Liftoff: accurate mapping of gene annotations

Alaina Shumate'-?", Steven L. Salzberg'234

1. Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
21218

2. Center for Computational Biology, Whiting School of Engineering, Johns Hopkins
University, Baltimore, MD 21211

3. Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218
4. Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins
University, Baltimore, MD 21205

* Correspondence: alainashumate@gmail.com

Abstract

Motivation

Improvements in DNA sequencing technology and computational methods have led to a
substantial increase in the creation of high-quality genome assemblies of many species.
To understand the biology of these genomes, annotation of gene features and other
functional elements is essential; however for most species, only the reference genome
is well-annotated.

Results

One strategy to annotate new or improved genome assemblies is to map or ‘lift over’ the
genes from a previously-annotated reference genome. Here we describe Liftoff, a new
genome annotation lift-over tool capable of mapping genes between two assemblies of
the same or closely-related species. Liftoff aligns genes from a reference genome to a
target genome and finds the mapping that maximizes sequence identity while
preserving the structure of each exon, transcript, and gene. We show that Liftoff can
accurately map 99.9% of genes between two versions of the human reference genome
with an average sequence identity >99.9%. We also show that Liftoff can map genes
across species by successfully lifting over 98.4% of human protein-coding genes to a
chimpanzee genome assembly with 98.7% sequence identity.

Availability and implementation
The source code for Liftoff is available at https://qithub.com/agshumate/Liftoff
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Introduction

Recent developments in DNA sequencing technology have greatly reduced the time
and money needed to sequence and assemble new genomes. Currently there are
13,420 eukaryotic genome assemblies in GenBank, of which ~10,000 have been added
in the last 5 years alone. The addition of new and improved genome assemblies is a
starting point for genetic studies of many species; however, to be maximally useful, the
genes and other functional elements need to be annotated. Unfortunately, the
annotation of new genomes has not kept pace with sequencing and assembly. This is
evident in GenBank, where only 3,540 of the 13,420 eukaryotic genomes have any
annotation at all. Eukaryotic genome annotation is a challenging, imperfect process that
requires a combination of computational predictions, experimental validation, and
manual curation. Rather than repeating this costly process for each new genome that is
assembled, a more scalable approach is to take the annotation from a previously-
annotated member of the same or closely-related species, and then map or ‘lift over’
gene models from the annotated genome onto the new assembly. In addition, for well-
studied organisms, multiple assemblies may be produced over time, and there is an
ongoing need to lift the annotation onto these newer, more contiguous assemblies. The
most well-known example of this is the human genome, but other model organisms
such as mouse, zebrafish (Church et al., 2011), rhesus macaque (He et al., 2019) ,
maize (Jiao et al., 2017) , and many others had a series of gradually improved
assemblies.

Current strategies for this task use tools such as UCSC liftOver (Kuhn et al., 2013) or
CrossMap (Zhao et al., 2014) to convert the coordinates of genomic features between
assemblies; however, these tools only work with a limited number of species and they
rely only on sequence homology to find a one-to-one mapping between genomic
coordinates in the reference and coordinates in the target. This strategy is often
inadequate when converting genomic intervals, like a gene feature, rather than a single
coordinate. If the interval is no longer continuous in the target genome, current
strategies will either split the interval and map it to different locations, or map the
spanned interval to the target genome (Gao et al., 2018). In many cases, this disrupts
the biological integrity of the genomic feature; for example, if the interval is split and
mapped to different chromosomes or strands, or spans a large genomic distance, it may
not be possible for it to represent a single gene feature. Furthermore, prior tools convert
each feature independently, so while every exon from one transcript may be lifted over
to a continuous interval, the combination of exons in the target genome may not
necessarily form a biologically meaningful transcript. Mapping each feature
independently also often results in multiple paralogous genes incorrectly mapping to a
single locus.

Here we introduce Liftoff, an accurate tool that maps annotations described in General
Feature Format (GFF) or General Transfer Format (GTF) between assemblies of the
same, or closely-related species. Unlike current coordinate lift-over tools which require a
pre-generated “chain” file as input, Liftoff is a standalone tool that takes two genome
assemblies and a reference annotation as input and outputs an annotation of the target
genome. Liftoff uses Minimap2 (Li, 2018) to align the gene sequences from a reference



genome to the target genome. Rather than aligning whole genomes, aligning only the
gene sequences allows genes to be lifted over even if there are many structural
differences between the two genomes. For each gene, Liftoff finds the alignments of the
exons that maximize sequence identity while preserving the transcript and gene
structure. If two genes incorrectly map to overlapping loci, Liftoff determines which
gene is most-likely mis-mapped, and attempts to re-map it. Liftoff can also find
additional gene copies present in the target assembly that are not annotated in the
reference.

