IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2019. 1

Benchmarking Cluttered Robot Pick-and-Place Manipulation with
the Box and Blocks Test
Andrew S. Morgan', Student Member, IEEE, Kaiyu Hang', Member, IEEE,

Walter G. Bircher', Student Member, IEEE, Fadi M. Alladkani?, Abhinav Gandhi’,
Berk Calli>, Member, IEEE, and Aaron M. Dollar', Senior Member, IEEE

Abstract—In this work, we propose a pick-and-place
benchmark to assess the manipulation capabilities of a robotic
system. The benchmark is based on the Box and Blocks Test
(BBT), a task utilized for decades by the rehabilitation
community to assess unilateral gross manual dexterity in
humans. We propose three robot benchmarking protocols in this
work that hold true to the spirit of the original clinical tests—the
Modified-BBT, the Targeted-BBT, and the Standard-BBT.
These protocols can be implemented by the greater robotics
research community, as the physical BBT setup has been widely
distributed with the Yale-CMU-Berkeley (YCB) Object and
Model Set. Difficulty of the three protocols increase sequentially,
adding a new performance component at each level, and
therefore aiming to assess various aspects of the system
separately. Clinical task-time norms are summarized for able-
bodied human participants. We provide baselines for all three
protocols with off-the-shelf planning and perception algorithms
on a Barrett WAM and a Franka Emika Panda manipulator,
and compare results with human performance.

I. INTRODUCTION

Enabling robots to work within, perceive, and manipulate
their unstructured, human-made environment has motivated
many decades of robotics research [1], [2]. Despite this
longstanding research effort, there continues to be a vast
ability gap between the tasks robots and humans are able to
accomplish. This fact is perhaps most evident in the various
robotic challenges within recent years, like the Amazon
Picking Challenge (APC) [3],the DARPA Autonomous
Robotic Manipulation (ARM) challenge [4], the Robot
Grasping and Manipulation Competition 2016 [5], and the
RoboCup@Home challenge [6], in which the robots can only
demonstrate a tiny fraction of human dexterity, and require
orders of magnitude more time to complete the same task.

The robotics community is lacking the tools to assess the
manipulation performance of a given system and draw
meaningful comparisons, which prevents systematic analysis,
and therefore progress in the field. Unlike research disciplines
that can be primarily evaluated by data sets and simulations
(e.g. algorithms in image segmentation [7], 3D object retrieval
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Fig. 1. Box and Blocks Test setup in front of a Barret WAM with
a Yale Openhand Model T42. The goal is to transfer all 100
blocks from the start container to the goal container over the
vertical obstacle.

[8], [9], object recognition [10], and SLAM [11]), robotic
manipulation requires real-life experiments with physical
objects and environments due to the difficulty of accurately
simulating the contact phenomena. Nonetheless, in end-to-end
task-oriented evaluations, such as those in the aforementioned
challenges, it is difficult to evaluate individual components of
the system (e.g. object recognition, object segmentation,
motion planning, hardware design) and determine which
component contributed to the success or failure of the task
[12]. This is due to the holistic assessment and scoring of the
performance with a high complexity task.

In this work, we address this dearth of system evaluation in
a standardized benchmark with protocols of increasing
difficulty. By incrementally testing and challenging an
additional system component between each protocol, namely,
manipulator design, control, perception, and planning, we are
able to evaluate various aspects of the system separately to a
much greater extent and provide a general discussion of
system limitations. Through this assessment, we enable
investigators to objectively compare results for a more
enlightened research discussion.

Our work defines three benchmarking protocols that are
inspired by the clinical Box and Blocks Tests (BBTs). The
BBT has been long utilized by clinicians in the rehabilitation
community for evaluating upper-limb gross manual dexterity
in physically impaired individuals. As originally standardized
by Mathiowetz in 1985 [13], the standard test consists of two
containers separated by a vertical barrier, with one container
holding 150 colored wooden blocks. Within one minute, the
participant must transfer as many single blocks as possible
from the filled container to the empty container, ensuring that
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TABLE 1. STANDARD BOX AND BLOCKS TEST NORMS FOR
HEALTHY INDIVIDUALS [13], [15]

