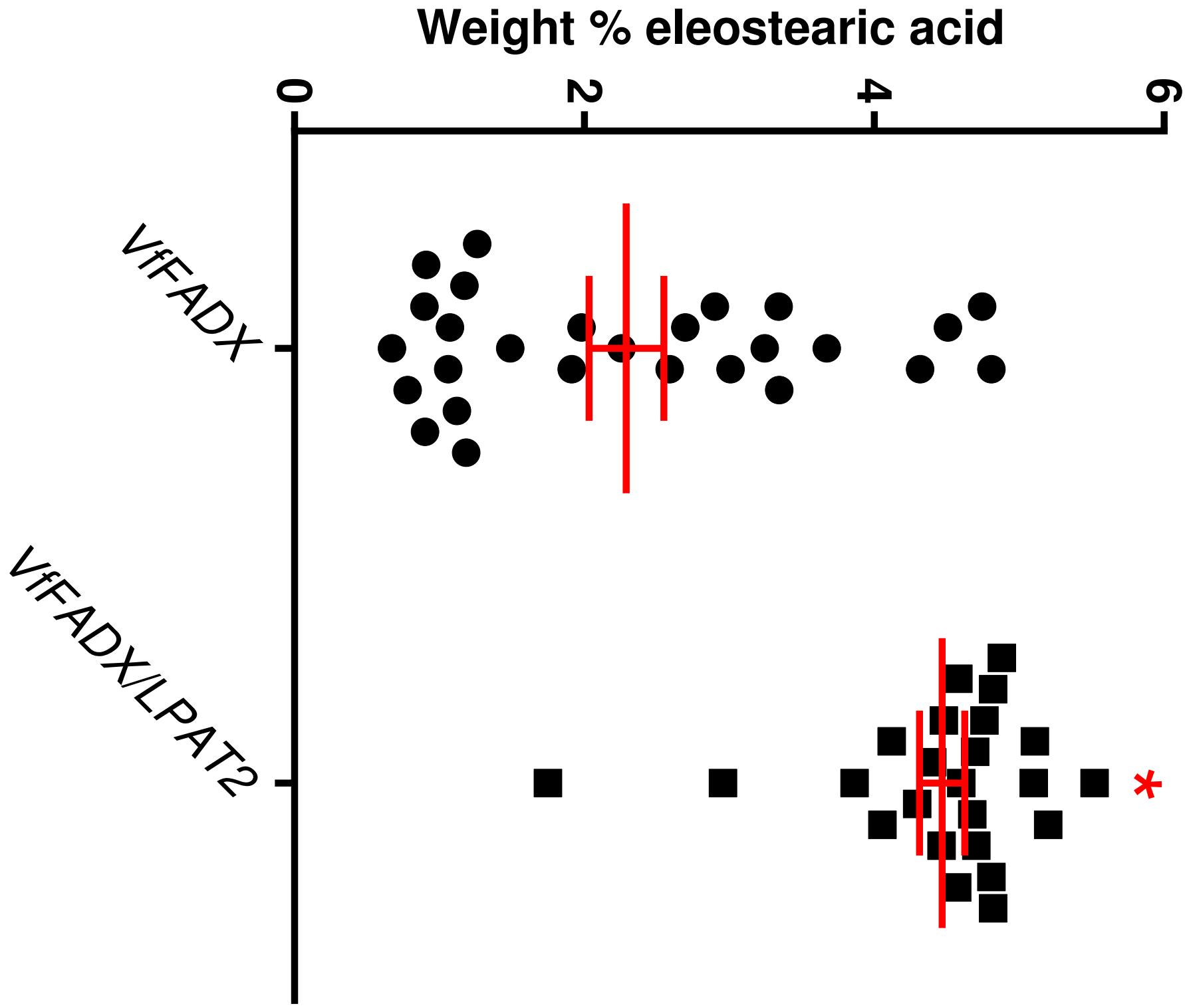
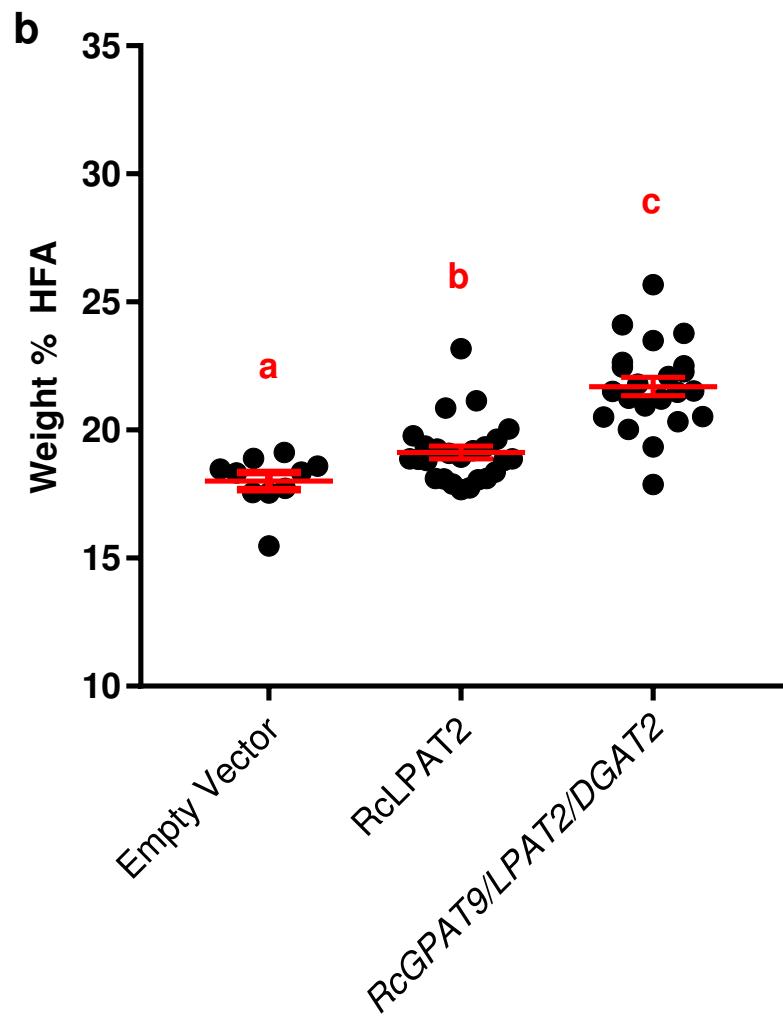
