

1 Research Article in Biochemistry and Metabolism

2 **Phospholipase D ζ enhances diacylglycerol flux into triacylglycerol**

3 Wenyu Yang^{1,2†}, Geliang Wang^{1,3†}, Jia Li¹, Philip D. Bates⁴, Xuemin Wang^{1,3*}, Doug K. Allen^{1,2*}

4

5 ¹Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, Missouri 63132

6 ²USDA-ARS, Plant Genetics Research Unit, 975 North Warson Road, St. Louis, Missouri 63132

7 ³Department of Biology, University of Missouri, Saint Louis, Missouri 63121

8 ⁴Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi
9 39406

10 [†]Equal contributions

11 *For correspondence

12 Doug K. Allen, Xuemin Wang

13 Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, Missouri 63132, ph: 314-587-
14 1460, fax: 314-587-1560

15

16 **Authors:**

17 Wenyu Yang wenyu58@hotmail.com

18 Geliang Wang geliangwang@gmail.com

19 Jia Li jli@danforthcenter.org

20 Philip D. Bates philip.bates@usm.edu

21 Xuemin Wang swang@danforthcenter.org

22 Doug K. Allen doug.allen@ars.usda.gov

23

24 **Author Contributions:** DA and XW conceived the project and research plan. WY, GW, and JL performed
25 experiments and along with DA, PB and XW analyzed data. WY, PB, XW and DA wrote the article.

26

27 **Funding Information:** The authors acknowledge the USDA-ARS, US Department of Energy (DE-
28 AR0000202), and National Science Foundation (MCB1412901; MCB1613923) for funding support.

29

30 **One-sentence summary:** Phospholipase D increases the production of triacylglycerol in *Camelina sativa*
31 seeds.

33 Word Count (12,619): Summary (245), Introduction (1631), Results (3147), Discussion (2549), Materials
34 and Methods (1709), Acknowledgements (80), Table Titles (104), Figure Legends (519), Literature Cited
35 (2635)

36

37 Running title: Phospholipase D enhances *Camelina* lipid production

38 Keywords: *Camelina sativa*, oilseed, lipid metabolism, ¹⁴C-labeling, phospholipase, metabolic
39 engineering

40

41 SUMMARY

42 Plant seeds are the primary source of triacylglycerols (TAG) for food, feed, fuel, and industrial applications.
43 As TAG is produced from diacylglycerol (DAG) successful engineering strategies to enhance TAG levels
44 have focused on the conversion of DAG to TAG. However, the production of TAG can be limited by flux
45 through the enzymatic reactions that supply DAG. In this study, two *Arabidopsis* phospholipase D₅ genes
46 (*AtPLD₅₁* and *AtPLD₅₂*) were co-expressed in *Camelina sativa* to test whether the conversion of
47 phosphatidylcholine (PC) to DAG impacts TAG levels in seeds. The resulting transgenic plants produced
48 2-3% more TAG as a component of total seed biomass and had increased 18:3 and 20:1 fatty acid levels
49 relative to wild type. Increased DAG and decreased PC levels were examined through the kinetics of lipid
50 assembly by [¹⁴C]acetate and [¹⁴C]glycerol incorporation into glycerolipids. [¹⁴C]acetate was rapidly
51 incorporated into TAG in both WT and overexpression lines, indicating a significant flux of nascent and
52 elongated acyl-CoAs into the *sn*-3 position of TAG. Stereochemical analysis revealed that newly
53 synthesized fatty acids were preferentially incorporated into the *sn*-2 position of PC, but the *sn*-1 position
54 of *de novo* DAG and indicated similar rates of nascent acyl groups into the Kennedy pathway and acyl
55 editing. [¹⁴C]glycerol studies demonstrated PC-derived DAG is the major source of DAG for TAG
56 synthesis in both tissues. The results emphasize that the interconversions of DAG and PC pools can impact
57 oil production and composition.

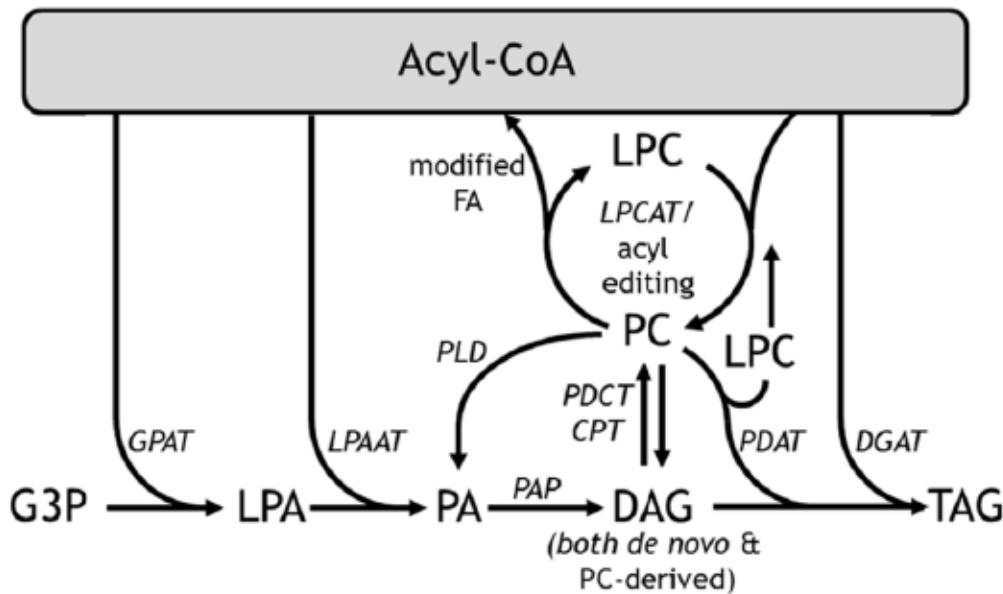
58

59 **SIGNIFICANCE STATEMENT:** Triacylglycerols (TAG) from oilseeds are a significant
60 percentage of human and animal diets. Phospholipase D₅ overexpression in *Camelina sativa* enhanced the
61 production of TAG in seeds by 2-3%.

62

63 ABBREVIATIONS

64 DAG, diacylglycerol; DGAT, diacylglycerol acyltransferase; FA, non-esterified fatty acid; LPA,
65 lysophosphatidic acid; acyl-CoA, acyl-coenzyme A; LPC, lysophosphatidylcholine; LPCAT,
66 lysophosphatidylcholine acyltransferase; MAG, monoacylglycerol; OE, overexpression; PA, phosphatidic
67 acid; PAP, phosphatidic acid phosphatase; PC, phosphatidylcholine; PDAT,
68 phosphatidylcholine:diacylglycerol acyltransferase; PDCT, phosphatidylcholine:diacylglycerol


69 cholinephosphotransferase; PLD ζ , phospholipase D ζ ; PUFA, polyunsaturated fatty acid; TAG,
70 triacylglycerol; WT, wild type

71

72 INTRODUCTION

73 Plant oils are an important source of energy for human and animal diets and are regularly used in
74 production of biofuels and industrial products (Lu et al., 2011). Therefore, there is considerable effort to
75 increase the oil quality and yield in plants through breeding and application of biotechnology (Tan et al.,
76 2011; Shi et al., 2012; Haslam et al., 2013; Vanhercke et al., 2013; van Erp et al., 2014; Li et al., 2015).
77 Though many of the involved genes have been catalogued and enzyme activities measured, a better
78 understanding of the coordinated metabolic network (Figure 1) that produces both membrane lipids and
79 storage oils is necessary. Plant oil (triacylglycerol, TAG) biosynthesis begins with generation of 16 and 18
80 carbon fatty acids (FA) in the plastid (Li-Beisson et al., 2013; Allen et al., 2015). Acyl chains are
81 transported across the plastid envelope (Koo et al., 2004; Li et al., 2015) and activated to acyl-CoAs
82 (Shockey et al., 2002). Then they can be elongated to lengths of 20 carbons or more (Kunst et al., 1992),
83 shuttled directly into the endoplasmic reticulum (ER) for desaturation on phosphatidylcholine (PC)
84 (Stymne and Glad, 1981; Bates et al., 2009), or used by Kennedy pathway enzymes to generate
85 lysophosphatidic acid (LPA) and subsequently phosphatidic acid (PA) (Kornberg and Pricer, 1953; Weiss
86 et al., 1960; Kennedy, 1961). PA is converted to diacylglycerol (DAG) by PA phosphatase (Eastmond et al.,
87 2010; Mietkiewska et al., 2011; Pascual and Carman, 2013; Craddock et al., 2015). This “*de novo*”
88 synthesized DAG can then be utilized for membrane lipid synthesis or converted to TAG in plants by a
89 further acylation at *sn*-3 using either the acyl-CoA dependent diacylglycerol acyltransferase (DGAT)
90 (Barron and Stumpf, 1962; Griffiths et al., 1985; Katavic et al., 1995; Zou et al., 1999), or by the transfer of
91 the *sn*-2 FA from PC to DAG by phosphatidylcholine:diacylglycerol acyltransferase (PDAT) (Dahlqvist et
92 al., 2000). These mechanisms of plant TAG biosynthesis summarized in Fig. 1. have recently been
93 reviewed in extensive detail (Weselake et al., 2009; Zhang et al., 2009; Chapman and Ohlrogge, 2012; Li-
94 Beisson et al., 2013; Allen et al., 2015; Allen, 2016; Bates, 2016).

95 The DAG for TAG synthesis can also be derived from the ER lipid, PC (Bates, 2016). FA
96 desaturation reactions modify acyl chains that are esterified to PC, thus the flux through PC leads to an
97 enhanced degree of unsaturated FA in the PC-derived DAG pool relative to *de novo* DAG and can provide
98 an increased source of polyunsaturated fatty acid (PUFA) for TAG biosynthesis (Griffiths et al., 1988;
99 Bates et al., 2009; Bates and Browse, 2012). PC is produced from *de novo* DAG by CDP-choline:1,2-
100 diacylglycerol cholinephosphotransferase (CPT-DAG), which may be reversible and consequently produce
101 PC-derived DAG (Slack et al., 1983; Slack et al., 1985). Alternatively, flux from *de novo* DAG through PC
102 and back to PC-derived DAG may occur through a phosphocholine headgroup exchange mechanism with
103 phosphatidylcholine:diacylglycerol cholinephosphotransferase (PDCT) (Lu et al., 2009). In *Arabidopsis*,
104 the PDCT mutant (*rod1*) reduces the PUFA content of TAG by 40%, emphasizing the important role of
105 DAG flux through PC for acyl desaturation prior to incorporation into TAG (Lu et al., 2009).

Fig. 1. Simplified metabolic network description of acyl chain incorporation into TAG in oilseeds. Enzymes are labeled in italics. G3P, glycerol-3-phosphate; LPA, lysophosphatidic acid; PA, phosphatidic acid; PC, phosphatidylcholine; DAG, diacylglycerol; TAG, triacylglycerol; LPCAT, lyso-PC acyltransferase; PLA, phospholipase A; GPAT, glycerol-3-phosphate acyltransferase; LPAAT, lyso-PA acyltransferase; PAP, phosphatidic acid phosphatase; PLD, phospholipase D; CPT, CDP-choline:diacylglycerol cholinephosphotransferase; PDCT, phosphatidylcholine:diacylglycerol cholinephosphotransferase; DGAT, acyl-CoA:diacylglycerol acyltransferase; PDAT, phospholipid:diacylglycerol acyltransferase.

106 Other mechanisms also participate in shuttling acyl chains through PC to promote DAG and TAG
 107 formation with greater concentrations of desaturates. For example, PC can be produced through
 108 esterification of FA to lysophosphatidylcholine (LPC) with lysophosphatidylcholine acyltransferase
 109 (LPCAT) (Stymne and Stobart, 1984; Bates et al., 2012; Wang et al., 2012) and after modification the FA
 110 is released for reentry into the acyl-CoA pool, regenerating LPC and completing the cycle in a process
 111 coined acyl editing (Williams et al., 2000; Bates et al., 2009; Bates and Browse, 2012; Tjellstrom et al.,
 112 2012). In soybean and Arabidopsis it is estimated that >90% of nascent FA flux through PC by acyl editing
 113 or as DAG components prior to incorporation into TAG (Bates et al., 2009; Bates and Browse, 2011; Bates
 114 et al., 2012). However, the mechanisms involved in this acyl flux have not been thoroughly explored. For
 115 example, knockouts of the major enzymes involved in Arabidopsis PC acyl editing (LPCAT1/2) and PC-
 116 DAG exchange (PDCT) only reduced the TAG desaturate content by 2/3(Bates et al., 2012). The
 117 suppression of phospholipase D (PLD) in soybeans partially reduced the PUFA content of TAG (Lee et al.,
 118 2011), indicating an alternative mechanism to PDCT based PC-derived DAG production. Possibly the flux
 119 of *de novo* DAG into PC by CPT, followed by PLD and PA phosphatase activity is necessary to produce
 120 the DAG substrate for TAG synthesis. In Arabidopsis, two PLD ζ genes, AtPLD ζ_1 and AtPLD ζ_2 , have been
 121 identified that hydrolyze PC to produce PA (Qin and Wang, 2002; Cruz-Ramirez et al., 2006). Since altered
 122 levels of PA have been shown to stimulate production of PC (Eastmond et al., 2010; Craddock et al., 2015);

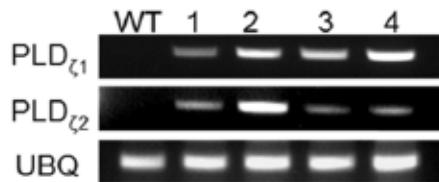
123 we hypothesized that increased PLD activity in oilseeds would enhance both the flux of *de novo* DAG into
124 PC and the flux of PC-derived DAG into TAG, leading to enhanced levels of TAG and the accumulation of
125 PUFA in TAG.