Previously, we have used Liftoff to map genes to a new Ashkenazi human reference
genome (Shumate, Zimin et al., 2020) and to an updated assembly of the bread wheat
genome, Triticum aestivum (Alonge,Shumate et al., 2020). Here, in addition to
describing the algorithm itself, we present two more examples demonstrating the
accuracy and versatility of Liftoff. First, we map genes between two versions of the
human reference genome. Next, to demonstrate a cross-species lift over, we map
protein-coding genes from the human reference genome to a chimpanzee genome
assembly.

Implementation

Liftoff is implemented as a python command-line tool. The main goal of Liftoff is to align
gene features from a reference genome to a target genome and use the alignment(s) to
optimally convert the coordinates of each exon. An optimal mapping is one in which the
sequence identity is maximized while maintaining the integrity of each exon, transcript,
and gene. While our discussion of Liftoff here focuses on lifting over genes, transcripts,
and exons, it will work for any feature, or group of hierarchical features present in a GFF
or GTF file.

As input, Liftoff takes a reference genome sequence and a target genome sequence in
FASTA format, and a reference genome annotation in GFF or GTF format. The
reference annotation is processed with gffutils (https://github.com/daler/gffutils), which
uses a sqlite3 database to track the hierarchical relationships within groups of features
(e.g. gene, transcript, exon). Using pyfaidx (Shirley et al., 2015), Liftoff extracts gene
sequences from the reference genome, and then invokes Minimap2 to align the entire
gene sequence including exons and introns to the target. The Minimap2 parameters are
set to output up to 50 secondary alignments for each sequence in SAM format. By
default, genes are aligned to the entire target genome, but for chromosome-scale
assemblies, the user can enable an option to align genes chromosome by chromosome.
Under that option, only those genes which fail to map to their expected chromosome are
then aligned to the entire genome.

In many cases, a gene has a single complete alignment to the target genome, which
makes finding the optimal mapping trivial. In other cases, differences between the two
genomes cause the gene to align in many fragmented pieces, and the optimal mapping
is some combination of alignments. To find this combination, Liftoff uses networkx (
https://github.com/networkx/networkx) to build a directed acyclic graph representing the
alignments as follows. Using Pysam (https://github.com/pysam-developers/pysam) to




parse the Minimap2 alignments, each alignment is split at every insertion and deletion in
order to form a group of gapless alignment blocks. Blocks not containing any part of an
exon are discarded, and the remaining blocks are represented by nodes in the graph.
Two nodes u and v are connected by an edge if the following conditions are true.

1) uand v are on the same chromosome or contig

2) uand v are on the same strand

3) uand v are in the correct 5’ to 3’ order

4) The distance from the start of u to the end of v in the target genome is no greater
than 2 times that in the reference genome

Each node is assigned a weight equal to the number of mismatches within exons
(mismatches in introns are not counted), and each edge is assigned a weight equal to
the length of gaps within exons spanned by that edge. A source and sink are added to
the graph representing the start and end of the gene respectively, and the shortest path
from source to sink is found using Dijkstra's algorithm (Dijkstra and Others, 1959)
where the weight function between two nodes u and v is

weight, + weight,
2

+ weighteqge

The shortest path represents the combination of aligned blocks that is concordant with
the original structure of the gene and minimizes the number of mismatches and indels
within exons. The alignments in this path define the final placement of the gene. Using
the coordinates of the aligned blocks in the shortest path, the coordinates of each exon
are converted to their respective coordinates in the target genome. A simple example of
this process is shown in Figure 1, which illustrates lifting over a 5-exon transcript from
the human reference genome (GRCh38) to a chimpanzee genome (PTRv2). This gene
has a large intronic deletion in PTRv2 and does not have and end-to-end alignment, but
it can still be successfully lifted over using our algorithm.



0 208 4551 4648 7359 7485 9176 9257 28345 28393
ENST00000598723.5 -—- Exon 3 Exon 4 Exon 5

C PTRv2 chr19 )

0 A SIC T 4378 ° ATT0 7242 ¢ 8030 .. 8378 9266
DR 0 1
50658220 50658593 50662579 50662971 50665454 50666242 50666569 50667457
E
28393 28021
50480444 50480816

F
27887 28393

50677369 50677902

511/

Figure 1. Example of the lift-over process. Diagram showing the steps taken by Liftoff when mapping
human transcript ENST00000598723.5 to the chimpanzee (PTRv2) homolog on chromosome 19.
Minimap2 produces 3 partial alignments of this gene to PTRv2. Alignment 1 (green) has 4 gapless blocks
containing exons 1-4 which are represented by nodes A-D in the graph. The dashed lines in between
blocks of the alignment represent gaps/introns. Alignments 2 (purple) and 3 (orange) each have 1
gapless block containing exon 5 represented by nodes E and F respectively. Node E is not on the same



strand as alignments 1 and 2 and is therefore only connected to the start and end. The node weights
correspond to the number of mismatches in exons and the edge weights are the number of unaligned
exon bases between two nodes. The shortest path (A,B,C,D,F) is shown with bold arrows and contains
complete alignments of all 5 exons with a total of 9 mismatches and 0 gaps.