Age # # Male Female | Weighted
Range | Male | Female Avg. Avg. Avg.
6-7 26 33 52.55 56.05 54.51
8-9 30 32 61.75 61.60 61.67
10-11 43 40 67.15 68.80 67.95
12-13 34 36 73.50 72.05 72.75
14-15 34 34 75.60 73.75 74.68
16-17 31 35 78.95 75.65 77.20
18-19 33 30 79.55 76.95 78.31
20-24 29 26 87.30 85.70 86.54
25-29 27 27 84.55 83.45 84.00
30-34 27 26 81.60 82.70 82.14
35-39 25 25 80.85 84.15 82.50
40-44 26 31 81.50 80.40 80.90
45-49 28 25 76.35 80.20 78.17
50-54 25 25 78.00 76.00 77.00
55-59 21 25 74.50 74.15 74.31
60-64 24 25 70.90 74.85 72.92
65-69 27 28 67.90 71.65 69.81
70-74 26 29 65.30 68.45 66.96
75+ 25 26 62.15 64.30 63.25

TABLE II. MODIFIED BOX AND BLOCKS TEST NORMS FOR 16
HEALTHY INDIVIDUALS (AGES 29.5+ 8.9 YRS) [17]
Measure Standing (s) Sitting (s)
Right Hand Blocks 9.65 +0.86 9.70 £ 0.90
Left Hand Blocks 10.36 £1.12 10.38+1.18
TABLE III. TARGETED BOX AND BLOCKS TEST NORMS FOR 19
HEALTHY INDIVIDUALS (AGES 29.9 + 8.3 YRS) [18]
Measure Standing (s)
Right Hand Blocks 25.8+5.14

one’s fingers cross the barrier. Due to the popularity of this
test, normative data for healthy participants has been generated
and is widely accepted for individuals in 19 age groups (ages
8-94). Additional works have validated the repeatability of the
norms [14], extended the age groups from the original study
[15], and even introduced added difficulties in order to asses
precision dexterity (the modified box and blocks test [16], [17]
and the targeted box and blocks test [18]). Able-bodied norms
from these clinical variations provide inspiration and baseline
comparisons for our proposed benchmarking protocols.

In robotic benchmarks, objects and environments should be
standardized to ensure the experiments are conducted in
comparable conditions. We rigorously describe the
experimental setup, provide step-by-step instructions and
evaluation metrics, and use the objects from Yale-CMU-
Berkeley (YCB) Object and Model Set [12], which is widely
available to the robotics research community. The proposed
benchmarks follow very closely to the clinical BBTs, but differ
in three ways as to conform to objects provided by the YCB
Object Set: container geometries differ, the standard BBT only
has 100 blocks, and the block template is smaller in order to fit
into the bottom of the YCB container. All protocols are
otherwise identical to their clinical counterpart.

II. RELATED WORK

In this section, we present BBTs in the literature, discuss
the role of pick-and-place tasks in the literature, and give a

summary of data sets and benchmarking efforts in the related
field.

A. The Box and Blocks Test

The (standard) BBT has been utilized for evaluating upper
limb manual dexterity in physically impaired individuals for
several decades. Other tests have been proposed to evaluate
similar measures, such as the Southampton Hand Assessment
Procedure (SHAP) test [19], but are often more difficult to
administer and can be expensive to purchase. As originally
popularized by [13], the BBT study provided norms for able-
bodied individuals, ages 20-92 in 12 age groups (318 females
and 310 males). Recorded metrics signified the number of
blocks transferred within one minute of testing per individual,
while distinguishing by age group, sex, and hand of
dominance. Follow up work added norms for 7 additional age
groups from able bodied individuals ages 6-19 (231 females,
240 males), distinguishing by the same characteristics [15]. As
to allow for a more meaningful comparison to these norms in
robotics, weighted averages have been calculated for each age
group by combining gender (female/male) and hand of
dominance (right/left) categories from these two studies,
presented in Table I, and represent the number of blocks
transferred by each group within one minute.

Two altered box and blocks tests have been introduced in
the literature, the modified BBT (2012) and the targeted BBT
(2017), to better examine the kinematic repeatability of upper-
limb trajectories. Healthy participant, normative data has been
previously gathered for both altered tests (Table II and Table
IIT) for 16 participants and 19 participants, respectively [17],
[18]. The modified BBT assessment evaluated left-hand and
right-hand execution times for right hand-dominant
participants while standing and sitting. The targeted BBT
assessment evaluated right hand transfer times for right-hand
dominant participants. As the initial pose of the objects are
fixed, these tests challenge precision arm and hand control of
the user.