126 Here we show that overexpression of PLD ζ s in *Camelina sativa* (i.e. Camelina), a close relative of
127 Arabidopsis, had enhanced acyl flux to TAG through an increase in the levels of DAG. Camelina was
128 chosen for obvious advantages, it can be floral-dip transformed (Lu et al., 2011), has a short life cycle, and
129 has oil rich seeds (30-40% of seed weight) that contain high levels of PUFAs (>50%), especially α -
130 linolenic acid (18:3, >30% of total fatty acids) (Campbell et al., 2013; Iskandarov et al., 2013). Recently
131 phospholipase A overexpression in Camelina resulted in an increase in total oil (Li et al., 2015), and other
132 transgenics have resulted in TAG containing non-native FAs (Lu and Kang, 2008; Petrie et al., 2014; Ruiz-
133 Lopez et al., 2014; Liu et al., 2015; Nguyen et al., 2015). However, mechanisms that control acyl flux
134 through PC into TAG have not been studied as extensively in Camelina as in other species.

135 In the described work, the heterologous co-expression of two *Arabidopsis thaliana* PLD ζ 's
136 (AtPLD ζ_1 and AtPLD ζ_2) in Camelina seeds resulted in a 3% increase in TAG and fatty acid composition
137 that was elevated in linolenic and eicosenoic acids. Production of active forms of AtPLD ζ_1 and AtPLD ζ_2
138 were confirmed by RT-PCR and enzyme activity assays with microsomes. Differences in lipid and acyl
139 chain composition from the wild type were consistently observed throughout seed development.
140 [^{14}C]acetate pulse labeling indicated newly synthesized acyl groups were rapidly incorporated into TAG.
141 The rate of [^{14}C]acetate incorporation as fatty acids into PC and DAG were similar but stereochemically
142 involved different sites of attachment on the glycerol backbone, indicating acyl flux through different
143 branches of lipid metabolism (Fig. 1). [^{14}C]glycerol labeling indicated a prominent role of the PC-derived
144 DAG pathway in Camelina, but significantly more flux through the Kennedy pathway relative to other
145 oilseeds such as Arabidopsis (Bates et al., 2012) or soybean (Bates et al., 2009).

146

147 **RESULTS**

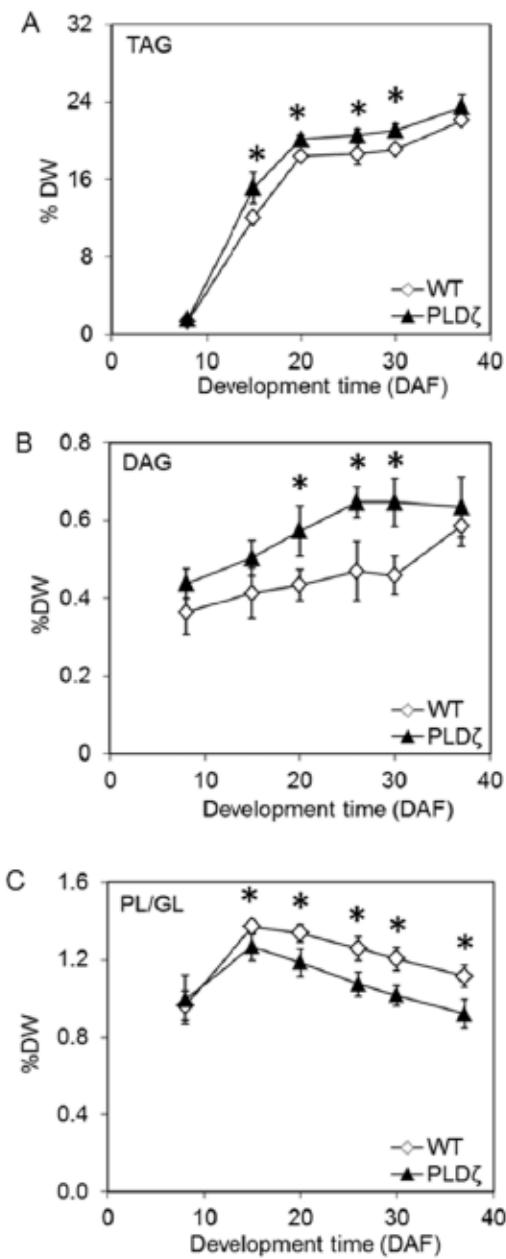

148 **AtPLD ζ overexpression results in a high oil phenotype**

149 Two PLD ζ genes, *AtPLD $\zeta 1$* and *AtPLD $\zeta 2$* , have been identified in the *Arabidopsis thaliana* genome
150 (Qin and Wang, 2002; Li et al., 2006). *In vitro* assays indicated that AtPLD $\zeta 1$ specifically hydrolyzes PC to
151 produce PA and choline (Qin and Wang, 2002). In the present study, *AtPLD $\zeta 1$* and *AtPLD $\zeta 2$* cDNA ORFs
152 were placed behind the seed specific glycinin and β -conglycinin promoters, respectively. Camelina plants
153 were transformed with *Agrobacterium* containing a binary vector for co-expression of *AtPLD $\zeta 1$* and
154 *AtPLD $\zeta 2$* , and DsRed selection marker. Homozygosity was inspected by screening with DsRed and the
155 expression of both *AtPLD ζ* genes was confirmed in developing seeds through RT-PCR (Fig. 2). No visual
156 differences in plant phenotypes were observed between WT and transgenic plants. *In vitro* assays of PLD ζ
157 activity within microsomes prepared from developing seeds indicated increased PLD activity in the
158 transgenic lines (86 to 269 pmol/h/g) relative to WT controls (65.74 pmol/h/g; Table I). Measureable
159 activity in total protein extracts was not detected, indicating that AtPLD ζ is highly enriched in microsomes
160 and is likely associated with the endoplasmic reticulum in developing Camelina seeds, however, the
161 mechanism of ER association is unclear due to the lack of a predicted transmembrane domain in either
162 AtPLD ζ isoform. Four transgenic lines overexpressing both PLD ζ isoforms (subsequently referred to as
163 PLD ζ 1-4) contained 1.9-3.5% more oil than WT on a dry weight basis across seed development, and 1.9-3%
164 in mature seeds (Table 1). This is equivalent to an average 12.7% increase in total oil content relative to
165 WT at 12 DAF, and 9.5% increase in mature seeds.

166 **PLD ζ s alter acyl lipid and fatty acid profiles**

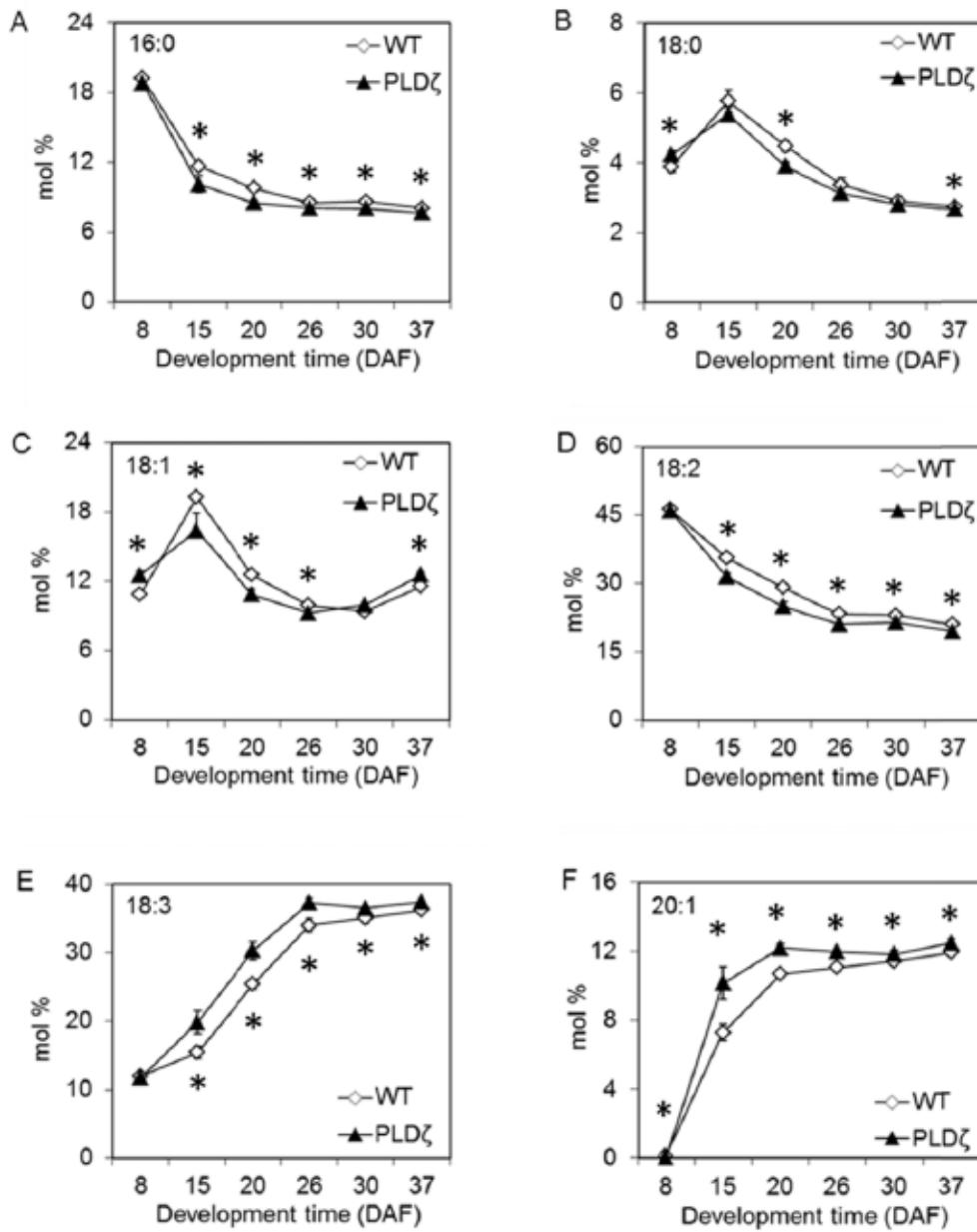
167 Total lipid extracted from the developing seeds was analyzed for changes in glycerolipid
168 distribution and fatty acid composition. Polar lipids (phospholipids and galactolipids, PL/GL) and neutral
169 lipids including DAG and TAG were separated using silica thin layer chromatography (TLC) and the fatty
170 acid profiles were analyzed in WT and the transgenic PLD ζ line 1 (subsequently referred to as PLD ζ). TAG
171 and DAG levels increased throughout development in the transgenic lines (Fig. 3A, 3B) whereas polar
172 lipids decreased (Fig. 3C). The results indicated that PLD ζ altered the equilibrium between steady state pool
173 levels to favor the production of DAG and TAG relative to polar lipids such as PC which is the primary
174 phospholipid in seeds. In addition, the composition of fatty acids in total lipid extracts was altered in PLD ζ
175 throughout seed development (Fig. 4). Palmitic (16:0), stearic (18:0), and linoleic acids (18:2) were
176 reduced in the transgenic line whereas linolenic (18:3) and eicosenoic acids (20:1) increased. Oleic acid
177 (18:1) (Fig. 4C) and minor fatty acids including arachidic acid (20:0), eicosadienoic acid (20:2),
178 eicosatrienoic acid (20:3), docosanoic acid (22:0), and erucic acid (22:1) (Fig. S1) showed smaller
179 differences between the lines.