One of the main challenges with gene annotation lift over is correctly mapping
homologous genes from multi-gene families. Two different genes may optimally map to
the same locus if they are identical or nearly identical. To handle this situation, after
Liftoff maps all genes to their best matches, it checks for pairs of genes on the
reference genome that have incorrectly mapped to overlapping (or identical) locations
on the target genome, and it then attempts to find another valid mapping for one of the
genes. Liftoff first tries to remap the gene with the lower sequence identity. If the genes
mapped with the same sequence identity, Liftoff considers the neighboring genes and
tries to remap the gene that appears out of order according to the reference annotation.
When remapping the gene, Liftoff rebuilds the graph of aligned blocks excluding any
blocks that overlap the homologous gene. The shortest path through this new graph
represents the best mapping for this gene that does not overlap its homolog. If another
valid mapping does not exist, the gene with lower identity is considered unmapped. This
process is repeated until there are no genes mapped to overlapping loci. Liftoff then
outputs a GFF file with the coordinates on the target genome of all of the features from
the original annotation, and a text file with the IDs of any genes that could not be lifted
over.

Note that differences in the genome sequences themselves may result in Liftoff
mapping a gene to a paralogous location. For example, consider a gene family with 5
members on the reference genome but only 4 members on the target. The fifth gene
might simply be unmapped, but if the target has a paralogous copy elsewhere, and if
that copy is not matched by a homolog on the reference, then Liftoff will map the fifth
gene to the paralogous location.

Annotating Extra Gene Copies

Another feature unique to Liftoff is the option to find additional copies of genes in the
target assembly not annotated in the reference. With this option enabled, Liftoff maps
the complete reference annotation first, and then repeats the lift-over process for all
genes. An extra gene copy is annotated if another mapping is found that does not
overlap any previously-annotated genes, and that meets the user-defined minimum
sequence identity threshold. The lift-over procedure is repeated until all valid mappings
have been found.

We recently used Liftoff with this feature enabled to annotate our improved assembly of
the bread wheat genome, which contains 15.07 gigabases of anchored sequence
compared to 13.84 in a previous reference genome (Alonge, Shumate et al., 2020). In
addition to successfully mapping 100,839 of the 105,200 reference genes to this large
and complex genome, we found 5,799 additional gene copies using a strict sequence
identity threshold of 100%.

Results



Here we demonstrate Liftoff's ability to lift an annotation to an updated reference
genome by lifting genes from the two most recent versions of the human reference
genome, GRCh37 and GRCh38. We also demonstrate Liftoff's ability to lift genes
between genomes of closely-related species by lifting genes from GRCh38 to the
chimpanzee genome Clint_PTRv2. To assess the accuracy of Liftoff in each example,
we evaluate both the sequence identity and order of mapped genes.

GRCh37 to GRCh38

We attempted to map all protein-coding genes and IncRNAs on primary chromosomes
in the GENCODE v19 annotation (Harrow et al., 2012) from GRCh37 to GRCh38. Out
of 27,459 genes, we successfully mapped 27,424 (99.87%). We consider a gene to be
successfully mapped if at least 50% of the reference gene maps to the target assembly.
An overwhelming majority of the gene sequences in GRCh38 were nearly identical to
the sequences in GRCh37, with an average sequence identity in exons of 99.97%
(Figure 2).
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Figure 2. Distribution of GRCh37 and GRCh38 sequence identity. Histogram showing the distribution
of exon sequence identity of protein-coding and IncRNA genes in GRCh37 and GRCh38. Log scale used
to make the counts of just 1 or 2 genes visible; all bins below 97% identity contain at most 2 genes.

To visualize the co-linearity of the gene order between the two assemblies, we plotted

each gene as a single point on a 2D plot where the X coordinate is the ordinal position
of the gene in GRCh37 and the Y coordinate is the ordinal position in GRCh38 (Figure
3).
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Figure 3. GRCh37 and GRCh38 gene order. Dot plot showing the ordinal position of each gene in
GRCh37 on the x-axis and the ordinal position in GRCh38 on the y-axis.