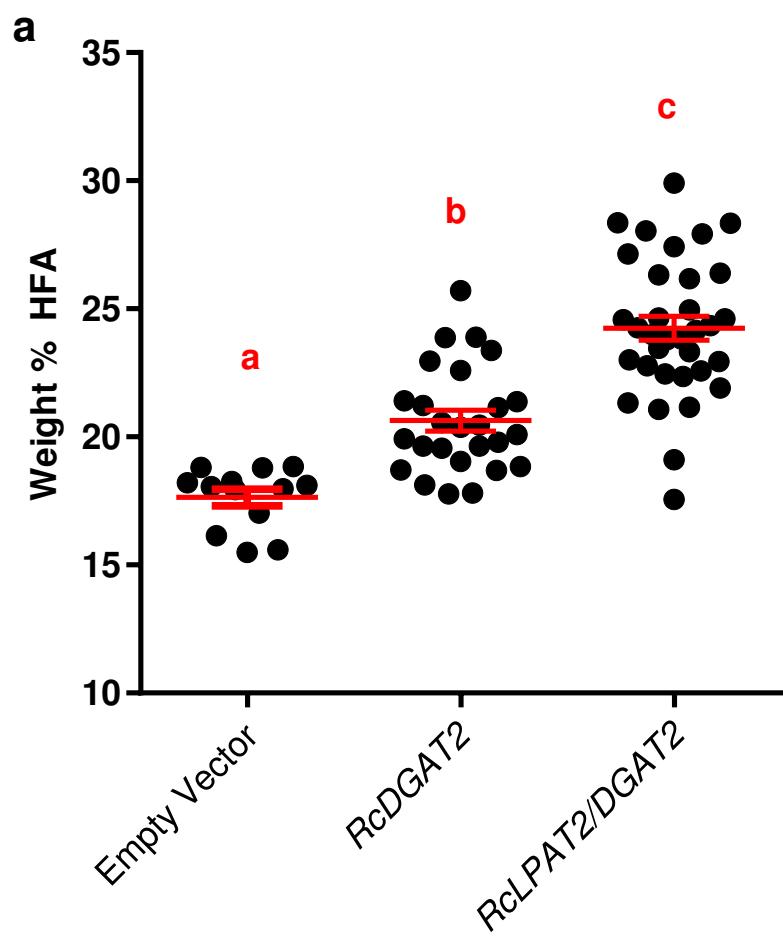