180 The fatty acid compositions of individual acyl lipids were also evaluated during development to
181 establish the relationship between glycerolipid intermediates. The acyl lipid fatty acid profiles of TAG,
182 DAG and phospholipids between developing WT and PLD ζ seeds (Fig. 5) were qualitatively similar to the

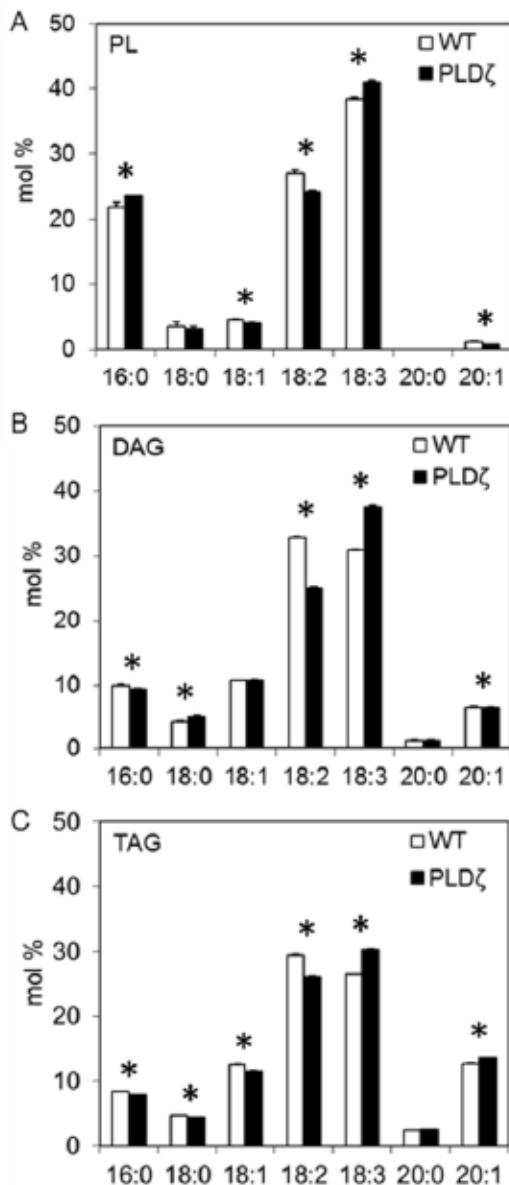

Fig. 2. Transcript level of AtPLD ζ_1 and AtPLD ζ_2 in developing seeds at 22 DAF of Camelina WT and PLD ζ overexpression lines. UBQ, ubiquitin.

183 total lipid fatty acid changes (Fig. 4), though showed some statistical differences ($p<0.05$) with the most
 184 notable changes in 18:3 and 18:2 lipid fractions of each lipid class.

185 **In vivo [^{14}C]acetate labeling of Camelina WT and PLD ζ embryos indicates
 186 significant PC acyl editing and DGAT activity utilizing a PC-derived DAG pool**


187 Production of plant oil containing PUFAs requires acyl flux through PC, the site for ER localized
 188 fatty acid desaturation. Based on the PUFA amounts in TAG harvested from developing seeds (20 DAF),
 189 approximately 56% of acyl groups flux through PC in both WT and PLD ζ Camelina. However, not all fatty
 190 acids are further desaturated whilst on PC, thus the calculated flux through this metabolic pool is an
 191 underestimate (Bates and Browse, 2012; Bates, 2016). To determine the effect of PLD ζ on acyl flux
 192 through PC, eukaryotic glycerolipid assembly was investigated with [^{14}C]acetate labeling (Allen et al.,
 193 2015). Developing embryos of WT and PLD ζ incorporated [^{14}C]acetate-derived fatty acids linearly into
 194 glycerolipids over a 3 h period (Fig. S2) including PC, DAG and TAG (Fig. 6A, 6B). The initial rate of
 195 nascent [^{14}C]fatty acid incorporation into TAG was the same or greater than for PC and DAG in both WT
 196 and the PLD ζ , indicating that labeled PC or DAG was not the initially labeled precursor for TAG
 197 biosynthesis in Camelina seeds (Fig. 6C, 6D). Thus, the TAG was likely enriched by direct incorporation of
 198 [^{14}C]acyl chains into the *sn*-3 position of unlabeled DAG with DGAT. TAG and DAG labeling was greater
 199 in the transgenics by the conclusion of the experiment and may reflect the larger pool of DAG (Fig. 3) in
 200 the transgenic line that is available for *sn*-3 acylation with nascent fatty acids whereas PC enrichment was
 201 not statistically different between lines, and likely represents the intermediate role of PC within fatty acid
 202 flux into TAG. Other minor phospholipids including PA, PI, PE/PG and the galactolipid
 203 monogalactosyldiacylglycerol (MGDG) were also labeled in both lines though generally less enriched in
 204 PLD ζ (Fig. S3).

205 [^{14}C]fatty acids were preferentially incorporated into the *sn*-2 position of PC which is consistent
 206 with initial incorporation through acyl editing rather than through the Kennedy pathway as has been
 207 previously described in pea leaves, soybean developing embryos, Arabidopsis developing seeds and cell
 208 suspensions (Bates et al., 2007; Bates et al., 2009; Bates et al., 2012; Tjellstrom et al., 2012).
 209 Stereochemical analyses indicated similar values for WT and PLD ζ , initially ~60% of nascent fatty acids at
 210 the *sn*-2 position of PC at 5 min which equilibrated to ~55% by 60 min (Fig. 7A, 7B). This regiospecific
 211 incorporation of acyl chains on the glycerol backbone is more balanced between *sn*-1 and *sn*-2 in Camelina


Fig. 3. Lipid composition in Camelina seeds. Relative lipid composition including: TAG (A), DAG (B), PL/GL (C) in seeds of WT and $\text{PLD}\zeta$ line 1 (henceforth referred to as $\text{PLD}\zeta$) during development. TAG, DAG, PL/GL were quantified by GC-FID using internal standard after they were eluted from TLC plate of total lipid separation (SD, $n=3$). Significant differences (T test, $P < 0.05$) between $\text{PLD}\zeta$ and WT are denoted with an asterisk.

212 relative to soybeans or *Arabidopsis* seeds that initially label the PC *sn*-2 position at over 70-80% but then
 213 equilibrate to 50-60% with time (Bates et al., 2009; Bates et al., 2012). DAG showed a different trend
 214 unlike PC, the stereochemical incorporation of [^{14}C]fatty acids into DAG (Fig. 7C, 7D) indicated a greater
 215 preference for the *sn*-1 position. 55-60% of nascent [^{14}C]fatty acids were incorporated into the *sn*-1 position
 216 of DAG in WT and $\text{PLD}\zeta$ lines. The preference for *sn*-1 labeling in Camelina DAG is comparable with

Fig. 4. Changes in fatty acid composition of major fatty acids in seed lipid during seed development of WT and a $\text{PLD}\zeta$. A, Palmitic acid (16:0). B, Stearic acid (18:0). C, Oleic acid (18:1). D, Linoleic acid (18:2). E, Linolenic acid (18:3). F, Eicosenoic acid (20:1) (SD, $n=3$). Significant differences (T test, $P < 0.05$) between $\text{PLD}\zeta$ and WT are denoted with an asterisk.

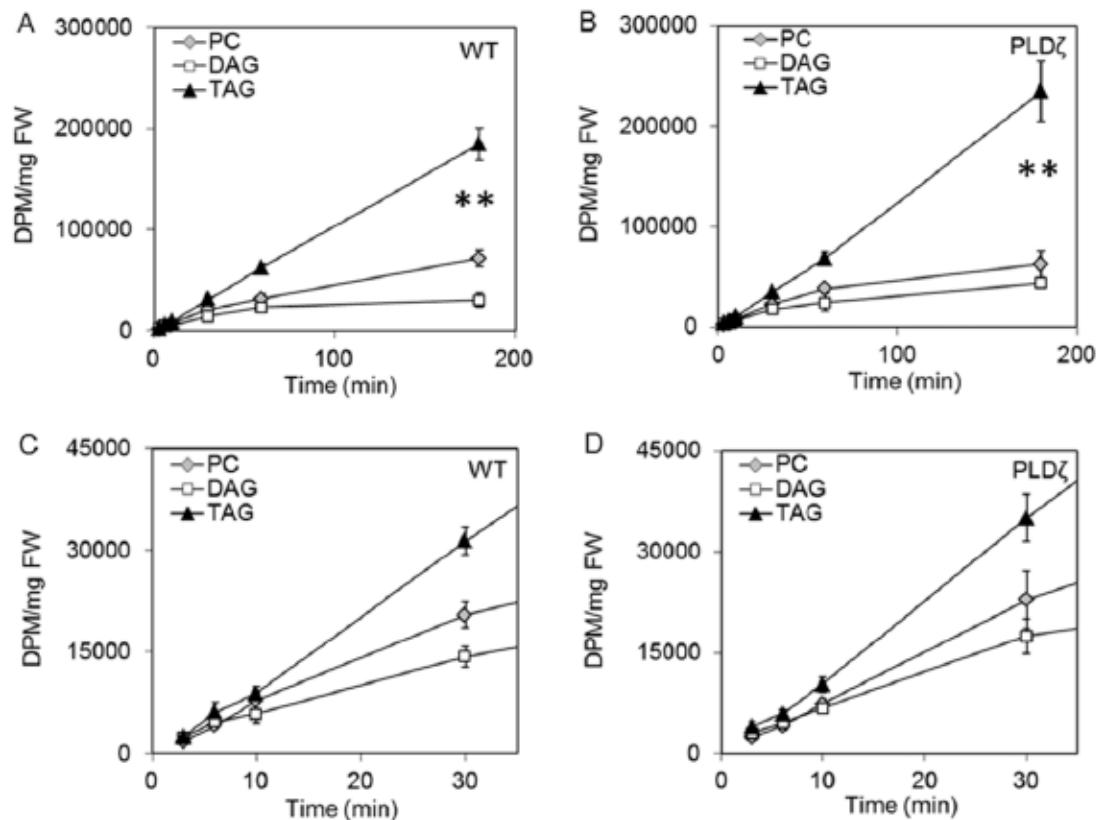

217 observations in *Arabidopsis*, where *sn*-1 is over 60% labeled (Taylor et al., 1995; Bates et al., 2012) but
 218 distinct from developing soybean embryos that incorporate nearly equal amounts of nascent [^{14}C]fatty acids
 219 into *sn*-1 and *sn*-2 positions (Bates et al., 2009). PA labeling was qualitatively similar to DAG, suggesting
 220 that at these time points the labeled PA and DAG measured is likely produced consecutively within the
 221 Kennedy pathway (Fig. 7E, 7F). The contrast in labeling between PC and PA suggests that PC contributes

Fig. 5. Fatty acid composition in PL, DAG and TAG of WT and PLD ζ developing seeds at 20 DAF. A, Fatty acid profile of PL in developing seeds of WT and PLD ζ at 20 DAF. B, Fatty acid profile of DAG in developing seeds of WT and PLD ζ at 20 DAF. C, Fatty acid profile of TAG in developing seeds of WT and PLD ζ at 20 DAF (SD, n=3). Significant differences (T test, $P < 0.05$) between PLD ζ and WT are denoted with an asterisk.

222 less to overall PA labeling probably because the pool of PA derived from PC is quite small and is mixed
 223 with the *de novo* pool derived directly from LPA or from other parts of membranes.