The gene order appears perfectly co-linear; however, there are some exceptions not
visible at the scale of the whole genome. To calculate the number of genes out of order
in GRCh38 with respect to GRCh37, we first sorted the X,Y points by X, and then found
the length of the longest increasing subsequence in Y. The longest increasing
subsequence in Y represents the genes in GRCh38 that are in order with respect to
GRCh37, and those points not belonging to this subsequence are genes which are out
of order. With this process we found 305 genes (1.1%) occurring in a different relative
position in GRCh38 with respect to GRCh37.

GRCh38 to PTRv2

We attempted to map all protein-coding genes on chromosomes 1-22 and chromosome
X in the GENCODE v33 annotation (Frankish et al., 2019) from GRCh38 to an
assembly of the chimpanzee (Pan troglodytes), PTRv2. Out of 19,878 genes, we were
able to map 19,555 (98.38%). The average sequence identity in exons of successfully
mapped genes was 98.70% (Figure 4).
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Figure 4. Distribution of GRCh38 and PTRv2 sequence identity. Histogram showing the distribution of
exon sequence identity of protein-coding genes in GRCh38 and PTRv2. Note that the y-axis is shown on
a log scale, as in Figure 2.

As was done with the GRCh37 to GRCh38 lift-over, we compared the gene order in
GRCh38 to that in PTRv2 and found 2,172 genes in PTRv2 to be in a different relative
position. Some of these ordinal differences are visible at the whole-genome scale
(Figure 5) including 4 large regions on the chimpanzee homologues of chromosomes 4,
5, 12, and 17 where the gene order is inverted due to large-scale chromosomal
inversions.
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Figure 5. GRCh38 and PTRv2 gene order. Dot plot showing the ordinal position of each gene in
GRCh38 on the x-axis and the ordinal position in PTRv2 on the y-axis.

Discussion

The rapidly growing number of high-quality genome assemblies has greatly increased
our potential to understand sequence diversity, but accurate genome annotation is
needed to understand the biological impact of this diversity. Rather than annotating
genomes de novo, we can take advantage of the extensive work that has gone into
creating reference annotations for many well-studied species. We developed Liftoff as
an accurate tool for transferring gene annotations between genomes of the same or
closely-related species. Unlike current coordinate lift-over strategies which only consider
sequence homology, Liftoff considers the constraints between exons of the same gene
and constraint that distinct genes need to map to distinct locations.

We showed that we were able to lift over nearly all genes from GRCh37 to GRCh38.
The gene sequences and order are very similar between the two assemblies, with an
average sequence identity of >99.9% and only 305 genes appearing in a different order.
GRCh38 fixed a number of mis-assemblies and single base errors present in GRCh37
(Guo et al., 2017), so it is not unexpected that the gene sequence and order are not
entirely identical. This demonstrates Liftoff’s ability to accurately annotate an updated
reference assembly, making it a useful tool as reference assemblies are continuously
updated.



We also showed that we could lift-over nearly all protein-coding genes from GRCh38 to
the chimpanzee genome, PTRv2, with an average sequence identity of 98.7%. This is
consistent with previous work showing the human genome and chimpanzee genome
are approximately 98% identical (Chimpanzee Sequencing and Analysis Consortium,
2005). Comparing the gene order revealed 4 large regions on the homologs of
chromosomes 4, 5, 12, and 17 where the gene order is inverted. These regions are
consistent with previous reports: the chimpanzee genome has 9 well-characterized
pericentric inversions on chromosome homologs 1, 4, 5, 9, 12, 15, 16, 17 (Yunis and
Prakash, 1982). The 4 largest of these inversions are on 4, 5, 12, and 17 (Soto et al.,
2020) hence their visibility at this scale. Additionally, the co-linear mapping of genes
from human chromosome 2 to chimpanzee chromosomes 2A and 2B is consistent with
the known telomeric fusion of these chromosomes (Yunis and Prakash, 1982). The
consistency of the gene sequence identity with the known genome sequence identity
between chimpanzee and human, and the consistency of the gene order with the known
structural differences between the two genomes demonstrate the accuracy of Liftoff's
gene placements in a cross-species lift-over.

Annotating new assemblies with a lift-over strategy rather than de novo is limited in that
the annotation of the new assembly will only be as complete as the reference. However,
as reference annotations continue to improve through manual curation, experimental
validation or improved computational methods, Liftoff will enable easy integration of
these improvements across many genomes. We anticipate that Liftoff will be a valuable
tool in improving our understanding of the biological function of the large and rapidly
growing number of sequenced genomes.
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