Figure 3

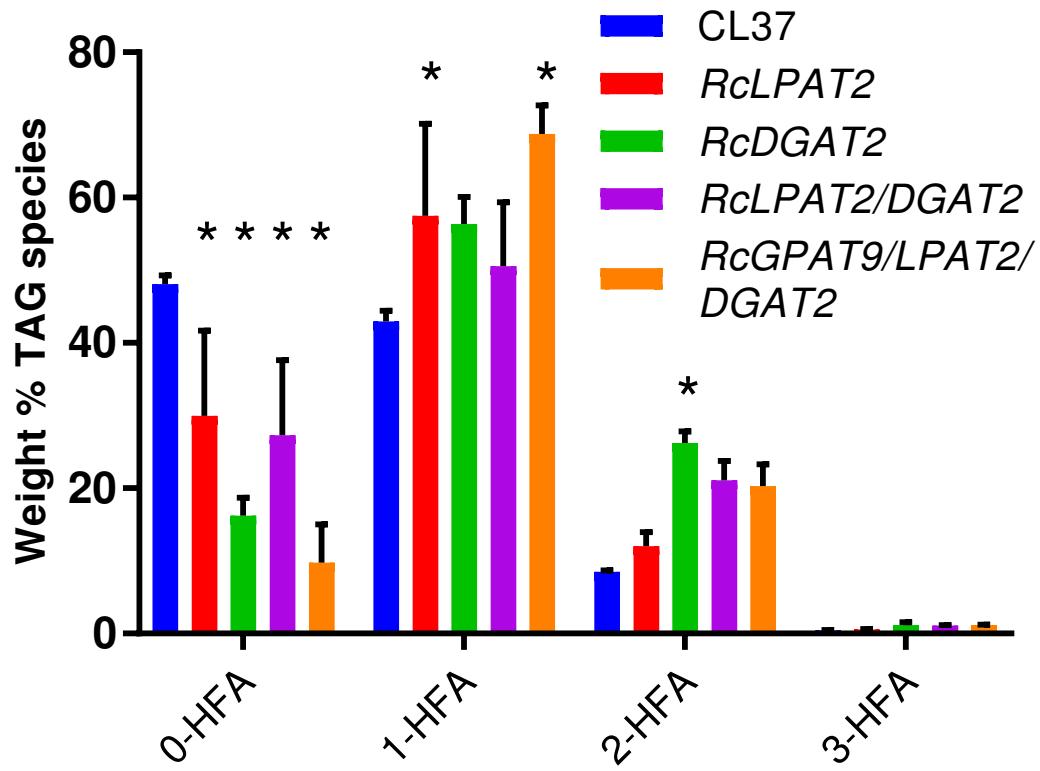
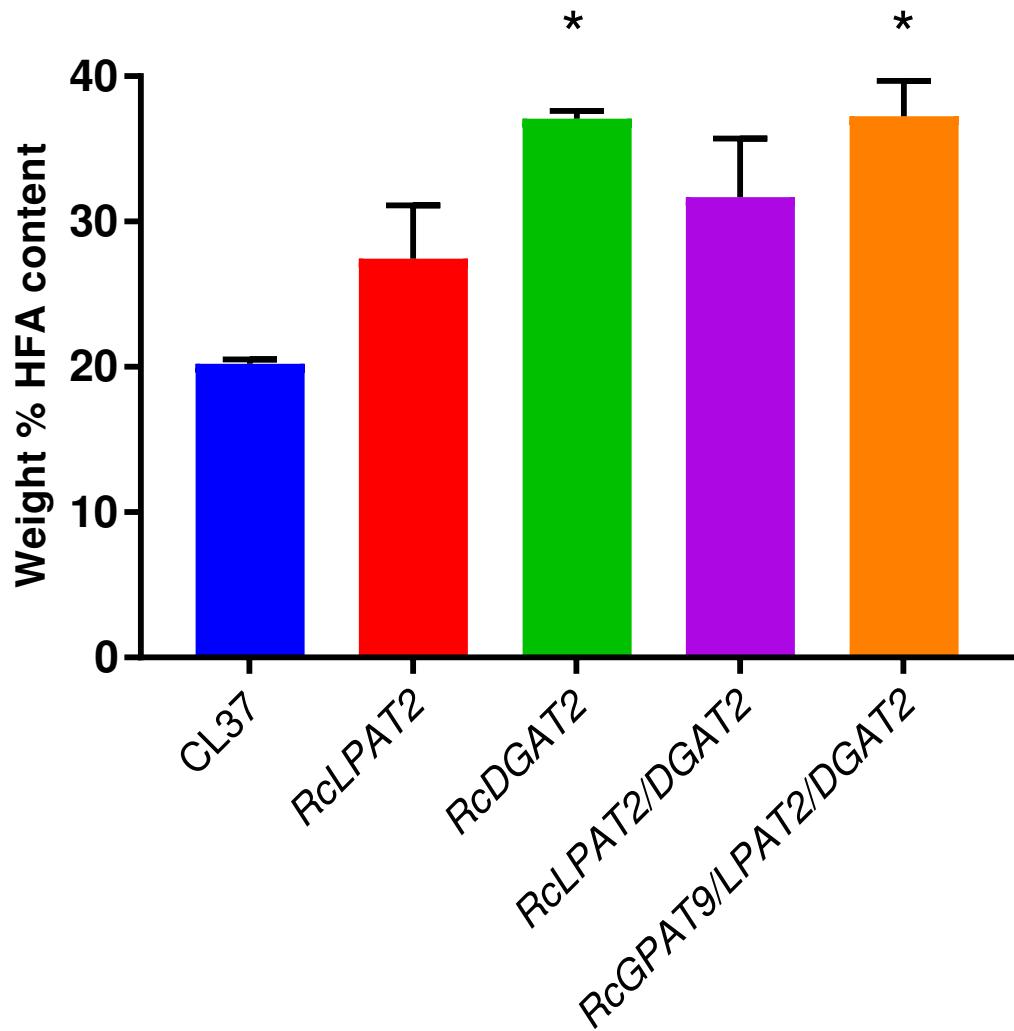