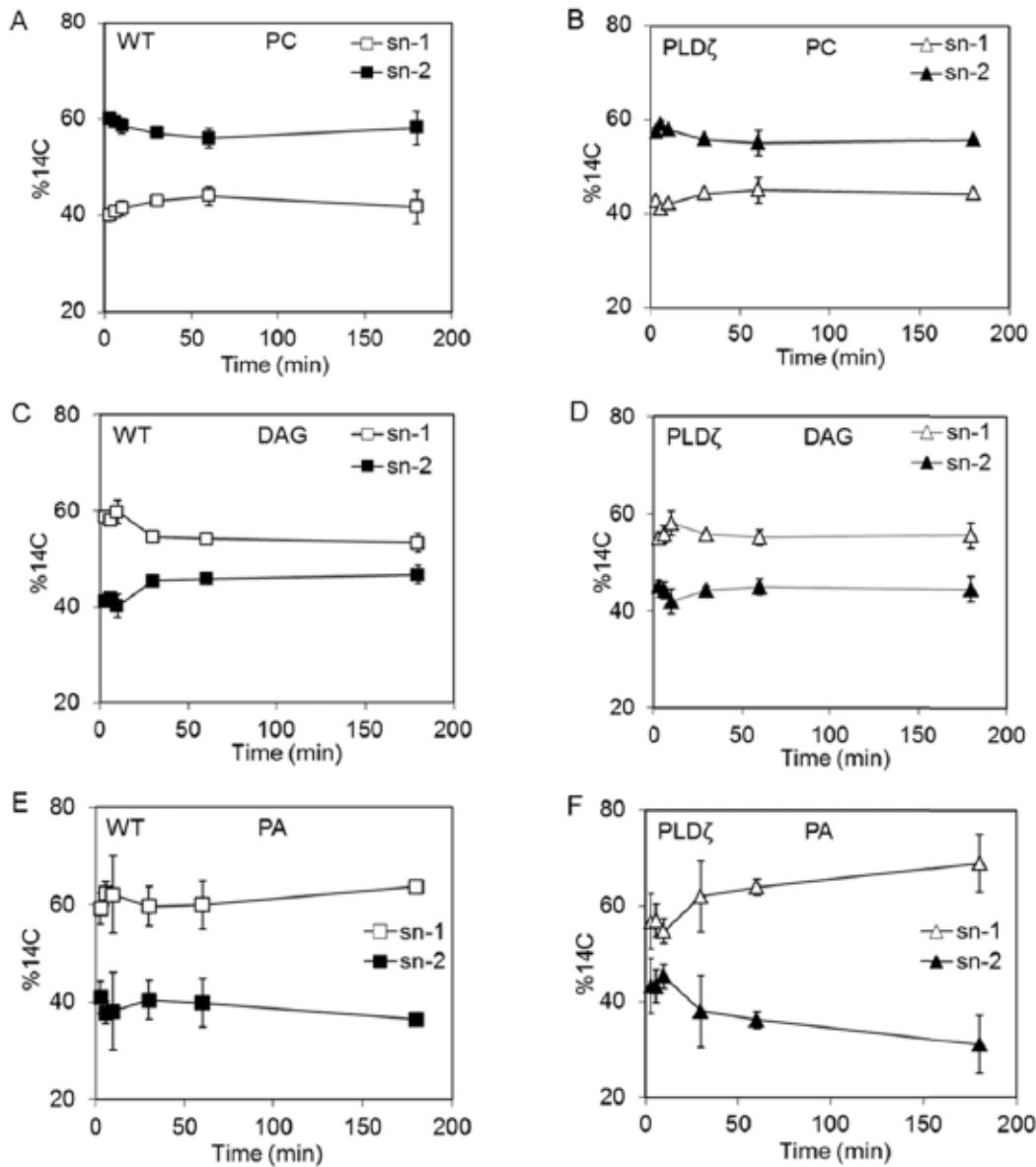
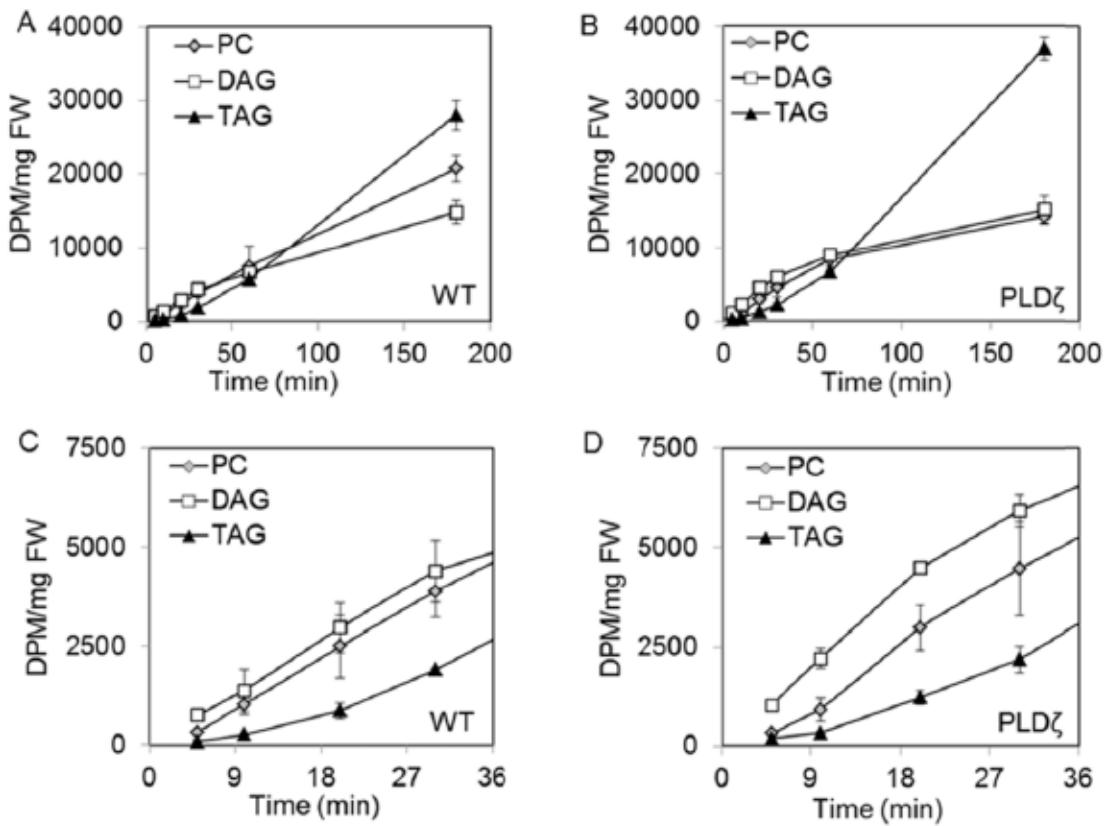

224 $[^{14}\text{C}]$ -labeled TAG was analyzed regiochemically (Fig. S4) to establish whether the rapid initial
 225 labeling (Fig. 6) was due to direct incorporation of nascent $[^{14}\text{C}]$ fatty acids into *sn*-3 position of non-labeled
 226 DAG or from labeled *de novo* DAG produced by the Kennedy pathway (Fig. 7). Cleavage of *sn*-1 and *sn*-3
 227 positions of TAG with *Rhizomucor miehei* lipase produced *sn*-2 monoacylglycerol (MAG) which was
 228 labeled at low levels relative to the released fatty acids (Fig. S4). When considered with the stereochemical

Fig. 6. Incorporation of [¹⁴C]-fatty acid into glycerolipids during [¹⁴C]-acetate labeling of WT and PLD ζ developing embryos. A and C, [¹⁴C]-fatty acid into TAG, DAG and PC in WT embryos. B and D, [¹⁴C]-fatty acid into TAG, DAG and PC in PLD ζ embryos (SD, n=3, time points: 3, 6, 10, 30, 60, 180 min). Significant differences (T test, $P < 0.05$) between PLD ζ (A) and WT (B) were limited to differences in TAG and differences in DAG at 180 min as indicated with two asterisks.


229 analyses of labeled DAG that indicated 55/45 *sn*-1/*sn*-2 ratio of labeling (Fig. 7C, 7D), these results suggest
 230 that most labeling in TAG is due to incorporation of a [¹⁴C]fatty acid at the *sn*-3 position of an unlabeled
 231 DAG. Camelina seeds contain approximately 12% eicosenoic acid (Fig. 4F), and very long chain fatty
 232 acids such as C20:1 have higher specific activities from labeling experiments because they are elongated in
 233 the cytosol which contains an acyl-CoA with a higher ¹⁴C specific activity than in the plastid (Bao et al.,
 234 2000). The rapid *sn*-3 TAG labeling is qualitatively consistent with previous studies in Camelina (Pollard et
 235 al., 2015) and *Arabidopsis thaliana* developing seeds (Bates et al., 2012) that also contain highly labeled
 236 20:1 in the *sn*-3 position of TAG (Taylor et al., 1995; Bates et al., 2012). Very long chain fatty acids are
 237 predominantly incorporated into TAG by DGAT rather than PDAT (Katavic et al., 1995; Zhang et al., 2009;
 238 Xu et al., 2012).

239 **In vivo glycerolipid backbone labeling indicates PLD ζ enhances flux through the
 240 PC-derived DAG pathway of TAG biosynthesis**

Fig.7. Stereochemical incorporation of [¹⁴C]-fatty acids into PC, PA and DAG of WT and PLD ζ developing embryos. A, PC of WT. B, PC of A β PLD ζ -OE1-12. C, DAG of WT. D, DAG of PLD ζ . E, PA of WT. F, PA of PLD ζ (SD, n=3, time points: 3, 6, 10, 30, 60, 180 min).

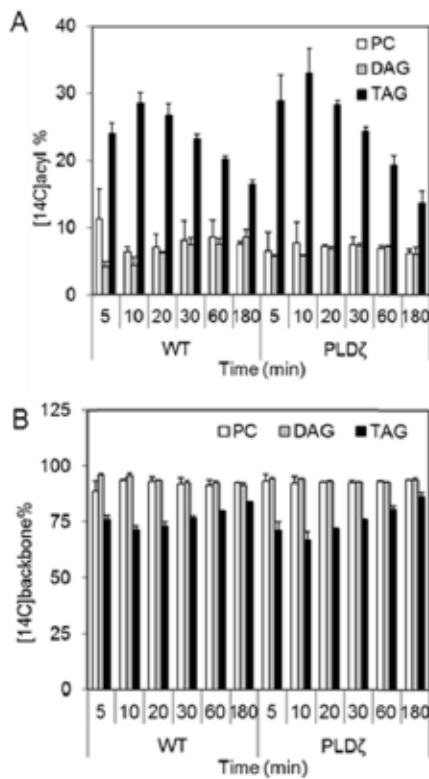

241 The initial steps in eukaryotic glycerolipid assembly in WT and PLD ζ developing embryos were
 242 further investigated with [¹⁴C]glycerol kinetic labeling. Developing embryos of WT and PLD ζ incorporated
 243 [¹⁴C]glycerol linearly into glycerolipids at similar rates over a three hour time course (Fig. S5). The major
 244 labeled lipids were DAG, PC, and TAG (Fig. S6), and other phospholipids including PA/PI, PE/PG and
 245 MGDG, were labeled to low levels in both lines (Fig. S7). [¹⁴C]glycerol metabolized by the developing
 246 embryos was incorporated into the backbone of lipids through carbons in glycerol-3-phosphate (G3P) and
 247 to a lesser extent into the acyl chains by glycolytic reactions that convert glycerol to acetyl-CoA. In both
 248 WT and PLD ζ , DAG was backbone labeled from [¹⁴C]glycerol at a faster rate than PC or TAG (Fig. 8).

Fig. 8. Labeling of backbones in PC, DAG or TAG in [¹⁴C]glycerol labeled WT and PLD ζ developing embryos. A and C [¹⁴C]backbone incorporation into TAG, DAG and PC in WT embryos. B and D, [¹⁴C]backbone incorporation into TAG, DAG and PC in PLD ζ embryos (SD, n=3, time points: 5, 10, 20, 30, 60, 180). Significant differences (T test, $P < 0.05$) between PC and DAG (WT time points: 5, 180; PLD ζ time points: 5, 10, 20) and between PC and TAG (WT time points: 5, 10, 20, 30, 180; PLD ζ time points: 10, 20, 30, 180) were observed within but not between lines.

249 This description is consistent with the role of *de novo* DAG for the production of both PC and TAG in
 250 developing Camelina seeds [Fig. 1, (Bates and Browse, 2012)]. DAG labeling was more rapid in PLD ζ
 251 possibly reflecting the increased Kenney pathway flux into *de novo* DAG that is necessary to produce more
 252 TAG. The initial labeling of PC was linear indicating the *de novo* DAG precursor pool to PC synthesis was
 253 rapidly filled, and that the continual increase in DAG accumulation represents filling of a DAG pool other
 254 than that required for PC synthesis. TAG labeling followed an exponential pattern with slow labeling
 255 initially because precursor supplies of labeled DAG had not been turned over sufficiently to label TAG.
 256 After 60 min TAG labeling approached a level that was similar to DAG and by 3 h TAG labeling was twice
 257 that of DAG. The delay in TAG labeling relative to PC indicates a larger precursor pool for the flux of
 258 enriched backbone into TAG. Such a pattern is consistent with PC synthesis directly from initially labeled
 259 *de novo* DAG and TAG labeling at a reduced rate as the [¹⁴C]glycerol-backbone transitions through PC,
 260 and PC-derived DAG pools (Allen et al., 2015).

261 [¹⁴C]glycerol was also incorporated into fatty acids by conversion to [¹⁴C]acetyl-CoA through
 262 glycolysis and pyruvate dehydrogenase (Fig. 9, S8). The [¹⁴C]acyl chains obtained from lipids were

Fig. 9. Incorporation of $[^{14}\text{C}]$ -glycerol into backbones of glycerolipids during labeling of WT and $\text{PLD}\zeta$ developing embryos. A, $[^{14}\text{C}]$ -glycerol into acyl chains of TAG, DAG and PC in WT and $\text{PLD}\zeta$ embryos. B, $[^{14}\text{C}]$ -glycerol into backbone of TAG, DAG and PC in WT and $\text{PLD}\zeta$ embryos (SD, $n=3$, time points: 5, 10, 20, 30, 60, 180).

263 analyzed independent of the glycerol-backbone. Relative to the total label incorporation, approximately 5-
 264 35% was incorporated into fatty acids in a lipid class specific manner during the time course experiments
 265 with the remainder going into glycerolipid backbone metabolism involving the Kennedy pathway (Fig. 9).
 266 The labeling in the acyl chain relative to the glycerol backbone was similar when PC was compared to
 267 DAG (~5-10% across the time course) and indicated that the precursor pools for these intermediates (i.e.
 268 G3P, LPA, PA) are rapidly equilibrated with both forms of label (Bates et al., 2009). However, the fraction
 269 of acyl labeling in TAG (relative to TAG backbone labeling) changed more dramatically (decreasing from
 270 ~30% to ~15% during the time course), indicating that over time the glycerol backbone represented more
 271 of the total labeling. The distinct labeling in TAG reflects the initial incorporation of *sn*-3 labeled fatty
 272 acids onto an unlabeled DAG backbone as previously described. Over time this contribution was
 273 diminished as the $[^{14}\text{C}]$ glycerol-backbone labeling increased in precursor pools for TAG synthesis. These
 274 observed changes in TAG labeling relative to PC are consistent with the presence of a larger precursor pool
 275 for backbone labeling of TAG than that of PC and are thus in agreement with both the $[^{14}\text{C}]$ acetate acyl
 276 labeling (Fig. 6) and rate of $[^{14}\text{C}]$ glycerol incorporation into the backbone of TAG (Fig. 8).