B. The Pick-and-Place Task

The BBT evaluation proposed in this work is a pick-and-
place task as defined by [20], a type of task that has historically
been of high interest to the robotics community largely due to
its culmination of various problems in robotics and its
applications in the real world. Pick-and-place applications
often appear in Activities of Daily Living (ADLSs), or tasks that
would be required for home-focused autonomous service
robotics. Example activities are outlined in a recent survey of
human object manipulation [21]. Moreover, this interest is
further underscored by well-publicized robotics challenges,
e.g. [4], [6], and is also of great interest to the e-commerce
industry for automated sorting and order fulfillment [3].

Though there is great interest in this type of task, efficient
implementations have yet to be developed. Executions often
suffer from being magnitudes slower compared to that of a
human, and are less successful in completing the task. This can
be attributed to several things, e.g. a subsystem contributing to
a bottleneck or an inefficient integration of the subsystem.
Increasing computational efficiency and efficacy of the
subsystems becomes of high interest for effective task
completion. For example, previous works have investigated
accelerating grasp synthesis [22], simplifying control [23],
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Fig. 2. (Left) M-BBT and T-BBT-block templates are affixed to the bottom of each container and 16 colored blocks (4 colors) are placed
according to the template. (Right) S-BBT—100 blocks are placed randomly inside of the start container with random color distributions.

TABLE IV. SUMMARY OF METRICS TO REPORT

Metric Description

(M-BBT) A point is awarded if the correct block in
order is successfully transferred to the goal container
(T-BBT) A point is awarded if the correct block is
successfully transferred to the goal container in the
correct order and in the correct target location
(S-BBT) A point is awarded for every transfer that
consists of one or more blocks

(S-BBT only) Total number of blocks transferred to
the target bin, greater than ‘score’ with picks of more
than one block

(S-BBT only) Number of times the end effector tried

Score

Blocks Picked

Pick Attempts to pick a block
EI.ld Effector Distance traveled by the end effector during execution
Distance (m)

Planning . . . .
Time (s) Amount of time used in motion and grasp planning
Execution Amount of time the manipulator or end effector is in

Time (s) motion
Total Time (s) | Amount of time used to complete the entire task

[24], and even using suction cups or specifically tailored
manipulators to speed up the task [3], [25]. The BBT
benchmarks in this work attempt to increasingly challenge
each of these potential bottlenecks, promoting enlightened
discussion and standardized evaluation for comparison.

C. Data Sets and Benchmarking

Object and model sets for benchmarking have been
proposed in various forms and of differing scopes in the
literature, e.g. [3], [26]-[29]. However, the sets often lack
critical information required to carry out accurate simulations
— such as object textures, 3D object models, object inertial
properties, or coefficients of friction. Due to the complexity of
distributing physical objects, one project has attempted to
make a shopping list of objects for researchers to purchase, but
this list is currently outdated [28]. Objects for the APC are
available for purchase, but there remains an added barrier to
accurately setting up the test environment.

Benchmarks in other applications that do not require
physical objects have been significantly more successful, such
as the creation of Imagenet [10] and the Princeton Shape
Benchmark [9]. These datasets have become very large from
collaboration with their associated communities. At its
inception in 2009, Imagenet contained 3.2 million images and
has since grown to over 14 million in just a decade. In few

cases, benchmarking in physical systems has been proposed
like that in Simultaneous Localization and Mapping (SLAM).
In [30], a benchmark was proposed for indoor SLAM with
physical robots by standardizing the environment and
incorporating a reference robot for comparison between
algorithms. Unlike these aforementioned benchmarks, there
remains great merit in executing tasks in a physical
environment, as execution in a simulation typically lacks
reciprocity to the real world where robots much surely work
[31]. For this reason, we select the use of the YCB set, an
invaluable tool for creating physical benchmarking protocols
for the robotics community, as the object set has been
distributed to over 120 research groups at the time of writing.
Previously, an end-to-end benchmark using this object set has
been proposed for assessing the picking performance of a
robot from a standard shelf [32].

III. BENCHMARKING PROTOCOLS

Three clinically-inspired benchmarking protocols based on
the modified, targeted, and standard BBTs are described in this
section (full instructions of the experimental procedure and
scoring criteria are provided as a multimedia attachment). In
the first benchmark, the Modified-BBT (M-BBT) [16], the
goal is for the robot to transfer 16 identically oriented blocks
from one container to the other over a separating barrier
(container lid) in minimal time. This task mainly challenges
manipulator design and grasping. The second protocol, the
Targeted-BBT (T-BBT) [18], begins similarly to the M-BBT
but requires precision placement of the block on the other side
of the barrier. This task further challenges the accuracy and
control of the end effector and of the manipulator to ensure the
dynamics associated with object placement do not incur
undesirable object movement upon release. The third and final
protocol mimics that of the Standard-BBT (S-BBT) [13],
where the task is to transfer as many randomly configured
blocks as possible (out of 100) across the barrier in minimal
time. There are two variations of this third protocol, the first is
timed for one minute, as to allow for comparison to the clinical
evaluation, and the second is untimed. This final protocol
further challenges perception and planning, as object
segmentation and grasp synthesis in cluttered environments
remain difficult problems in robotics.