a. HFA-containing TAG species**b. Total HFA content of TAG species**

Figure 5

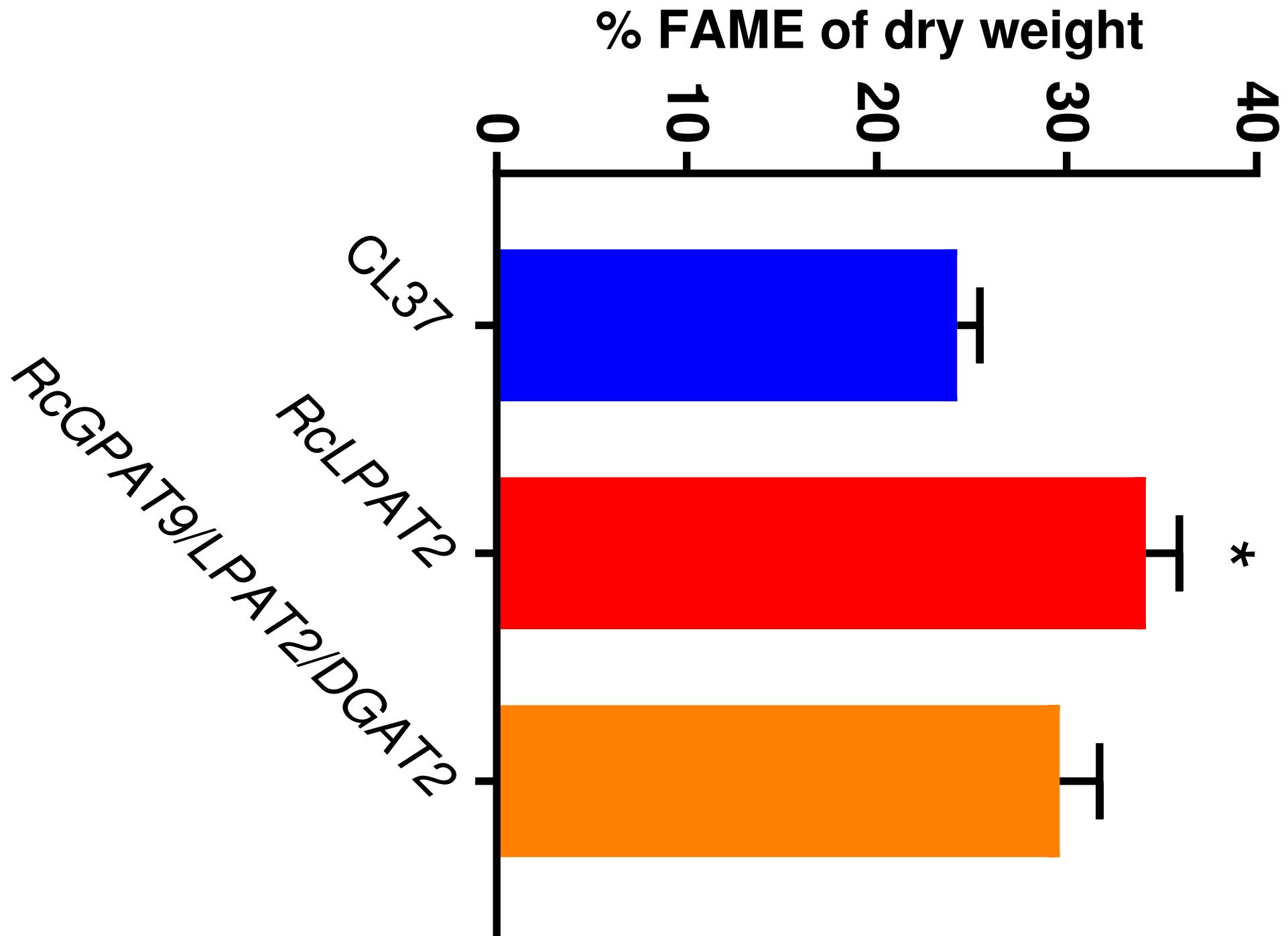


Figure 6

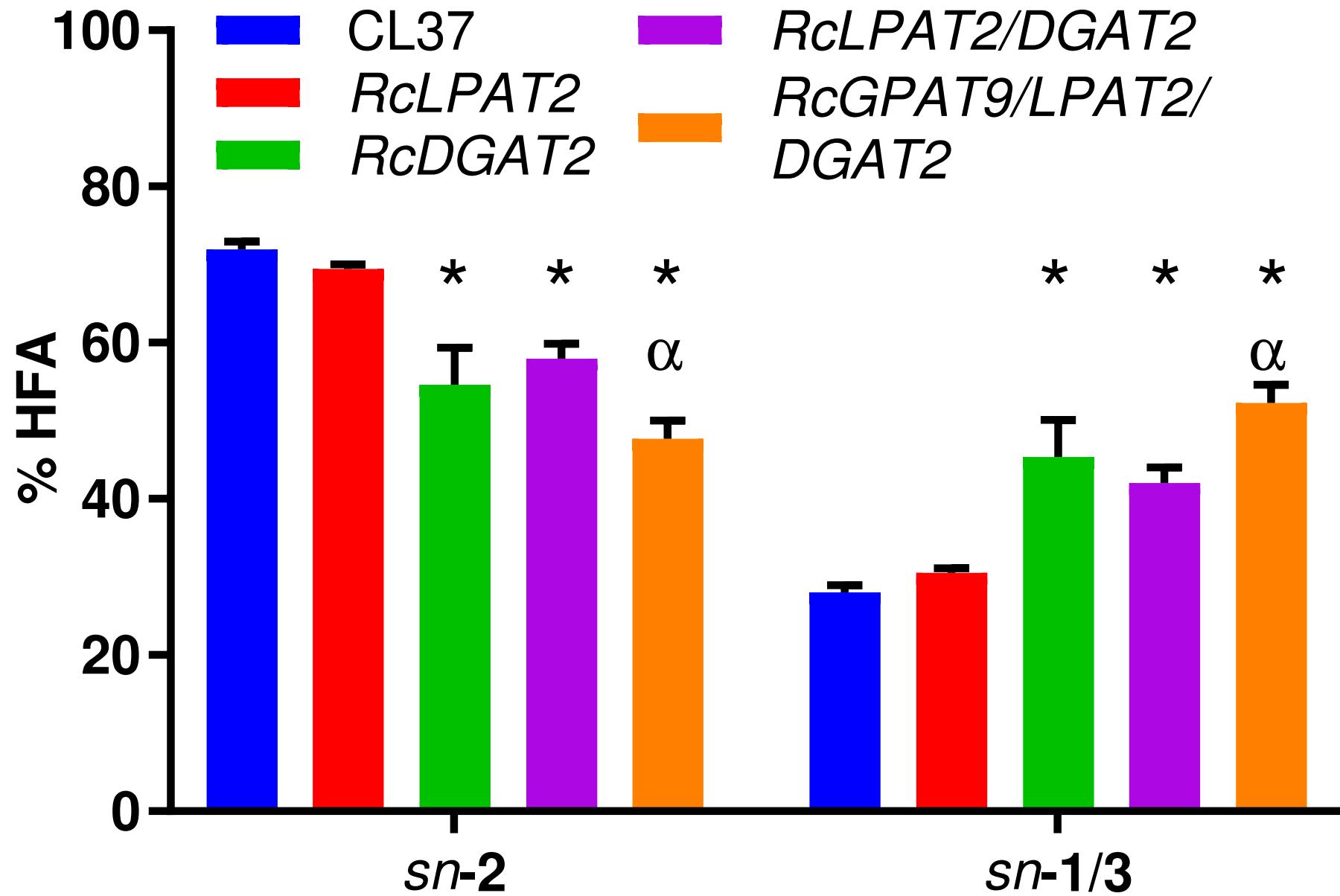