277 Both PC and TAG can be synthesized from *de novo* DAG, yet TAG can also be produced from
 278 PC-derived DAG (Fig. 1). The relative initial rates of PC and TAG $[^{14}\text{C}]$ glycerol backbone labeling (i.e.
 279 without acyl labeling) at short time points (e.g. ≤ 10 min) predominantly represent the competition for

280 initially synthesized *de novo* DAG, whereas at longer time points the labeling in TAG also includes
281 contributions from PC-derived DAG. The initial relative rate of PC/TAG synthesis from *de novo* DAG was
282 approximately 3.9/1 and 4.3/1, in wild-type and PLD ζ respectively (Table S1). Considering that PLD ζ may
283 be rapidly turning over the labeled PC, the actual ratio of PC/TAG synthesis in PLD ζ line could be an
284 underestimate. Developing embryos predominantly accumulate TAG not PC, thus the higher rate of PC
285 synthesis suggests that most of the PC will eventually turnover for production of PC-derived DAG, and
286 then TAG. The higher ratio of initial PC/TAG synthesis rates from *de novo* DAG in PLD ζ suggests that
287 turnover of PC by PLD ζ activity may induce flux through the PC-derived DAG pathway, leading to the
288 higher overall oil levels.

289

290

291 **DISCUSSION**

292 The objective of this study was to investigate the endogenous pathways of acyl flux into TAG of
293 Camelina seeds, and to examine how TAG accumulation is affected in seeds of transgenic Camelina
294 expressing *Arabidopsis thaliana* *AtPLD ζ* and *AtPLD ζ* to alter acyl flux through PC. In oilseeds, two
295 families of enzymes are mainly responsible for TAG assembly: (1) DGATs that catalyze production of
296 TAG by using DAG and acyl-CoAs, and (2) PDATs that produce TAG using DAG with an additional acyl
297 group donated by PC. How much each of these two groups of enzymes contributes to TAG assembly varies
298 with plant species and tissues (Stymne and Stobart, 1987; Zhang et al., 2009; Banas et al., 2013). Since
299 both enzymes require a supply of DAG as a common precursor for TAG synthesis, *de novo* DAG must be
300 produced by the Kennedy pathway through sequential acylation of G3P. However given the high
301 percentage of unsaturated acyl chains in TAG, additional steps that move fatty acids through PC are
302 necessary. Acyl editing and the interconversion of DAG with PC results in a second pool of DAG that is
303 PC-derived and is the direct source for TAG production (Bates and Browse, 2012). The production of
304 higher levels of TAG in oilseeds requires a balance of: i) enhanced synthesis of nascent fatty acids, ii)
305 increased production of DAG and iii) enough flux through PC to produce a viable combination of saturated
306 and unsaturated chains.

307 **PLD ζ alters the steady state pool sizes of PC and DAG leading to enhanced DAG
308 accumulation**

309 This study indicated that co-expression of two phospholipases, PLD ζ and PLD ζ , that convert PC
310 to PA (Table 1) has the consequence of altering the steady state pool concentrations of DAG and PC in
311 transgenic lines (Fig. 3). The enhanced DAG pool size leads to an increase in TAG accumulation
312 throughout development and results in 3% more TAG (as a percent of total biomass) in mature Camelina
313 seeds (Table 1). In addition, the fatty acid profile was altered with increased 18:3 and 20:1 and reduced
314 levels of other acyl groups. Time course labeling experiments with [¹⁴C]acetate resulted in a labeled PC
315 pool that was approaching an asymptotic maximum in the transgenic line, indicating the active PC pool was
316 nearly completely labeled within the time period (Fig. 6). [¹⁴C]glycerol kinetic incorporation (Fig. 8)
317 indicated that DAG was more labeled than PC at early time points and was only surpassed by PC in the WT
318 later in time due to the larger active PC pool size. PC in the transgenics became maximally labeled more
319 quickly and corresponded to a more rapid accumulation of glycerol-labeled TAG. Taken together with the
320 measured changes in DAG and PC pool sizes, and [¹⁴C]acetate acyl labeling, the results indicate that PC
321 was being turned over more rapidly to produce DAG. Thus the role of the PLD ζ enzyme may be to increase
322 the available substrate for TAG production. Along with a limited number of descriptions of significantly
323 enhanced TAG in oilseeds (Lardizabal et al., 2008; Weselake et al., 2009; Oakes et al., 2011), the current
324 study suggests that the last steps in TAG biosynthesis are bottlenecks to its production. By converting PC
325 to DAG more effectively, PLD ζ may enhance DGAT activity for TAG production in Camelina seeds. It is
326 unclear from these experiments if the increase in DAG concentration observed in PLD ζ is a consequence of

327 DGAT activity that may now be limiting further increases in oil production. Possibly the co-expression of a
328 DGAT with PLD ζ could lead to more significant oil levels in the future.

329 **Carbon flux between DAG and PC are highly interconnected in Camellia, but have**
330 **distinct differences from other oilseeds and are enhanced by PLD**

331 Interconversion of the DAG moiety between PC and DAG pools is a central process in TAG
332 assembly of many oilseeds and provides a pool of DAG for TAG synthesis that contains more unsaturated
333 fatty acids than *de novo* DAG (Bates and Browse, 2012); however the quantitative roles of enzymes that
334 provide this connection have been difficult to assess and cannot be determined based on TAG fatty acid
335 composition alone. The rapid incorporation of [¹⁴C]acetate labeled fatty acids predominantly into *sn*-3
336 position of TAG, the PC-TAG precursor-product kinetics of [¹⁴C]glycerol labeling, and the ratio of glycerol
337 backbone to acyl group labeling from [¹⁴C]glycerol all support a predominantly PC-derived DAG pathway
338 of TAG synthesis. Quantitatively, the initial relative rate of PC/TAG synthesis from [¹⁴C]glycerol backbone
339 labeled *de novo* DAG was approximately 3.9/1 and 4.3/1, in wild-type and PLD ζ respectively (Table S1).
340 Based on the initial rates of [¹⁴C]glycerol labeling into PC/TAG this would suggest that approximately 80%
341 of TAG in wild-type Camelina is produced from PC-derived DAG with the remaining flux directly through
342 the Kennedy pathway using *de novo* DAG for TAG biosynthesis. For comparison, the relative initial rates
343 of PC/TAG synthesis are approximately 14/1 in Arabidopsis, indicating greater than 93% of TAG is
344 synthesized from PC-derived DAG (Bates and Browse, 2011). Considering that the membrane lipid PC
345 typically does not accumulate unusual FAs (Millar et al., 2000), and the flux of unusual FAs through PC
346 has been indicated as a bottleneck in oilseed engineering (Bates and Browse, 2011; Bates et al., 2014), the
347 relatively larger proportion of acyl flux through the Kennedy pathway in Camelina may explain the
348 enhanced accumulation of some unusual FAs in TAG of transgenic Camelina (Ruiz-Lopez et al., 2014)
349 relative to the transgenic Arabidopsis (Ruiz-Lopez et al., 2013) engineered with the same genes.

350 Fluxes between DAG and PC are achieved reversibly through DAG-CPT and PDCT and
351 unidirectionally from PC to DAG by phospholipase C or through a combination of PLD and PAP. In
352 *Arabidopsis thaliana*, PDCT is responsible for approximately 40% of the flux of PUFAs from PC into PC-
353 derived DAG for TAG synthesis (Lu et al., 2009), but the *Arabidopsis lpcat1 lpcat2 rod1* triple mutant
354 which abolishes both acyl editing and PDCT activity still contains 1/3 of wild-type PUFA levels in TAG
355 (Bates et al., 2012). The remaining flux of PUFA from PC to TAG may involve PC associated with
356 phospholipase-based production of PC-derived DAG. Widespread evidence for the concerted action of
357 PLD and PAP includes reports in mammalian literature that demonstrate DAG production from
358 endothelial-derived PC (Martin, 1988) and endogenous DAG generation in human polymorphonuclear
359 leukocytes where DAG stimulated 5-lipoxygenase enzyme activity and function (Albert et al., 2008). In
360 plants, isolated protein bodies from seedlings show both activities of PLD and PAP (Herman and
361 Chrispeels, 1980) and studies of AtPLD ζ and AtPLD η suggest the supply of DAG for galactolipid
362 synthesis is dependent on this pathway and also subverts phosphorus starvation (Cruz-Ramirez et al., 2006;
363 Li et al., 2006). It has been shown that knock-down of PLD α in soybean leads to reduced PUFAs in TAG

364 (Lee et al., 2011) implicating a flux from PC to TAG through PLD-PAP without a requirement for PDCT
365 involvement. Thus a number of mechanisms exist that contribute DAG derived from PC that is rich in
366 PUFA which accumulates in TAG. Our results cannot conclusively distinguish between the mechanistic
367 differences in WT Camelina and Arabidopsis or other well-studied oilseeds but together the studies suggest
368 a combination of PLD and possibly PDCT enzyme activities may be responsible.

369 Here, we demonstrated that PLD ζ enhances steady state levels of DAG from PC, thus apparently
370 homeostatic mechanisms involving PAP favors conversion of the produced PA to DAG. The increase in
371 PC-derived DAG (Fig. 8) considerably altered TAG accumulation (up to 3% oil increase) supporting that
372 acyl flux through PC may be a regulator of total fatty acid synthesis (Bates et al., 2014; Bates, 2016).
373 However, it was surprising that no significant difference was observed in the stereochemical labeling of PC,
374 which is a marker of acyl flux through acyl editing vs the Kennedy pathway. Stereospecific analyses of the
375 acyl chains from [^{14}C]acetate labeling revealed that DAG (as well as PA) was more enriched at the *sn*-1
376 position (Fig. 7) whereas PC favored *sn*-2 incorporation. A lack of significant changes in regiochemical
377 lipid labeling between the lines indicates that the distribution of nascent fatty acids into different branches
378 of the lipid metabolic network (Fig. 1) may not be significantly altered by PLD ζ activity. In this case an
379 increased flux of acyl groups into *de novo* DAG for subsequent PC, and PC-derived DAG synthesis must
380 be balanced by an increased flux of acyl groups into PC by acyl editing. Then the regiochemical labeling of
381 PC would not change significantly between lines. This result is consistent with previous hypotheses that
382 suggest PC is a central intermediate, and “fatty acid or DAG carrier” through the ER membrane prior to
383 TAG synthesis (Allen et al., 2015; Shockey et al., 2016). Together these acyl lipid flux experiments provide
384 novel results that Camelina utilizes a higher proportion of direct Kennedy pathway than other related plants,
385 and that the flux through the PC-derived DAG pathway can be enhanced through modulation of PLD
386 activity.

387 **Increased PLD ζ activity may enhance DGAT over PDAT activity for TAG synthesis.**

388 The acylation of DAG to make TAG involves one of two enzymatic routes. PDAT uses the *sn*-2
389 acyl chain of PC along with DAG to make TAG, whereas DGAT produces TAG from acyl-CoA and DAG
390 substrates. PDAT activity can lead to synthesis of TAG rich in unsaturated fatty acids at *sn*-3 position
391 (Dahlqvist et al., 2000; Stahl et al., 2004; Xu et al., 2012) though the differences in substrate specificities
392 for DGAT and PDAT enzymes may not be significant and have not been characterized in a number of
393 oilseeds. Our results indicate changes in 18:3 and 20:1 invoked by PLD ζ activity. DGAT1 is apparently
394 responsible for much of the 20:1 incorporation into *sn*-3 of TAG in *Arabidopsis thaliana* whereas DGAT2
395 has been implicated in the incorporation of other modified fatty acids into TAG (Kroon et al., 2006;
396 Shockey et al., 2006). When Camelina embryos were labeled with [^{14}C]acetate the most rapid labeling was
397 seen in TAG (Fig. 6). This is consistent with studies of Arabidopsis seeds (Bates et al 2012) that also
398 contain a significant fraction of elongated fatty acids. It is well-known that the elongation process that
399 occurs outside of the plastid results in higher specific activities for these fatty acids relative to those of 18
400 carbons or shorter chains (Bao et al., 2000). In contrast, soybean seeds have very low levels of elongated

401 fatty acids and in combination with a high degree of acyl editing result in more rapid PC labeling with
402 nascent FA than TAG (Bates et al., 2009). When TAG labeled from [¹⁴C]acetate was regiochemically
403 analyzed through enzymatic cleavage of the *sn*-1 and *sn*-3 positions (Fig. S4) and compared to the *sn*-1 and
404 *sn*-2 positions of DAG, the labeling difference was attributable to *sn*-3, consistent with both the
405 incorporation of elongated fatty acids at this position and the greater level of 20:1 in TAG relative to PC or
406 DAG (Fig. 5). If the *sn*-3 labeling was due primarily to PDAT we would expect to see a precursor-product
407 relationship with *sn*-2 PC to *sn*-3 TAG, which was not evident.