The physical setup of all non-manipulated objects is
identical for all three protocols (YCB Obj. #68, 69) [12]. Start
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and goal containers are positioned on a support surface in front
of the manipulator, close enough that the entire volume of the
bin is reachable. Relative location of the containers in front of
the robot is left up to the user, but the containers and the barrier
lid must be within the same relative configuration as depicted
in Fig. 2. That is, the two containers are pushed together
length-wise with one container’s lid acting as a separating
barrier. Blocks (YCB Obj. #70) [12] are placed inside of one
of the containers and are oriented according to the specific
benchmarking protocol being tested. The determination of
which bin is filled (start container) and which bin is empty
(goal container), is left up to the user. For all protocols, the end
effector must start in a position outside of either container.

An overarching goal of the proposed benchmarks is to
evaluate all potential implementations for general pick-and-
place tasks with a standardized test. Therefore, hardware and
software implementations used in execution are not restricted
in any way—types of manipulators, end effectors, and sensing
modalities are free to be determined by the user. However,
alteration of physical objects provided in the YCB set is
prohibited. This includes a restriction on changing colors,
textures, or weights of the blocks or containers. Additionally,
markers cannot be placed on any of the blocks, but may be
placed on the container for pose recognition. Container
position and orientation can either be determined a priori or
during execution. The bins must remain in the same
configuration during the entirety of the task and cannot be
moved purposefully for object reorientation. If the center of
the bin moves more than 2.54cm, or the width of a cube, from
the original starting position, or the bin rotates more than 10°
about the center of the container, the task must be restarted and
the score for that task execution is zero.

Two mirrored templates, one for the left container and one
for the right container, are provided for the M-BBT and the T-
BBT protocols (provided as a multimedia attachment). Each
template has sixteen 3.2cm x 3.2cm numbered target block
locations oriented in groups of four in a row (Fig. 2). Rows are
separated by 2cm from one another. The template is enclosed
by a rounded rectangle mimicking the shape of the container’s
bottom. Templates are affixed to the bottom of the container
during execution. To ensure the template is appropriately
placed, block 1 should be the outermost and furthest block
target location from the manipulator.

Specific scoring rules differ between all three protocols. In
general, for Protocols I and III that do not require precision
object placement, a successful transfer is characterized
similarly to [13] and requires that the object fully reaches onto
the other side of the barrier before dropping into the goal
container, i.e. blocks cannot be thrown over the barrier but can
be released from any elevation above the goal container.
Scores are not penalized if blocks bounce out of the goal
container after release, but still count as a single point. These
rules are in-line with the clinical protocol.

Each task protocol should be completed consecutively at a
minimum of five times as to allow for a general understanding
of the system’s robustness. Failed tasks, as defined
individually for each protocol, result in a score of zero for that
execution. In addition to the score for each protocol, the
amount of time in seconds used in planning, in execution, and
in total needs to be reported. Time dedicated to perception and

decision making should constitute the difference of the total
time with execution time and planning time. The total distance
that the end-effector traveled in meters during execution (most
distal link of the manipulator) must also be recorded. A
summary of reported metrics is provided in Table I'V.

A. Protocol I: Modified - Box and Blocks Test (M-BBT)

The first protocol, the Modified-BBT (M-BBT) [16],
simplifies the perception, planning, and control problem to
focus on manipulator design and execution speed. A total of
sixteen colored blocks, consisting of four different colors
determined by the user, are placed according to the provided
template in either the left or right container. Blocks must start
inside of the designated starting locations and blocks of the
same color must be placed in the same row (Fig. 2)

The goal for this evaluation is to move all sixteen blocks
from one bin to the other in the correct order and in minimal
time. Blocks must be transferred one at a time, starting with
block 1 and ending with block 16. Blocks do not have a target
location inside of the goal container. If neighboring blocks are
perturbed by the end effector during execution, the task can be
continued as long as the same order of blocks are picked as
defined by the beginning of the task. If a pick is missed, the
system must continue to the next block. In cases where the start
container moves more than 2.54cm, two blocks are picked at
once, or the wrong picking order is executed, the execution
receives a score of 0. The maximum score for this protocol is
16 and occurs when all blocks are transferred in the correct
order.