Figure 7

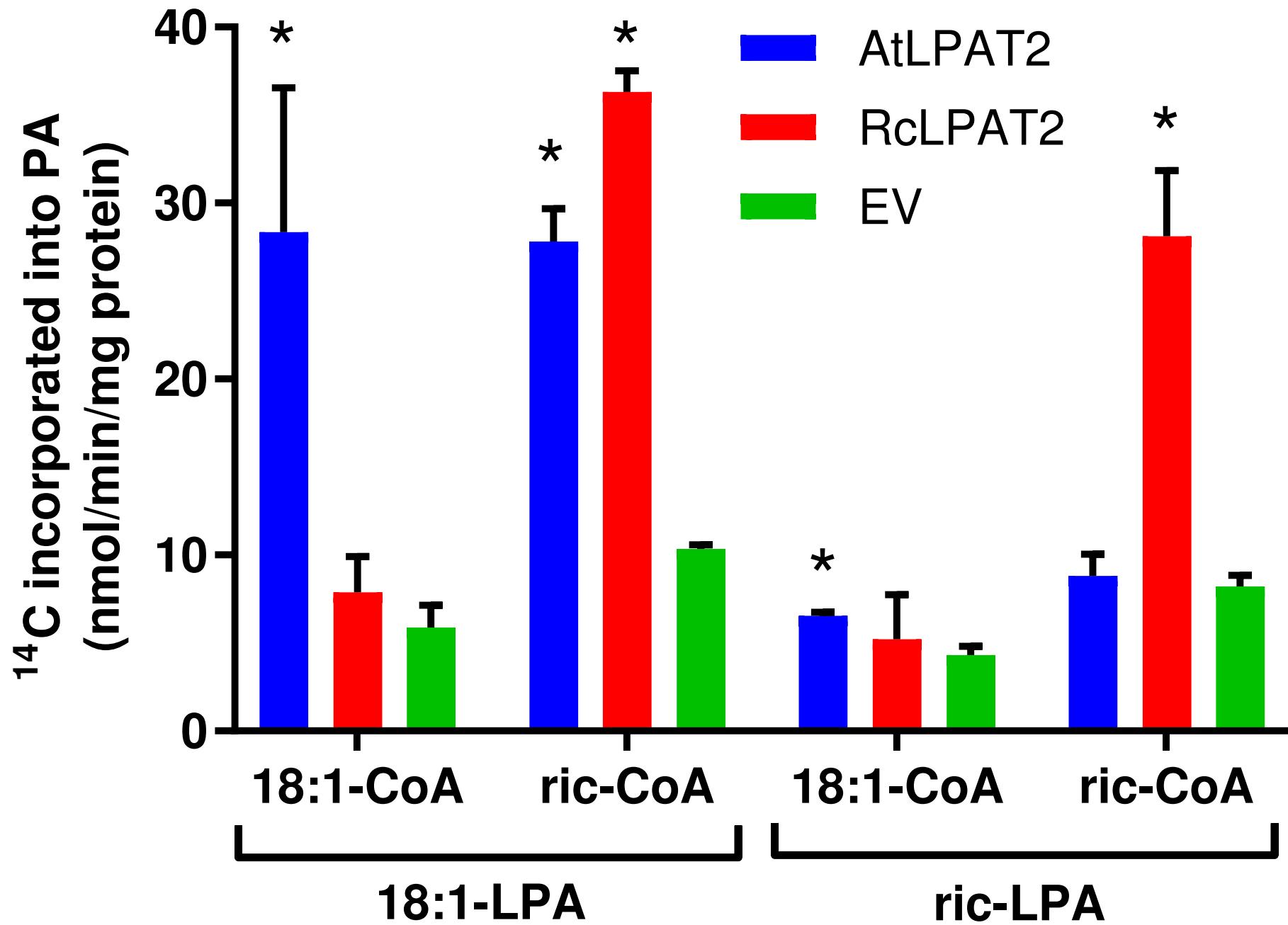
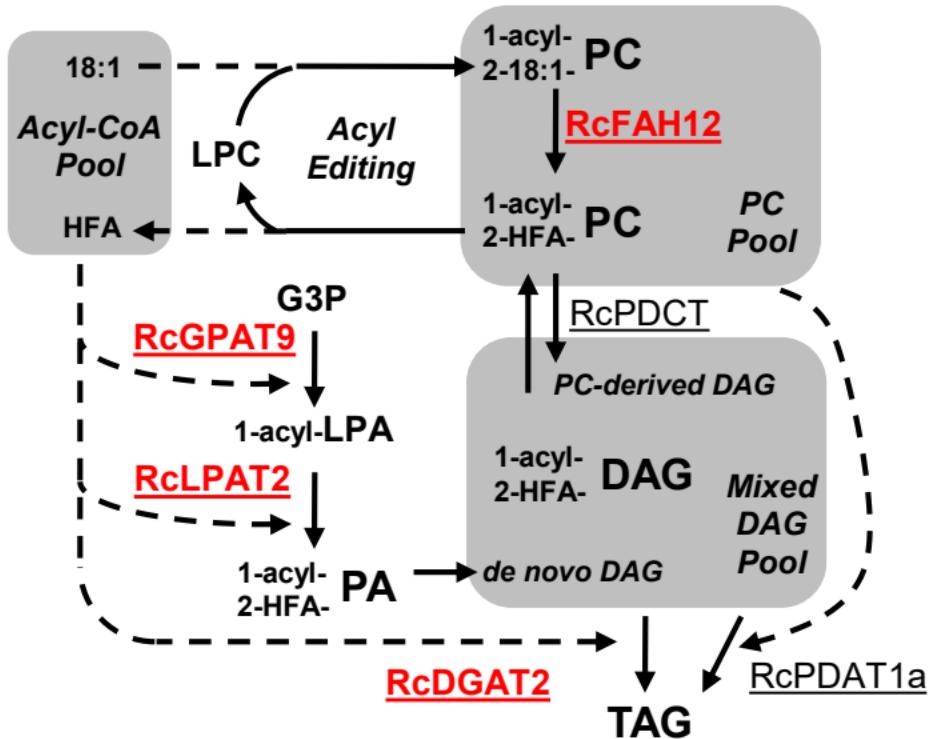