408 A significant challenge to producing increased levels of lipids in plants is that many of the genes
409 putatively assigned by genome studies as being involved in lipid metabolism have not been characterized.
410 Furthermore the operation of an enzyme within a metabolic network is context-specific (Allen, 2016) and
411 may differ between species, tissues, environments, or when introduced transgenically. Therefore, the
412 operation of a cellular network *in planta* requires dynamic analyses of flux with isotopes to assess the
413 underlying changes in metabolism responsible for an altered phenotype. Given the central role of PC in
414 lipid metabolism (Allen, 2016; Bates, 2016), we hypothesized that overexpressing a phospholipase that acts
415 specifically on PC (PLD ζ) would influence the exchange and flux between PC and DAG and potentially
416 alter TAG production. Through combined overexpression of two *Arabidopsis* PLD ζ genes in *Camelina*,
417 TAG levels, PUFA concentration and elongated fatty acid content were all increased. PC levels were
418 reduced and DAG levels were increased presumably due to the altered interchange of these lipids by the
419 PLD ζ activity. Labeling with [¹⁴C]acetate and [¹⁴C]glycerol provided new insights into lipid metabolism in
420 *Camelina* specifically indicating a higher flux through the Kennedy pathway as compared to *Arabidopsis*,
421 but still predominantly composed of a PC-derived DAG pathway of TAG synthesis which was further
422 enhanced by PLD ζ expression. When combined with other changes that could further alter the FA profile of
423 TAG (e.g. suppression of FAD2/3 for accumulation of monosaturates), the overexpression of PLD ζ may be
424 part of an engineering strategy to enhance seed oil content for biofuels or industrial chemicals.

425

426

427 MATERIALS AND METHODS

428 Plant Materials and Chemicals

429 *Camelina sativa* wild type 'Suneson' (MT5) and AtPLD ζ overexpressing lines were grown in
430 greenhouses at 20°C/21°C under supplemental light to ensure a consistent 16 hr/8 hr day/night cycle
431 at >500 μ moles/cm²/sec in St Louis, Missouri (38.63°N, 90.20°W). Developing siliques were harvested
432 from plants at various times throughout development for lipid analysis or radioactive labeling.

433 Organic solvents, primuline, phospholipase A₂ from *Naja mossambica mossambica*, and
434 *Rhizomucor miehei* lipase, were purchased from Sigma-Aldrich (<http://www.sigmaaldrich.com/>); thin layer
435 chromatography (TLC) plates silica gel 60 Å were from EMD Millipore (<http://www.emdmillipore.com/>);
436 Hionic Fluor liquid scintillation cocktail was from PerkinElmer (www.perkinelmer.com/); butylated

437 hydroxytoluene was from MP Biochemicals, LLC (www.mpbiochemicals.com/); [1^{-14}C]acetate (specific
438 activity, 59 mCi mmol $^{-1}$) and [$1,3^{-14}\text{C}$] glycerol (specific activity 56 mCi/mmol) were purchased from
439 American Radiolabeled Chemicals (<http://www.arc-inc.com/>).

440 Vector Construction and Plant Transformation

441 The full-length cDNA coding regions of *AtPLD ζ_1* and *AtPLD ζ_2* were amplified by PCR using the
442 cDNA library prepared from *Arabidopsis thaliana* Col-1. The *AtPLD ζ_1* coding region was placed behind a
443 glycinin promoter on vector pGly-DsRed (generating pGly-DsRed- ζ_1). The *AtPLD ζ_2* coding region was
444 inserted behind a β -conglycinin promoter on a separate cloning vector. Then, the *AtPLD ζ_2* expression
445 cassette including the β -conglycinin promoter, the coding region of *AtPLD ζ_2* and the terminator was
446 amplified with PCR, and the product was then cloned into the binary vector pGly-DsRed- ζ_1 containing
447 DsRed and hygromycin selection markers (generating pGly-DsRed- ζ_1 - ζ_2). The binary vector containing
448 both *AtPLD ζ_1* and *AtPLD ζ_2* cassettes, pGly-DsRed- ζ_1 - ζ_2 , was introduced into *Agrobacterium* strain
449 GV3101 by a freezing and thawing method. *Camelina sativa* 'Suneson' was transformed with the above
450 *Agrobacterium* GV3101 by floral dipping (Lu and Kang, 2008). Transgenic plants were selected on 10
451 mg/L hygromycin growth media and confirmed by digital imaging of DsRed expression.

452 RNA Expression Analysis

453 Total RNA was isolated from developing seeds using TriPure Isolation Reagent (Roche). cDNA
454 was obtained using Transcripter First Strand cDNA Synthesis Kit (Roche). PCR reactions were performed
455 using Ex Taq Premix polymerase (Clontech Laboratories Inc) with 30 cycles of amplification. Primers used
456 for *AtPLD ζ_1* , *AtPLD ζ_2* and ubiquitin were as follows: *AtPLD ζ_1* , forward 5'- ATG GCA TCT GAG CAG
457 TTG ATG TCT CCC -3', reverse 5'- CTG GTG AGA ATG ACA ACA TCG AAA CCT CC -3'; *AtPLD ζ_2* ,
458 forward 5'- TAA CGG CGT TAA GTC AGA CGG AGT CAT C -3', reverse 5'- GGA ACT TGC AGA
459 CCT CTT TGG AGT T -3'; *ubiquitin* (homolog of *Arabidopsis* ubiquitin 10 gene), forward: 5'- AAG ATG
460 GCC GCA CCT TGG CTG ATT AC -3', reverse 5'- TCT CAA CCT CCA AAG TGA TGG TTT TAC -3'.

461 AtPLD ζ_1 Activity Assay

462 Developing seeds were ground in liquid nitrogen, and then extracted with buffer containing 50
463 mM Tris-HCl, pH 8.0, 10 mM KCl, 1 mM EDTA, 2 mM DTT and 0.5 mM PMSF. After centrifugation at
464 12,000 g for 10 min at 4°C, the supernatant containing the soluble protein fraction was centrifuged at
465 100,000 g for 30 min at 4°C twice to obtain the microsomal protein fraction. AtPLD ζ_1 activity was assayed
466 using radiolabeled PC, L-a-dipalmitoyl [2-palmitoyl-9,10- ^3H (N) (1 mCi/ml and 60 Ci/mmol) (American
467 Radiolabeled Chemicals) as described in (Qin and Wang, 2002). After two hour reactions at 30°C, lipids
468 were extracted from the reaction mixture with 1 mL chloroform/methanol (2:1, v/v), and then separated on
469 silica gel 60 Å TLC plates with a developing solvent system of chloroform/methanol/30% ammonium
470 hydroxide (65:25:4, v/v/v). Lipid spots for PA were scraped from the plate and counted by scintillation.

471 [^{14}C]Acetate and [^{14}C]Glycerol Labeling

472 Camelina seeds were removed from developing pods (20 days after flowering) and embryos were
473 dissected from the seed coats and cultured in medium containing 5 mM MES, pH 5.8, 0.5% sucrose, and
474 0.5x Murashige and Skoog salts (Bates and Browse, 2012). After preincubation of embryos for 20 min
475 under light of 35 μ moles/cm²/sec, temperature at 24°C, relative humidity of 35% with constant shaking, the
476 labeling of twenty six embryos per sample was started by replacing the 1 mL preincubation medium with 1
477 mL fresh culture medium containing [1-¹⁴C]-acetate (0.5 mM) or [1,3-¹⁴C] glycerol (0.2 mM) in a 2-mL
478 Eppendorf tube. For each time point, the labeling reaction was stopped by removing the 1.0 mL culture
479 medium containing radioactive substrate and freezing the embryos in the tube immediately in liquid
480 nitrogen. For [¹⁴C]glycerol-labeled lipid classes including PC, DAG and TAG, the proportion of label in the
481 acyl chains versus the backbone was determined by base-catalyzed transmethylation of TLC-separated and
482 purified lipids and scintillation counting of the separated organic and aqueous phases (Ichihara et al., 1996).

483 **Lipid Analysis**

484 Total lipids of developing seeds or embryos were extracted using a modified method based on a
485 protocol by Kansas Lipidomics Research Center (<http://www.k-state.edu/lipid/lipidomics/protocols.htm>).
486 Briefly, seeds or embryos were quickly transferred to an 8-mL glass tube containing hot isopropanol with
487 0.01% butylated hydroxytoluene (at 75°C), and incubated at 75°C for 15 min. Then, seeds or embryos in
488 isopropanol were homogenized thoroughly with glass rod before adding 1.0 mL chloroform and 1.0 mL
489 methanol and 0.8 mL water. After vortexing, 1.0 mL chloroform and 1.0 mL water were added. Then the
490 mixture was partitioned into two phases by centrifugation. The chloroform phase with lipids was moved to
491 a separate glass tube, and the remaining mixture was twice extracted by adding 1.0 mL chloroform, shaking,
492 centrifugation, and combining the chloroform phases. The total lipid extract was washed once by adding a
493 small amount (0.5 mL) of 1 M KCl. Lipids were dried under nitrogen gas flow, and suspended to a small
494 volume in chloroform. Fatty acid methyl esters were prepared by the acid transmethylation procedure as
495 described (Cahoon et al., 2002), and quantified by gas chromatography using a flame ionization detection
496 (Focus GC, Thermo Scientific) and a HP-INNOWAX capillary column (30 m length x 0.25 mm i.d., 0.25
497 μ m film thickness, Agilent J&W GC Columns, Agilent Technologies).

498 Radioactivity in the total lipid samples, and individually purified lipids, were quantified by liquid
499 scintillation counting. Radioactivity on TLC plates was visualized and imaged by electronic radiography
500 (Packard A20240 Instant Imager; Packard Instrument). Polar lipid separation by TLC, recovery of polar
501 lipids from TLC plates, and positional analysis of PC and PA acyl groups using phospholipase A₂ were
502 conducted as described (Bates et al., 2007). For acyl chain fatty acid composition in DAG and TAG,
503 *Rhizomucor miehei* lipase was used for digestion as described similar to protocol described for porcine
504 pancreatic lipase hydrolysis of TAG (Christie and Han, 2003; Cahoon et al., 2006). Briefly, an aliquot of
505 DAG or TAG was dried under nitrogen gas flow, and suspended in 1.0 mL diethyl ether. Then, 0.60 mL of
506 a reaction buffer containing 50 mM Tris-HCl, pH 8.0, 5 mM CaCl₂, and 200 μ L *Rhizomucor miehei* lipase
507 were added to the lipid in diethyl ether. Reactions were incubated at 37°C for 1~3 h with shaking.
508 Reactions were stopped by adding 0.3 mL 6N hydrochloric acid and the diethyl ether phase was evaporated

509 under nitrogen gas flow. Lipids in the reaction were extracted with chloroform/methanol (2:1, v/v). The
510 lipid extract was dried under nitrogen gas flow, and suspended in small volume of chloroform before being
511 separated by TLC plate Silica gel 60 Å together with standards. TLC plates were developed with
512 hexane/diethyl ether/acetic acid (70:30:1, v/v/v) to separate neutral lipid classes and individual neutral
513 lipids were eluted from TLC silica with chloroform/methanol (2:1, v/v) and back-extracted with chloroform.
514 All TLC solvents contained 0.01% (w/v) butylated hydroxytoluene. Phospholipids from the TLC plate were
515 eluted with chloroform/methanol/0.9% KCl (2:1:1, v/v/v), and then the aqueous phase was re-extracted
516 with chloroform and lipids combined prior to further analysis.

517 Polar lipid classes were separated by a solvent system of chloroform/methanol/30% ammonium
518 hydroxide (65:25:4, v/v/v) that was used to establish the fraction of labeling in PC relative to other polar
519 components. Lipid spots on the TLC plate were visualized under UV light after staining with primuline.
520 Each lipid was eluted from the silica plate as described (Bates et al., 2007). PC and PA stereochemistry
521 was determined by a modified method of phospholipase A₂ digestion based on methods described
522 previously (Bates et al., 2007). Briefly, PC or PA in 1 mL diethyl ether was incubated with 0.5 mL of
523 reaction buffer containing 50 mM borate, pH 7.5, 4 mM CaCl₂ and 5 U PLA₂ at 25 °C for 20 min. Products
524 were extracted and separated by TLC using a developing system of chloroform/methanol/30% ammonium
525 hydroxide (65:25:4, v/v/v). DAG and TAG regiochemistry was determined by *Rhizomucor miehei* lipase
526 digestion and TLC (Cahoon et al., 2006). GraphPad Prism (version 6) was used to perform linear
527 regression analysis on initial rate data (Table S1).

528 Seed oil content was determined by fatty acid methylation analysis. The developing seeds were
529 lyophilized then transmethylated by the acid transmethylation procedure as described (Cahoon et al., 2002).
530 Briefly, methanol containing 2.5% sulfuric acid, 0.01% (w/v) butylated hydroxytoluene, 20% toluene, and
531 TAG-17:0 internal standard were added to a glass vial containing seeds. The seeds were crushed with glass
532 rod and then heated at 90 C for 1 h. Transmethylation was quenched through addition of 1 M NaCl, prior to
533 extraction with hexane. The hexane fraction was transferred to a GC vial and the fatty acid methyl esters
534 were analyzed by GC-FID. The oil content was determined by comparison of the detector response from
535 seed-derived fatty acid methyl esters relative to methyl heptadecanoate from the triheptadecanoic internal
536 standard.