B. Protocol 1I: Targeted - Box and Blocks Test (T-BBT)

The second protocol, the Targeted-BBT (T-BBT) [18],
builds off of the M-BBT as to require dynamic placement
control of the object, further challenging the control of the
manipulator. The task environment is setup similarly to
Protocol I, but now requires that each block is placed within a
specific target location. In minimal time the goal is to transfer
each block, in order from 1-16, from the start container to the
goal container by matching the pick location number with the
place location number, and within the 3.2cm x 3.2cm target
location. If neighboring blocks during the pick are knocked by
the end effector during execution, the task can be continued as
long as blocks are picked in the same order as defined by the
beginning of the task. If a pick is missed, the system must
continue to the next block, and therefore the target location for
that block in the target bin should remain empty.

Block placement and control becomes pivotal for scoring
points. Once a block is picked, the manipulator must complete
placement of that block before moving on to the next pick. The
block can either be directly placed by the end effector or can
be placed into the goal container and slid into the desired
position using environmental affordances. Once another block
is picked, the user can no longer manipulate already placed
blocks. If other blocks are perturbed during placement of a
single block, the pose of those perturbed blocks cannot be
deliberately changed afterwards. Points are awarded at the end
of the task, and signify that a corresponding start location and
goal location match and that the block is completely inside of
the target location. As before, in cases where the start container
moves more than 2.54cm, two blocks are picked at once, or
the wrong picking order is executed, the task receives a score
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Fig. 3. Geometric constraints used for motion planning on a
Barrett WAM manipulator. The gray arm (right) is the current
state and the green arm (left) is evaluating collisions. Blocks
inside of the container are visualized as a point cloud.

of 0. The maximum score for this protocol is 16 and occurs
when all blocks were placed inside of the target locations in
the correct order.

C. Protocol II: Standard - Box and Blocks Test (S-BBT)

The third protocol, the Standard-BBT (S-BBT) has two
parts and presents additional difficulties in perception, since
objects must be segmented in an occluded environment, and
motion/grasp planning, as the manipulator must work in a
cluttered environment. This protocol requires that one bin, the
start container, is filled with all 100 colored blocks of an even
color distribution throughout the container. This can be
achieved by placing the lid on the container after filling and
shaking the container. Inside of the container, four blocks of
the same color should not be adjacently touching one another.
Moreover, due to the size of the container and the total number
of blocks used in this protocol, there should not exist a stack
of blocks in the box that is more than two objects high.

This protocol has two tasks, the first is timed for one
minute (Protocol Illa) and the second is untimed (Protocol
I1Ib). In both tasks, the goal is for the user to transfer as many
blocks as possible across the barrier and into the goal container
in minimal time. Picks of more than one block only count as a
single point. The user may find strategy in initially transferring
more than one block in the beginning of the task to mitigate
clutter, but this also limits the total number of points the user
can score at the end of the task. In the one-minute timed task,
if the manipulator has a successful pick once time expires, a
transfer can be recorded as a point.

The untimed task, Protocol IIlb, presents interesting
problems in motion planning, grasp planning, and control.
Once the top layer of blocks is removed, the remaining layer
typically lacks gaps in which for finger insertion (Fig. 6). Once
a finger is inserted and a grasp is acquired, the planner must
then account for other blocks in the bin, as collision with these
objects will likely perturb the container undesirably. The end
of the task is determined by the user, which likely occurs when
the planner can no longer plan a grasp or all blocks are
removed from the container. As with all protocols, if the
container moves beyond its allotted translational and rotational
threshold, the test fails with a score of 0. The maximum score
for this protocol is 100.