Figure 8

Tables

Table 1. Listing of plasmid binary vectors used for plant transformation. ORFs for all genes are driven by strong, seed-specific promoters, see Shockley et al. (2015), Materials and methods, and specific figure legends for more details. All *V. fordii* genes are co-expressed with tung *FADX* (Dyer et al. 2002) to produce eleostearic acid, while all *R. communis* genes are expressed in CL37 (Lu et al. 2006).

Plasmid #	Expressed Genes	Selectable marker
<u>Fig. 1</u>		
E116	<i>VfFADX</i>	DsRed fluorescence
E259	<i>VfFADX+VfDGAT2</i>	DsRed fluorescence
E318	<i>VfFADX+VfDGAT2+VfLPAT2</i>	DsRed fluorescence
<u>Fig. 2</u>		
E29	<i>VfFADX</i>	Finale® herbicide
E188	<i>VfFADX+VfLPAT2</i>	Finale® herbicide
<u>Figs. 3,4,5</u>		
B9	None; empty vector negative control	Finale® herbicide
E565	<i>RcDGAT2</i>	Finale® herbicide
E658	<i>RcDGAT2+RcLPAT2</i>	Finale® herbicide
E660	<i>RcLPAT2</i>	DsRed fluorescence
E678	<i>RcGPAT9+RcLPAT2+RcDGAT2</i>	DsRed fluorescence