537

538 SUPPLEMENTAL DATA

539 The following supplemental materials are available.

540 **Supplemental Fig. S1.** Minor fatty acid composition in WT and *PLD ζ*

541 **Supplemental Fig. S2.** Total [¹⁴C] incorporation from labeled acetate

542 **Supplemental Fig. S3.** [¹⁴C] incorporation in to minor polar lipids from labeled acetate

543 **Supplemental Fig. S4.** [¹⁴C] regiochemical analysis of TAG from acetate

544 **Supplemental Fig. S5.** Total [¹⁴C] incorporation from labeled glycerol

545 **Supplemental Fig. S6.** [¹⁴C] incorporation in to PC, DAG and TAG from labeled glycerol

546 **Supplemental Fig. S7.** [¹⁴C] incorporation in to minor polar lipids from labeled glycerol

547 **Supplemental Fig. S8.** Incorporation of [¹⁴C]-glycerol into acyl chains of glycerolipids

548

549 **Supplemental Table S1.** Initial labeling of glycerol backbone

550

551 **ACKNOWLEDGEMENTS**

552 Any product or trademark mentioned here does not imply a warranty, guarantee, or endorsement by the
553 authors or their affiliations over other suitable products.

554

555

556 **TABLES**

557

558 Table I. Oil content in developing and mature seeds of WT and PLD_{ζ} lines, and PLD_{ζ} activity measured in
559 developing seeds of WT and PLD_{ζ} lines at 20 DAF. Values are means \pm SD (n=3). Asterisks indicate that
560 the values were statistically significantly different from the wild type at $p<0.05$ based on Student's *T* test.

561

562

563

	WT	1	2	3	4
--	----	---	---	---	---

564

565

566

Oil level (%DW)

567

12 DAF	15.76 \pm 0.91	17.67 \pm 0.48*	17.00 \pm 0.13*	17.21 \pm 0.08*	19.30 \pm 0.11*
20 DAF	22.64 \pm 0.71	25.84 \pm 0.42*	24.61 \pm 0.35*	27.03 \pm 0.66*	25.92 \pm 0.65*
mature	24.90 \pm 0.60	27.96 \pm 0.60*	26.86 \pm 1.00*	27.47 \pm 1.86*	26.80 \pm 0.68*

571

572

PLD $_{\zeta}$ activity (pmol/h/g)

573

20 DAF	65.74 \pm 12.58	104.67 \pm 19.92*	86.01 \pm 10.30*	269.13 \pm 41.97*	101.24 \pm 20.59*
--------	-------------------	---------------------	--------------------	---------------------	---------------------

575

576

577 **FIGURE LEGENDS**

578

579 Fig. 1. Simplified metabolic network description of acyl chain incorporation into TAG in oilseeds.

580 Enzymes are labeled in italics. G3P, glycerol-3-phosphate; LPA, lysophosphatidic acid; PA, phosphatidic

581 acid; PC, phosphatidylcholine; DAG, diacylglycerol; TAG, triacylglycerol; LPCAT, lyso-PC

582 acyltransferase; PLA, phospholipase A; GPAT, glycerol-3-phosphate acyltransferase; LPAAT, lyso-PA

583 acyltransferase; PAP, phosphatidic acid phosphatase; PLD, phospholipase D; CPT, CDP-

584 choline:diacylglycerol cholinephosphotransferase; PDCT, phosphatidylcholine:diacylglycerol

585 cholinephosphotransferase; DGAT, acyl-CoA:diacylglycerol acyltransferase; PDAT,

586 phospholipid:diacylglycerol acyltransferase.

587

588 Fig. 2. Transcript level of AtPLD ζ and AtPLD ζ in developing seeds at 22 DAF of Camelina WT and PLD ζ

589 overexpression lines. UBQ, ubiquitin.

590

591 Fig. 3. Lipid composition in Camelina seeds. Relative lipid composition including: TAG (A), DAG (B),

592 PL/GL (C) in seeds of WT and PLD ζ line 1 (henceforth referred to as PLD ζ) during development. TAG,

593 DAG, PL/GL were quantified by GC-FID using internal standard after they were eluted from TLC plate of

594 total lipid separation (SD, n=3). Significant differences (T test, P <0.05) between PLD ζ and WT are

595 denoted with an asterisk.

596

597 Fig. 4. Changes in fatty acid composition of major fatty acids in seed lipid during seed development of WT

598 and a PLD ζ . A, Palmitic acid (16:0). B, Stearic acid (18:0). C, Oleic acid (18:1). D, Linoleic acid (18:2). E,

599 Linolenic acid (18:3). F, Eicosenoic acid (20:1) (SD, n=3). Significant differences (T test, P <0.05) between

600 PLD ζ and WT are denoted with an asterisk.

601

602 Fig. 5. Fatty acid composition in PL, DAG and TAG of WT and PLD ζ developing seeds at 20 DAF. A,

603 Fatty acid profile of PL in developing seeds of WT and PLD ζ at 20 DAF. B, Fatty acid profile of DAG in

604 developing seeds of WT and PLD ζ at 20 DAF. C, Fatty acid profile of TAG in developing seeds of WT and

605 PLD ζ at 20 DAF (SD, n=3). Significant differences (T test, P <0.05) between PLD ζ and WT are denoted

606 with an asterisk.

607

608 Fig. 6. Incorporation of [^{14}C]fatty acid into glycerolipids during [^{14}C]acetate labeling of WT and PLD ζ

609 developing embryos. A and C, [^{14}C]fatty acid into TAG, DAG and PC in WT embryos. B and D, [^{14}C]fatty

610 acid into TAG, DAG and PC in PLD ζ embryos (SD, n=3, time points: 3, 6, 10, 30, 60, 180 min). Significant

611 differences (T test, P <0.05) between PLD ζ (A) and WT (B) were limited to differences in TAG and

612 differences in DAG at 180 min as indicated with two asterisks.

613

614 Fig. 7. Stereochemical incorporation of [^{14}C]fatty acids into PC, PA and DAG of WT and PLD ζ developing

615 embryos. A, PC of WT. B, PC of AtPLD ζ -OE1-12. C, DAG of WT. D, DAG of PLD ζ . E, PA of WT. F, PA

616 of PLD ζ (SD, n=3, time points: 3, 6, 10, 30, 60, 180 min).

617

618 Fig. 8. Labeling of backbones in PC, DAG or TAG in [^{14}C]glycerol labeled WT and PLD ζ developing

619 embryos. A and C [^{14}C]backbone incorporation into TAG, DAG and PC in WT embryos. B and D,

620 [^{14}C]backbone incorporation into TAG, DAG and PC in PLD ζ embryos (SD, n=3, time points: 5, 10, 20, 30,

621 60, 180). Significant differences (T test, P <0.05) between PC and DAG (WT time points: 5, 180; PLD ζ

622 time points: 5, 10, 20) and between PC and TAG (WT time points: 5, 10, 20, 30, 180; PLD ζ time points: 10,

623 20, 30, 180) were observed within but not between lines.

624

625 Fig. 9. Incorporation of [^{14}C]glycerol into glycerolipids during labeling of WT and PLD ζ developing

626 embryos. A, [^{14}C]glycerol into acyl chains of TAG, DAG and PC in WT and PLD ζ embryos. B, [^{14}C]-

627 glycerol into backbone of TAG, DAG and PC in WT and PLD ζ embryos (SD, n=3, time points: 5, 10, 20,

628 30, 60, 180).

629

630

631

Parsed Citations

Albert D, Pergola C, Koeberle A, Dodt G, Steinhilber D, Werz O (2008) The role of diacylglyceride generation by phospholipase D and phosphatidic acid phosphatase in the activation of 5-lipoxygenase in polymorphonuclear leukocytes. *J Leukoc Biol* 83: 1019-1027
PubMed: [Author and Title](#)
CrossRef: [Author and Title](#)
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Allen DK (2016) Assessing compartmentalized flux in lipid metabolism with isotopes. *Biochim Biophys Acta* 1861: 1226-1242
PubMed: [Author and Title](#)
CrossRef: [Author and Title](#)
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Allen DK (2016) Quantifying plant phenotypes with isotopic labeling & metabolic flux analysis. *Curr Opin Biotechnol* 37: 45-52
PubMed: [Author and Title](#)
CrossRef: [Author and Title](#)
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Allen DK, Bates PD, Tjellstrom H (2015) Tracking the metabolic pulse of plant lipid production with isotopic labeling and flux analyses: Past, present and future. *Prog Lipid Res* 58: 97-120
PubMed: [Author and Title](#)
CrossRef: [Author and Title](#)
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Banas W, Sanchez Garcia A, Banas A, Stymne S (2013) Activities of acyl-CoA:diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT) in microsomal preparations of developing sunflower and safflower seeds. *Planta* 237: 1627-1636
PubMed: [Author and Title](#)
CrossRef: [Author and Title](#)
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bao X, Focke M, Pollard M, Ohlrogge J (2000) Understanding in vivo carbon precursor supply for fatty acid synthesis in leaf tissue. *Plant J* 22: 39-50
PubMed: [Author and Title](#)
CrossRef: [Author and Title](#)
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Barron EJ, Stumpf PK (1962) Fat metabolism in higher plants. XIX. The biosynthesis of triglycerides by avocado-mesocarp enzymes. *Biochim Biophys Acta* 60: 329-337
PubMed: [Author and Title](#)
CrossRef: [Author and Title](#)
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bates PD (2016) Understanding the control of acyl flux through the lipid metabolic network of plant oil biosynthesis. *Biochim Biophys Acta* 1861: 1214-1225
PubMed: [Author and Title](#)
CrossRef: [Author and Title](#)
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bates PD, Browse J (2011) The pathway of triacylglycerol synthesis through phosphatidylcholine in *Arabidopsis* produces a bottleneck for the accumulation of unusual fatty acids in transgenic seeds. *Plant J* 68: 387-399
PubMed: [Author and Title](#)
CrossRef: [Author and Title](#)
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bates PD, Browse J (2012) The significance of different diacylglycerol synthesis pathways on plant oil composition and bioengineering. *Front Plant Sci* 3: 147
PubMed: [Author and Title](#)
CrossRef: [Author and Title](#)
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bates PD, Durrett TP, Ohlrogge JB, Pollard M (2009) Analysis of acyl fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos. *Plant Physiol* 150: 55-72
PubMed: [Author and Title](#)
CrossRef: [Author and Title](#)
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bates PD, Fatihi A, Snapp AR, Carlsson AS, Browse J, Lu C (2012) Acyl editing and headgroup exchange are the major mechanisms that direct polyunsaturated fatty acid flux into triacylglycerols. *Plant Physiol* 160: 1530-1539
PubMed: [Author and Title](#)
CrossRef: [Author and Title](#)
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bates PD, Johnson SR, Cao X, Li J, Nam JW, Jaworski JG, Ohlrogge JB, Browse J (2014) Fatty acid synthesis is inhibited by inefficient utilization of unusual fatty acids for glycerolipid assembly. *Proc Natl Acad Sci U S A* 111: 1204-1209
PubMed: [Author and Title](#)
CrossRef: [Author and Title](#)
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bates PD, Ohrogge JB, Pollard M (2007) Incorporation of newly synthesized fatty acids into cytosolic glycerolipids in pea leaves occurs via acyl editing. *J Biol Chem* 282: 31206-31216

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Cahoon EB, Dietrich CR, Meyer K, Damude HG, Dyer JM, Kinney AJ (2006) Conjugated fatty acids accumulate to high levels in phospholipids of metabolically engineered soybean and *Arabidopsis* seeds. *Phytochemistry* 67: 1166-1176

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Cahoon EB, Ripp KG, Hall SE, McGonigle B (2002) Transgenic production of epoxy fatty acids by expression of a cytochrome P450 enzyme from *Euphorbia lagascae* seed. *Plant Physiol* 128: 615-624

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Campbell MC, Rossi AF, Erskine W (2013) *Camelina (Camelina sativa (L.) Crantz)*: agronomic potential in Mediterranean environments and diversity for biofuel and food uses. *Crop and Pasture Science* 64: 388-398

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Chapman KD, Ohrogge JB (2012) Compartmentation of triacylglycerol accumulation in plants. *J Biol Chem* 287: 2288-2294

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Christie WW, Han X (2003) *Lipid Analysis*, Ed 3rd. The Oily Press, Bridgewater, UK

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Craddock CP, Adams N, Bryant FM, Kurup S, Eastmond PJ (2015) PHOSPHATIDIC ACID PHOSPHOHYDROLASE Regulates Phosphatidylcholine Biosynthesis in *Arabidopsis* by Phosphatidic Acid-Mediated Activation of CTP:PHOSPHOCHOLINE CYTIDYLYLTRANSFERASE Activity. *Plant Cell* 27: 1251-1264

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Cruz-Ramirez A, Oropeza-Aburto A, Razo-Hernandez F, Ramirez-Chavez E, Herrera-Estrella L (2006) Phospholipase D2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in *Arabidopsis* roots. *Proc Natl Acad Sci U S A* 103: 6765-6770