W

Fig. 4. Franka Emika Panda setup with adapted fingertips.
IV. BASELINE IMPLEMENTATIONS

All three protocols were attempted with two different
robotic systems using off-the-shelf planning and perception
algorithms to determine baseline results. In the first setup, an
underactuated Yale Openhand Model T42 [33] (pivot-flexure
model) powered by two Dynamixel RX-28 actuators was
affixed to a Barrett WAM manipulator. A support surface
(60cm x 70cm) was placed 12cm directly in front of the
manipulator. The BBT setup was placed in the center of the
support surface (Fig. 1, 3). A Microsoft Kinect was mounted
overhead providing a point cloud of the environment.
Geometric collision constraints were configured and velocity
control motion planning was achieved with a RRT-Connect
planner [34] in a Movelt! environment. Geometric container
and barrier object models were created to define the collisions
within the environment (provided as multimedia attachments).
The point cloud was segmented such that only blocks inside of
the filled container were available (Fig. 3). Block position
estimation was achieved through the use of a KMeans++
algorithm subject to the location and color of the points. After
each pick, the number of specified clusters was reduced by one
and the object position estimations were recomputed. The
system determined on which block to approach by either order
(protocols 1 and 2) or height (protocols 3a and 3b). The motion
planner then computed a trajectory to place the fingers directly
above the desired block for grasping. Additional waypoints
were added for precision pick, which were located directly
above the block at increments of Scm.

The second system was a Franka Emika Panda (Fig. 4).
The standard gripper was modified such that its fingers were
extended by 140 mm using 3D printed parts, since the gripper
itself was too wide to fit into the container. Even though the
printed parts provide some level of compliance to the gripper,
it is still quite rigid compared to the Model T42 gripper used
in the first setup. Again, different from the first setup, an eye-
in-hand system was used with an Intel Realsense D435i depth
sensor mounted at the end effector, right above the gripper
base. The two containers were placed 10cm in front of the
robot. The point cloud data was transformed into the robot
frame and is segmented using an off the shelf Euclidian cluster
extraction algorithm from the Point Cloud Library. Centroids
for each of the blocks were computed by averaging the point
cloud data. Movelt! was utilized and occlusions were defined
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TABLE V. ‘WAM BASELINE EXECUTION SCORES FOR ALL THREE BOX AND BLOCKS PROTOCOLS
Score | Dist. (m)I Planning (s) | Execution (s) | Total (s) Score | Blocks Pickedl Pick Att. | Dist. (m)l Planning (s) | Execution (s) | Total (s)
Protocol I: Modified BBT Protocol Illa: Timed Standard BBT
1 16 31.82 64.97 172.87 256.98 1 5 8 5 8.48 3.06 44.26 60
2 16 28.29 41.63 180.18 239.79 2 5 7 5 7.77 3.53 54.74 60
3 16 27.19 61.82 173.21 253.97 3 4 7 5 11.02 3.14 47.87 60
4 16 29.59 45.32 170.25 234.07 4 5 6 5 9.2 7.11 44.04 60
5 16 28.07 44.59 168.93 231.97 5 5 9 5 7.59 4.71 55.09 60
Avgl| 16.00 28.99 51.66 173.09 243.36 Avgl 4.80 7.40 5.00 8.81 4.31 49.29 60.00
Std] 0.00 1.61 9.71 3.89 10.26 Std | 0.40 1.02 0.00 1.24 1.52 4.86 0.00
Protocol II: Targeted BBT Protocol IIlb: Untimed Standard BBT
1 2 42.3 41.27 221.95 274.21 1 36 61 52 100.97 159.12 629.81 1024.27
2 2 44.12 59.89 224.47 295.37 2 30 67 43 88.23 125 505.6 824.21
3 4 44.42 48.26 217.6 227 3 33 58 40 79.26 116.04 492.63 783.13
4 1 43.32 45.47 221.86 279.81 4 31 53 45 84.81 116.97 531.36 843.02
5 0 43.57 52.48 222.81 283.24 5 32 62 54 111.12 164.19 662.15 1084.5
Avg| 1.80 43.54 49.47 221.74 281.90 Avgl| 32.40 60.20 46.80 92.99 136.26 564.31 911.83
Std] 1.48 6.71 7.11 2.53 8.23 Std ]| 2.30 5.17 5.97 12.95 23.51 76.70 133.64
TABLE VI PANDA BASELINE EXECUTION SCORES FOR ALL THREE BOX AND BLOCKS PROTOCOLS
Score | Dist. (m) I Planning (s) | Execution (s) | Total (s) Score | Blocks Pickedl Pick Att. | Dist. (m)l Planning (s) | Execution (s) | Total (s)
Protocol I: Modified BBT Protocol Illa: Timed Standard BBT
1 16 33.16 7.75 205.7 245.04 1 3 3 4 10.89 1.74 50.53 60
2 11 22.13 6.48 189.86 221.29 2 2 2 4 8.74 1.88 50.15 60
3 16 29.97 8.15 214.6 254.87 3 3 3 4 6.35 1.96 48.27 60
4 15 34.43 8.05 237.44 277.81 4 4 4 5 7.79 1.83 50.97 60
5 14 34.39 6.8 206.68 240.69 5 2 4 4 7.43 1.95 49.23 60
Avgl| 14.40 30.82 7.45 210.86 247.94 Avgl 2.80 3.20 4.20 8.24 1.87 49.83 60.00
Std] 2.07 5.18 0.75 17.36 20.68 Std ]| 0.80 0.83 0.40 1.71 0.09 1.08 0.00
Protocol II: Targeted BBT Protocol IIIb: Untimed Standard BBT
1 14 50.9 9.3 301.2 340.5 1 9 9 14 28.9 6.83 176.15 215.06
2 13 51.4 10.2 286.1 327.9 2 11 11 33 68.165 15.57 475.39 556.8
3 12 39.8 8.3 240 2742 3 6 6 14 20.48 13.7 193.02 233.12
4 13 36.7 9.5 267.4 306.3 4 6 6 11 26.65 8.2 254.83 296.14
5 13 41.4 8.2 251.5 286.7 5 6 6 7 15.538 3.96 114.25 166.49
Avgl| 13.00 44.00 9.10 269.31 307.10 Avgl 7.60 7.60 8.60 31.95 9.65 248.73 293.52
Std] 0.70 6.70 0.80 24.80 27.50 Std ]| 2.30 2.30 3.71 20.91 4.84 132.94 154.32

in the same way as the first setup. The trajectories were
generated in Cartesian space to prevent undesired contact with
the blocks other than the target block.

Each protocol was evaluated with five consecutive
executions for both systems as presented in Table V and Table
VI, and Fig. 5.

A. The Modified Box and Blocks Test Baseline

Protocol I was implemented on the specified setups. When
using the WAM setup, all 16 blocks were successfully
transferred over the barrier in the correct order in each of the 5
executions. In two executions, the fingers undesirably
interacted with neighboring blocks, moving the neighbors less
than 2cm, but did not provide a large enough perturbation to
affect the system. While the planning time varied significantly
between executions with an average time of 51.66 +9.71s, the
manipulator’s execution time was similar for each trial. This
variation in planning time can be attributed to the random
search implemented in the motion planner.

During the Panda executions, similar undesired contacts
occurred with the blocks neighboring the target block. In the
second execution, the arm got into joint singularities and the
execution terminated without attempting to pick all the blocks.
This problem is due to trying to achieve a fast cartesian space
planner, and not checking the joint constraints along the
trajectory. Nevertheless, this setup was not as successful as the
WAM-Model T42 setup for recovering from these situations
due to the rigidity of the gripper. Here, we see the advantage
of using compliant grippers in compensating for uncertainties
during the picking operation.

B. The Targeted Box and Blocks Test Baseline

The targeted BBT requires the system to precisely place
the blocks after each pick, considering the dynamics of block
placement. In this test, the WAM setup scored very low
compared to the first protocol (1.8 + 1.48 blocks). This is
mainly due to the lack of precision of the compliant hand on a
low-impedance manipulator, which resulted in unpredictable
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Fig. 5. (Top) Ratio of score to total task time for the WAM
results. (Bottom) Ratio of score to end effector travel distance
during execution for the WAM. Larger ratios typically signify
higher task efficiency. Due to the nature of the task, the T-BBT
and Untimed S-BBT require additional planning to ensure the
block is picked (and placed) vertically to minimize interactions
with neighboring blocks.

object motion during release especially if one finger lost
contact before the other. Comparatively, the Panda setup
scored much higher (13 £ 0.7 blocks), taking advantage of the
precision evident in rigid manipulators and grippers. This
outcome further underscores the compliance/rigidity tradeoff.

C. The Standard Box and Blocks Test Baseline

The final protocol was evaluated in both timed and
untimed settings for each of the manipulators. Within the
allotted minute of the timed task, the WAM setup was
successfully able to transfer 4.8 + 0.4 blocks on average. Two-
block transfers were often executed in order to simplify
planning. The average manipulator execution time (49.29 +
4.86s) was over twelve times greater than that of the time
required to create a plan (4.39 £ 1.52s). Though now adding
the difficulty of perceiving individual blocks, the planning
involved in this task was easier than others, as the end effector
was able to interact with neighboring blocks without penalty,
since all blocks were picked from the top layer. End effector
distances also deviated between executions, with an average
of 8.81 + 1.24m. This again is attributed to the random joint
configuration search implemented by the planner. The
performance of the WAM setup was better than that of the
Panda, due to the advantage of using a compliant system in
cluttered, unstructured environments.