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Dahlqvist A, Stahl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S (2000) Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. *Proc Natl Acad Sci U S A* 97: 6487-6492

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Eastmond PJ, Quettier AL, Kroon JT, Craddock C, Adams N, Slabas AR (2010) Phosphatidic acid phosphohydrolase 1 and 2 regulate phospholipid synthesis at the endoplasmic reticulum in *Arabidopsis*. *Plant Cell* 22: 2796-2811

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Griffiths G, Stobart AK, Stymne S (1985) The acylation of sn-glycerol 3-phosphate and the metabolism of phosphatidate in microsomal preparations from the developing cotyledons of safflower (*Carthamus tinctorius* L.) seed. *Biochem J* 230: 379-388

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Griffiths G, Stymne S, Stobart AK (1988) Phosphatidylcholine and its relationship to triacylglycerol biosynthesis in oil-tissues. *Phytochemistry* 27: 2089-2093

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Haslam RP, Ruiz-Lopez N, Eastmond P, Moloney M, Sayanova O, Napier JA (2013) The modification of plant oil composition via metabolic engineering—better nutrition by design. *Plant Biotechnol J* 11: 157-168

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Herman EM, Chrispeels MJ (1980) Characteristics and subcellular localization of phospholipase d and phosphatidic Acid

phosphatase in mung bean cotyledons. *Plant Physiol* 66: 1001-1007

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Ichihara K, Shibahara A, Yamamoto K, Nakayama T (1996) An improved method for rapid analysis of the fatty acids of glycerolipids. *Lipids* 31: 535-539

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Iskandarov U, Jin Kim HJ, Chaoon EB (2013) Camelina: an emerging oilseed platform for advanced biofuels and bio-based materials, Vol 4. Springer, New York

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Katavic V, Reed DW, Taylor DC, Giblin EM, Barton DL, Zou J, Mackenzie SL, Covello PS, Kunst L (1995) Alteration of seed fatty acid composition by an ethyl methanesulfonate-induced mutation in *Arabidopsis thaliana* affecting diacylglycerol acyltransferase activity. *Plant Physiol* 108: 399-409

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Kennedy EP (1961) Biosynthesis of complex lipids. *Fed Proc* 20: 934-940

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Koo AJ, Ohlrogge JB, Pollard M (2004) On the export of fatty acids from the chloroplast. *J Biol Chem* 279: 16101-16110

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Kornberg A, Pricer WE (1953) Enzymatic esterification of α -glycerophosphate by long chain fatty acids. *J Biol Chem* 204: 345-357

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Kroon JT, Wei W, Simon WJ, Slabas AR (2006) Identification and functional expression of a type 2 acyl-CoA:diacylglycerol acyltransferase (DGAT2) in developing castor bean seeds which has high homology to the major triglyceride biosynthetic enzyme of fungi and animals. *Phytochemistry* 67: 2541-2549

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Kunst L, Taylor DC, Underhill EW (1992) Fatty acid elongation in developing seeds of *Arabidopsis thaliana*. *Plant Physiol Biochem* 30: 425-434

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Lardizabal K, Effertz R, Levering C, Mai J, Pedroso MC, Jury T, Aasen E, Gruys K, Bennett K (2008) Expression of *Umbelopsis ramaniana* DGAT2A in seed increases oil in soybean. *Plant Physiol* 148: 89-96

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Lee J, Welti R, Schapaugh WT, Trick HN (2011) Phospholipid and triacylglycerol profiles modified by PLD suppression in soybean seed. *Plant Biotechnol J* 9: 359-372

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, Debono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J (2013) Acyl-lipid metabolism. *Arabidopsis Book* 11: e0161

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Li M, Qin C, Welti R, Wang X (2006) Double knockouts of phospholipases Dzeta1 and Dzeta2 in *Arabidopsis* affect root elongation during phosphate-limited growth but do not affect root hair patterning. *Plant Physiol* 140: 761-770

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Li M, Wei F, Tawfall A, Tang M, Saettele A, Wang X (2015) Overexpression of patatin-related phospholipase A11delta altered plant growth and increased seed oil content in camelina. *Plant Biotechnol J* 13: 766-778

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Li N, Gugel IL, Giavalisco P, Zeisler V, Schreiber L, Soll J, Philippar K (2015) FAX1, a novel membrane protein mediating plastid fatty acid export. *PLoS Biol* 13: e1002053

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Liu J, Rice A, McGlew K, Shaw V, Park H, Clemente T, Pollard M, Ohlrogge J, Durrett TP (2015) Metabolic engineering of oilseed crops to produce high levels of novel acetyl glyceride oils with reduced viscosity, freezing point and calorific value. *Plant Biotechnol J* 13: 858-865

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Lu C, Kang J (2008) Generation of transgenic plants of a potential oilseed crop *Camelina sativa* by *Agrobacterium*-mediated transformation. *Plant Cell Rep* 27: 273-278

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Lu C, Napier JA, Clemente TE, Cahoon EB (2011) New frontiers in oilseed biotechnology: meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications. *Curr Opin Biotechnol* 22: 252-259

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Lu C, Xin Z, Ren Z, Miquel M, Browse J (2009) An enzyme regulating triacylglycerol composition is encoded by the ROD1 gene of *Arabidopsis*. *Proc Natl Acad Sci U S A* 106: 18837-18842

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Martin TW (1988) Formation of diacylglycerol by a phospholipase D-phosphatidate phosphatase pathway specific for phosphatidylcholine in endothelial cells. *Biochim Biophys Acta* 962: 282-296

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Mietkowska E, Siloto RM, Dewald J, Shah S, Brindley DN, Weselake RJ (2011) Lipins from plants are phosphatidate phosphatases that restore lipid synthesis in a pah1Delta mutant strain of *Saccharomyces cerevisiae*. *FEBS J* 278: 764-775

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Millar AA, Smith MA, Kunst L (2000) All fatty acids are not equal: discrimination in plant membrane lipids. *Trends Plant Sci* 5: 95-101

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Nguyen HT, Park H, Koster KL, Cahoon RE, Shanklin J, Clemente TE, Cahoon EB (2015) Redirection of metabolic flux for high levels of omega-7 monounsaturated fatty acid accumulation in camelina seeds. *Plant Biotechnol J* 13: 38-50

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Oakes J, Brackenridge D, Colletti R, Daley M, Hawkins DJ, Xiong H, Mai J, Screen SE, Val D, Lardizabal K, Gruys K, Delkman J (2011) Expression of fungal diacylglycerol acyltransferase2 genes to increase kernel oil in maize. *Plant Physiol* 155: 1146-1157

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Pascual F, Carman GM (2013) Phosphatidate phosphatase, a key regulator of lipid homeostasis. *Biochim Biophys Acta* 1831: 514-522

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Petrie JR, Shrestha P, Belide S, Kennedy Y, Lester G, Liu Q, Divi UK, Mulder RJ, Mansour MP, Nichols PD, Singh SP (2014) Metabolic engineering *Camelina sativa* with fish oil-like levels of DHA. *PLoS One* 9: e85061

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Pollard M, Delamarre D, Martin TM, Shachar-Hill Y (2015) Lipid labeling from acetate or glycerol in cultured embryos of *Camelina sativa* seeds: A tale of two substrates. *Phytochemistry* 118: 192-203

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Qin C, Wang X (2002) The *Arabidopsis* phospholipase D family. Characterization of a calcium-independent and phosphatidylcholine-selective PLD zeta 1 with distinct regulatory domains. *Plant Physiol* 128: 1057-1068

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Ruiz-Lopez N, Haslam RP, Napier JA, Sayanova O (2014) Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop. *Plant J* 77: 198-208

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Ruiz-Lopez N, Haslam RP, Usher SL, Napier JA, Sayanova O (2013) Reconstitution of EPA and DHA biosynthesis in *arabidopsis*: iterative metabolic engineering for the synthesis of n-3 LC-PUFAs in transgenic plants. *Metab Eng* 17: 30-41

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Shi L, Katavic V, Yu Y, Kunst L, Haughn G (2012) *Arabidopsis glabra2* mutant seeds deficient in mucilage biosynthesis produce more oil. *Plant J* 69: 37-46

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Shockley J, Regni A, Cotton K, Adhikari N, Browse J, Bates PD (2016) Identification of *Arabidopsis* GPAT9 (At5g60620) as an Essential Gene Involved in Triacylglycerol Biosynthesis. *Plant Physiol* 170: 163-179

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Shockley JM, Fulda MS, Browse JA (2002) *Arabidopsis* contains nine long-chain acyl-coenzyme a synthetase genes that participate in fatty acid and glycerolipid metabolism. *Plant Physiol* 129: 1710-1722

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Shockley JM, Gidda SK, Chapital DC, Kuan JC, Dhanoa PK, Bland JM, Rothstein SJ, Mullen RT, Dyer JM (2006) Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum. *Plant Cell* 18: 2294-2313

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Slack C, Roughan P, Browse J, Gardiner S (1985) Some properties of cholinophototransferase from developing safflower cotyledons. *Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism* 833: 438-448

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Slack CR, Campbell LC, Browse JA, Roughan PG (1983) Some evidence for the reversibility of the cholinophototransferase-catalysed reaction in developing linseed cotyledons *in vivo*. *Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism* 754: 10-20

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Stahl U, Carlsson AS, Lenman M, Dahlqvist A, Huang B, Banas W, Banas A, Stymne S (2004) Cloning and functional characterization of a phospholipid:diacylglycerol acyltransferase from *Arabidopsis*. *Plant Physiol* 135: 1324-1335

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Stymne S, Glad G (1981) Acyl exchange between oleoyl-CoA and phosphatidylcholine in microsomes of developing soya bean cotyledons and its role in fatty acid desaturation. *Lipids* 16: 298-305

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Stymne S, Stobart AK (1984) Evidence for the reversibility of the acyl-CoA:lysophosphatidylcholine acyltransferase in microsomal preparations from developing safflower (*Carthamus tinctorius* L.) cotyledons and rat liver. *Biochem J* 223: 305-314

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Stymne S, Stobart AK (1987) *Triacylglycerol Biosynthesis*, Vol 9. Academic Press, New York

Pubmed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Tan H, Yang X, Zhang F, Zheng X, Qu C, Mu J, Fu F, Li J, Guan R, Zhang H, Wang G, Zuo J (2011) Enhanced seed oil production in

canola by conditional expression of *Brassica napus* LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. *Plant Physiol* 156: 1577-1588

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Taylor DC, Giblin EM, Reed DW, Hogge LR (1995) Stereospecific analysis and mass spectrometry of triacylglycerols from *Arabidopsis thaliana* (L.) Heynh. *columbia* seed. *Journal of the American Oil Chemists' Society* 72: 305-308

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Tjellstrom H, Yang Z, Allen DK, Ohlrogge JB (2012) Rapid kinetic labeling of *Arabidopsis* cell suspension cultures: implications for models of lipid export from plastids. *Plant Physiol* 158: 601-611

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

van Erp H, Kelly AA, Menard G, Eastmond PJ (2014) Multigene engineering of triacylglycerol metabolism boosts seed oil content in *Arabidopsis*. *Plant Physiol* 165: 30-36

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Vanhercke T, Wood CC, Stymne S, Singh SP, Green AG (2013) Metabolic engineering of plant oils and waxes for use as industrial feedstocks. *Plant Biotechnol J* 11: 197-210

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Wang L, Shen W, Kazachkov M, Chen G, Chen Q, Carlsson AS, Stymne S, Weselake RJ, Zou J (2012) Metabolic interactions between the Lands cycle and the Kennedy pathway of glycerolipid synthesis in *Arabidopsis* developing seeds. *Plant Cell* 24: 4652-4669

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Weiss SB, Kennedy EP, Kiyasu JY (1960) The Enzymatic Synthesis of Triglycerides. *J Biol Chem* 235: 40-44

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Weselake RJ, Taylor DC, Rahman MH, Shah S, Laroche A, McVetty PB, Harwood JL (2009) Increasing the flow of carbon into seed oil. *Biotechnol Adv* 27: 866-878

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Williams JP, Imperial V, Khan MU, Hodson JN (2000) The role of phosphatidylcholine in fatty acid exchange and desaturation in *Brassica napus* L. leaves. *Biochem J* 349: 127-133

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Xu J, Carlsson AS, Francis T, Zhang M, Hoffman T, Giblin ME, Taylor DC (2012) Triacylglycerol synthesis by PDAT1 in the absence of DGAT1 activity is dependent on re-acylation of LPC by LPCAT2. *BMC Plant Biol* 12: 4

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Zhang M, Fan J, Taylor DC, Ohlrogge JB (2009) DGAT1 and PDAT1 acyltransferases have overlapping functions in *Arabidopsis* triacylglycerol biosynthesis and are essential for normal pollen and seed development. *Plant Cell* 21: 3885-3901

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Zou J, Wei Y, Jako C, Kumar A, Selvaraj G, Taylor DC (1999) The *Arabidopsis thaliana* TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene. *Plant J* 19: 645-653

PubMed: [Author and Title](#)

CrossRef: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)