In the untimed evaluation, the performance difference
between the WAM and Panda can be seen more clearly. Given
enough time, the WAM setup picked significantly more blocks
compared to the Panda setup due to compliance. In these tests,
it was easily noted how difficult it was for the grippers to be
accurately inserted into the bottom layer of the container while
in a cluttered environment (Fig. 6). In the WAM setup,

Fig. 6. (Left) Inserting a finger into the bottom layer of bin is
difficult as there are few gaps for insertion. (Right) Blocks
around the perimeter of the left start container are not transferred
during the untimed task as a grasp plan was difficult to find.

compliance was leveraged by devising an alternative strategy,
which was to place the hand on top of a row of blocks and
rotate the wrist before attempting to grasp. While rotating, the
hand would continue to push into the container to insert the
fingertip. This allowed the fingers to reconfigure the blocks
before attempting to grasp.

The untimed task on the WAM resulted in an average score
of 32.4 + 2.3 blocks picked over 911.8 + 133.6s, far greater
than what was achieved on the Panda (7.6 + 2.3 blocks).
Efficiency of the executions averaged 2.15 + 0.27 blocks per
minute, less than half that of the average of the timed test. This
deviation can be attributed to the added planning and control
difficulty with finger insertion into the bottom layer. Not all
blocks were able to be picked out of the container, as only 60.2
+ 5.17 total blocks on average were transferred. Blocks not
picked before termination were typically around the perimeter
of the box, and a grasp plan was never found, as in Fig. 6.

V. DISCUSSION

The executions presented in Sec. IV serve as baseline
implementations for all three benchmarking protocols. In all
executions, we recognize a noticeable difference between
execution time and planning time, where the execution speed
of the manipulator often contributed to more than 70% of the
time used. While increasing the speed of the manipulator may
contribute to a faster execution time, we noticed that it
decreased the accuracy of both manipulators, presenting a
bottleneck in their designs.

The execution time could have been decreased with an
optimal trajectory planner, where the RRT-Connect
architecture resulted in large end effector distance variations
within the tasks. Off-the-shelf optimal trajectory planners were
found to be too slow to use in execution. As in Fig. 5, the M-
BBT and timed S-BBT resulted in the highest scores per
minute, which is consistent with the clinical trials. This is
largely due to the fact that the T-BBT required time to
precisely place the object while avoiding interactions with
neighboring blocks. Additionally, the untimed S-BBT was
difficult due to the finger insertion problem. Both, the T-BBT
and the untimed S-BTT, would have benefited from more
advanced control for increased precision. Similar results are
portrayed in the scores per meter traveled comparison, as the
majority of time used was dedicated to manipulator
movement. As faster manipulators and planning algorithms
are used, scores, and consequently these ratios, will increase.
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Due to similarities between the clinical and robot
protocols, we are also able to generally compare task execution
times between robots and humans. For example, in the WAM
implementation with off-the-shelf components, the M-BBT
was 24 times slower and the T-BBT was over 14 times slower
than that of a human, from the age groups presented in [17],
[18]. The timed S-BBT was over 11 times slower than that of
a 6-7 year-old child, further underscoring the vast ability gap
between a robot and a human in this task.

VI. CONCLUSION

In this work, we identify the inability to separate the
components used in most task-level benchmarks and propose
three standardized tasks based on the clinically utilized Box
and Blocks Test. Benchmarking using the BBT is
advantageous as not only has it been utilized for decades in the
rehabilitation community to provide baseline able-bodied
norms for comparison, but the physical setup is also included
in the widely distributed YCB Object and Model set. Due to
its significance in the rehabilitation community and its large
distribution, it provides an accessible platform for evaluating
the pick-and-place task.

Three protocols were designed by challenging an
additional system component at each level. For each of the
three benchmarks, we provide baseline results using off-the-
shelf planning and perception algorithms on a Barrett WAM
and a Franka Emika Panda. We compare baseline results to
human performance, finding that robot execution times are
over ten slower. By evaluating these benchmarks with
different manipulators, planners, control algorithms, and
perception systems, the protocols provide objective measures
for researchers in the robotics community to compare
approaches. We recognize there is much work still to be
completed in the field of manipulation and it is our hope that
these tests provide insight for future evaluation towards
human-level pick-and-place efficiency.
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